research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld and electronic transition analysis of 2-[(1H-benzimidazol-1-yl)meth­yl]benzoic acid

crossmark logo

aDepartment of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India, bFunctional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh, Muslim University, Aligarh 202002, India, cOndokuz Mayis University, Faculty of Arts and Sciences, Department of, Physics,55139 Samsun, Turkey, dDepartment of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar, University, Agra 282002, U. P., India, and eDepartment of Pharmacy, University of Science and Technology, Ibb branch, Yemen
*Correspondence e-mail: amusheer4@gmail.com, ashraf.yemen7@gmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 15 April 2021; accepted 21 June 2021; online 30 June 2021)

In the title compound, C15H12N2O2, the benzimidazole ring system is inclined to the benzene ring by 78.04 (10)°. The crystal structure features O—H⋯N and C—H⋯O hydrogen bonding and C—H⋯π and ππ inter­actions, which were investigated using Hirshfeld surface analysis.

1. Chemical context

Benzimidazole is a naturally ocurring compound, being present in vitamin B12 (Crofts et al., 2014[Crofts, T. S., Men, Y., Alvarez-Cohen, L. & Taga, M. E. (2014). Front. Microbiol. 5, PMID 25431570.]) and may also be synthesized from benzoic acid and o-phenyl­enedi­amine in presence of an excess of acid. Benzimidazole and its derivatives show biological activities such as anti­bacterial, anti­fungal (Yadav et al., 2015[Yadav, G. & Ganguly, S. (2015). Eur. J. Med. Chem. 97, 419-443.]), anti­microbial (Shruthi et al., 2016[Shruthi, N., Poojary, B., Kumar, V., Hussain, M. M., Rai, V. M., Pai, V. R., Bhat, M. & Revannasiddappa, B. C. (2016). RSC Adv. 6, 8303-8316.]), and anti­cancer (Kalalbandi et al., 2015[Kalalbandi, V. K. A. & Seetharamappa, J. (2015). Med. Chem. Commun. 6, 1942-1953.]). Cyano­benzyl compounds are used as inter­mediates in the synthesis of species that possess significant pharmaceutical properties. Compounds having carb­oxy­lic acid as a functional group have shown chelating properties and thus have potential applications in the field of biology. Such groups are also helpful in building metal–organic frameworks that usually form supra­molecular networks due to extensive hydrogen bonding and weak inter­actions. For example, 4-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzoic acid has been used to construct coordination polymers with different metal ions (Ahmad et al., 2013[Ahmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145-1152.]). Herein, we report the title compound, 2-[(1H-benzimidazol-1-yl)meth­yl]benzoic acid, which was synthesized by a condensation reaction of benzimidazole and 2-(bromo­meth­yl) benzo­nitrile in aceto­nitrile followed by a hydrolysis process.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is illustrated in Fig. 1[link]. The mol­ecule is non-planar with a dihedral angle of 78.04 (10) between the benzimidazole ring system and the benzene ring. The N1—C8—C7 angle is 113.31° and the C9—N1—C8—C7 torsion angle is −116.8 (2)°,. The C10—C15 bond length [1.408 (3) Å] is comparable to that in a similar benzimidazole derivative (Faizi et al., 2017[Faizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1180-1183.]). The C—O bond lengths [C1—O1 = 1.319 (3) and C1—O2 = 1.216 (3) Å] are in the expected range (Kamaal et al., 2019[Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M., Gupta, M., Dege, N. & Iskenderov, T. (2019). Acta Cryst. E75, 159-162.]).

[Figure 1]
Figure 1
Asymmetric unit of title compound, with atom labelling and displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are connected via O—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]), forming a 1D framework along the b-axis direction (Fig. 2[link]). C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.6166 (15) Å] between the N1/N2/C9/C10/C15 and C2–C7 rings also occur, leading to the formation of the supra­molecular structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N2/C9/C10/C15, C2–C7, C10–C15 and N1/N2/C9–15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.88 (3) 1.73 (3) 2.592 (3) 164 (4)
C8—H8A⋯O1ii 0.99 (1) 2.62 (1) 3.374 (3) 133 (1)
C4—H4⋯Cg1iii 0.95 (1) 2.99 (1) 3.865 (3) 155 (1)
C4—H4⋯Cg3iii 0.95 (1) 2.51 (1) 3.408 (3) 157 (1)
C4—H4⋯Cg4iii 0.95 (1) 2.51 (1) 3.454 (3) 170 (1)
C5—H5⋯Cg2iii 0.95 (1) 2.76 (1) 3.554 (3) 142 (1)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
View of the crystal packing along the a axis, showing O—H⋯N and C—H⋯O hydrogen-bonding inter­actions forming a one-dimensional chain.
[Figure 3]
Figure 3
The hydrogen bonding and C—H⋯π and ππ inter­actions form zigzag chains, giving a supra­molecular structure along the bc plane.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found five examples of similar compounds: bis­(penta­fluoro­phen­yl)-(μ-{1,1′-[1,2-phenyl­enebis(methyl­ene)]bis­(1H-benzimidazole)})digold(I) acetone solvate (WOPLIZ; Zheng et al., 2019[Zheng, Q., Borsley, S., Nichol, G. S., Duarte, F. & Cockroft, S. L. (2019). Angew. Chem. Int. Ed. 58, 12617-12623.]), 3,3′-[1,2-phenyl­enebis(methyl­ene)]bis­(1-ethyl­benzimidazolium) dibromide (LANHAL; Haque et al., 2012[Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.]), 2-[(1H-benzimidazol-1-yl)meth­yl]benzo­nitrile (JONYUJ; Akkoç et al., 2017[Akkoç, S., Kayser, V., İlhan, I. O., Hibbs, D. E., Gök, Y., Williams, P. A., Hawkins, B. & Lai, F. (2017). J. Organomet. Chem. 839, 98-107.]), 1-[(2-cyano­phen­yl)meth­yl]-3-[(2-methyl­phen­yl)meth­yl]-1H-benzimidazol-3-ium (JONZAQ; Akkoç et al., 2017[Akkoç, S., Kayser, V., İlhan, I. O., Hibbs, D. E., Gök, Y., Williams, P. A., Hawkins, B. & Lai, F. (2017). J. Organomet. Chem. 839, 98-107.]) and 1-(2-cyano­benz­yl)-3-methyl-1H-3,1-benzimidazol-3-ium bromide (MOCWAE; Ghdhayeb et al., 2014[Ghdhayeb, M. Z., Haque, R. A. & Budagumpi, S. (2014). J. Organomet. Chem. 757, 42-50.]).

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots generated (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & Jayatilaka et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface mapped over dnorm, colour-mapped from red (shorter distance than the sum of van der Waals radii) through white to blue (longer distance than the sum of the van der Waals radii). The principal weak inter­actions are clearly visible. The surface coverage corresponding to O—H⋯N and C—H⋯O inter­actions are 9% and 11.8%, respectively. The dark-red spot indicates significant hydrogen bonding.

The two-dimensional finger plots are given in Fig. 4[link]. The principal contributions to the overall surface are from H⋯H (42.4%, Fig. 4[link]b), C⋯H/H⋯C (27.4%, Fig. 4[link]c) and N⋯H/H⋯N 9% (Fig. 4[link]d) inter­actions. The contributions of inter­actions such as C⋯C 4.8% are negligible.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, in the range −0.722 to 1.183. (a) The overall two-dimensional finger plot of the title compound and those delineated into (b) H⋯H (42.4%), (c) C⋯H/ H⋯C (27.4%) and (d) N⋯H/H⋯N (9%) inter­actions, (e) significant hydrogen bonding and (f) extended supra­molecular form.

6. Electronic transition analysis

Electro-conducting materials synthesized by conjugated organic compounds show promising electronic properties due to the availability of delocalized electrons, except for semiconducting materials such as TiO2, ZnO and other metal oxide nano-materials, which are electro-conducting in themselves (Odziomek et al., 2017[Odziomek, K., Ushizima, D., Oberbek, P., KurzydŁowski, K. J., Puzyn, T. & Haranczyk, M. (2017). J. Microsc. 265, 34-50.]). The electronic properties of organic compounds depend on the electronic transition between the highest occupied mol­ecular orbital (HOMO) or valence band and lowest occupied mol­ecular orbital (LUMO) or conduction band. In a simple method, the energy band gap (Eg) of organic mol­ecule is determined by a Tauc plot from the absorption spectra (λmax = 245 nm, in this case). The band gap energy, Eg = 4.6 eV, of the title compound is very large (Fig. 5[link]). This large band gap arises due to high π-conjugation or polarization in the title mol­ecule system. The title mol­ecule could be useful for developing or enhancing the organic electronic properties of conducting materials such as metal–organic frameworks.

[Figure 5]
Figure 5
Energy band gap of the title mol­ecule by Tauc plot from absorption spectra.

7. Synthesis and crystallization

In an equimolar ratio, benzimidazole (2 g, 16.9 mmol) and dry K2CO3 (4.66 g, 33.85 mmol) were mixed in a round-bottom flask in aceto­nitrile (MeCN, 60 ml) under an inert atmosphere. The mixture was then allowed to stirred for 60 min at 363 K then treated with 2-(bromo­meth­yl) benzo­nitrile (3.31 g, 16.9 mmol), and the resulting solution refluxed for 24 h. After completion of this step, the solution was allowed to cool to room temperature and the mixture was poured slowly onto ice–water (100 ml) under constant stirring. A greenish muddy crystalline precipitate was obtained and it was left to stand at 293 K for two days. After two days, a crystalline powder of 2-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzo­nitrile was obtained (Ahmad et al., 2013[Ahmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145-1152.]).

The title compound was synthesized by hydrolysis of 2-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzo­nitrile, 2 g being mixed with 20 equimolar of potassium hydroxide (6.86 g, 8.58 mmol) in water. The solution was refluxed at 373 K for 36 h, the resultant solution was then allowed to cool at room temperature and then poured onto ice–water, and after that acidified using 6 N HCl for protonation. The protonated solution was kept for slow evaporation. After two weeks, pale-yellow cubic crystals were obtained in good yield, which were suitable for data collection. The reaction scheme is shown in Fig. 6[link].

[Figure 6]
Figure 6
Reaction scheme.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12N2O2
Mr 252.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.5690 (8), 12.7956 (15), 14.1278 (16)
V3) 1187.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.38 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I ≥ 2u(I)] reflections 18798, 2095, 1759
Rint 0.107
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.091, 1.09
No. of reflections 2095
No. of parameters 176
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[(1H-Benzimidazol-1-yl)methyl]benzoic acid top
Crystal data top
C15H12N2O2Dx = 1.411 Mg m3
Mr = 252.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1209 reflections
a = 6.5690 (8) Åθ = 2.9–22.1°
b = 12.7956 (15) ŵ = 0.10 mm1
c = 14.1278 (16) ÅT = 100 K
V = 1187.5 (2) Å3Block, colourless
Z = 40.38 × 0.21 × 0.14 mm
F(000) = 528.253
Data collection top
Bruker APEXII CCD
diffractometer
1759 reflections with I 2u(I)
Detector resolution: X-ray pixels mm-1Rint = 0.107
φ and ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 88
k = 1717
18798 measured reflectionsl = 1818
2095 independent reflections
Refinement top
Refinement on F221 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.004
2095 reflectionsΔρmax = 0.24 e Å3
176 parametersΔρmin = 0.28 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2861 (4)0.82904 (18)0.71973 (18)0.0170 (6)
C20.4789 (4)0.81263 (19)0.66504 (18)0.0166 (6)
C30.5267 (4)0.88501 (19)0.59451 (17)0.0186 (6)
H30.4333 (4)0.93965 (19)0.58083 (17)0.0223 (8)*
C40.7074 (4)0.8790 (2)0.54393 (18)0.0213 (6)
H40.7359 (4)0.9282 (2)0.49537 (18)0.0256 (8)*
C50.8447 (4)0.80132 (19)0.56462 (18)0.0204 (7)
H50.9705 (4)0.79769 (19)0.53166 (18)0.0245 (8)*
C60.7985 (4)0.7280 (2)0.63408 (18)0.0196 (6)
H60.8941 (4)0.6743 (2)0.64778 (18)0.0235 (7)*
C70.6164 (4)0.7311 (2)0.68391 (17)0.0163 (6)
C80.5804 (4)0.6465 (2)0.75638 (17)0.0179 (6)
H8a0.7114 (4)0.6115 (2)0.77035 (17)0.0215 (7)*
H8b0.5313 (4)0.6790 (2)0.81572 (17)0.0215 (7)*
C90.2503 (4)0.54778 (19)0.76721 (18)0.0197 (6)
H90.2023 (4)0.58470 (19)0.82111 (18)0.0236 (7)*
C100.2677 (4)0.43913 (19)0.65142 (17)0.0176 (6)
C110.2311 (4)0.3622 (2)0.58413 (19)0.0229 (6)
H110.1089 (4)0.3224 (2)0.58480 (19)0.0274 (8)*
C120.3793 (4)0.3456 (2)0.51608 (19)0.0248 (7)
H120.3580 (4)0.2940 (2)0.46874 (19)0.0297 (8)*
C130.5601 (4)0.40366 (19)0.51595 (18)0.0223 (7)
H130.6590 (4)0.39013 (19)0.46844 (18)0.0267 (8)*
C140.5993 (4)0.4801 (2)0.58275 (18)0.0197 (6)
H140.7226 (4)0.5188 (2)0.58240 (18)0.0236 (8)*
C150.4494 (4)0.49744 (19)0.65048 (17)0.0156 (6)
N10.4321 (3)0.56758 (15)0.72553 (14)0.0158 (5)
N20.1467 (3)0.47270 (16)0.72598 (15)0.0195 (5)
O10.1923 (3)0.91615 (15)0.69535 (13)0.0228 (5)
O20.2246 (3)0.77045 (13)0.78116 (12)0.0227 (4)
H10.078 (4)0.924 (3)0.727 (2)0.077 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0165 (14)0.0131 (13)0.0214 (14)0.0029 (12)0.0021 (12)0.0043 (12)
C20.0186 (14)0.0126 (13)0.0184 (14)0.0064 (11)0.0017 (12)0.0040 (11)
C30.0246 (16)0.0118 (14)0.0193 (14)0.0002 (12)0.0039 (12)0.0027 (11)
C40.0257 (16)0.0207 (14)0.0175 (14)0.0068 (13)0.0054 (13)0.0014 (12)
C50.0217 (15)0.0172 (14)0.0223 (16)0.0060 (12)0.0068 (12)0.0042 (12)
C60.0187 (14)0.0166 (13)0.0235 (15)0.0024 (12)0.0007 (12)0.0050 (12)
C70.0166 (13)0.0158 (14)0.0164 (13)0.0037 (12)0.0020 (11)0.0056 (11)
C80.0166 (13)0.0181 (14)0.0190 (14)0.0010 (12)0.0033 (12)0.0009 (12)
C90.0241 (15)0.0163 (14)0.0186 (14)0.0038 (12)0.0022 (13)0.0027 (12)
C100.0210 (14)0.0149 (13)0.0170 (13)0.0010 (12)0.0025 (12)0.0032 (11)
C110.0235 (15)0.0183 (14)0.0268 (15)0.0006 (13)0.0034 (13)0.0007 (12)
C120.0339 (17)0.0159 (14)0.0244 (16)0.0026 (14)0.0028 (14)0.0030 (13)
C130.0295 (17)0.0185 (15)0.0188 (14)0.0077 (12)0.0031 (13)0.0007 (12)
C140.0201 (15)0.0178 (14)0.0212 (14)0.0002 (12)0.0010 (12)0.0031 (12)
C150.0198 (15)0.0117 (13)0.0153 (13)0.0008 (11)0.0027 (12)0.0017 (11)
N10.0160 (12)0.0144 (11)0.0170 (11)0.0010 (9)0.0006 (10)0.0000 (10)
N20.0222 (12)0.0136 (12)0.0226 (12)0.0009 (10)0.0014 (11)0.0032 (10)
O10.0170 (11)0.0199 (10)0.0316 (11)0.0030 (9)0.0012 (9)0.0042 (9)
O20.0250 (10)0.0171 (9)0.0259 (11)0.0012 (8)0.0075 (9)0.0031 (9)
Geometric parameters (Å, º) top
C1—C21.499 (3)C9—H90.950 (4)
C1—O11.319 (3)C9—N11.356 (3)
C1—O21.216 (3)C9—N21.313 (3)
C2—C31.396 (3)C10—C111.390 (3)
C2—C71.405 (3)C10—C151.408 (3)
C3—H30.950 (4)C10—N21.388 (3)
C3—C41.388 (3)C11—H110.9501 (4)
C4—H40.950 (4)C11—C121.385 (4)
C4—C51.373 (4)C12—H120.950 (4)
C5—H50.950 (4)C12—C131.401 (4)
C5—C61.391 (4)C13—H130.950 (4)
C6—H60.951 (4)C13—C141.383 (3)
C6—C71.389 (4)C14—H140.949 (4)
C7—C81.508 (3)C14—C151.391 (4)
C8—H8a0.990 (4)C15—N11.394 (3)
C8—H8b0.990 (3)O1—H10.878 (18)
C8—N11.469 (3)
O1—C1—C2112.3 (2)N1—C9—H9123.20 (14)
O2—C1—C2124.2 (2)N2—C9—H9123.20 (15)
O2—C1—O1123.5 (2)N2—C9—N1113.6 (2)
C3—C2—C1117.7 (2)C15—C10—C11121.1 (2)
C7—C2—C1123.3 (2)N2—C10—C11129.7 (2)
C7—C2—C3118.9 (2)N2—C10—C15109.2 (2)
H3—C3—C2119.23 (15)H11—C11—C10121.25 (15)
C4—C3—C2121.5 (2)C12—C11—C10117.5 (3)
C4—C3—H3119.23 (15)C12—C11—H11121.25 (16)
H4—C4—C3120.26 (15)H12—C12—C11119.48 (16)
C5—C4—C3119.5 (2)C13—C12—C11121.0 (2)
C5—C4—H4120.26 (15)C13—C12—H12119.48 (15)
H5—C5—C4120.16 (15)H13—C13—C12118.94 (15)
C6—C5—C4119.7 (2)C14—C13—C12122.1 (2)
C6—C5—H5120.16 (16)C14—C13—H13118.94 (16)
H6—C6—C5119.13 (16)H14—C14—C13121.59 (16)
C7—C6—C5121.7 (2)C15—C14—C13116.8 (3)
C7—C6—H6119.13 (16)C15—C14—H14121.59 (16)
C6—C7—C2118.6 (2)C14—C15—C10121.5 (2)
C8—C7—C2124.1 (2)N1—C15—C10105.3 (2)
C8—C7—C6117.3 (2)N1—C15—C14133.2 (2)
H8a—C8—C7108.91 (14)C9—N1—C8125.7 (2)
H8b—C8—C7108.91 (13)C15—N1—C8127.9 (2)
H8b—C8—H8a107.7 (3)C15—N1—C9106.4 (2)
N1—C8—C7113.31 (19)C10—N2—C9105.4 (2)
N1—C8—H8a108.91 (12)H1—O1—C1111 (2)
N1—C8—H8b108.91 (12)
C1—C2—C3—C4176.5 (2)C8—N1—C9—N2179.6 (2)
C1—C2—C7—C6174.8 (2)C8—N1—C15—C10179.7 (3)
C1—C2—C7—C84.3 (3)C8—N1—C15—C141.3 (3)
C2—C3—C4—C51.2 (3)C9—N1—C15—C101.0 (2)
C2—C7—C6—C51.9 (3)C9—N1—C15—C14179.9 (2)
C2—C7—C8—N175.2 (3)C9—N2—C10—C11179.2 (2)
C3—C4—C5—C61.8 (3)C9—N2—C10—C150.4 (2)
C4—C5—C6—C70.2 (3)C10—C11—C12—C130.6 (3)
C5—C6—C7—C8178.9 (2)C10—C15—C14—C130.7 (3)
C6—C7—C8—N1105.6 (2)C11—C12—C13—C140.3 (3)
C7—C8—N1—C9116.8 (2)C12—C13—C14—C150.4 (3)
C7—C8—N1—C1564.7 (3)C13—C14—C15—N1178.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N2/C9/C10/C15, C2–C7, C10–C15 and N1/N2/C9–15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.88 (3)1.73 (3)2.592 (3)164 (4)
C8—H8A···O1ii0.99 (1)2.62 (1)3.374 (3)133 (1)
C3—H3···O10.95 (1)2.28 (1)2.648 (3)102 (1)
C8—H8B···O20.99 (1)2.38 (1)2.846 (3)108 (1)
C9—H9···O20.95 (1)2.45 (1)2.861 (3)106 (1)
C4—H4···Cg1iii0.95 (1)2.99 (1)3.865 (3)155 (1)
C4—H4···Cg3iii0.95 (1)2.51 (1)3.408 (3)157 (1)
C4—H4···Cg4iii0.95 (1)2.51 (1)3.454 (3)170 (1)
C5—H5···Cg2iii0.95 (1)2.76 (1)3.554 (3)142 (1)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, for providing laboratory facilities. Author contribution are as follows. Conceptualization, MA and AM; methodology, AA and MS; investigation, MM, SK, SJ and JAK; writing (original draft), AA and ND; writing (review and editing of the manuscript), AAfall and ADA; visualization, MA, AA and AM; funding acquisition, AM; resources, ND and MA; supervision, MA and AM.

Funding information

MA acknowledges the start-up grant received from UGC, India. AA, MM and SK also thank the UGC for the Non-NET scheme. AM acknowledges support from the Department of Pharmacy, University of Science and Technology, Ibb Branch, Yemen.

References

First citationAhmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145–1152.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkkoç, S., Kayser, V., İlhan, I. O., Hibbs, D. E., Gök, Y., Williams, P. A., Hawkins, B. & Lai, F. (2017). J. Organomet. Chem. 839, 98–107.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrofts, T. S., Men, Y., Alvarez-Cohen, L. & Taga, M. E. (2014). Front. Microbiol. 5, PMID 25431570.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1180–1183.  CrossRef IUCr Journals Google Scholar
First citationGhdhayeb, M. Z., Haque, R. A. & Budagumpi, S. (2014). J. Organomet. Chem. 757, 42–50.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573.  CSD CrossRef IUCr Journals Google Scholar
First citationKalalbandi, V. K. A. & Seetharamappa, J. (2015). Med. Chem. Commun. 6, 1942–1953.  CrossRef CAS Google Scholar
First citationKamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M., Gupta, M., Dege, N. & Iskenderov, T. (2019). Acta Cryst. E75, 159–162.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationOdziomek, K., Ushizima, D., Oberbek, P., KurzydŁowski, K. J., Puzyn, T. & Haranczyk, M. (2017). J. Microsc. 265, 34–50.  CrossRef CAS PubMed Google Scholar
First citationShruthi, N., Poojary, B., Kumar, V., Hussain, M. M., Rai, V. M., Pai, V. R., Bhat, M. & Revannasiddappa, B. C. (2016). RSC Adv. 6, 8303–8316.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationYadav, G. & Ganguly, S. (2015). Eur. J. Med. Chem. 97, 419–443.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZheng, Q., Borsley, S., Nichol, G. S., Duarte, F. & Cockroft, S. L. (2019). Angew. Chem. Int. Ed. 58, 12617–12623.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds