research communications
Synthesis and N-methyldiethanolamine and isobutyrate ligands
of a one-dimensional chain-like strontium(II) coordination polymer built ofaLeibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
*Correspondence e-mail: kirill.monakhov@iom-leipzig.de
The one-dimensional coordination polymer (I) [Sr(ib)2(H2mda)]n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldiethanolamine, C5H13NO2), namely, catena-poly[[(N-methyldiethanolamine-κ3O,N,O′)strontium(II)]-di-μ2-isobutyrato-κ3O,O′:O;κ3O:O,O′], was prepared by the one-pot aerobic reaction of [Zr6O4(OH)4(ib)12(H2O)]·3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in acetonitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The molecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib− ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air.
Keywords: crystal structure; strontium; carboxylates; N-methyldiethanolamine; coordination polymer; zirconium.
CCDC reference: 2087088
1. Chemical context
Simple metal isobutyrate salts such as TM(ib)2 (e.g. TM = Mn, Co and Ni; Hib = isobutyric acid) and AM(ib) (e.g. AM = Na and K) are known to act as precursor materials for the synthesis of a wide variety of polynuclear coordination complexes, e.g. [MnII4MnIII2(ib)8(Hbda)2(bda)2] (H2bda = N-butyldiethanolamine), [MnII4CoIII2(ib)8(Hmda)2(mda)2] (Malaestean et al., 2010), [CoII3CoIII2(Hbda)2(bda)2(ib)6]·2MeCN and [NiII4(Hbda)3(ib)5(MeCN)] (Schmitz et al., 2016), [GdIII4MII8(OH)8(Lig)8(ib)8](ClO4)4 (M = ZnII or CuII, HLig = 2-(hydroxymethyl)pyridine); Hooper et al., 2012) and [Cr3O(ib)6(H2O)3](NO3) (Parsons et al., 2000). The formation of these polynuclear homo- and heterometallic complexes was enabled by the introduction of flexible amino alcohol ligands into the reaction mixtures (Schmitz et al., 2016; Malaestean et al., 2010). We describe here the first example of a coordination polymer composed of monomeric SrII units that are supported by both isobutyrate and amino alcohol ligands. This makes the synthesized compound [Sr(ib)2(H2mda)]n (I) an appealing precursor for reactions with transition metal and lanthanide complexes. In addition, I can find application in solvothermal reactions as it is described, e.g. for the transformation of [CoII3CoIII2(Hbda)2(bda)2(ib)6] to [CoII10(OH)2(bda)6(ib)6] (Schmitz et al., 2018). Herein compound I was isolated as colorless crystals from an aerobic reaction, characterized by infrared (IR) spectroscopy, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Compound I represents a rare class of alkaline earth metal–isobutyrate complexes with a 1D polymeric structure (cf. {[Mg(ib)2(H2O)3]·H2O}n (Malaestean et al., 2013)). Remarkably, MnCl2 is crucial in the synthesis of I for the formation of high-quality single crystals (in 36% yield) suitable for X-ray diffraction. When the reaction is carried out without MnCl2, poor quality crystalline material is formed in lower yield within several days. For the syntheses of homometallic coordination complexes it is common to use an additional metal salt, which yields a heterometallic reaction mixture, from which the homometallic complex can be obtained selectively as a solid product (Ako et al., 2007; Liu et al., 2018). In 2007, Ako and co-workers described two heptanuclear iron(III) complexes [FeIII7O3(bda)3(piv)9(H2O)3] and [FeIII7O3(phda)3(piv)9(H2O)3] (H2phda = N-phenyldiethanolamine and Hpiv = pivalic acid), which were obtained by the reaction of [Fe3O(piv)6]piv, nickel(II) acetate tetrahydrate (Ni(OAc)2·4H2O) and H2bda or H2phda in a molar ratio of 1:1:2 using MeCN as solvent (Ako et al., 2007). Although Ni(OAc)2·4H2O was used in an equimolar ratio with the iron(III) precursor, nickel did not incorporate into the final product. Similar to this, Liu et al. (2018) synthesized a hexanuclear [Zn6(Lig)6(OOCH)6] complex (HLig = 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine) by the reaction of zinc(II) acetate, Zn(OAc)2, with HLig in the presence of praseodymium(III) nitrate hexahydrate, Pr(NO3)3·6H2O, using a 2:2:1 molar ratio. The reaction was performed solvothermally in DMF and praseodymium did not incorporate into the final [Zn6(Lig)6(OOCH)6] complex, which was isolated as a pure product by filtration (Liu et al., 2018). Here [Sr(ib)2(H2mda)]n was also isolated as a pure product by filtration, which indicates that the additional metal salts (here MnCl2) remain in the mother liquor.
2. Structural commentary
The II (Fig. 1) extending along the a-axis direction. The contains one central SrII ion, which is coordinated by a disordered, tridentate and fully protonated H2mda and two deprotonated isobutyrate ligands. In other words, SrII is nine-coordinated by six O atoms (O1, O3, O1i, O3ii, O2i, and O4ii; see Table 1 for geometric parameters and symmetry codes) from four different carboxylate groups, two O atoms (O5 and O6 or O5A and O6A) and one N atom (N1) from the N-methyldiethanolamine ligand. The resulting coordination environment of the strontium center is NO8. The polyhedral shape of Sr was evaluated using the SHAPE software version 2.1 (Llunell et al., 2013) and can be described as an in-between a distorted spherical capped square antiprism and a distorted spherical tricapped trigonal prism (Fig. 2). The values of the deviation from the ideal geometry are listed in Table 2. The Sr—Oib bond lengths of the bridging O atoms are between 2.5377 (10) and 2.7563 (10) Å, whereas the non-bridging Sr—Oib bond lengths range from 2.6270 (11) to 2.6364 (11) Å. The non-bonding Sr⋯Sr distances are 4.2869 (3) and 4.2982 (3) Å with Sr—O—Sr angles of 108.50 (4) and 108.84 (5)°. The Sr—OH2mda bond lengths range between 2.582 (20) and 2.731 (11) Å, and Sr—N bond length is 2.8495 (13) Å.
consists of a Sr3. Supramolecular features
The crystal packing reveals the existence of 1D polymeric zigzag chains running along the a-axis direction (Figs. 3 and 4), in which monomeric SrII units are interlinked by one O atom of each isobutyrate ligand, which are all coordinated in a chelating, bridging μ2-η2:η1 mode. The H2mda ligands coordinate in the chelating μ1-η1: η1: η1 mode to the Sr centers of I. The edge-sharing SrNO8 polyhedra are linked by the isobutyrate O1 and O1ii atoms on the one side and O3 and O3i atoms on the other side. Intramolecular hydrogen bonding is present along the chains via O5—H5⋯O2, O6—H6⋯O4 and O6A—H6A⋯O4 contacts (Fig. 3, Table 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016) resulted in 34 hits for metal complexes ligated by isobutyrate and N-alkyldiethanolamine. To the best of our knowledge, there are no alkaline earth complexes as well as coordination polymers incorporating both ligands. There are four polymeric structures solely containing group two elements and isobutyrate anions: the magnesium complex catena-poly[[triaqua(isobutyrato)-κO)magnesium]-μ-isobutyrato-κ2O:O′] monohydrate, refcode VIQTOG (Malaestean et al., 2013), catena-poly[[μ-aqua-diaqua(μ3-2-methylpropanoato-κ4O:O,O′:O′)calcium] 2-methylpropanoate dihydrate], refcode JUWMEW (Samolová & Fábry, 2020), as well as the isostructural strontium complex, refcode JUWMIA (Samolová & Fábry, 2020) and the mixed calcium/strontium complex catena-poly[[μ-aqua-diaqua(μ3-2-methylpropanoato-κ4O:O,O′:O′)calcium/strontium] 2-methylpropanoate dihydrate], refcode JUWMOG (Samolová & Fábry, 2020).
5. Synthesis and crystallization
The one-pot reaction of freshly prepared hexanuclear zirconium complex [Zr6O4(OH)4(ib)12(H2O)]·3Hib (Kogler et al., 2004, abbreviated as {Zr6}) with strontium(II) nitrate and manganese(II) chloride in a 1.0:2.2:2.2, molar ratio was performed in acetonitrile under aerobic conditions, involving 11.1 eq. of N-methyldiethanolamine as a co-ligand and 4.0 eq. of triethylamine as a base (see Fig. 5). The polymeric coordination complex [Sr(ib)2(H2mda)]n (I) was isolated as colorless crystals. By-products could not be identified. The IR spectrum of I is characterized by the asymmetric O–C–O vibration bands at 1556 cm−1 and the symmetric O–C–O ones in the range of 1366–1426 cm−1.
The TGA curve (Fig. 6) shows that the thermal decomposition of I occurs between 130 and 440°C with a mass loss of C12H27NO3 per (Δmtotal = 60.00% vs Δmcalcd. = 61.25%), and it yields SrCO3. Overall, the thermal stability of I up to 130°C in air is similar to that determined for isobutyrate diethanolamine complexes of cobalt (140°C) and nickel (130°C) (Schmitz et al., 2016).
6. Refinement
Crystal data, data collection and structure . The structure was solved using dual space methods and refined by full-matrix least-squares minimization on F2. The coordinates of all non-hydrogen atoms were refined with anisotropic thermal parameters. All H atoms were placed in geometrically idealized positions and refined using a rigid model and included as riding atoms, with methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, methine C—H = 1.00 Å and O—H = 0.84 Å. Isotropic displacement parameters were set to Uiso(H) = 1.2Ueq for the parent atom (1.5 for methyl and hydroxy groups). The hydroxy groups and the idealized methyl group were refined as rotating. Atoms C9, C10, C11, C12, C13, O5 and O6 of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). As a result of the short distance between the disordered atoms C11, C13, O5, O6 and their corresponding counterparts, EADP constraints were applied to equalize the displacement ellipsoids of the atom pairs.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2087088
https://doi.org/10.1107/S2056989021005594/dj2022sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005594/dj2022Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021005594/dj2022sup4.zip
Data collection: X-AREA Pilatus3_SV (Stoe, 2019); cell
X-AREA Recipe (Stoe, 2019); data reduction: X-AREA Integrate (Stoe, 2019); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: X-AREA (Stoe, 2019).[Sr(C4H7O2)2(C5H13NO2)] | F(000) = 792 |
Mr = 380.97 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54186 Å |
a = 8.1516 (2) Å | Cell parameters from 16191 reflections |
b = 19.1921 (6) Å | θ = 4.5–70.9° |
c = 11.4288 (3) Å | µ = 4.46 mm−1 |
β = 99.295 (2)° | T = 180 K |
V = 1764.52 (8) Å3 | Block, light yellow |
Z = 4 | 0.28 × 0.21 × 0.13 mm |
Stoe Stadivari diffractometer | 3300 independent reflections |
Radiation source: GeniX 3D HF Cu | 3009 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.014 |
Detector resolution: 5.81 pixels mm-1 | θmax = 70.5°, θmin = 4.6° |
rotation method, ω scans | h = −6→9 |
Absorption correction: multi-scan (XAREA LANA; Stoe, 2019) | k = −23→22 |
Tmin = 0.178, Tmax = 0.458 | l = −13→13 |
15496 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.031P)2 + 0.1664P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
3300 reflections | Δρmax = 0.39 e Å−3 |
240 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sr1 | 0.74277 (2) | 0.53023 (2) | 0.46969 (2) | 0.02003 (5) | |
O1 | 1.03404 (12) | 0.57713 (5) | 0.53587 (9) | 0.0276 (2) | |
N1 | 0.71783 (17) | 0.65620 (7) | 0.33604 (12) | 0.0315 (3) | |
C1 | 1.14299 (18) | 0.61161 (8) | 0.60142 (13) | 0.0248 (3) | |
O2 | 1.29545 (13) | 0.59817 (6) | 0.60970 (11) | 0.0350 (3) | |
C2 | 1.0907 (2) | 0.66959 (9) | 0.67912 (16) | 0.0333 (4) | |
H2 | 0.967393 | 0.675584 | 0.660022 | 0.040* | |
O3 | 0.44290 (13) | 0.51634 (6) | 0.36832 (9) | 0.0277 (2) | |
C3 | 1.1366 (3) | 0.64916 (12) | 0.80933 (18) | 0.0564 (6) | |
H3A | 1.079880 | 0.605721 | 0.823650 | 0.085* | |
H3B | 1.102401 | 0.686203 | 0.859261 | 0.085* | |
H3C | 1.257147 | 0.642439 | 0.828695 | 0.085* | |
O4 | 0.18685 (13) | 0.48389 (7) | 0.29816 (10) | 0.0360 (3) | |
C4 | 1.1738 (3) | 0.73767 (10) | 0.6536 (2) | 0.0579 (6) | |
H4A | 1.294585 | 0.731263 | 0.665716 | 0.087* | |
H4B | 1.145448 | 0.773973 | 0.707215 | 0.087* | |
H4C | 1.134732 | 0.751626 | 0.571288 | 0.087* | |
O5A | 0.577 (3) | 0.6350 (9) | 0.5311 (11) | 0.0265 (9) | 0.381 (3) |
H5A | 0.609072 | 0.636661 | 0.604661 | 0.040* | 0.381 (3) |
C5 | 0.33403 (18) | 0.49642 (8) | 0.28442 (13) | 0.0248 (3) | |
O6A | 0.882 (6) | 0.530 (3) | 0.273 (5) | 0.0294 (17) | 0.381 (3) |
H6A | 0.964326 | 0.504679 | 0.267529 | 0.044* | 0.381 (3) |
C6 | 0.3829 (2) | 0.48362 (10) | 0.16298 (15) | 0.0350 (4) | |
H6 | 0.502060 | 0.497040 | 0.166344 | 0.042* | |
C7 | 0.2768 (3) | 0.52822 (12) | 0.06894 (18) | 0.0542 (6) | |
H7A | 0.159415 | 0.515843 | 0.065063 | 0.081* | |
H7B | 0.310497 | 0.519856 | −0.008377 | 0.081* | |
H7C | 0.292495 | 0.577568 | 0.089822 | 0.081* | |
C8 | 0.3644 (3) | 0.40680 (11) | 0.13232 (17) | 0.0484 (5) | |
H8A | 0.432387 | 0.379290 | 0.194290 | 0.073* | |
H8B | 0.401459 | 0.398322 | 0.056146 | 0.073* | |
H8C | 0.247570 | 0.393170 | 0.126731 | 0.073* | |
C9A | 0.5616 (6) | 0.6538 (3) | 0.2356 (5) | 0.0484 (14) | 0.381 (3) |
H9AA | 0.462861 | 0.641832 | 0.270231 | 0.073* | 0.381 (3) |
H9AB | 0.578748 | 0.618626 | 0.176647 | 0.073* | 0.381 (3) |
H9AC | 0.545747 | 0.699558 | 0.197278 | 0.073* | 0.381 (3) |
C10A | 0.6919 (7) | 0.7102 (2) | 0.4143 (5) | 0.0447 (13) | 0.381 (3) |
H10A | 0.658994 | 0.752626 | 0.367158 | 0.054* | 0.381 (3) |
H10B | 0.798802 | 0.720209 | 0.466068 | 0.054* | 0.381 (3) |
C11A | 0.5675 (15) | 0.6966 (8) | 0.4890 (14) | 0.0384 (12) | 0.381 (3) |
H11A | 0.581608 | 0.730392 | 0.555314 | 0.046* | 0.381 (3) |
H11B | 0.455628 | 0.703709 | 0.442146 | 0.046* | 0.381 (3) |
C12A | 0.8593 (6) | 0.6604 (2) | 0.2824 (4) | 0.0372 (12) | 0.381 (3) |
H12A | 0.957084 | 0.667164 | 0.345023 | 0.045* | 0.381 (3) |
H12B | 0.849687 | 0.702121 | 0.230877 | 0.045* | 0.381 (3) |
C13A | 0.893 (4) | 0.5941 (18) | 0.205 (3) | 0.0431 (8) | 0.381 (3) |
H13A | 0.809510 | 0.592742 | 0.131210 | 0.052* | 0.381 (3) |
H13B | 1.004460 | 0.597745 | 0.181722 | 0.052* | 0.381 (3) |
O6 | 0.866 (3) | 0.5342 (16) | 0.268 (3) | 0.0294 (17) | 0.619 (3) |
H6B | 0.960128 | 0.517184 | 0.294366 | 0.044* | 0.619 (3) |
O5 | 0.5875 (15) | 0.6406 (5) | 0.5558 (6) | 0.0265 (9) | 0.619 (3) |
H5 | 0.505903 | 0.619209 | 0.574990 | 0.040* | 0.619 (3) |
C9 | 0.8519 (4) | 0.70964 (15) | 0.3830 (3) | 0.0411 (7) | 0.619 (3) |
H9A | 0.961638 | 0.690803 | 0.376032 | 0.062* | 0.619 (3) |
H9B | 0.846963 | 0.719638 | 0.466490 | 0.062* | 0.619 (3) |
H9C | 0.832910 | 0.752678 | 0.336686 | 0.062* | 0.619 (3) |
C11 | 0.5250 (7) | 0.6997 (5) | 0.4694 (8) | 0.0384 (12) | 0.619 (3) |
H11C | 0.403861 | 0.705598 | 0.467052 | 0.046* | 0.619 (3) |
H11D | 0.580042 | 0.743736 | 0.498683 | 0.046* | 0.619 (3) |
C12 | 0.7389 (4) | 0.63928 (16) | 0.2165 (2) | 0.0404 (8) | 0.619 (3) |
H12C | 0.747000 | 0.683090 | 0.172108 | 0.048* | 0.619 (3) |
H12D | 0.639044 | 0.613961 | 0.177495 | 0.048* | 0.619 (3) |
C13 | 0.887 (2) | 0.5965 (11) | 0.2096 (17) | 0.0431 (8) | 0.619 (3) |
H13C | 0.896781 | 0.587366 | 0.125768 | 0.052* | 0.619 (3) |
H13D | 0.988442 | 0.620832 | 0.247982 | 0.052* | 0.619 (3) |
C10 | 0.5591 (3) | 0.68558 (14) | 0.3441 (3) | 0.0372 (7) | 0.619 (3) |
H10C | 0.472220 | 0.653633 | 0.304369 | 0.045* | 0.619 (3) |
H10D | 0.548179 | 0.730028 | 0.299556 | 0.045* | 0.619 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01411 (8) | 0.02466 (8) | 0.02156 (8) | −0.00039 (4) | 0.00361 (5) | −0.00108 (5) |
O1 | 0.0218 (5) | 0.0283 (5) | 0.0319 (6) | −0.0029 (4) | 0.0016 (4) | −0.0046 (4) |
N1 | 0.0321 (8) | 0.0296 (7) | 0.0338 (7) | 0.0040 (5) | 0.0082 (6) | 0.0048 (6) |
C1 | 0.0201 (7) | 0.0262 (7) | 0.0287 (7) | −0.0014 (5) | 0.0059 (5) | −0.0009 (6) |
O2 | 0.0176 (6) | 0.0348 (6) | 0.0537 (7) | −0.0017 (4) | 0.0092 (5) | −0.0128 (5) |
C2 | 0.0233 (8) | 0.0343 (8) | 0.0418 (9) | 0.0036 (6) | 0.0040 (6) | −0.0114 (7) |
O3 | 0.0203 (5) | 0.0360 (6) | 0.0259 (5) | −0.0021 (4) | 0.0010 (4) | −0.0006 (4) |
C3 | 0.0662 (14) | 0.0652 (14) | 0.0378 (11) | 0.0156 (11) | 0.0084 (9) | −0.0165 (10) |
O4 | 0.0177 (6) | 0.0627 (8) | 0.0276 (6) | −0.0007 (5) | 0.0043 (4) | 0.0012 (5) |
C4 | 0.0619 (14) | 0.0340 (10) | 0.0818 (16) | −0.0043 (9) | 0.0239 (11) | −0.0198 (10) |
O5A | 0.0273 (17) | 0.0322 (16) | 0.021 (3) | −0.0033 (11) | 0.008 (3) | −0.0085 (19) |
C5 | 0.0200 (8) | 0.0308 (8) | 0.0235 (7) | 0.0022 (6) | 0.0031 (5) | 0.0009 (6) |
O6A | 0.023 (4) | 0.035 (3) | 0.031 (2) | 0.007 (3) | 0.007 (3) | 0.0037 (18) |
C6 | 0.0265 (9) | 0.0539 (10) | 0.0260 (8) | −0.0021 (7) | 0.0088 (6) | −0.0036 (7) |
C7 | 0.0684 (15) | 0.0683 (14) | 0.0276 (9) | 0.0088 (11) | 0.0131 (9) | 0.0082 (9) |
C8 | 0.0536 (12) | 0.0571 (12) | 0.0346 (10) | 0.0073 (9) | 0.0073 (8) | −0.0139 (9) |
C9A | 0.037 (3) | 0.052 (3) | 0.052 (3) | −0.001 (2) | −0.005 (2) | 0.017 (2) |
C10A | 0.057 (3) | 0.026 (2) | 0.056 (3) | −0.003 (2) | 0.022 (2) | −0.002 (2) |
C11A | 0.030 (3) | 0.0315 (12) | 0.056 (3) | 0.017 (2) | 0.015 (3) | 0.0070 (18) |
C12A | 0.039 (3) | 0.034 (2) | 0.042 (3) | 0.0017 (18) | 0.015 (2) | 0.015 (2) |
C13A | 0.0521 (15) | 0.0471 (17) | 0.0352 (18) | 0.0102 (11) | 0.0227 (11) | 0.0109 (12) |
O6 | 0.023 (4) | 0.035 (3) | 0.031 (2) | 0.007 (3) | 0.007 (3) | 0.0037 (18) |
O5 | 0.0273 (17) | 0.0322 (16) | 0.021 (3) | −0.0033 (11) | 0.008 (3) | −0.0085 (19) |
C9 | 0.0362 (16) | 0.0362 (15) | 0.0495 (18) | −0.0081 (12) | 0.0024 (12) | 0.0055 (13) |
C11 | 0.030 (3) | 0.0315 (12) | 0.056 (3) | 0.017 (2) | 0.015 (3) | 0.0070 (18) |
C12 | 0.051 (2) | 0.0420 (16) | 0.0275 (14) | 0.0089 (13) | 0.0056 (12) | 0.0089 (12) |
C13 | 0.0521 (15) | 0.0471 (17) | 0.0352 (18) | 0.0102 (11) | 0.0227 (11) | 0.0109 (12) |
C10 | 0.0311 (15) | 0.0330 (14) | 0.0478 (17) | 0.0068 (11) | 0.0076 (12) | 0.0106 (12) |
Sr1—O1i | 2.7563 (10) | C6—H6 | 1.0000 |
Sr1—O3ii | 2.7244 (11) | C6—C7 | 1.528 (3) |
Sr1—O1 | 2.5377 (10) | C6—C8 | 1.517 (3) |
Sr1—O3 | 2.5444 (10) | C7—H7A | 0.9800 |
Sr1—O2i | 2.6270 (11) | C7—H7B | 0.9800 |
Sr1—O4ii | 2.6364 (11) | C7—H7C | 0.9800 |
Sr1—O5 | 2.731 (11) | C8—H8A | 0.9800 |
Sr1—O6 | 2.66 (3) | C8—H8B | 0.9800 |
Sr1—N1 | 2.8495 (13) | C8—H8C | 0.9800 |
Sr1—Sr1i | 4.2981 (3) | C9A—H9AA | 0.9800 |
Sr1—Sr1ii | 4.2868 (3) | C9A—H9AB | 0.9800 |
Sr1—O5A | 2.58 (2) | C9A—H9AC | 0.9800 |
Sr1—C5ii | 3.0199 (15) | C10A—H10A | 0.9900 |
Sr1—O6A | 2.68 (6) | C10A—H10B | 0.9900 |
O1—C1 | 1.2541 (18) | C10A—C11A | 1.450 (16) |
N1—C9A | 1.571 (5) | C11A—H11A | 0.9900 |
N1—C10A | 1.407 (5) | C11A—H11B | 0.9900 |
N1—C12A | 1.393 (5) | C12A—H12A | 0.9900 |
N1—C9 | 1.531 (3) | C12A—H12B | 0.9900 |
N1—C12 | 1.441 (3) | C12A—C13A | 1.60 (3) |
N1—C10 | 1.428 (3) | C13A—H13A | 0.9900 |
C1—O2 | 1.2578 (19) | C13A—H13B | 0.9900 |
C1—C2 | 1.527 (2) | O6—H6B | 0.8400 |
C2—H2 | 1.0000 | O6—C13 | 1.39 (4) |
C2—C3 | 1.526 (3) | O5—H5 | 0.8400 |
C2—C4 | 1.521 (3) | O5—C11 | 1.537 (12) |
O3—C5 | 1.2563 (18) | C9—H9A | 0.9800 |
C3—H3A | 0.9800 | C9—H9B | 0.9800 |
C3—H3B | 0.9800 | C9—H9C | 0.9800 |
C3—H3C | 0.9800 | C11—H11C | 0.9900 |
O4—C5 | 1.2581 (19) | C11—H11D | 0.9900 |
C4—H4A | 0.9800 | C11—C10 | 1.526 (10) |
C4—H4B | 0.9800 | C12—H12C | 0.9900 |
C4—H4C | 0.9800 | C12—H12D | 0.9900 |
O5A—H5A | 0.8400 | C12—C13 | 1.471 (18) |
O5A—C11A | 1.27 (2) | C13—H13C | 0.9900 |
C5—C6 | 1.524 (2) | C13—H13D | 0.9900 |
O6A—H6A | 0.8400 | C10—H10C | 0.9900 |
O6A—C13A | 1.46 (6) | C10—H10D | 0.9900 |
O1—Sr1—O1i | 71.51 (4) | H4A—C4—H4C | 109.5 |
O1—Sr1—N1 | 80.86 (4) | H4B—C4—H4C | 109.5 |
O1i—Sr1—N1 | 127.74 (4) | Sr1—O5A—H5A | 102.1 |
O1—Sr1—O2i | 119.26 (3) | C11A—O5A—Sr1 | 128.5 (14) |
O1—Sr1—O3 | 163.08 (4) | C11A—O5A—H5A | 109.5 |
O1—Sr1—O3ii | 120.63 (3) | O3—C5—Sr1ii | 64.42 (8) |
O1—Sr1—O4ii | 72.27 (3) | O3—C5—O4 | 122.22 (14) |
O1—Sr1—O5A | 98.5 (4) | O3—C5—C6 | 119.20 (14) |
O1i—Sr1—C5ii | 97.57 (4) | O4—C5—Sr1ii | 60.41 (8) |
O1—Sr1—C5ii | 96.16 (4) | O4—C5—C6 | 118.51 (13) |
O1—Sr1—O6A | 75.4 (11) | C6—C5—Sr1ii | 160.72 (11) |
O1—Sr1—O6 | 77.3 (6) | Sr1—O6A—H6A | 120.7 |
O1—Sr1—O5 | 94.8 (2) | C13A—O6A—Sr1 | 121 (3) |
N1—Sr1—C5ii | 129.42 (4) | C13A—O6A—H6A | 109.5 |
O2i—Sr1—O1i | 48.14 (3) | C5—C6—H6 | 108.6 |
O2i—Sr1—N1 | 128.06 (4) | C5—C6—C7 | 110.42 (15) |
O2i—Sr1—O3ii | 83.06 (4) | C7—C6—H6 | 108.6 |
O2i—Sr1—O4ii | 104.22 (4) | C8—C6—C5 | 109.65 (15) |
O2i—Sr1—C5ii | 97.57 (4) | C8—C6—H6 | 108.6 |
O2i—Sr1—O6A | 75.6 (12) | C8—C6—C7 | 110.99 (16) |
O2i—Sr1—O6 | 76.6 (7) | C6—C7—H7A | 109.5 |
O2i—Sr1—O5 | 144.7 (2) | C6—C7—H7B | 109.5 |
O3—Sr1—O1i | 120.02 (3) | C6—C7—H7C | 109.5 |
O3ii—Sr1—O1i | 102.22 (3) | H7A—C7—H7B | 109.5 |
O3—Sr1—N1 | 82.22 (4) | H7A—C7—H7C | 109.5 |
O3ii—Sr1—N1 | 130.04 (4) | H7B—C7—H7C | 109.5 |
O3—Sr1—O2i | 72.11 (3) | C6—C8—H8A | 109.5 |
O3—Sr1—O3ii | 71.14 (4) | C6—C8—H8B | 109.5 |
O3—Sr1—O4ii | 118.97 (3) | C6—C8—H8C | 109.5 |
O3—Sr1—O5A | 72.5 (4) | H8A—C8—H8B | 109.5 |
O3—Sr1—C5ii | 94.46 (4) | H8A—C8—H8C | 109.5 |
O3ii—Sr1—C5ii | 24.58 (4) | H8B—C8—H8C | 109.5 |
O3—Sr1—O6A | 97.1 (10) | N1—C9A—H9AA | 109.5 |
O3—Sr1—O6 | 94.5 (6) | N1—C9A—H9AB | 109.5 |
O3ii—Sr1—O5 | 70.7 (2) | N1—C9A—H9AC | 109.5 |
O3—Sr1—O5 | 77.2 (2) | H9AA—C9A—H9AB | 109.5 |
O4ii—Sr1—O1i | 84.80 (3) | H9AA—C9A—H9AC | 109.5 |
O4ii—Sr1—N1 | 127.72 (4) | H9AB—C9A—H9AC | 109.5 |
O4ii—Sr1—O3ii | 48.46 (3) | N1—C10A—H10A | 108.4 |
O4ii—Sr1—C5ii | 24.52 (4) | N1—C10A—H10B | 108.4 |
O4ii—Sr1—O6A | 142.4 (9) | N1—C10A—C11A | 115.7 (8) |
O4ii—Sr1—O6 | 145.4 (6) | H10A—C10A—H10B | 107.4 |
O4ii—Sr1—O5 | 75.82 (16) | C11A—C10A—H10A | 108.4 |
O5A—Sr1—N1 | 59.3 (4) | C11A—C10A—H10B | 108.4 |
O5A—Sr1—C5ii | 71.5 (4) | O5A—C11A—C10A | 112.5 (14) |
O5A—Sr1—O6A | 122.7 (11) | O5A—C11A—H11A | 109.1 |
O6A—Sr1—N1 | 63.5 (10) | O5A—C11A—H11B | 109.1 |
O6A—Sr1—C5ii | 164.0 (9) | C10A—C11A—H11A | 109.1 |
O6—Sr1—O1i | 70.0 (6) | C10A—C11A—H11B | 109.1 |
O6—Sr1—N1 | 61.0 (6) | H11A—C11A—H11B | 107.8 |
O6—Sr1—O3ii | 158.1 (7) | N1—C12A—H12A | 108.5 |
O6—Sr1—C5ii | 167.2 (5) | N1—C12A—H12B | 108.5 |
O6—Sr1—O5 | 123.5 (7) | N1—C12A—C13A | 115.2 (12) |
O5—Sr1—O1i | 159.08 (16) | H12A—C12A—H12B | 107.5 |
O5—Sr1—N1 | 62.5 (2) | C13A—C12A—H12A | 108.5 |
O5—Sr1—C5ii | 67.5 (2) | C13A—C12A—H12B | 108.5 |
Sr1—O1—Sr1i | 108.50 (4) | O6A—C13A—C12A | 110 (3) |
Sr1—O1—Sr1ii | 108.84 (5) | O6A—C13A—H13A | 109.7 |
C1—O1—Sr1 | 154.61 (10) | O6A—C13A—H13B | 109.7 |
C1—O1—Sr1i | 90.10 (9) | C12A—C13A—H13A | 109.7 |
C9A—N1—Sr1 | 110.3 (2) | C12A—C13A—H13B | 109.7 |
C10A—N1—Sr1 | 106.8 (2) | H13A—C13A—H13B | 108.2 |
C10A—N1—C9A | 107.4 (3) | Sr1—O6—H6B | 97.5 |
C12A—N1—Sr1 | 106.99 (19) | C13—O6—Sr1 | 122 (2) |
C12A—N1—C9A | 108.1 (3) | C13—O6—H6B | 109.5 |
C12A—N1—C10A | 117.2 (3) | Sr1—O5—H5 | 98.5 |
C9—N1—Sr1 | 113.27 (13) | C11—O5—Sr1 | 117.7 (5) |
C12—N1—Sr1 | 107.93 (14) | C11—O5—H5 | 109.5 |
C12—N1—C9 | 107.2 (2) | N1—C9—H9A | 109.5 |
C10—N1—Sr1 | 106.71 (13) | N1—C9—H9B | 109.5 |
C10—N1—C9 | 108.39 (19) | N1—C9—H9C | 109.5 |
C10—N1—C12 | 113.45 (19) | H9A—C9—H9B | 109.5 |
O1—C1—Sr1i | 65.45 (8) | H9A—C9—H9C | 109.5 |
O1—C1—O2 | 122.18 (14) | H9B—C9—H9C | 109.5 |
O1—C1—C2 | 119.64 (13) | O5—C11—H11C | 109.1 |
O2—C1—Sr1i | 59.55 (8) | O5—C11—H11D | 109.1 |
O2—C1—C2 | 118.10 (13) | H11C—C11—H11D | 107.9 |
C2—C1—Sr1i | 159.64 (11) | C10—C11—O5 | 112.4 (6) |
C1—O2—Sr1i | 96.07 (9) | C10—C11—H11C | 109.1 |
C1—C2—H2 | 108.8 | C10—C11—H11D | 109.1 |
C3—C2—C1 | 109.41 (14) | N1—C12—H12C | 108.8 |
C3—C2—H2 | 108.8 | N1—C12—H12D | 108.8 |
C4—C2—C1 | 109.84 (15) | N1—C12—C13 | 113.6 (8) |
C4—C2—H2 | 108.8 | H12C—C12—H12D | 107.7 |
C4—C2—C3 | 111.17 (17) | C13—C12—H12C | 108.8 |
Sr1—O3—Sr1ii | 108.86 (4) | C13—C12—H12D | 108.8 |
C5—O3—Sr1ii | 91.00 (9) | O6—C13—C12 | 106.9 (17) |
C5—O3—Sr1 | 152.58 (10) | O6—C13—H13C | 110.3 |
C2—C3—H3A | 109.5 | O6—C13—H13D | 110.3 |
C2—C3—H3B | 109.5 | C12—C13—H13C | 110.3 |
C2—C3—H3C | 109.5 | C12—C13—H13D | 110.3 |
H3A—C3—H3B | 109.5 | H13C—C13—H13D | 108.6 |
H3A—C3—H3C | 109.5 | N1—C10—C11 | 115.8 (3) |
H3B—C3—H3C | 109.5 | N1—C10—H10C | 108.3 |
C5—O4—Sr1ii | 95.07 (9) | N1—C10—H10D | 108.3 |
C2—C4—H4A | 109.5 | C11—C10—H10C | 108.3 |
C2—C4—H4B | 109.5 | C11—C10—H10D | 108.3 |
C2—C4—H4C | 109.5 | H10C—C10—H10D | 107.4 |
H4A—C4—H4B | 109.5 | ||
Sr1—O1—C1—Sr1i | 138.0 (2) | Sr1—O5—C11—C10 | 1.0 (9) |
Sr1i—O1—C1—O2 | 18.98 (15) | O1—C1—O2—Sr1i | −20.07 (16) |
Sr1—O1—C1—O2 | 157.02 (16) | O1—C1—C2—C3 | 113.07 (18) |
Sr1i—O1—C1—C2 | −157.82 (13) | O1—C1—C2—C4 | −124.64 (17) |
Sr1—O1—C1—C2 | −19.8 (3) | N1—C10A—C11A—O5A | 42.3 (14) |
Sr1—N1—C10A—C11A | −46.2 (7) | N1—C12A—C13A—O6A | −49 (3) |
Sr1—N1—C12A—C13A | 54.3 (13) | N1—C12—C13—O6 | 61.3 (18) |
Sr1—N1—C12—C13 | −50.4 (9) | O2—C1—C2—C3 | −63.9 (2) |
Sr1—N1—C10—C11 | 57.0 (5) | O2—C1—C2—C4 | 58.4 (2) |
Sr1i—C1—C2—C3 | 13.9 (4) | C2—C1—O2—Sr1i | 156.78 (12) |
Sr1i—C1—C2—C4 | 136.2 (3) | O3—C5—C6—C7 | −123.02 (18) |
Sr1—O3—C5—Sr1ii | 137.4 (2) | O3—C5—C6—C8 | 114.37 (17) |
Sr1ii—O3—C5—O4 | 18.43 (16) | O4—C5—C6—C7 | 59.8 (2) |
Sr1—O3—C5—O4 | 155.79 (15) | O4—C5—C6—C8 | −62.8 (2) |
Sr1ii—O3—C5—C6 | −158.64 (13) | C9A—N1—C10A—C11A | 72.0 (7) |
Sr1—O3—C5—C6 | −21.3 (3) | C9A—N1—C12A—C13A | −64.4 (13) |
Sr1ii—O4—C5—O3 | −19.14 (16) | C10A—N1—C12A—C13A | 174.1 (13) |
Sr1ii—O4—C5—C6 | 157.94 (13) | C12A—N1—C10A—C11A | −166.1 (6) |
Sr1—O5A—C11A—C10A | −12.8 (19) | O5—C11—C10—N1 | −41.3 (8) |
Sr1ii—C5—C6—C7 | 141.2 (3) | C9—N1—C12—C13 | 72.0 (9) |
Sr1ii—C5—C6—C8 | 18.6 (4) | C9—N1—C10—C11 | −65.3 (5) |
Sr1—O6A—C13A—C12A | 15 (4) | C12—N1—C10—C11 | 175.7 (5) |
Sr1—O6—C13—C12 | −41 (2) | C10—N1—C12—C13 | −168.4 (9) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6A—H6A···O4iii | 0.84 | 1.83 | 2.61 (5) | 153 |
O6—H6B···O4iii | 0.84 | 1.95 | 2.75 (3) | 160 |
O5—H5···O2iv | 0.84 | 1.87 | 2.680 (12) | 163 |
Symmetry codes: (iii) x+1, y, z; (iv) x−1, y, z. |
Shape | Capped square antiprism (C4v, J10) | Spherical capped square antiprism (C4v) | Tricapped trigonal prism (D3h, J51) | Spherical tricapped trigonal prism (D3h) | Muffin (Cs) |
Sri | 4.349 | 3.765 | 5.892 | 3.696 | 3.732 |
Srii | 4.026 | 3.346 | 5.575 | 3.423 | 3.358 |
Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z. |
Sr1 – O1i | 2.7568 (13) | Sr1 – O6 | 2.655 (4) |
Sr1 – O3ii | 2.7251 (14) | Sr1 – N1 | 2.8516 (16) |
Sr1 – O1 | 2.5370 (12) | Sr1 ··· Sr1i | 4.2981 (3) |
Sr1 – O3 | 2.5441 (13) | Sr1 ··· Sr1ii | 4.2868 (3) |
Sr1 – O2i | 2.6273 (14) | Sr1 – O1 – Sr1i | 108.50 (4) |
Sr1 – O4ii | 2.6367 (14) | Sr1 – O1 – Sr1ii | 108.84 (5) |
Sr1 – O5 | 2.678 (4) |
Symmetry codes: (i) 2 – x, 1 – y, 1 – z; (ii) 1 – x, 1 – y, 1 – z. |
Acknowledgements
The authors are grateful to Professor H. Krautscheid (Leipzig University) for access to the single-crystal X-ray diffraction equipment.
Funding information
Funding for this research was provided by: the Leibniz Association through the Leibniz Collaborative Excellence funding program (iMolKit).
References
Ako, A. M., Waldmann, O., Mereacre, V., Klöwer, F., Hewitt, I. J., Anson, C. E., Güdel, H. U. & Powell, A. K. (2007). Inorg. Chem. 46, 756–766. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hooper, T. N., Schnack, J., Piligkos, S., Evangelisti, M. & Brechin, E. K. (2012). Angew. Chem. Int. Ed. 51, 4633–4636. Web of Science CSD CrossRef CAS Google Scholar
Kogler, F. R., Jupa, M., Puchberger, M. & Schubert, U. (2004). J. Mater. Chem. 14, 3133–3138. Web of Science CSD CrossRef CAS Google Scholar
Liu, X., Gao, P. & Hu, M. (2018). Polyhedron, 144, 119–124. Web of Science CSD CrossRef CAS Google Scholar
Llunell, M., Casanova, D., Cirera, A., Alemany, A. & Alvarez, S. (2013). SHAPE. University of Barcelona, Barcelona, Spain. Google Scholar
Malaestean, I. L., Schmitz, S., Ellern, A. & Kögerler, P. (2013). Acta Cryst. C69, 1144–1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Malaestean, I. L., Speldrich, M., Ellern, A., Baca, S. G. & Kögerler, P. (2010). Polyhedron, 29, 1990–1997. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Smith, A. A. & Winpenny, R. E. P. (2000). Chem. Commun. pp. 579–580. Web of Science CSD CrossRef Google Scholar
Samolová, E. & Fábry, J. (2020). Acta Cryst. E76, 1684–1688. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schmitz, S., Monakhov, K. Yu., van Leusen, J., Izarova, N. V., Hess, V. & Kögerler, P. (2016). RSC Adv. 6, 100664–100669. Web of Science CSD CrossRef CAS Google Scholar
Schmitz, S., Secker, T., Batool, M., van Leusen, J., Nadeem, M. A. & Kögerler, P. (2018). Inorg. Chim. Acta, 482, 522–525. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2019). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.