research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-di­carboxyl­ato)cobalt(II)]

crossmark logo

aBeijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: wuxueqiansnail@emails.bjut.edu.cn

Edited by G. Díaz de Delgado, Universidad de Los Andes, Venezuela (Received 29 April 2021; accepted 6 June 2021; online 15 June 2021)

The asymmetric unit of the title coordination polymer, [Co(C9H4N2O4)(C2H4N4)]n or [Co(L1)(L2)]n, consists of one crystallographically independent Co2+ centre, one L12− ligand and one L2 ligand (L1 = 1H-benzimidazole-5,6-di­carb­oxy­lic acid, L2 = 3-amino-1,2,4-triazole). The Co2+ centre is coordinated by two carboxyl­ato-O atoms from two independent L12− ligands and two nitro­gen atoms from L2 and another L1 ligand. Thus, the metal center adopts a four-coordinate mode, forming a tetra­hedral geometry. Inter­estingly, through the combination of two L12−, two L2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure. These chains are further expanded to the final three-dimensional framework via N—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

Over the past two decades, coordination polymers (CPs) have been demonstrated to represent a new type of crystalline organic–inorganic hybrid materials, and are unique in terms of their potentially high porosities, tunable pores, and diverse compositions (Du et al., 2013[Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282-1305.]; Kitagawa et al., 2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]; Cui et al., 2016[Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Acc. Chem. Res. 49, 483-493.]). These features have enabled CPs to be constructed with great potential for various applications, such as gas adsorption/separation (Zhao et al., 2018[Zhao, X., Wang, Y., Li, D.-S., Bu, X. & Feng, P. (2018). Adv. Mater. 30, 1705189.]), chemical sensing (Huang et al., 2017[Huang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q. & Mak, T. C. W. (2017). Nat. Chem. 9, 689-697.]), heterogeneous catalysis (He et al., 2020[He, T., Huang, Z., Yuan, S., Lv, X.-L., Kong, X.-J., Zou, X., Zhou, H.-C. & Li, J.-R. (2020). J. Am. Chem. Soc. 142, 13491-13499.]) and energy storage/conversion (Lu et al., 2020[Lu, X.-F., Xia, B.-Y., Zang, S.-Q. & Lou, X.-W. (2020). Angew. Chem. 132, 4662-4678.]). Meanwhile, the crystalline nature of CPs allows for the accurate determination of their structures using X-ray diffraction techniques and further, the revealing of structure–property relationships. The great potential of these compounds certainly promotes the development of synthetic strategies for new CPs. It has been demonstrated that many efficient synthetic routes, including metal exchange (Wang et al., 2017[Wang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D. & Zhang, X.-M. (2017). Angew. Chem. Int. Ed. 56, 6478-6482.]), ligand substitution (Han et al., 2014[Han, Y., Li, J.-R., Xie, Y. & Guo, G. (2014). Chem. Soc. Rev. 43, 5952-5981.]), directional construction based on secondary building units (SBUs) (Zou et al., 2016[Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R. & Zhao, Y. (2016). Small, 12, 2334-2343.]), and topology-guided reticular chemistry principles (Wang et al., 2016[Wang, X., Lu, W., Gu, Z.-Y., Wei, Z. & Zhou, H.-C. (2016). Chem. Commun. 52, 1926-1929.]) have shown some advantages in fabricating new CPs with multiple structures and functionalities. In addition to the methods mentioned above, the mixed-ligands strategy is also considered to be an important approach for the integration of the properties of related ligands into a single coordination polymer and hence expansion of the structural diversity of CPs (Macreadie et al., 2020[Macreadie, L. K., Babarao, R., Setter, C. J., Lee, S. J., Qazvini, O. T., Seeber, A. J., Tsanaktsidis, J., Telfer, S. G., Batten, S. R. & Hill, M. R. (2020). Angew. Chem. Int. Ed. 59, 6090-6098.]). In this context, we report the synthesis and crystal structure of the title coordination polymer poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-di­carboxyl­ato)cobalt(II)] (1), which was prepared by the solvothermal method using two simple ligands and a cobalt salt.

[Scheme 1]

2. Structural commentary

The title coordination polymer (1) crystallizes in the monoclinic system, P21/c space group, and its asymmetric unit contains one Co2+ center, one L12− anion and one L2 ligand (Fig. 1[link]). The metal center adopts a typical tetra­hedral linkage geometry to coordinate with two carboxyl­ato-O atoms from two independent L12− ligands and two nitro­gen atoms, one from L2 and another from an L1 ligand. Inter­estingly, through the combination of two L12−, two L2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure (as shown in Fig. 2[link]). These chains are further connected via hydrogen bonding inter­actions (Fig. 3[link]), generating a three-dimensional framework.

[Figure 1]
Figure 1
A view of the asymmetric unit of the title coordination polymer showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the one-dimensional straight chain structure within the coordination polymer.
[Figure 3]
Figure 3
Structure of the title coordination polymer viewed along the (a) a axis and (b) c axis, respectively.

3. Supra­molecular features

As mentioned above, extensive hydrogen-bonding inter­actions in the crystal of the title coordination polymer are observed, the numerical values of which are presented in Table 1[link]. As shown in Fig. 4[link], each chain is linked to adjacent chains by N1—H1⋯O1 hydrogen bonds into infinite layer structures parallel to the bc plane. Meanwhile, these layers are linked by other inter­molecular hydrogen bonds (e.g., N3—H3⋯O3 and N6—H6A⋯O3), resulting in the formation of the final three-dimensional supra­molecular network. Due to the regular distribution of Co2+ metal sites, the high density of nitro­gen atoms in the structure, and the packing arrangement of the supra­molecular network, the coordination polymer has the potential to work as a mol­ecular catalyst or to serve as the precursor material for preparing an electrocatalyst.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.84 2.675 (4) 163
N3—H3⋯O1ii 0.86 2.48 3.104 (4) 130
N3—H3⋯O3ii 0.86 2.08 2.811 (4) 142
N6—H6A⋯O3ii 0.86 2.35 3.036 (5) 136
N6—H6B⋯O2iii 0.86 2.23 2.946 (5) 141
C5—H5⋯O4iv 0.93 2.58 3.312 (4) 136
C9—H9⋯N5v 0.93 2.48 3.332 (5) 152
C11—H11⋯O1vi 0.93 2.41 3.215 (5) 145
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, -z+1]; (iii) x, y+1, z; (iv) [-x+1, -y+1, -z+1]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A view of the hydrogen bonds in the title coordination polymer. Intra­molecular hydrogen bonds are omitted for clarity [symmetry codes: (#1) −1 + x, y, z; (#2) 1 − x, 1 − y, 1 − z; (#3) −x, [{1\over 2}] + y, [{1\over 2}] − z; (#4) −1 + x, 1 + y, z; (#5) −x, 1 − y, 1 − z.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.42, update of Feb 2021, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with 1H-benzimidazole-5,6-di­carboxyl­ate gave 372 hits of which some are coordination polymers with prominent free pore space (also known as metal-organic frameworks, MOFs). For example, Li and co-workers reported a new three-dimensional non-inter­penetrating metal–organic framework (BARKUD01), featuring one-dimensional nanotube channels and exhibiting excellent gas separation performances (Li et al., 2017[Li, J.-T., Li, J., Song, L.-M. & Ji, X.-H. (2017). Inorg. Chem. Commun. 83, 88-91.]). There are some Co2+ complexes containing only ligand L1 [refcodes AJIKIO (Fu et al., 2009[Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657.]), NUCGUO (Wei et al., 2009[Wei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054-1060.]), ROMRUH (Xu et al., 2009[Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295.]), ROMRUH01 (Wei et al., 2009[Wei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054-1060.]), ROMRUH02 (Shi et al., 2012[Shi, Z.-F., Li, L. & Niu, S.-Y. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 818-822.]), SILZAP (Lo et al., 2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]), SOGCEX (Gao et al., 2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]), and YOTFET (Song et al., 2009[Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702.])]. However, none of these exhibit a tetra­hedral geometry around the Co atom. A zinc complex (BOVQUZ; Li et al., 2009[Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.]) displays a tetra­hedral coordination around the metal center. By using cyclo­penta­dienyliron dicarbonyl dimer as a starting material, two new FeII-based MOFs have been constructed (HOHBEN and HOHBIR; Li et al., 2014[Li, Q., Tian, C., Zhang, H., Qian, J. & Du, S. (2014). CrystEngComm, 16, 9208-9215.]). As a typical imidazole-carboxyl­ate ligand, 1H-benzimidazole-5,6-di­carboxyl­ate could bind rare earth/transition-metal centers with multiple coordination modes, which provides an ideal platform for the preparation of various coordination polymers, such as BASTOG (Sun et al., 2010[Sun, Y.-G., Wu, Y.-L., Xiong, G., Smet, P. F., Ding, F., Guo, M.-Y., Zhu, M.-C., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Dalton Trans. 39, 11383-11395.]), EHETAO (Jin et al., 2016[Jin, J., Chen, C., Gao, Y., Zhao, R., Wang, X., Lü, C., Chi, Y. & Niu, S. (2016). J. Solid State Chem. 235, 193-201.]) and FELBAC (Chai et al., 2018[Chai, J., Wang, P., Jia, J., Ma, B., Sun, J., Tao, Y., Zhang, P., Wang, L. & Fan, Y. (2018). Polyhedron, 141, 369-376.]).

