research communications
Synthesis and μ3-1H-benzimidazole-5,6-dicarboxylato)cobalt(II)]
of poly[(3-amino-1,2,4-triazole)(aBeijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: wuxueqiansnail@emails.bjut.edu.cn
The 9H4N2O4)(C2H4N4)]n or [Co(L1)(L2)]n, consists of one crystallographically independent Co2+ centre, one L12− ligand and one L2 ligand (L1 = 1H-benzimidazole-5,6-dicarboxylic acid, L2 = 3-amino-1,2,4-triazole). The Co2+ centre is coordinated by two carboxylato-O atoms from two independent L12− ligands and two nitrogen atoms from L2 and another L1 ligand. Thus, the metal center adopts a four-coordinate mode, forming a tetrahedral geometry. Interestingly, through the combination of two L12−, two L2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure. These chains are further expanded to the final three-dimensional framework via N—H⋯O hydrogen-bonding interactions.
of the title coordination polymer, [Co(CKeywords: crystal structure; coordination polymer; mixed-ligands synthetic strategy; imidazole; dicarboxylic acid.
CCDC reference: 1996100
1. Chemical context
Over the past two decades, coordination polymers (CPs) have been demonstrated to represent a new type of crystalline organic–inorganic hybrid materials, and are unique in terms of their potentially high porosities, tunable pores, and diverse compositions (Du et al., 2013; Kitagawa et al., 2007; Cui et al., 2016). These features have enabled CPs to be constructed with great potential for various applications, such as gas adsorption/separation (Zhao et al., 2018), chemical sensing (Huang et al., 2017), (He et al., 2020) and energy storage/conversion (Lu et al., 2020). Meanwhile, the crystalline nature of CPs allows for the accurate determination of their structures using X-ray diffraction techniques and further, the revealing of structure–property relationships. The great potential of these compounds certainly promotes the development of synthetic strategies for new CPs. It has been demonstrated that many efficient synthetic routes, including metal exchange (Wang et al., 2017), ligand substitution (Han et al., 2014), directional construction based on secondary building units (SBUs) (Zou et al., 2016), and topology-guided reticular chemistry principles (Wang et al., 2016) have shown some advantages in fabricating new CPs with multiple structures and functionalities. In addition to the methods mentioned above, the mixed-ligands strategy is also considered to be an important approach for the integration of the properties of related ligands into a single coordination polymer and hence expansion of the structural diversity of CPs (Macreadie et al., 2020). In this context, we report the synthesis and of the title coordination polymer poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-dicarboxylato)cobalt(II)] (1), which was prepared by the solvothermal method using two simple ligands and a cobalt salt.
2. Structural commentary
The title coordination polymer (1) crystallizes in the monoclinic system, P21/c and its contains one Co2+ center, one L12− anion and one L2 ligand (Fig. 1). The metal center adopts a typical tetrahedral linkage geometry to coordinate with two carboxylato-O atoms from two independent L12− ligands and two nitrogen atoms, one from L2 and another from an L1 ligand. Interestingly, through the combination of two L12−, two L2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure (as shown in Fig. 2). These chains are further connected via hydrogen bonding interactions (Fig. 3), generating a three-dimensional framework.
3. Supramolecular features
As mentioned above, extensive hydrogen-bonding interactions in the crystal of the title coordination polymer are observed, the numerical values of which are presented in Table 1. As shown in Fig. 4, each chain is linked to adjacent chains by N1—H1⋯O1 hydrogen bonds into infinite layer structures parallel to the bc plane. Meanwhile, these layers are linked by other intermolecular hydrogen bonds (e.g., N3—H3⋯O3 and N6—H6A⋯O3), resulting in the formation of the final three-dimensional supramolecular network. Due to the regular distribution of Co2+ metal sites, the high density of nitrogen atoms in the structure, and the packing arrangement of the supramolecular network, the coordination polymer has the potential to work as a molecular catalyst or to serve as the precursor material for preparing an electrocatalyst.
4. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.42, update of Feb 2021, Groom et al., 2016) for structures with 1H-benzimidazole-5,6-dicarboxylate gave 372 hits of which some are coordination polymers with prominent free pore space (also known as metal-organic frameworks, MOFs). For example, Li and co-workers reported a new three-dimensional non-interpenetrating metal–organic framework (BARKUD01), featuring one-dimensional nanotube channels and exhibiting excellent gas separation performances (Li et al., 2017). There are some Co2+ complexes containing only ligand L1 [refcodes AJIKIO (Fu et al., 2009), NUCGUO (Wei et al., 2009), ROMRUH (Xu et al., 2009), ROMRUH01 (Wei et al., 2009), ROMRUH02 (Shi et al., 2012), SILZAP (Lo et al., 2007), SOGCEX (Gao et al., 2008), and YOTFET (Song et al., 2009)]. However, none of these exhibit a tetrahedral geometry around the Co atom. A zinc complex (BOVQUZ; Li et al., 2009) displays a tetrahedral coordination around the metal center. By using cyclopentadienyliron dicarbonyl dimer as a starting material, two new FeII-based MOFs have been constructed (HOHBEN and HOHBIR; Li et al., 2014). As a typical imidazole-carboxylate ligand, 1H-benzimidazole-5,6-dicarboxylate could bind rare earth/transition-metal centers with multiple coordination modes, which provides an ideal platform for the preparation of various coordination polymers, such as BASTOG (Sun et al., 2010), EHETAO (Jin et al., 2016) and FELBAC (Chai et al., 2018).
5. Synthesis and crystallization
A mixture of Co(NO3)2·6H2O (20 mg, 0.069 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (10 mg, 0.049 mmol), 3-amino-1,2,4-triazole (10 mg, 0.119 mmol), DMA (2 mL) and H2O (2 mL) were added to a 20 mL vial. The reaction system was then heated at 373 K for 72 h in an oven. Purple block-shaped crystals of the title compound suitable for X-ray analysis were obtained.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(N,C)
details are summarized in Table 2
|
Supporting information
CCDC reference: 1996100
https://doi.org/10.1107/S2056989021005867/dj2027sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989021005867/dj2027Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005867/dj2027Isup4.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Co(C9H4N2O4)(C2H4N4)] | F(000) = 700 |
Mr = 347.16 | Dx = 1.902 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3368 (8) Å | Cell parameters from 1697 reflections |
b = 6.8727 (4) Å | θ = 4.3–26.7° |
c = 13.6015 (10) Å | µ = 1.45 mm−1 |
β = 103.478 (7)° | T = 279 K |
V = 1212.38 (14) Å3 | Block, purple |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 2475 independent reflections |
Graphite monochromator | 1839 reflections with I > 2σ(I) |
Detector resolution: 10.3376 pixels mm-1 | Rint = 0.046 |
phi and ω scans | θmax = 26.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −14→16 |
Tmin = 0.979, Tmax = 1.000 | k = −8→8 |
5618 measured reflections | l = −17→12 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0319P)2 + 0.6634P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2475 reflections | Δρmax = 0.45 e Å−3 |
199 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.75360 (3) | 0.69451 (6) | 0.52745 (4) | 0.02172 (16) | |
O2 | 0.76917 (18) | −0.1847 (3) | 0.40067 (19) | 0.0298 (6) | |
O1 | 0.74157 (18) | 0.0171 (3) | 0.27211 (19) | 0.0303 (6) | |
O4 | 0.66113 (18) | 0.4785 (3) | 0.4920 (2) | 0.0328 (6) | |
O3 | 0.77486 (18) | 0.2754 (4) | 0.4537 (2) | 0.0418 (7) | |
N2 | 0.3154 (2) | 0.1240 (4) | 0.3922 (2) | 0.0203 (6) | |
N1 | 0.3399 (2) | −0.1552 (4) | 0.3188 (2) | 0.0254 (7) | |
H1 | 0.326047 | −0.266046 | 0.289464 | 0.030* | |
N4 | 0.9004 (2) | 0.6928 (4) | 0.6053 (2) | 0.0264 (7) | |
C4 | 0.6862 (3) | 0.3188 (5) | 0.4544 (3) | 0.0216 (8) | |
C7 | 0.4351 (2) | −0.0655 (5) | 0.3432 (2) | 0.0197 (7) | |
C6 | 0.4188 (2) | 0.1110 (5) | 0.3892 (2) | 0.0190 (7) | |
C8 | 0.5319 (2) | −0.1215 (5) | 0.3322 (3) | 0.0223 (8) | |
H8 | 0.541882 | −0.239926 | 0.302707 | 0.027* | |
N3 | 1.0667 (2) | 0.7206 (5) | 0.6511 (3) | 0.0402 (9) | |
H3 | 1.129713 | 0.736543 | 0.647408 | 0.048* | |
C1 | 0.7158 (3) | −0.0546 (5) | 0.3456 (3) | 0.0210 (8) | |
C3 | 0.5986 (2) | 0.1848 (5) | 0.4132 (2) | 0.0205 (7) | |
C9 | 0.2731 (3) | −0.0376 (5) | 0.3493 (3) | 0.0254 (8) | |
H9 | 0.203572 | −0.067057 | 0.340978 | 0.031* | |
C2 | 0.6129 (2) | 0.0051 (5) | 0.3665 (2) | 0.0198 (7) | |
C5 | 0.5008 (2) | 0.2361 (5) | 0.4240 (3) | 0.0215 (8) | |
H5 | 0.490570 | 0.353422 | 0.454314 | 0.026* | |
N5 | 1.0361 (2) | 0.6888 (5) | 0.7393 (3) | 0.0449 (9) | |
N6 | 0.9921 (3) | 0.7490 (5) | 0.4760 (3) | 0.0491 (10) | |
H6A | 1.051093 | 0.765185 | 0.461830 | 0.059* | |
H6B | 0.936808 | 0.749236 | 0.428430 | 0.059* | |
C10 | 0.9863 (3) | 0.7234 (5) | 0.5721 (3) | 0.0300 (9) | |
C11 | 0.9367 (3) | 0.6734 (6) | 0.7073 (3) | 0.0380 (10) | |
H11 | 0.893449 | 0.650912 | 0.750793 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0156 (3) | 0.0225 (3) | 0.0273 (3) | −0.0014 (2) | 0.00539 (19) | −0.0020 (2) |
O2 | 0.0248 (13) | 0.0346 (14) | 0.0315 (15) | 0.0118 (12) | 0.0097 (11) | 0.0126 (12) |
O1 | 0.0273 (14) | 0.0316 (14) | 0.0369 (16) | 0.0087 (12) | 0.0178 (12) | 0.0121 (12) |
O4 | 0.0234 (14) | 0.0270 (14) | 0.0481 (17) | −0.0055 (12) | 0.0083 (12) | −0.0114 (13) |
O3 | 0.0146 (13) | 0.0519 (18) | 0.061 (2) | −0.0066 (13) | 0.0135 (13) | −0.0209 (15) |
N2 | 0.0151 (14) | 0.0249 (15) | 0.0214 (16) | −0.0029 (13) | 0.0057 (12) | −0.0010 (13) |
N1 | 0.0206 (15) | 0.0259 (16) | 0.0307 (18) | −0.0053 (13) | 0.0080 (13) | −0.0088 (13) |
N4 | 0.0142 (14) | 0.0321 (17) | 0.0327 (18) | −0.0010 (13) | 0.0047 (13) | 0.0032 (14) |
C4 | 0.0197 (18) | 0.0233 (18) | 0.0228 (19) | −0.0069 (15) | 0.0068 (14) | −0.0014 (15) |
C7 | 0.0200 (18) | 0.0199 (17) | 0.0197 (18) | −0.0035 (15) | 0.0055 (14) | −0.0002 (14) |
C6 | 0.0175 (17) | 0.0200 (17) | 0.0201 (18) | −0.0007 (15) | 0.0060 (14) | 0.0020 (14) |
C8 | 0.0229 (18) | 0.0186 (17) | 0.026 (2) | 0.0030 (16) | 0.0069 (15) | −0.0033 (15) |
N3 | 0.0159 (16) | 0.062 (2) | 0.043 (2) | −0.0036 (16) | 0.0083 (15) | 0.0089 (18) |
C1 | 0.0222 (18) | 0.0175 (17) | 0.0239 (19) | −0.0018 (15) | 0.0067 (15) | −0.0053 (15) |
C3 | 0.0184 (17) | 0.0233 (18) | 0.0199 (18) | −0.0012 (15) | 0.0046 (14) | 0.0005 (15) |
C9 | 0.0190 (18) | 0.0292 (19) | 0.028 (2) | −0.0019 (16) | 0.0052 (15) | −0.0012 (16) |
C2 | 0.0178 (17) | 0.0223 (18) | 0.0187 (18) | 0.0024 (15) | 0.0030 (14) | 0.0041 (15) |
C5 | 0.0203 (18) | 0.0196 (17) | 0.0240 (19) | −0.0011 (15) | 0.0041 (15) | −0.0003 (15) |
N5 | 0.0260 (18) | 0.068 (3) | 0.039 (2) | −0.0059 (17) | 0.0032 (16) | 0.0083 (19) |
N6 | 0.0297 (19) | 0.084 (3) | 0.038 (2) | 0.0013 (19) | 0.0161 (16) | 0.010 (2) |
C10 | 0.0228 (19) | 0.031 (2) | 0.038 (2) | 0.0027 (17) | 0.0099 (17) | 0.0063 (18) |
C11 | 0.026 (2) | 0.055 (3) | 0.034 (2) | −0.001 (2) | 0.0066 (17) | 0.010 (2) |
Co1—O2i | 1.968 (2) | C7—C8 | 1.390 (4) |
Co1—O4 | 1.919 (2) | C6—C5 | 1.384 (4) |
Co1—N2ii | 2.016 (3) | C8—H8 | 0.9300 |
Co1—N4 | 1.997 (3) | C8—C2 | 1.381 (5) |
O2—C1 | 1.272 (4) | N3—H3 | 0.8600 |
O1—C1 | 1.234 (4) | N3—N5 | 1.372 (5) |
O4—C4 | 1.287 (4) | N3—C10 | 1.331 (5) |
O3—C4 | 1.222 (4) | C1—C2 | 1.521 (5) |
N2—C6 | 1.392 (4) | C3—C2 | 1.422 (5) |
N2—C9 | 1.319 (4) | C3—C5 | 1.392 (5) |
N1—H1 | 0.8600 | C9—H9 | 0.9300 |
N1—C7 | 1.380 (4) | C5—H5 | 0.9300 |
N1—C9 | 1.337 (4) | N5—C11 | 1.300 (5) |
N4—C10 | 1.342 (5) | N6—H6A | 0.8600 |
N4—C11 | 1.366 (5) | N6—H6B | 0.8600 |
C4—C3 | 1.490 (5) | N6—C10 | 1.339 (5) |
C7—C6 | 1.405 (5) | C11—H11 | 0.9300 |
O2i—Co1—N2ii | 111.64 (11) | N5—N3—H3 | 124.4 |
O2i—Co1—N4 | 100.15 (11) | C10—N3—H3 | 124.4 |
O4—Co1—O2i | 107.41 (11) | C10—N3—N5 | 111.1 (3) |
O4—Co1—N2ii | 105.49 (11) | O2—C1—C2 | 119.0 (3) |
O4—Co1—N4 | 128.46 (11) | O1—C1—O2 | 122.3 (3) |
N4—Co1—N2ii | 103.38 (11) | O1—C1—C2 | 118.6 (3) |
C1—O2—Co1iii | 130.8 (2) | C2—C3—C4 | 122.0 (3) |
C4—O4—Co1 | 123.3 (2) | C5—C3—C4 | 118.4 (3) |
C6—N2—Co1ii | 129.5 (2) | C5—C3—C2 | 119.6 (3) |
C9—N2—Co1ii | 124.0 (2) | N2—C9—N1 | 113.5 (3) |
C9—N2—C6 | 104.9 (3) | N2—C9—H9 | 123.2 |
C7—N1—H1 | 126.4 | N1—C9—H9 | 123.2 |
C9—N1—H1 | 126.4 | C8—C2—C1 | 115.8 (3) |
C9—N1—C7 | 107.3 (3) | C8—C2—C3 | 121.5 (3) |
C10—N4—Co1 | 129.0 (3) | C3—C2—C1 | 122.6 (3) |
C10—N4—C11 | 103.3 (3) | C6—C5—C3 | 119.4 (3) |
C11—N4—Co1 | 127.6 (3) | C6—C5—H5 | 120.3 |
O4—C4—C3 | 115.0 (3) | C3—C5—H5 | 120.3 |
O3—C4—O4 | 123.5 (3) | C11—N5—N3 | 102.1 (3) |
O3—C4—C3 | 121.4 (3) | H6A—N6—H6B | 120.0 |
N1—C7—C6 | 105.3 (3) | C10—N6—H6A | 120.0 |
N1—C7—C8 | 132.6 (3) | C10—N6—H6B | 120.0 |
C8—C7—C6 | 122.1 (3) | N3—C10—N4 | 108.5 (3) |
N2—C6—C7 | 109.0 (3) | N3—C10—N6 | 124.8 (4) |
C5—C6—N2 | 131.2 (3) | N6—C10—N4 | 126.7 (3) |
C5—C6—C7 | 119.8 (3) | N4—C11—H11 | 122.5 |
C7—C8—H8 | 121.2 | N5—C11—N4 | 115.1 (4) |
C2—C8—C7 | 117.5 (3) | N5—C11—H11 | 122.5 |
C2—C8—H8 | 121.2 | ||
Co1—O4—C4—O3 | 13.1 (5) | C7—C8—C2—C1 | −175.4 (3) |
Co1—O4—C4—C3 | −168.4 (2) | C5—C3—C2—C8 | −0.6 (5) |
C9—N1—C7—C8 | 178.0 (4) | C4—C3—C2—C8 | 177.4 (3) |
C9—N1—C7—C6 | −0.2 (4) | C5—C3—C2—C1 | 175.7 (3) |
C9—N2—C6—C5 | −179.1 (4) | C4—C3—C2—C1 | −6.3 (5) |
Co1ii—N2—C6—C5 | −13.5 (5) | O1—C1—C2—C8 | 98.3 (4) |
C9—N2—C6—C7 | −0.3 (4) | O2—C1—C2—C8 | −77.6 (4) |
Co1ii—N2—C6—C7 | 165.4 (2) | O1—C1—C2—C3 | −78.3 (4) |
N1—C7—C6—C5 | 179.3 (3) | O2—C1—C2—C3 | 105.8 (4) |
C8—C7—C6—C5 | 0.8 (5) | N2—C6—C5—C3 | 178.5 (3) |
N1—C7—C6—N2 | 0.3 (4) | C7—C6—C5—C3 | −0.2 (5) |
C8—C7—C6—N2 | −178.2 (3) | C2—C3—C5—C6 | 0.1 (5) |
N1—C7—C8—C2 | −179.2 (3) | C4—C3—C5—C6 | −177.9 (3) |
C6—C7—C8—C2 | −1.2 (5) | C10—N3—N5—C11 | 0.2 (4) |
Co1iii—O2—C1—O1 | 173.7 (2) | N5—N3—C10—N6 | −179.1 (4) |
Co1iii—O2—C1—C2 | −10.5 (4) | N5—N3—C10—N4 | −0.3 (4) |
O3—C4—C3—C5 | 174.7 (3) | C11—N4—C10—N3 | 0.3 (4) |
O4—C4—C3—C5 | −3.8 (5) | Co1—N4—C10—N3 | 176.1 (2) |
O3—C4—C3—C2 | −3.3 (5) | C11—N4—C10—N6 | 179.1 (4) |
O4—C4—C3—C2 | 178.2 (3) | Co1—N4—C10—N6 | −5.1 (6) |
C6—N2—C9—N1 | 0.2 (4) | N3—N5—C11—N4 | 0.0 (5) |
Co1ii—N2—C9—N1 | −166.5 (2) | C10—N4—C11—N5 | −0.2 (5) |
C7—N1—C9—N2 | 0.0 (4) | Co1—N4—C11—N5 | −176.1 (3) |
C7—C8—C2—C3 | 1.1 (5) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1iv | 0.86 | 1.84 | 2.675 (4) | 163 |
N3—H3···O1v | 0.86 | 2.48 | 3.104 (4) | 130 |
N3—H3···O3v | 0.86 | 2.08 | 2.811 (4) | 142 |
N6—H6A···O3v | 0.86 | 2.35 | 3.036 (5) | 136 |
N6—H6B···O2i | 0.86 | 2.23 | 2.946 (5) | 141 |
C5—H5···O4ii | 0.93 | 2.58 | 3.312 (4) | 136 |
C5—H5···O4 | 0.93 | 2.37 | 2.698 (4) | 100 |
C9—H9···N5vi | 0.93 | 2.48 | 3.332 (5) | 152 |
C11—H11···O1vii | 0.93 | 2.41 | 3.215 (5) | 145 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, −y+1, −z+1; (vi) x−1, −y+1/2, z−1/2; (vii) x, −y+1/2, z+1/2. |
Funding information
The authors gratefully acknowledge financial support from the National Innovation and Entrepreneurship Training Program of Beijing University of Technology for College Students (GJDC-2019-01-43).
References
Chai, J., Wang, P., Jia, J., Ma, B., Sun, J., Tao, Y., Zhang, P., Wang, L. & Fan, Y. (2018). Polyhedron, 141, 369–376. Web of Science CSD CrossRef CAS Google Scholar
Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Acc. Chem. Res. 49, 483–493. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305. Web of Science CrossRef CAS Google Scholar
Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, Y., Li, J.-R., Xie, Y. & Guo, G. (2014). Chem. Soc. Rev. 43, 5952–5981. Web of Science CrossRef CAS PubMed Google Scholar
He, T., Huang, Z., Yuan, S., Lv, X.-L., Kong, X.-J., Zou, X., Zhou, H.-C. & Li, J.-R. (2020). J. Am. Chem. Soc. 142, 13491–13499. Web of Science CSD CrossRef CAS PubMed Google Scholar
Huang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q. & Mak, T. C. W. (2017). Nat. Chem. 9, 689–697. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jin, J., Chen, C., Gao, Y., Zhao, R., Wang, X., Lü, C., Chi, Y. & Niu, S. (2016). J. Solid State Chem. 235, 193–201. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509. Web of Science CrossRef CAS Google Scholar
Li, J.-T., Li, J., Song, L.-M. & Ji, X.-H. (2017). Inorg. Chem. Commun. 83, 88–91. Web of Science CSD CrossRef CAS Google Scholar
Li, Q., Tian, C., Zhang, H., Qian, J. & Du, S. (2014). CrystEngComm, 16, 9208–9215. Web of Science CSD CrossRef CAS Google Scholar
Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lu, X.-F., Xia, B.-Y., Zang, S.-Q. & Lou, X.-W. (2020). Angew. Chem. 132, 4662–4678. CrossRef Google Scholar
Macreadie, L. K., Babarao, R., Setter, C. J., Lee, S. J., Qazvini, O. T., Seeber, A. J., Tsanaktsidis, J., Telfer, S. G., Batten, S. R. & Hill, M. R. (2020). Angew. Chem. Int. Ed. 59, 6090–6098. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Z.-F., Li, L. & Niu, S.-Y. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 818–822. Web of Science CSD CrossRef CAS Google Scholar
Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, Y.-G., Wu, Y.-L., Xiong, G., Smet, P. F., Ding, F., Guo, M.-Y., Zhu, M.-C., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Dalton Trans. 39, 11383–11395. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D. & Zhang, X.-M. (2017). Angew. Chem. Int. Ed. 56, 6478–6482. Web of Science CSD CrossRef CAS Google Scholar
Wang, X., Lu, W., Gu, Z.-Y., Wei, Z. & Zhou, H.-C. (2016). Chem. Commun. 52, 1926–1929. Web of Science CSD CrossRef CAS Google Scholar
Wei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054–1060. Web of Science CSD CrossRef CAS Google Scholar
Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, X., Wang, Y., Li, D.-S., Bu, X. & Feng, P. (2018). Adv. Mater. 30, 1705189. Web of Science CrossRef Google Scholar
Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R. & Zhao, Y. (2016). Small, 12, 2334–2343. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.