5. Synthesis and crystallization

A mixture of Co(NO3)2·6H2O (20 mg, 0.069 mmol), 1H-benzimidazole-5,6-di­carb­oxy­lic acid (10 mg, 0.049 mmol), 3-amino-1,2,4-triazole (10 mg, 0.119 mmol), DMA (2 mL) and H2O (2 mL) were added to a 20 mL vial. The reaction system was then heated at 373 K for 72 h in an oven. Purple block-shaped crystals of the title compound suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(N,C)

Table 2
Experimental details

Crystal data
Chemical formula [Co(C9H4N2O4)(C2H4N4)]
Mr 347.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 279
a, b, c (Å) 13.3368 (8), 6.8727 (4), 13.6015 (10)
β (°) 103.478 (7)
V3) 1212.38 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.06 × 0.05 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5618, 2475, 1839
Rint 0.046
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.098, 1.03
No. of reflections 2475
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(3-amino-1,2,4-triazole)(µ3-1H-benzimidazole-5,6-dicarboxylato)cobalt(II)] top
Crystal data top
[Co(C9H4N2O4)(C2H4N4)]F(000) = 700
Mr = 347.16Dx = 1.902 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.3368 (8) ÅCell parameters from 1697 reflections
b = 6.8727 (4) Åθ = 4.3–26.7°
c = 13.6015 (10) ŵ = 1.45 mm1
β = 103.478 (7)°T = 279 K
V = 1212.38 (14) Å3Block, purple
Z = 40.06 × 0.05 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
2475 independent reflections
Graphite monochromator1839 reflections with I > 2σ(I)
Detector resolution: 10.3376 pixels mm-1Rint = 0.046
phi and ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1416
Tmin = 0.979, Tmax = 1.000k = 88
5618 measured reflectionsl = 1712
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.6634P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2475 reflectionsΔρmax = 0.45 e Å3
199 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.75360 (3)0.69451 (6)0.52745 (4)0.02172 (16)
O20.76917 (18)0.1847 (3)0.40067 (19)0.0298 (6)
O10.74157 (18)0.0171 (3)0.27211 (19)0.0303 (6)
O40.66113 (18)0.4785 (3)0.4920 (2)0.0328 (6)
O30.77486 (18)0.2754 (4)0.4537 (2)0.0418 (7)
N20.3154 (2)0.1240 (4)0.3922 (2)0.0203 (6)
N10.3399 (2)0.1552 (4)0.3188 (2)0.0254 (7)
H10.3260470.2660460.2894640.030*
N40.9004 (2)0.6928 (4)0.6053 (2)0.0264 (7)
C40.6862 (3)0.3188 (5)0.4544 (3)0.0216 (8)
C70.4351 (2)0.0655 (5)0.3432 (2)0.0197 (7)
C60.4188 (2)0.1110 (5)0.3892 (2)0.0190 (7)
C80.5319 (2)0.1215 (5)0.3322 (3)0.0223 (8)
H80.5418820.2399260.3027070.027*
N31.0667 (2)0.7206 (5)0.6511 (3)0.0402 (9)
H31.1297130.7365430.6474080.048*
C10.7158 (3)0.0546 (5)0.3456 (3)0.0210 (8)
C30.5986 (2)0.1848 (5)0.4132 (2)0.0205 (7)
C90.2731 (3)0.0376 (5)0.3493 (3)0.0254 (8)
H90.2035720.0670570.3409780.031*
C20.6129 (2)0.0051 (5)0.3665 (2)0.0198 (7)
C50.5008 (2)0.2361 (5)0.4240 (3)0.0215 (8)
H50.4905700.3534220.4543140.026*
N51.0361 (2)0.6888 (5)0.7393 (3)0.0449 (9)
N60.9921 (3)0.7490 (5)0.4760 (3)0.0491 (10)
H6A1.0510930.7651850.4618300.059*
H6B0.9368080.7492360.4284300.059*
C100.9863 (3)0.7234 (5)0.5721 (3)0.0300 (9)
C110.9367 (3)0.6734 (6)0.7073 (3)0.0380 (10)
H110.8934490.6509120.7507930.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0156 (3)0.0225 (3)0.0273 (3)0.0014 (2)0.00539 (19)0.0020 (2)
O20.0248 (13)0.0346 (14)0.0315 (15)0.0118 (12)0.0097 (11)0.0126 (12)
O10.0273 (14)0.0316 (14)0.0369 (16)0.0087 (12)0.0178 (12)0.0121 (12)
O40.0234 (14)0.0270 (14)0.0481 (17)0.0055 (12)0.0083 (12)0.0114 (13)
O30.0146 (13)0.0519 (18)0.061 (2)0.0066 (13)0.0135 (13)0.0209 (15)
N20.0151 (14)0.0249 (15)0.0214 (16)0.0029 (13)0.0057 (12)0.0010 (13)
N10.0206 (15)0.0259 (16)0.0307 (18)0.0053 (13)0.0080 (13)0.0088 (13)
N40.0142 (14)0.0321 (17)0.0327 (18)0.0010 (13)0.0047 (13)0.0032 (14)
C40.0197 (18)0.0233 (18)0.0228 (19)0.0069 (15)0.0068 (14)0.0014 (15)
C70.0200 (18)0.0199 (17)0.0197 (18)0.0035 (15)0.0055 (14)0.0002 (14)
C60.0175 (17)0.0200 (17)0.0201 (18)0.0007 (15)0.0060 (14)0.0020 (14)
C80.0229 (18)0.0186 (17)0.026 (2)0.0030 (16)0.0069 (15)0.0033 (15)
N30.0159 (16)0.062 (2)0.043 (2)0.0036 (16)0.0083 (15)0.0089 (18)
C10.0222 (18)0.0175 (17)0.0239 (19)0.0018 (15)0.0067 (15)0.0053 (15)
C30.0184 (17)0.0233 (18)0.0199 (18)0.0012 (15)0.0046 (14)0.0005 (15)
C90.0190 (18)0.0292 (19)0.028 (2)0.0019 (16)0.0052 (15)0.0012 (16)
C20.0178 (17)0.0223 (18)0.0187 (18)0.0024 (15)0.0030 (14)0.0041 (15)
C50.0203 (18)0.0196 (17)0.0240 (19)0.0011 (15)0.0041 (15)0.0003 (15)
N50.0260 (18)0.068 (3)0.039 (2)0.0059 (17)0.0032 (16)0.0083 (19)
N60.0297 (19)0.084 (3)0.038 (2)0.0013 (19)0.0161 (16)0.010 (2)
C100.0228 (19)0.031 (2)0.038 (2)0.0027 (17)0.0099 (17)0.0063 (18)
C110.026 (2)0.055 (3)0.034 (2)0.001 (2)0.0066 (17)0.010 (2)
Geometric parameters (Å, º) top
Co1—O2i1.968 (2)C7—C81.390 (4)
Co1—O41.919 (2)C6—C51.384 (4)
Co1—N2ii2.016 (3)C8—H80.9300
Co1—N41.997 (3)C8—C21.381 (5)
O2—C11.272 (4)N3—H30.8600
O1—C11.234 (4)N3—N51.372 (5)
O4—C41.287 (4)N3—C101.331 (5)
O3—C41.222 (4)C1—C21.521 (5)
N2—C61.392 (4)C3—C21.422 (5)
N2—C91.319 (4)C3—C51.392 (5)
N1—H10.8600C9—H90.9300
N1—C71.380 (4)C5—H50.9300
N1—C91.337 (4)N5—C111.300 (5)
N4—C101.342 (5)N6—H6A0.8600
N4—C111.366 (5)N6—H6B0.8600
C4—C31.490 (5)N6—C101.339 (5)
C7—C61.405 (5)C11—H110.9300
O2i—Co1—N2ii111.64 (11)N5—N3—H3124.4
O2i—Co1—N4100.15 (11)C10—N3—H3124.4
O4—Co1—O2i107.41 (11)C10—N3—N5111.1 (3)
O4—Co1—N2ii105.49 (11)O2—C1—C2119.0 (3)
O4—Co1—N4128.46 (11)O1—C1—O2122.3 (3)
N4—Co1—N2ii103.38 (11)O1—C1—C2118.6 (3)
C1—O2—Co1iii130.8 (2)C2—C3—C4122.0 (3)
C4—O4—Co1123.3 (2)C5—C3—C4118.4 (3)
C6—N2—Co1ii129.5 (2)C5—C3—C2119.6 (3)
C9—N2—Co1ii124.0 (2)N2—C9—N1113.5 (3)
C9—N2—C6104.9 (3)N2—C9—H9123.2
C7—N1—H1126.4N1—C9—H9123.2
C9—N1—H1126.4C8—C2—C1115.8 (3)
C9—N1—C7107.3 (3)C8—C2—C3121.5 (3)
C10—N4—Co1129.0 (3)C3—C2—C1122.6 (3)
C10—N4—C11103.3 (3)C6—C5—C3119.4 (3)
C11—N4—Co1127.6 (3)C6—C5—H5120.3
O4—C4—C3115.0 (3)C3—C5—H5120.3
O3—C4—O4123.5 (3)C11—N5—N3102.1 (3)
O3—C4—C3121.4 (3)H6A—N6—H6B120.0
N1—C7—C6105.3 (3)C10—N6—H6A120.0
N1—C7—C8132.6 (3)C10—N6—H6B120.0
C8—C7—C6122.1 (3)N3—C10—N4108.5 (3)
N2—C6—C7109.0 (3)N3—C10—N6124.8 (4)
C5—C6—N2131.2 (3)N6—C10—N4126.7 (3)
C5—C6—C7119.8 (3)N4—C11—H11122.5
C7—C8—H8121.2N5—C11—N4115.1 (4)
C2—C8—C7117.5 (3)N5—C11—H11122.5
C2—C8—H8121.2
Co1—O4—C4—O313.1 (5)C7—C8—C2—C1175.4 (3)
Co1—O4—C4—C3168.4 (2)C5—C3—C2—C80.6 (5)
C9—N1—C7—C8178.0 (4)C4—C3—C2—C8177.4 (3)
C9—N1—C7—C60.2 (4)C5—C3—C2—C1175.7 (3)
C9—N2—C6—C5179.1 (4)C4—C3—C2—C16.3 (5)
Co1ii—N2—C6—C513.5 (5)O1—C1—C2—C898.3 (4)
C9—N2—C6—C70.3 (4)O2—C1—C2—C877.6 (4)
Co1ii—N2—C6—C7165.4 (2)O1—C1—C2—C378.3 (4)
N1—C7—C6—C5179.3 (3)O2—C1—C2—C3105.8 (4)
C8—C7—C6—C50.8 (5)N2—C6—C5—C3178.5 (3)
N1—C7—C6—N20.3 (4)C7—C6—C5—C30.2 (5)
C8—C7—C6—N2178.2 (3)C2—C3—C5—C60.1 (5)
N1—C7—C8—C2179.2 (3)C4—C3—C5—C6177.9 (3)
C6—C7—C8—C21.2 (5)C10—N3—N5—C110.2 (4)
Co1iii—O2—C1—O1173.7 (2)N5—N3—C10—N6179.1 (4)
Co1iii—O2—C1—C210.5 (4)N5—N3—C10—N40.3 (4)
O3—C4—C3—C5174.7 (3)C11—N4—C10—N30.3 (4)
O4—C4—C3—C53.8 (5)Co1—N4—C10—N3176.1 (2)
O3—C4—C3—C23.3 (5)C11—N4—C10—N6179.1 (4)
O4—C4—C3—C2178.2 (3)Co1—N4—C10—N65.1 (6)
C6—N2—C9—N10.2 (4)N3—N5—C11—N40.0 (5)
Co1ii—N2—C9—N1166.5 (2)C10—N4—C11—N50.2 (5)
C7—N1—C9—N20.0 (4)Co1—N4—C11—N5176.1 (3)
C7—C8—C2—C31.1 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iv0.861.842.675 (4)163
N3—H3···O1v0.862.483.104 (4)130
N3—H3···O3v0.862.082.811 (4)142
N6—H6A···O3v0.862.353.036 (5)136
N6—H6B···O2i0.862.232.946 (5)141
C5—H5···O4ii0.932.583.312 (4)136
C5—H5···O40.932.372.698 (4)100
C9—H9···N5vi0.932.483.332 (5)152
C11—H11···O1vii0.932.413.215 (5)145
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x1, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.
 

Funding information

The authors gratefully acknowledge financial support from the National Innovation and Entrepreneurship Training Program of Beijing University of Technology for College Students (GJDC-2019-01-43).

References

First citationChai, J., Wang, P., Jia, J., Ma, B., Sun, J., Tao, Y., Zhang, P., Wang, L. & Fan, Y. (2018). Polyhedron, 141, 369–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Acc. Chem. Res. 49, 483–493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305.  Web of Science CrossRef CAS Google Scholar
First citationFu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, Y., Li, J.-R., Xie, Y. & Guo, G. (2014). Chem. Soc. Rev. 43, 5952–5981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, T., Huang, Z., Yuan, S., Lv, X.-L., Kong, X.-J., Zou, X., Zhou, H.-C. & Li, J.-R. (2020). J. Am. Chem. Soc. 142, 13491–13499.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q. & Mak, T. C. W. (2017). Nat. Chem. 9, 689–697.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJin, J., Chen, C., Gao, Y., Zhao, R., Wang, X., Lü, C., Chi, Y. & Niu, S. (2016). J. Solid State Chem. 235, 193–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationLi, J.-T., Li, J., Song, L.-M. & Ji, X.-H. (2017). Inorg. Chem. Commun. 83, 88–91.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q., Tian, C., Zhang, H., Qian, J. & Du, S. (2014). CrystEngComm, 16, 9208–9215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, X.-F., Xia, B.-Y., Zang, S.-Q. & Lou, X.-W. (2020). Angew. Chem. 132, 4662–4678.  CrossRef Google Scholar
First citationMacreadie, L. K., Babarao, R., Setter, C. J., Lee, S. J., Qazvini, O. T., Seeber, A. J., Tsanaktsidis, J., Telfer, S. G., Batten, S. R. & Hill, M. R. (2020). Angew. Chem. Int. Ed. 59, 6090–6098.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z.-F., Li, L. & Niu, S.-Y. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 818–822.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-G., Wu, Y.-L., Xiong, G., Smet, P. F., Ding, F., Guo, M.-Y., Zhu, M.-C., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Dalton Trans. 39, 11383–11395.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D. & Zhang, X.-M. (2017). Angew. Chem. Int. Ed. 56, 6478–6482.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Lu, W., Gu, Z.-Y., Wei, Z. & Zhou, H.-C. (2016). Chem. Commun. 52, 1926–1929.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054–1060.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, X., Wang, Y., Li, D.-S., Bu, X. & Feng, P. (2018). Adv. Mater. 30, 1705189.  Web of Science CrossRef Google Scholar
First citationZou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R. & Zhao, Y. (2016). Small, 12, 2334–2343.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds