research communications
Hexanuclear copper(II) complex of 2-hydroxy-N,N′-bis[1-(2-hydroxyphenyl)ethylidene]propane-1,3-diamine incorporating an open-cubane core
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Alioune Diop, Bambey, Senegal, cDépartement de Chimie, Faculté des Sciences et Techniques, Université Nouakchott Al Aasriya, Nouakchott, Mauritania, and dSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: i6thiam@yahoo.fr
The title molecular structure, namely, diaquatris(μ3-1,3-bis{[1-(2-oxidophenyl)ethylidene]amino}propan-2-olato)-μ3-hydroxido-dinitratohexacopper(II) ethanol trisolvate, [Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H5OH, corresponds to a non-symmetric hexanuclear copper complex. The complex exhibits one core in which three CuII metal centres are mutually interconnected, two by two, via three phenolato oxygen anions acting in a μ2-mode. These three copper cations are interconnected in a μ3-mode by one hydroxyl group. An open-cube structure is generated in which each of the CuII cations of the three CuO4N units is connected by two μ2-O anions from phenolate groups and one μ3-O atom from a hydroxy anion. Each of the three pentacoordinated CuII cations situated in the open-cube unit has a distorted NO4 square-pyramidal environment. Each of these three CuII centres is interconnected with another CuII cation via one enolate O atom in μ2-mode, yielding one CuNO4 unit and two CuNO3 units. The pentacoordinated CuII atom has a distorted square-pyramidal environment while the two tetracoordinated copper(II) cations are situated in a square-planar environment. A series of intramolecular O—H⋯O hydrogen bonds are observed. In the crystal, the units are connected two by two by intermolecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane.
Keywords: crystal structure; 1-(2-hydroxyphenyl)ethanone; 1,3-diaminopropan-2-ol; open-cubane; hydrazone.
CCDC reference: 2086932
1. Chemical context
The coordination chemistry of pentadentate ligands has been studied extensively. That their structures present symmetrical or asymmetrical pendant arms and bear donor atoms is an asset widely exploited in coordination chemistry. The presence of donor sites on aliphatic or aromatic arms has made it possible to prepare a wide variety of compounds with various structures and interesting physical and chemical properties. 1,3-Diaminopropan-2-ol, which has three donor sites, is a good precursor for the synthesis of ligands with several cavities that can act as chelating agents and/or as bridging ligands (Song et al., 2004; Shit et al., 2013). These types of ligands can generate high nuclearity complexes with original structures. Indeed, ligands rich in hydroxyl groups and containing other donor sites such as nitrogen are used to prepare complexes with very diverse structures (Gungor & Kara, 2015; Dutta et al., 2020; Shit et al., 2013; Sarı et al., 2006). Several synthetic strategies have been developed to control the nuclearity and lead to specific applications in molecular magnetism (Popov et al., 2012; Mikuriya et al., 2018), molecular biology (Grundmeier & Dau, 2012), electrochemistry (Musie et al., 2003) and catalysis (Gamez et al., 2001). The self-assembly synthetic strategy involving transition-metal cations and multidentate ligands has been widely used by coordination chemists, as a result of the wide variety of fascinating structures with the presence of multiple metal centres. The high nuclearity of these complexes and the interactions that can take place between metal cations has increased their interest to chemists (Bonanno et al., 2018; Yang et al., 2014; Haldar et al., 2019).
In a continuation of our work on multidentate Schiff base complexes (Sall et al., 2019; Sarr et al., 2018a,b; Mamour et al., 2018), we have explored the possibility of preparing high nuclearity complexes using a Schiff base rich in hydroxyl groups. From 1,3-diaminopropan-2-ol and 1-(2-hydroxyphenyl)ethanone, we obtained a ligand containing three hydroxyl groups. The reaction of this ligand with copper nitrate resulted in the hexanuclear title complex, whose structure presents an open cube involving three of the six copper cations.
2. Structural commentary
The reaction of 1-(2-hydroxyphenyl)ethanone and 1,3-diaminopropan-2-ol in a 2:1 ratio in ethanol yielded the ligand N,N′-bis{[1-(2-hydroxyphenyl)ethylidene]}-2-hydroxypropane-1,3-diamine (H3L). The reaction of ligand H3L with copper nitrate yielded a complex in which the ligand reacted in tri-deprotonated form as L3−. The coordination complex is formulated as [Cu6L3(NO3)2(OH)(H2O)2]·3(EtOH) (I) (Fig. 1). In this hexanuclear open-cubane complex, each of the tri-deprotonated ligand acts as a bridge linking one copper(II) cation to two neighbouring CuII cations. The two imino nitrogen atoms of the ligand are coordinated to two different Cu cations. One of the phenolato O atoms bridges two copper cations, while the second phenolato O atom is coordinated to a third copper cation. The third copper cation is bridged to the central copper cation via the enolato oxygen anion. The tri-deprotonated ligand coordinates in a heptadentate mode (μ2-Ophenolate, η1-Nimino, μ2-Oenolato, η1-Nimino, η1-Ophenolato), thus forming four fused chelate rings (two five-membered and two six-membered). Two discrete environments are observed in the structure: CuNO4 and CuNO3. The coordination environments for Cu1, Cu3, Cu5 and Cu6 are best described as square-pyramidal, as shown by the Addison τ parameter calculated from the largest angles (Table 1) around Cu1, Cu3, Cu5 and Cu6: τ = 0.045 (Cu1), τ = 0.007 (Cu3), τ = 0.010 (Cu5), τ = 0.040 (Cu6), (τ = 0 or 1 for perfect square-pyramidal and trigonal–bipyramidal geometries respectively). For Cu6, the basal plane is occupied by one phenolato oxygen anion, one enolate oxygen anion, one water O atom and one azomethine nitrogen atom, the apical position being occupied by an anion oxygen of an unidentate nitrate group. The donor atoms (O8, N6, O9, O2W) of the basal coordination plane are almost coplanar and the Cu6 cation is displaced toward the apical atom (O201) by 0.0963 (9) Å. The cissoid angles are in the range 86.12 (9)–94.66 (9)° while the transoid angles are 171.23 (9) and 174.18 (9)°. In the basal plane, the Cu6—N6 [1.942 (2) Å] and the Cu6—Oligand distances [1.935 (2) and 1.863 (2) Å] are shorter than the distance of Cu6—O2W [2.028 (2) Å]. The distance between the copper and the nitrato oxygen anion [Cu6—O14B = 2.45 (2) Å] in the apical position is longer than the distances to the atoms in the equatorial plane because of Jahn–Teller distortion, which is typical for copper(II) d9 atoms (Monfared et al., 2009). This distance is in accordance with reported values for nitrato square-pyramidal copper complexes (Noor et al., 2015).
|
For Cu1, Cu3 and Cu5, which are situated on the vertices of the Cu3O4 open cube, the basal planes are occupied by one imino nitrogen atom, one phenolate oxygen anion, one enolato oxygen anion from the same ligand molecule and the O atom of the hydroxy oxygen anion that connects the three copper cations. The copper cations situated on the corners of the open cube are connected by two μ2-Ophenolato and one μ3-Ohydroxy atoms. In each case, the apical position is occupied by one phenolate oxygen anion from another ligand. The donor atoms of the basal coordination planes of Cu1, Cu3 and Cu5 centres are situated almost in the same plane and the copper cations are displaced from the corresponding apical positions [−0.1462 (8) Å for Cu1, −0.1253 (8) Å for Cu3 and 0.1122 (8) Å for Cu5). The open cube, defined as cube missing one corner, is distorted, as shown by the Cu—O—Cu [93.56 (8)–106.62 (9)°] and O—Cu—O [72.34 (7)–86.17 (8)°] angles, which deviate severely from the ideal value of 90° expected for a perfect cube. The atoms defining the three sides of the open cube are almost coplanar (Cu1/O1/Cu5/O10, r.m.s. deviation = 0.0864 Å; Cu5/O7/Cu3/O10, r.m.s. deviation = 0.0588 Å; Cu1/O4/Cu3/O10, r.m.s. deviation = 0.0487 Å) and are irregular with edges of different lengths, i.e. for Cu1/O1/Cu5/O10 these are O1—Cu1 = 1.877 (2) Å, O10—Cu1 = 2.004 (2) Å, O1—Cu5 = 2.453 (2) Å and O10—Cu5 = 1.978 (2) Å. Additionally, the dihedral angles values of 78.11 (6), 75.77 (5) and 77.57 (5)° between the sides, two by two, confirm the distortion of the open cube. The bond lengths involving the bridging phenolate oxygen anions and the copper cations are asymmetrical: O1—Cu1 = 1.877 (2) Å and O1—Cu5 = 2. 453 (2) Å; O4—Cu1 = 2.389 (2) Å and O4—Cu3 = 1.896 (2); and O7—Cu5 = 1.889 (2) Å and O7—Cu3 = 2.365 (2) Å. The distances of the μ3-bridging O atom to the copper cations are slightly different: O10—Cu1 = 2.005 (2) Å, O10—Cu5 = 1.978 (2) Å and O10—Cu3 = 2.004 (2) Å. The axial bond lengths are longer than the equatorial bond lengths as a result of the Jahn–Teller distortion [Cu1—O4 = 2.389 (2) Å, Cu3—O7 = 2.365 (2) Å and Cu5—O1 = 2.453 (2) Å]. The three copper cations are placed at the vertices of an almost isosceles triangle with distances values of 3.1801 (4) Å (Cu1—Cu5), 3.1823 (4) Å (Cu3—Cu5) and 3.2140 (5) Å (Cu1—Cu3) and angle values of 60.68 (1)° (Cu1—Cu5—Cu3), 59.69 (1)° (Cu5—Cu1—Cu3) and 59.62 (1)° (Cu1—Cu3—Cu5).
For the Cu2 and Cu4 centres, the coordination environments can be best described as slightly distorted square planar with r.m.s. deviations from planarity of 0.0601 Å for Cu2/O2/N2/O3/O11 and 0.0909 Å for Cu4/N4/O5/O1W/O6. The τ4 (Yang et al., 2007) values of 0.097 (Cu2) and 0.106 (Cu4) are in accordance with slightly distorted square-planar geometries. For each copper(II) centre (Cu2 and Cu4), the coordination plane and the nearest neighbouring phenyl ring of the ligand are almost co-planar, with respective dihedral angles values of 4.014 (8) and 3.423 (5)°. The copper cation Cu2 is coordinated by one enolato oxygen anion (O2), one phenoxo oxygen anion (O3), one azomethine nitrogen atom (N2) of the ligand, and one oxygen anion (O11) of an unidentate nitrate group. The Cu2—O2 [1.939 (2) Å], Cu2—O3 [1.855 (2) Å] and Cu2—N2 [1.941 (2) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Popov et al., 2012; Chen et al., 2004; Dutta et al., 2020). The Cu2—O11 bond length [1.9856 (2) Å] is comparable to the distance reported for a nitrato copper complex with square-planar geometry (Thiam et al., 2010). The cissoid angle values are in the range 86.37(9)–94.26 (10)°] and the transoid angles are 171.59 (9) and 174.77 (10)°. The Cu4 cation is coordinated by one enolato oxygen anion (O5), one phenoxo oxygen anion (O6), one azomethine nitrogen atom (N4) of the ligand, and one O atom from a coordinated water molecule. The distances of Cu4 to the coordinated atoms from the ligand [1.916 (2), 1.850 (2) and 1.934 (2) Å] are comparable with those involving Cu2. The Cu4—O1W distance value of 1.961 (2) Å is similar to those reported for square-planar copper(II) complexes (Liang et al., 2010). The cissoid angles are in the range 86.56 (8)–95.34 (9)° and the transoid angles are 171.10 (9) and 173.69 (9)°. The double-bond character of the C—N bonds [overall values 1.286 (3)–1.295 (3) Å] is indicative of the presence of the imino groups in the three ligands.
3. Supramolecular features
In the crystal, intramolecular and intermolecular O—H⋯O hydrogen bonds involving the hydroxyl group, the coordinated water molecules and the nitrate and ethanol groups are observed. The complex molecules are interconnected by intermolecular hydrogen bonds of type O—H⋯O (Owater—H⋯Oethanol and Owater—H⋯Onitrate) and C—H⋯O (Cphenolate—H⋯Onitrate) (Fig. 2, Table 2). The complex molecules are disposed into zigzagging two-dimensional sheets parallel to the ac plane (Fig. 3). The coordinating water molecules are directed toward the interlayer region, which is also occupied by the uncoordinated ethanol molecules. Adjacent sheets are linked to one another by hydrogen bonds of type C—H⋯Oethanol or C—H⋯Onitrate) (C11—H11B⋯O4ethanol and C18—H18⋯O13nitrate; Table 3). The series of intermolecular and intramolecular hydrogen bonds stabilize and link the components into a three-dimensional network.
|
4. Database survey
The ligand N,N′-bis[(1-(2-hydroxyphenyl)ethylidene)]-2-hydroxypropane-1,3-diamine has been widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016) gave ten hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012); OMOFUS (Banerjee et al., 2011)]. Three other entries are complexes of CuII cations [KUKTAM (Basak et al., 2009), NADDIJ and NADDOP (Osypiuk et al., 2020)]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011), one FeII (RIDHUJ; Biswas et al., 2013) and one VV complex (KEWGUQ; Maurya et al., 2013) have been reported. In all of the ten cases, the ligand acts in a pentadentate mode through the two soft azomethine nitrogen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetranuclear while two dinuclear (OMOFOM and RIDHUJ) and one mononuclear (KEWGUQ) complexes have been reported.
5. Synthesis and crystallization
Reaction of 1-(2-hydroxyphenyl)ethanone and 2-hydroxypropane-1,3-diamine in a 2:1 ratio in ethanol yielded the ligand N,N'-bis{[1-(2-hydroxyphenyl)ethylidene]}-2-hydroxypropane-1,3-diamine (HL3), which was prepared according to a literature method (Song et al., 2003) with slight modifications. To a solution of 1,3-diaminopropane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added, dropwise, (2-hydroxyphenyl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 180 min, affording the organic ligand H3L. The yellow precipitate that appeared on cooling was recovered by filtration and dried in air. Yield 75%, m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%. A solution of Cu(NO3)2·3H2O (0.241 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned dark green and was stirred for 30 min. The mixture was filtered, and the filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu6L3(NO3)2(OH)(H2O)2]·3EtOH. FT–IR (KBr, ν, cm−1): 1625, 1600, 1540, 1446, 1382, 1304, 1258, 1180, 1120, 1007, 895, 760. Analysis calculated for C63H80Cu6N8O21: C, 45.40; H, 4.84; N, 6.72. Found: C, 45.38; H, 4.82; N, 6.74%.
6. Refinement
Crystal data, data collection and structure . Hydroxyl H atoms were located from difference-Fourier maps and refined. Other H atoms (CH, CH2, CH3 groups, hydroxyl groups of ethanol molecules and water molecules) were geometrically optimized (C—H = 0.93–0.98 Å, O—Hhydroxy = 0.82 Å and O—Hwater = 0.86–0.87 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 and OH groups).
details are summarized in Table 3Supporting information
CCDC reference: 2086932
https://doi.org/10.1107/S2056989021005570/ex2045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005570/ex2045Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H6O | Z = 2 |
Mr = 1666.59 | F(000) = 1712 |
Triclinic, P1 | Dx = 1.641 Mg m−3 |
a = 13.6406 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.0568 (5) Å | Cell parameters from 5100 reflections |
c = 18.5907 (7) Å | θ = 2.4–28.6° |
α = 83.626 (3)° | µ = 1.94 mm−1 |
β = 86.186 (3)° | T = 293 K |
γ = 72.288 (3)° | Prismatic, green |
V = 3372.7 (2) Å3 | 0.3 × 0.2 × 0.1 mm |
KappaCCD diffractometer | 12395 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.033 |
CCD scans | θmax = 26.7°, θmin = 2.8° |
Absorption correction: multi-scan | h = −17→17 |
Tmin = 0.967, Tmax = 1.000 | k = −17→17 |
73743 measured reflections | l = −23→23 |
14284 independent reflections |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0432P)2 + 3.2696P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
14284 reflections | Δρmax = 0.82 e Å−3 |
929 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu3 | 0.26915 (2) | 0.40125 (2) | 0.15888 (2) | 0.03091 (7) | |
Cu1 | 0.27776 (2) | 0.42624 (2) | 0.32790 (2) | 0.03074 (7) | |
Cu5 | 0.34276 (2) | 0.20896 (2) | 0.27233 (2) | 0.03197 (7) | |
Cu4 | 0.45315 (2) | 0.20182 (2) | 0.10809 (2) | 0.03414 (8) | |
Cu2 | 0.34537 (2) | 0.58294 (2) | 0.20408 (2) | 0.03620 (8) | |
O11 | 0.47163 (16) | 0.47175 (15) | 0.18459 (13) | 0.0555 (6) | |
N102 | 0.54911 (19) | 0.49292 (17) | 0.15507 (13) | 0.0430 (5) | |
O12 | 0.5566 (2) | 0.57631 (18) | 0.15453 (17) | 0.0771 (8) | |
O13 | 0.6141 (2) | 0.4241 (2) | 0.12800 (19) | 0.0958 (11) | |
Cu6 | 0.46902 (2) | 0.25221 (2) | 0.40915 (2) | 0.03727 (8) | |
O14B | 0.6475 (14) | 0.152 (2) | 0.4307 (18) | 0.074 (6) | 0.43 (8) |
N202 | 0.6961 (3) | 0.1605 (3) | 0.4849 (2) | 0.0743 (9) | |
O16B | 0.7637 (19) | 0.203 (3) | 0.4682 (15) | 0.087 (7) | 0.43 (8) |
O15B | 0.708 (5) | 0.102 (5) | 0.5418 (17) | 0.143 (11) | 0.43 (8) |
O10 | 0.35231 (15) | 0.34640 (13) | 0.24727 (10) | 0.0291 (4) | |
H10 | 0.384 (2) | 0.350 (4) | 0.232 (2) | 0.073 (17)* | |
O2 | 0.34884 (13) | 0.52783 (13) | 0.30453 (9) | 0.0348 (4) | |
O5 | 0.37695 (14) | 0.34071 (12) | 0.09029 (9) | 0.0347 (4) | |
O8 | 0.45828 (14) | 0.16793 (13) | 0.33636 (9) | 0.0364 (4) | |
O4 | 0.17301 (13) | 0.47876 (13) | 0.22424 (9) | 0.0374 (4) | |
O1 | 0.22912 (15) | 0.31642 (14) | 0.35827 (10) | 0.0415 (4) | |
O7 | 0.24464 (15) | 0.24428 (13) | 0.19929 (10) | 0.0397 (4) | |
O9 | 0.46067 (17) | 0.34675 (16) | 0.47384 (10) | 0.0495 (5) | |
O3 | 0.33169 (16) | 0.62254 (15) | 0.10579 (11) | 0.0482 (5) | |
O2W | 0.52462 (16) | 0.34018 (16) | 0.33383 (11) | 0.0478 (5) | |
H2WA | 0.483126 | 0.400782 | 0.330414 | 0.072* | |
H2WB | 0.524712 | 0.321109 | 0.291044 | 0.072* | |
O6 | 0.52042 (16) | 0.06843 (14) | 0.13553 (12) | 0.0483 (5) | |
O1W | 0.55379 (17) | 0.24409 (15) | 0.15701 (14) | 0.0562 (6) | |
H1WA | 0.552628 | 0.224827 | 0.202374 | 0.084* | |
H1WB | 0.535206 | 0.308242 | 0.155417 | 0.084* | |
N5 | 0.34465 (17) | 0.06909 (15) | 0.28312 (12) | 0.0366 (5) | |
N1 | 0.23171 (16) | 0.48927 (16) | 0.41787 (11) | 0.0354 (4) | |
N3 | 0.19297 (17) | 0.47496 (15) | 0.07387 (11) | 0.0353 (4) | |
N4 | 0.35642 (17) | 0.17511 (15) | 0.04761 (11) | 0.0356 (4) | |
N2 | 0.22263 (17) | 0.68655 (16) | 0.23230 (12) | 0.0376 (5) | |
N6 | 0.40344 (17) | 0.17147 (17) | 0.47557 (12) | 0.0387 (5) | |
C7 | 0.18607 (19) | 0.4560 (2) | 0.47399 (13) | 0.0371 (5) | |
C20 | 0.07635 (19) | 0.52770 (19) | 0.21000 (14) | 0.0352 (5) | |
C1 | 0.1607 (2) | 0.31345 (19) | 0.41129 (14) | 0.0380 (5) | |
C26 | 0.1061 (2) | 0.54451 (18) | 0.07321 (13) | 0.0363 (5) | |
C10 | 0.2991 (2) | 0.6107 (2) | 0.34627 (14) | 0.0395 (6) | |
H10A | 0.344598 | 0.652585 | 0.347556 | 0.047* | |
C25 | 0.0398 (2) | 0.5632 (2) | 0.13906 (15) | 0.0391 (6) | |
C48 | 0.4605 (2) | 0.07339 (19) | 0.37428 (15) | 0.0403 (6) | |
H48 | 0.530044 | 0.040509 | 0.391873 | 0.048* | |
C11 | 0.2003 (2) | 0.6723 (2) | 0.31042 (14) | 0.0413 (6) | |
H11A | 0.148399 | 0.637664 | 0.319344 | 0.050* | |
H11B | 0.174402 | 0.736740 | 0.330030 | 0.050* | |
C45 | 0.2881 (2) | 0.0286 (2) | 0.25189 (14) | 0.0402 (6) | |
C39 | 0.1788 (2) | 0.1953 (2) | 0.19148 (13) | 0.0387 (6) | |
C12 | 0.1539 (2) | 0.74659 (19) | 0.19013 (15) | 0.0406 (6) | |
C33 | 0.4114 (2) | −0.00413 (19) | 0.07486 (14) | 0.0369 (5) | |
C38 | 0.4955 (2) | −0.00899 (19) | 0.11758 (14) | 0.0393 (6) | |
C14 | 0.1755 (2) | 0.7628 (2) | 0.11249 (15) | 0.0432 (6) | |
C31 | 0.3412 (2) | 0.0897 (2) | 0.04257 (14) | 0.0388 (6) | |
C6 | 0.1395 (2) | 0.3760 (2) | 0.46934 (14) | 0.0389 (6) | |
C29 | 0.3363 (2) | 0.35247 (19) | 0.02049 (13) | 0.0385 (6) | |
H29 | 0.392788 | 0.346029 | −0.015882 | 0.046* | |
C52 | 0.3861 (2) | 0.2683 (2) | 0.57706 (14) | 0.0425 (6) | |
C57 | 0.4333 (2) | 0.3393 (2) | 0.54279 (15) | 0.0430 (6) | |
C50 | 0.3630 (2) | 0.1919 (2) | 0.53911 (14) | 0.0407 (6) | |
C30 | 0.2873 (2) | 0.26973 (19) | 0.01504 (14) | 0.0403 (6) | |
H30A | 0.220724 | 0.285068 | 0.040503 | 0.048* | |
H30B | 0.277218 | 0.264110 | −0.035304 | 0.048* | |
C28 | 0.2603 (2) | 0.45634 (19) | 0.00831 (14) | 0.0430 (6) | |
H28A | 0.296647 | 0.506237 | −0.000681 | 0.052* | |
H28B | 0.219496 | 0.460380 | −0.033360 | 0.052* | |
C49 | 0.3854 (2) | 0.0910 (2) | 0.43897 (15) | 0.0420 (6) | |
H49A | 0.315113 | 0.110708 | 0.423144 | 0.050* | |
H49B | 0.396950 | 0.030161 | 0.471690 | 0.050* | |
C47 | 0.4357 (2) | 0.0077 (2) | 0.32343 (16) | 0.0447 (6) | |
H47A | 0.493601 | −0.016513 | 0.290148 | 0.054* | |
H47B | 0.421140 | −0.049776 | 0.350687 | 0.054* | |
C34 | 0.3961 (2) | −0.0959 (2) | 0.06230 (17) | 0.0456 (6) | |
H34 | 0.341428 | −0.094117 | 0.034323 | 0.055* | |
C9 | 0.2783 (2) | 0.5696 (2) | 0.42281 (15) | 0.0433 (6) | |
H9A | 0.342047 | 0.543434 | 0.448457 | 0.052* | |
H9B | 0.231806 | 0.622368 | 0.448939 | 0.052* | |
C44 | 0.1967 (2) | 0.0912 (2) | 0.21363 (15) | 0.0433 (6) | |
C19 | 0.2634 (2) | 0.7014 (2) | 0.07612 (15) | 0.0430 (6) | |
C37 | 0.5581 (2) | −0.1043 (2) | 0.14436 (16) | 0.0465 (6) | |
H37 | 0.613835 | −0.108570 | 0.172097 | 0.056* | |
C40 | 0.0862 (2) | 0.2485 (2) | 0.15771 (16) | 0.0507 (7) | |
H40 | 0.074005 | 0.316381 | 0.142863 | 0.061* | |
C21 | 0.0055 (2) | 0.5483 (2) | 0.26906 (16) | 0.0500 (7) | |
H21 | 0.027877 | 0.524611 | 0.315701 | 0.060* | |
C27 | 0.0697 (3) | 0.6096 (2) | 0.00429 (16) | 0.0498 (7) | |
H27A | 0.027849 | 0.674821 | 0.015851 | 0.075* | |
H27B | 0.029929 | 0.579511 | −0.021464 | 0.075* | |
H27C | 0.128140 | 0.615913 | −0.025405 | 0.075* | |
C35 | 0.4583 (2) | −0.1876 (2) | 0.08949 (18) | 0.0503 (7) | |
H35 | 0.445766 | −0.246387 | 0.080161 | 0.060* | |
C56 | 0.4501 (3) | 0.4105 (3) | 0.58486 (17) | 0.0558 (8) | |
H56 | 0.478737 | 0.458896 | 0.562606 | 0.067* | |
C5 | 0.0698 (2) | 0.3587 (2) | 0.52516 (16) | 0.0508 (7) | |
H5 | 0.056342 | 0.397695 | 0.564032 | 0.061* | |
C8 | 0.1792 (3) | 0.4997 (2) | 0.54539 (15) | 0.0510 (7) | |
H8A | 0.197019 | 0.446278 | 0.583647 | 0.076* | |
H8B | 0.110182 | 0.541525 | 0.553991 | 0.076* | |
H8C | 0.225958 | 0.538942 | 0.543959 | 0.076* | |
C36 | 0.5394 (3) | −0.1909 (2) | 0.13075 (17) | 0.0514 (7) | |
H36 | 0.582000 | −0.252565 | 0.149631 | 0.062* | |
C53 | 0.3612 (3) | 0.2718 (3) | 0.65203 (17) | 0.0572 (8) | |
H53 | 0.330892 | 0.225414 | 0.675595 | 0.069* | |
C2 | 0.1082 (3) | 0.2418 (2) | 0.41137 (19) | 0.0539 (7) | |
H2 | 0.119918 | 0.201860 | 0.373136 | 0.065* | |
C18 | 0.2780 (3) | 0.7253 (3) | 0.00078 (16) | 0.0537 (7) | |
H18 | 0.334628 | 0.685543 | −0.023813 | 0.064* | |
C4 | 0.0214 (3) | 0.2868 (3) | 0.5242 (2) | 0.0618 (9) | |
H4 | −0.023576 | 0.276928 | 0.562031 | 0.074* | |
C51 | 0.2902 (2) | 0.1381 (3) | 0.57490 (18) | 0.0547 (8) | |
H51A | 0.230334 | 0.185992 | 0.593733 | 0.082* | |
H51B | 0.323795 | 0.091260 | 0.613790 | 0.082* | |
H51C | 0.269921 | 0.102823 | 0.540051 | 0.082* | |
C13 | 0.0494 (2) | 0.8001 (2) | 0.22090 (19) | 0.0543 (7) | |
H13A | 0.000138 | 0.817472 | 0.183404 | 0.081* | |
H13B | 0.051906 | 0.859959 | 0.240006 | 0.081* | |
H13C | 0.029410 | 0.756948 | 0.258935 | 0.081* | |
C17 | 0.2110 (3) | 0.8051 (3) | −0.03647 (18) | 0.0633 (9) | |
H17 | 0.222439 | 0.819080 | −0.085837 | 0.076* | |
C46 | 0.3131 (3) | −0.0840 (2) | 0.25508 (18) | 0.0549 (8) | |
H46A | 0.288793 | −0.101614 | 0.212633 | 0.082* | |
H46B | 0.280145 | −0.107984 | 0.297433 | 0.082* | |
H46C | 0.386285 | −0.114111 | 0.257190 | 0.082* | |
C55 | 0.4253 (3) | 0.4100 (3) | 0.65739 (18) | 0.0658 (10) | |
H55 | 0.439053 | 0.456522 | 0.683947 | 0.079* | |
C24 | −0.0643 (2) | 0.6184 (3) | 0.13261 (19) | 0.0600 (9) | |
H24 | −0.089030 | 0.642032 | 0.086524 | 0.072* | |
C3 | 0.0399 (3) | 0.2292 (3) | 0.4666 (2) | 0.0630 (9) | |
H3 | 0.005786 | 0.181409 | 0.465104 | 0.076* | |
C43 | 0.1199 (3) | 0.0485 (3) | 0.1994 (2) | 0.0666 (10) | |
H43 | 0.130776 | −0.019621 | 0.212685 | 0.080* | |
C15 | 0.1093 (3) | 0.8438 (2) | 0.07133 (19) | 0.0606 (8) | |
H15 | 0.051529 | 0.884516 | 0.094237 | 0.073* | |
C22 | −0.0961 (3) | 0.6029 (3) | 0.2594 (2) | 0.0684 (10) | |
H22 | −0.141280 | 0.615301 | 0.299338 | 0.082* | |
C16 | 0.1263 (3) | 0.8651 (3) | −0.0012 (2) | 0.0701 (10) | |
H16 | 0.081091 | 0.919827 | −0.026654 | 0.084* | |
C32 | 0.2496 (3) | 0.0849 (3) | 0.0041 (2) | 0.0599 (8) | |
H32A | 0.214545 | 0.044365 | 0.034003 | 0.090* | |
H32B | 0.272193 | 0.055764 | −0.040759 | 0.090* | |
H32C | 0.203461 | 0.151345 | −0.005629 | 0.090* | |
C41 | 0.0132 (3) | 0.2032 (3) | 0.1459 (2) | 0.0661 (10) | |
H41 | −0.047657 | 0.240543 | 0.123863 | 0.079* | |
C54 | 0.3801 (3) | 0.3410 (3) | 0.69121 (18) | 0.0684 (10) | |
H54 | 0.362483 | 0.341361 | 0.740396 | 0.082* | |
C42 | 0.0301 (3) | 0.1023 (3) | 0.1669 (2) | 0.0790 (13) | |
H42 | −0.018959 | 0.071318 | 0.159012 | 0.095* | |
C23 | −0.1314 (3) | 0.6392 (4) | 0.1910 (2) | 0.0774 (12) | |
H23 | −0.199653 | 0.677280 | 0.184504 | 0.093* | |
O1E | 0.7184 (3) | 0.1473 (3) | 0.2304 (2) | 0.1102 (12) | |
H1E | 0.696426 | 0.187818 | 0.260536 | 0.165* | |
C2E | 0.7195 (4) | 0.0498 (4) | 0.2618 (3) | 0.0964 (15) | |
H2EA | 0.649987 | 0.044852 | 0.267654 | 0.116* | |
H2EB | 0.750187 | 0.035764 | 0.308862 | 0.116* | |
C3E | 0.7804 (5) | −0.0208 (5) | 0.2123 (4) | 0.133 (2) | |
H3EA | 0.780131 | −0.087531 | 0.229966 | 0.200* | |
H3EB | 0.849951 | −0.017689 | 0.208977 | 0.200* | |
H3EC | 0.751412 | −0.003753 | 0.165191 | 0.200* | |
O4E | 0.8827 (3) | 0.1187 (3) | 0.6110 (2) | 0.1057 (12) | |
H4E | 0.829086 | 0.136427 | 0.588792 | 0.159* | |
C5E | 0.9362 (5) | 0.0241 (4) | 0.5980 (3) | 0.1034 (17) | |
H5EA | 0.937397 | 0.017419 | 0.546563 | 0.124* | |
H5EB | 0.902534 | −0.022216 | 0.623292 | 0.124* | |
C6E | 1.0416 (6) | −0.0011 (5) | 0.6222 (4) | 0.137 (3) | |
H6EA | 1.080592 | −0.065847 | 0.607859 | 0.206* | |
H6EB | 1.040758 | −0.002482 | 0.673943 | 0.206* | |
H6EC | 1.072798 | 0.048381 | 0.600560 | 0.206* | |
O7E | 0.7319 (3) | 0.2834 (4) | 0.3279 (2) | 0.1182 (13) | |
H7E | 0.695981 | 0.316198 | 0.359088 | 0.177* | |
C8E | 0.8232 (9) | 0.3177 (8) | 0.3102 (4) | 0.172 (4) | |
H8EA | 0.836358 | 0.352431 | 0.349068 | 0.207* | |
H8EB | 0.883662 | 0.261511 | 0.301851 | 0.207* | |
C9E | 0.7977 (8) | 0.3837 (7) | 0.2462 (6) | 0.229 (6) | |
H9EA | 0.778579 | 0.349547 | 0.209975 | 0.343* | |
H9EB | 0.856115 | 0.405052 | 0.228575 | 0.343* | |
H9EC | 0.741038 | 0.441138 | 0.256569 | 0.343* | |
O16A | 0.750 (2) | 0.216 (2) | 0.4779 (17) | 0.112 (7) | 0.57 (8) |
O15A | 0.675 (2) | 0.138 (2) | 0.5466 (7) | 0.115 (5) | 0.57 (8) |
O14A | 0.6499 (14) | 0.1441 (17) | 0.4376 (16) | 0.085 (6) | 0.57 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu3 | 0.03783 (16) | 0.02639 (14) | 0.02544 (14) | −0.00612 (12) | −0.00082 (11) | 0.00037 (11) |
Cu1 | 0.03459 (15) | 0.02884 (15) | 0.02828 (14) | −0.00970 (12) | 0.00320 (11) | −0.00249 (11) |
Cu5 | 0.03869 (16) | 0.02569 (14) | 0.03087 (15) | −0.01019 (12) | −0.00316 (12) | 0.00283 (11) |
Cu4 | 0.03985 (16) | 0.02640 (14) | 0.03622 (16) | −0.01025 (12) | −0.00088 (12) | −0.00257 (12) |
Cu2 | 0.03940 (17) | 0.02984 (15) | 0.03844 (16) | −0.01114 (13) | 0.00403 (13) | −0.00033 (12) |
O11 | 0.0483 (12) | 0.0390 (11) | 0.0702 (14) | −0.0103 (9) | 0.0211 (10) | 0.0112 (10) |
N102 | 0.0496 (13) | 0.0350 (12) | 0.0455 (13) | −0.0153 (10) | 0.0081 (10) | −0.0062 (10) |
O12 | 0.0838 (18) | 0.0415 (13) | 0.115 (2) | −0.0322 (13) | −0.0159 (16) | −0.0004 (13) |
O13 | 0.085 (2) | 0.0660 (17) | 0.124 (3) | −0.0127 (15) | 0.0622 (19) | −0.0254 (17) |
Cu6 | 0.03732 (16) | 0.04047 (17) | 0.03351 (16) | −0.01265 (13) | −0.00105 (12) | 0.00147 (13) |
O14B | 0.036 (8) | 0.096 (13) | 0.082 (9) | 0.000 (7) | −0.007 (6) | −0.025 (8) |
N202 | 0.062 (2) | 0.079 (2) | 0.083 (3) | −0.0231 (18) | −0.0093 (18) | −0.002 (2) |
O16B | 0.064 (8) | 0.143 (18) | 0.073 (8) | −0.060 (8) | −0.008 (5) | −0.004 (9) |
O15B | 0.15 (2) | 0.15 (2) | 0.148 (16) | −0.09 (2) | −0.043 (12) | 0.053 (12) |
O10 | 0.0297 (8) | 0.0275 (8) | 0.0283 (8) | −0.0077 (7) | 0.0015 (7) | 0.0012 (6) |
O2 | 0.0359 (9) | 0.0329 (9) | 0.0366 (9) | −0.0124 (7) | 0.0012 (7) | −0.0030 (7) |
O5 | 0.0433 (10) | 0.0277 (8) | 0.0313 (8) | −0.0088 (7) | 0.0034 (7) | −0.0034 (7) |
O8 | 0.0381 (9) | 0.0327 (9) | 0.0360 (9) | −0.0093 (7) | −0.0032 (7) | 0.0037 (7) |
O4 | 0.0376 (9) | 0.0372 (9) | 0.0304 (8) | −0.0004 (7) | −0.0027 (7) | −0.0036 (7) |
O1 | 0.0538 (11) | 0.0369 (10) | 0.0358 (9) | −0.0192 (8) | 0.0127 (8) | −0.0045 (7) |
O7 | 0.0506 (11) | 0.0328 (9) | 0.0392 (9) | −0.0189 (8) | −0.0118 (8) | 0.0062 (7) |
O9 | 0.0616 (13) | 0.0546 (12) | 0.0377 (10) | −0.0262 (10) | 0.0034 (9) | −0.0053 (9) |
O3 | 0.0530 (12) | 0.0456 (11) | 0.0401 (10) | −0.0093 (9) | 0.0065 (9) | 0.0002 (8) |
O2W | 0.0545 (12) | 0.0488 (11) | 0.0429 (10) | −0.0219 (10) | 0.0029 (9) | −0.0001 (9) |
O6 | 0.0573 (12) | 0.0292 (9) | 0.0592 (12) | −0.0113 (9) | −0.0216 (10) | −0.0006 (8) |
O1W | 0.0556 (12) | 0.0344 (10) | 0.0829 (16) | −0.0175 (9) | −0.0196 (11) | −0.0020 (10) |
N5 | 0.0442 (12) | 0.0274 (10) | 0.0369 (11) | −0.0106 (9) | −0.0014 (9) | 0.0014 (8) |
N1 | 0.0379 (11) | 0.0364 (11) | 0.0304 (10) | −0.0085 (9) | −0.0008 (8) | −0.0047 (8) |
N3 | 0.0476 (12) | 0.0284 (10) | 0.0276 (10) | −0.0096 (9) | −0.0022 (9) | 0.0019 (8) |
N4 | 0.0445 (12) | 0.0296 (10) | 0.0318 (10) | −0.0102 (9) | −0.0018 (9) | −0.0019 (8) |
N2 | 0.0427 (12) | 0.0299 (10) | 0.0402 (11) | −0.0108 (9) | −0.0006 (9) | −0.0033 (9) |
N6 | 0.0386 (11) | 0.0389 (12) | 0.0352 (11) | −0.0091 (9) | −0.0035 (9) | 0.0047 (9) |
C7 | 0.0342 (12) | 0.0395 (13) | 0.0304 (12) | −0.0007 (10) | −0.0018 (10) | −0.0013 (10) |
C20 | 0.0348 (12) | 0.0322 (12) | 0.0376 (13) | −0.0087 (10) | −0.0035 (10) | −0.0012 (10) |
C1 | 0.0375 (13) | 0.0342 (13) | 0.0379 (13) | −0.0081 (10) | 0.0022 (10) | 0.0060 (10) |
C26 | 0.0467 (14) | 0.0296 (12) | 0.0339 (12) | −0.0131 (11) | −0.0094 (11) | 0.0014 (10) |
C10 | 0.0474 (15) | 0.0369 (13) | 0.0389 (13) | −0.0180 (12) | 0.0003 (11) | −0.0094 (11) |
C25 | 0.0388 (13) | 0.0359 (13) | 0.0408 (14) | −0.0101 (11) | −0.0055 (11) | 0.0023 (11) |
C48 | 0.0390 (13) | 0.0315 (13) | 0.0437 (14) | −0.0030 (10) | −0.0060 (11) | 0.0058 (11) |
C11 | 0.0505 (15) | 0.0340 (13) | 0.0386 (13) | −0.0113 (11) | 0.0049 (11) | −0.0076 (11) |
C45 | 0.0535 (16) | 0.0326 (13) | 0.0358 (13) | −0.0179 (12) | 0.0075 (11) | −0.0003 (10) |
C39 | 0.0503 (15) | 0.0436 (14) | 0.0280 (12) | −0.0239 (12) | −0.0012 (10) | 0.0005 (10) |
C12 | 0.0466 (15) | 0.0285 (12) | 0.0482 (15) | −0.0128 (11) | −0.0018 (12) | −0.0053 (11) |
C33 | 0.0439 (14) | 0.0304 (12) | 0.0377 (13) | −0.0138 (11) | 0.0037 (11) | −0.0043 (10) |
C38 | 0.0481 (15) | 0.0288 (12) | 0.0402 (13) | −0.0118 (11) | 0.0009 (11) | −0.0015 (10) |
C14 | 0.0551 (16) | 0.0323 (13) | 0.0439 (14) | −0.0155 (12) | −0.0076 (12) | −0.0002 (11) |
C31 | 0.0459 (14) | 0.0348 (13) | 0.0374 (13) | −0.0143 (11) | 0.0007 (11) | −0.0053 (10) |
C6 | 0.0340 (13) | 0.0401 (14) | 0.0348 (13) | −0.0031 (11) | 0.0024 (10) | 0.0047 (10) |
C29 | 0.0533 (15) | 0.0317 (12) | 0.0281 (12) | −0.0112 (11) | 0.0060 (11) | −0.0008 (10) |
C52 | 0.0358 (13) | 0.0501 (16) | 0.0349 (13) | −0.0042 (12) | −0.0035 (10) | 0.0006 (11) |
C57 | 0.0344 (13) | 0.0557 (17) | 0.0366 (13) | −0.0095 (12) | −0.0043 (11) | −0.0042 (12) |
C50 | 0.0340 (13) | 0.0411 (14) | 0.0383 (13) | −0.0028 (11) | −0.0027 (10) | 0.0092 (11) |
C30 | 0.0522 (15) | 0.0330 (13) | 0.0322 (12) | −0.0069 (11) | −0.0061 (11) | −0.0019 (10) |
C28 | 0.0644 (18) | 0.0317 (13) | 0.0279 (12) | −0.0103 (12) | 0.0027 (12) | 0.0038 (10) |
C49 | 0.0467 (15) | 0.0374 (14) | 0.0398 (14) | −0.0125 (12) | −0.0030 (11) | 0.0065 (11) |
C47 | 0.0490 (16) | 0.0299 (13) | 0.0477 (15) | −0.0025 (11) | −0.0013 (12) | 0.0015 (11) |
C34 | 0.0503 (16) | 0.0335 (14) | 0.0556 (17) | −0.0158 (12) | 0.0020 (13) | −0.0082 (12) |
C9 | 0.0516 (16) | 0.0431 (15) | 0.0382 (14) | −0.0161 (12) | −0.0047 (12) | −0.0096 (11) |
C44 | 0.0564 (17) | 0.0439 (15) | 0.0365 (13) | −0.0267 (13) | −0.0019 (12) | 0.0008 (11) |
C19 | 0.0552 (16) | 0.0393 (14) | 0.0400 (14) | −0.0231 (13) | −0.0020 (12) | −0.0013 (11) |
C37 | 0.0517 (16) | 0.0336 (14) | 0.0506 (16) | −0.0079 (12) | −0.0053 (13) | −0.0005 (12) |
C40 | 0.0572 (18) | 0.0539 (17) | 0.0438 (15) | −0.0236 (15) | −0.0126 (13) | 0.0093 (13) |
C21 | 0.0418 (15) | 0.0606 (19) | 0.0417 (15) | −0.0098 (13) | 0.0017 (12) | 0.0031 (13) |
C27 | 0.0617 (18) | 0.0384 (15) | 0.0429 (15) | −0.0074 (13) | −0.0128 (13) | 0.0086 (12) |
C35 | 0.0557 (17) | 0.0277 (13) | 0.069 (2) | −0.0148 (12) | 0.0074 (15) | −0.0098 (13) |
C56 | 0.0505 (17) | 0.074 (2) | 0.0495 (17) | −0.0266 (16) | −0.0019 (14) | −0.0121 (15) |
C5 | 0.0443 (16) | 0.0526 (17) | 0.0445 (15) | −0.0036 (13) | 0.0123 (12) | 0.0031 (13) |
C8 | 0.0582 (18) | 0.0596 (18) | 0.0302 (13) | −0.0099 (15) | 0.0014 (12) | −0.0072 (12) |
C36 | 0.0610 (19) | 0.0292 (13) | 0.0584 (18) | −0.0076 (13) | 0.0040 (15) | −0.0004 (12) |
C53 | 0.0567 (19) | 0.069 (2) | 0.0405 (16) | −0.0149 (16) | 0.0021 (13) | 0.0031 (15) |
C2 | 0.0582 (18) | 0.0448 (16) | 0.0604 (19) | −0.0217 (14) | 0.0079 (15) | −0.0001 (14) |
C18 | 0.073 (2) | 0.0538 (18) | 0.0413 (15) | −0.0307 (16) | 0.0010 (14) | −0.0009 (13) |
C4 | 0.0477 (17) | 0.0582 (19) | 0.069 (2) | −0.0117 (15) | 0.0221 (16) | 0.0105 (17) |
C51 | 0.0522 (17) | 0.0555 (18) | 0.0509 (17) | −0.0146 (14) | 0.0097 (14) | 0.0066 (14) |
C13 | 0.0498 (17) | 0.0438 (16) | 0.0611 (19) | −0.0030 (13) | 0.0000 (14) | −0.0024 (14) |
C17 | 0.097 (3) | 0.059 (2) | 0.0423 (16) | −0.037 (2) | −0.0127 (17) | 0.0060 (15) |
C46 | 0.074 (2) | 0.0353 (15) | 0.0597 (19) | −0.0242 (15) | 0.0043 (16) | −0.0052 (13) |
C55 | 0.064 (2) | 0.096 (3) | 0.0469 (18) | −0.033 (2) | −0.0036 (15) | −0.0220 (18) |
C24 | 0.0399 (16) | 0.077 (2) | 0.0536 (18) | −0.0075 (15) | −0.0102 (14) | 0.0090 (16) |
C3 | 0.0552 (19) | 0.0545 (19) | 0.082 (2) | −0.0274 (16) | 0.0138 (17) | 0.0050 (17) |
C43 | 0.083 (2) | 0.061 (2) | 0.071 (2) | −0.048 (2) | −0.0197 (19) | 0.0135 (17) |
C15 | 0.075 (2) | 0.0427 (17) | 0.0579 (19) | −0.0069 (15) | −0.0136 (17) | −0.0016 (14) |
C22 | 0.0390 (16) | 0.094 (3) | 0.059 (2) | −0.0081 (17) | 0.0104 (14) | 0.0062 (19) |
C16 | 0.098 (3) | 0.0488 (19) | 0.058 (2) | −0.0136 (19) | −0.026 (2) | 0.0095 (16) |
C32 | 0.063 (2) | 0.0502 (18) | 0.072 (2) | −0.0216 (16) | −0.0243 (17) | −0.0025 (16) |
C41 | 0.064 (2) | 0.080 (2) | 0.063 (2) | −0.0385 (19) | −0.0237 (17) | 0.0187 (18) |
C54 | 0.075 (2) | 0.098 (3) | 0.0357 (16) | −0.030 (2) | 0.0003 (15) | −0.0097 (17) |
C42 | 0.086 (3) | 0.090 (3) | 0.083 (3) | −0.063 (2) | −0.035 (2) | 0.023 (2) |
C23 | 0.0350 (16) | 0.104 (3) | 0.075 (2) | −0.0010 (18) | −0.0054 (16) | 0.012 (2) |
O1E | 0.116 (3) | 0.078 (2) | 0.135 (3) | −0.0183 (19) | −0.056 (2) | −0.004 (2) |
C2E | 0.104 (4) | 0.096 (4) | 0.085 (3) | −0.030 (3) | −0.010 (3) | 0.017 (3) |
C3E | 0.089 (4) | 0.109 (5) | 0.207 (8) | −0.025 (3) | 0.013 (4) | −0.054 (5) |
O4E | 0.103 (3) | 0.088 (2) | 0.129 (3) | −0.0157 (19) | −0.024 (2) | −0.052 (2) |
C5E | 0.136 (5) | 0.077 (3) | 0.095 (4) | −0.026 (3) | 0.011 (3) | −0.026 (3) |
C6E | 0.137 (6) | 0.127 (5) | 0.118 (5) | 0.012 (4) | −0.026 (4) | −0.020 (4) |
O7E | 0.087 (2) | 0.172 (4) | 0.103 (3) | −0.061 (3) | −0.001 (2) | 0.016 (3) |
C8E | 0.264 (12) | 0.177 (9) | 0.114 (6) | −0.123 (9) | 0.026 (7) | −0.033 (5) |
C9E | 0.174 (10) | 0.172 (10) | 0.340 (18) | −0.053 (8) | 0.032 (11) | −0.045 (11) |
O16A | 0.134 (14) | 0.103 (8) | 0.126 (13) | −0.070 (8) | −0.008 (9) | −0.025 (8) |
O15A | 0.131 (10) | 0.146 (12) | 0.061 (8) | −0.043 (10) | 0.000 (5) | 0.026 (5) |
O14A | 0.079 (10) | 0.071 (7) | 0.111 (12) | −0.027 (6) | −0.028 (7) | −0.015 (6) |
Cu3—O10 | 2.0040 (17) | C7—C8 | 1.509 (4) |
Cu3—O5 | 1.9346 (17) | C20—C25 | 1.424 (4) |
Cu3—O4 | 1.8963 (17) | C20—C21 | 1.408 (4) |
Cu3—O7 | 2.3648 (17) | C1—C6 | 1.427 (4) |
Cu3—N3 | 1.962 (2) | C1—C2 | 1.402 (4) |
Cu1—O10 | 2.0043 (19) | C26—C25 | 1.471 (4) |
Cu1—O2 | 1.9538 (17) | C26—C27 | 1.508 (3) |
Cu1—O4 | 2.3893 (17) | C10—C11 | 1.514 (4) |
Cu1—O1 | 1.8767 (18) | C10—C9 | 1.518 (4) |
Cu1—N1 | 1.956 (2) | C25—C24 | 1.402 (4) |
Cu5—O10 | 1.9778 (19) | C48—C49 | 1.518 (4) |
Cu5—O8 | 1.9434 (18) | C48—C47 | 1.513 (4) |
Cu5—O1 | 2.4533 (18) | C45—C44 | 1.464 (4) |
Cu5—O7 | 1.8894 (18) | C45—C46 | 1.510 (4) |
Cu5—N5 | 1.946 (2) | C39—C44 | 1.426 (4) |
Cu4—O5 | 1.9155 (17) | C39—C40 | 1.405 (4) |
Cu4—O6 | 1.8496 (19) | C12—C14 | 1.461 (4) |
Cu4—O1W | 1.961 (2) | C12—C13 | 1.503 (4) |
Cu4—N4 | 1.934 (2) | C33—C38 | 1.419 (4) |
Cu2—O11 | 1.986 (2) | C33—C31 | 1.466 (4) |
Cu2—O2 | 1.9385 (17) | C33—C34 | 1.414 (4) |
Cu2—O3 | 1.855 (2) | C38—C37 | 1.409 (4) |
Cu2—N2 | 1.941 (2) | C14—C19 | 1.425 (4) |
O11—N102 | 1.259 (3) | C14—C15 | 1.403 (4) |
N102—O12 | 1.206 (3) | C31—C32 | 1.503 (4) |
N102—O13 | 1.225 (3) | C6—C5 | 1.411 (4) |
Cu6—O14B | 2.45 (2) | C29—C30 | 1.523 (4) |
Cu6—O8 | 1.9350 (18) | C29—C28 | 1.515 (4) |
Cu6—O9 | 1.863 (2) | C52—C57 | 1.419 (4) |
Cu6—O2W | 2.0273 (19) | C52—C50 | 1.467 (4) |
Cu6—N6 | 1.942 (2) | C52—C53 | 1.415 (4) |
O14B—N202 | 1.28 (3) | C57—C56 | 1.414 (4) |
N202—O16B | 1.25 (2) | C50—C51 | 1.503 (4) |
N202—O15B | 1.26 (3) | C34—C35 | 1.371 (4) |
N202—O16A | 1.22 (2) | C44—C43 | 1.409 (4) |
N202—O15A | 1.196 (14) | C19—C18 | 1.419 (4) |
N202—O14A | 1.20 (2) | C37—C36 | 1.370 (4) |
O2—C10 | 1.438 (3) | C40—C41 | 1.376 (4) |
O5—C29 | 1.418 (3) | C21—C22 | 1.378 (4) |
O8—C48 | 1.426 (3) | C35—C36 | 1.374 (5) |
O4—C20 | 1.318 (3) | C56—C55 | 1.368 (5) |
O1—C1 | 1.318 (3) | C5—C4 | 1.367 (5) |
O7—C39 | 1.310 (3) | C53—C54 | 1.371 (5) |
O9—C57 | 1.313 (3) | C2—C3 | 1.373 (4) |
O3—C19 | 1.306 (4) | C18—C17 | 1.364 (5) |
O6—C38 | 1.316 (3) | C4—C3 | 1.377 (5) |
N5—C45 | 1.287 (4) | C17—C16 | 1.380 (6) |
N5—C47 | 1.475 (3) | C55—C54 | 1.376 (5) |
N1—C7 | 1.295 (3) | C24—C23 | 1.369 (5) |
N1—C9 | 1.468 (3) | C43—C42 | 1.368 (6) |
N3—C26 | 1.286 (3) | C15—C16 | 1.369 (5) |
N3—C28 | 1.474 (3) | C22—C23 | 1.378 (5) |
N4—C31 | 1.294 (3) | C41—C42 | 1.381 (6) |
N4—C30 | 1.469 (3) | O1E—C2E | 1.426 (6) |
N2—C11 | 1.468 (3) | C2E—C3E | 1.456 (8) |
N2—C12 | 1.295 (4) | O4E—C5E | 1.348 (6) |
N6—C50 | 1.294 (3) | C5E—C6E | 1.461 (8) |
N6—C49 | 1.472 (4) | O7E—C8E | 1.473 (9) |
C7—C6 | 1.463 (4) | C8E—C9E | 1.420 (4) |
O10—Cu3—O7 | 72.48 (7) | C12—N2—C11 | 120.5 (2) |
O5—Cu3—O10 | 95.79 (8) | C50—N6—Cu6 | 127.0 (2) |
O5—Cu3—O7 | 91.62 (7) | C50—N6—C49 | 121.3 (2) |
O5—Cu3—N3 | 85.86 (8) | C49—N6—Cu6 | 110.64 (16) |
O4—Cu3—O10 | 84.02 (8) | N1—C7—C6 | 120.7 (2) |
O4—Cu3—O5 | 170.39 (8) | N1—C7—C8 | 120.6 (3) |
O4—Cu3—O7 | 97.46 (7) | C6—C7—C8 | 118.7 (2) |
O4—Cu3—N3 | 92.84 (8) | O4—C20—C25 | 124.2 (2) |
N3—Cu3—O10 | 170.79 (8) | O4—C20—C21 | 117.6 (2) |
N3—Cu3—O7 | 116.59 (8) | C21—C20—C25 | 118.2 (2) |
O10—Cu1—O4 | 72.34 (6) | O1—C1—C6 | 124.2 (2) |
O2—Cu1—O10 | 92.40 (8) | O1—C1—C2 | 117.4 (3) |
O2—Cu1—O4 | 93.94 (7) | C2—C1—C6 | 118.4 (2) |
O2—Cu1—N1 | 86.00 (8) | N3—C26—C25 | 121.4 (2) |
O1—Cu1—O10 | 86.17 (8) | N3—C26—C27 | 120.4 (2) |
O1—Cu1—O2 | 170.60 (8) | C25—C26—C27 | 118.2 (2) |
O1—Cu1—O4 | 94.47 (8) | O2—C10—C11 | 108.7 (2) |
O1—Cu1—N1 | 93.42 (8) | O2—C10—C9 | 108.7 (2) |
N1—Cu1—O10 | 167.74 (8) | C11—C10—C9 | 111.4 (2) |
N1—Cu1—O4 | 119.88 (8) | C20—C25—C26 | 123.0 (2) |
O10—Cu5—O1 | 72.65 (7) | C24—C25—C20 | 117.7 (3) |
O8—Cu5—O10 | 94.68 (7) | C24—C25—C26 | 119.3 (3) |
O8—Cu5—O1 | 93.29 (7) | O8—C48—C49 | 108.9 (2) |
O8—Cu5—N5 | 86.72 (8) | O8—C48—C47 | 109.7 (2) |
O7—Cu5—O10 | 84.42 (7) | C47—C48—C49 | 112.2 (2) |
O7—Cu5—O8 | 171.86 (8) | N2—C11—C10 | 108.1 (2) |
O7—Cu5—O1 | 94.15 (8) | N5—C45—C44 | 120.5 (2) |
O7—Cu5—N5 | 92.98 (8) | N5—C45—C46 | 120.9 (3) |
N5—Cu5—O10 | 171.32 (9) | C44—C45—C46 | 118.6 (3) |
N5—Cu5—O1 | 115.87 (8) | O7—C39—C44 | 123.9 (3) |
O5—Cu4—O1W | 87.84 (8) | O7—C39—C40 | 117.7 (2) |
O5—Cu4—N4 | 86.56 (8) | C40—C39—C44 | 118.4 (2) |
O6—Cu4—O5 | 173.69 (9) | N2—C12—C14 | 121.1 (3) |
O6—Cu4—O1W | 90.97 (9) | N2—C12—C13 | 119.9 (3) |
O6—Cu4—N4 | 95.34 (9) | C14—C12—C13 | 119.0 (3) |
N4—Cu4—O1W | 171.10 (9) | C38—C33—C31 | 123.9 (2) |
O2—Cu2—O11 | 88.40 (8) | C34—C33—C38 | 117.4 (2) |
O2—Cu2—N2 | 86.37 (8) | C34—C33—C31 | 118.7 (2) |
O3—Cu2—O11 | 90.92 (9) | O6—C38—C33 | 125.7 (2) |
O3—Cu2—O2 | 171.60 (8) | O6—C38—C37 | 116.1 (3) |
O3—Cu2—N2 | 94.27 (9) | C37—C38—C33 | 118.1 (2) |
N2—Cu2—O11 | 174.77 (9) | C19—C14—C12 | 122.9 (3) |
N102—O11—Cu2 | 118.74 (17) | C15—C14—C12 | 119.4 (3) |
O12—N102—O11 | 120.6 (3) | C15—C14—C19 | 117.7 (3) |
O12—N102—O13 | 123.8 (3) | N4—C31—C33 | 121.2 (2) |
O13—N102—O11 | 115.7 (2) | N4—C31—C32 | 120.4 (3) |
O8—Cu6—O14B | 91.3 (6) | C33—C31—C32 | 118.5 (2) |
O8—Cu6—O2W | 90.96 (8) | C1—C6—C7 | 123.7 (2) |
O8—Cu6—N6 | 86.12 (9) | C5—C6—C7 | 118.7 (3) |
O9—Cu6—O14B | 97.2 (6) | C5—C6—C1 | 117.6 (3) |
O9—Cu6—O8 | 171.27 (9) | O5—C29—C30 | 108.9 (2) |
O9—Cu6—O2W | 87.48 (9) | O5—C29—C28 | 108.9 (2) |
O9—Cu6—N6 | 94.66 (9) | C28—C29—C30 | 112.4 (2) |
O2W—Cu6—O14B | 87.7 (8) | C57—C52—C50 | 123.6 (2) |
N6—Cu6—O14B | 97.4 (8) | C53—C52—C57 | 117.5 (3) |
N6—Cu6—O2W | 174.23 (9) | C53—C52—C50 | 119.0 (3) |
N202—O14B—Cu6 | 122.5 (12) | O9—C57—C52 | 125.2 (3) |
O16B—N202—O14B | 113.4 (19) | O9—C57—C56 | 116.4 (3) |
O16B—N202—O15B | 117.3 (19) | C56—C57—C52 | 118.4 (3) |
O15B—N202—O14B | 123.7 (19) | N6—C50—C52 | 121.0 (2) |
O15A—N202—O16A | 114 (2) | N6—C50—C51 | 120.1 (3) |
O15A—N202—O14A | 119.3 (16) | C52—C50—C51 | 118.9 (3) |
O14A—N202—O16A | 125 (2) | N4—C30—C29 | 108.1 (2) |
Cu3—O10—Cu1 | 106.62 (9) | N3—C28—C29 | 107.97 (19) |
Cu5—O10—Cu3 | 106.11 (8) | N6—C49—C48 | 107.0 (2) |
Cu5—O10—Cu1 | 105.99 (9) | N5—C47—C48 | 107.5 (2) |
Cu2—O2—Cu1 | 115.44 (9) | C35—C34—C33 | 123.0 (3) |
C10—O2—Cu1 | 107.68 (14) | N1—C9—C10 | 107.8 (2) |
C10—O2—Cu2 | 106.34 (14) | C39—C44—C45 | 123.6 (2) |
Cu4—O5—Cu3 | 119.32 (8) | C43—C44—C45 | 119.2 (3) |
C29—O5—Cu3 | 109.95 (15) | C43—C44—C39 | 117.2 (3) |
C29—O5—Cu4 | 106.28 (14) | O3—C19—C14 | 125.6 (2) |
Cu6—O8—Cu5 | 120.77 (9) | O3—C19—C18 | 116.2 (3) |
C48—O8—Cu5 | 108.23 (15) | C18—C19—C14 | 118.1 (3) |
C48—O8—Cu6 | 106.02 (15) | C36—C37—C38 | 122.0 (3) |
Cu3—O4—Cu1 | 96.50 (7) | C41—C40—C39 | 122.0 (3) |
C20—O4—Cu3 | 124.71 (16) | C22—C21—C20 | 121.5 (3) |
C20—O4—Cu1 | 137.80 (16) | C34—C35—C36 | 118.9 (3) |
Cu1—O1—Cu5 | 93.56 (7) | C55—C56—C57 | 121.8 (3) |
C1—O1—Cu1 | 125.52 (17) | C4—C5—C6 | 122.4 (3) |
C1—O1—Cu5 | 140.83 (16) | C37—C36—C35 | 120.6 (3) |
Cu5—O7—Cu3 | 96.20 (7) | C54—C53—C52 | 122.5 (3) |
C39—O7—Cu3 | 138.45 (17) | C3—C2—C1 | 121.5 (3) |
C39—O7—Cu5 | 124.21 (16) | C17—C18—C19 | 121.6 (3) |
C57—O9—Cu6 | 125.90 (19) | C5—C4—C3 | 119.5 (3) |
C19—O3—Cu2 | 126.46 (18) | C18—C17—C16 | 120.3 (3) |
C38—O6—Cu4 | 125.81 (18) | C56—C55—C54 | 120.3 (3) |
C45—N5—Cu5 | 128.00 (19) | C23—C24—C25 | 123.1 (3) |
C45—N5—C47 | 121.5 (2) | C2—C3—C4 | 120.6 (3) |
C47—N5—Cu5 | 109.65 (17) | C42—C43—C44 | 123.1 (3) |
C7—N1—Cu1 | 127.63 (19) | C16—C15—C14 | 122.6 (3) |
C7—N1—C9 | 120.5 (2) | C23—C22—C21 | 120.6 (3) |
C9—N1—Cu1 | 110.30 (16) | C15—C16—C17 | 119.7 (3) |
C26—N3—Cu3 | 127.41 (18) | C40—C41—C42 | 120.0 (3) |
C26—N3—C28 | 121.8 (2) | C53—C54—C55 | 119.6 (3) |
C28—N3—Cu3 | 109.53 (16) | C43—C42—C41 | 119.3 (3) |
C31—N4—Cu4 | 127.25 (19) | C24—C23—C22 | 118.9 (3) |
C31—N4—C30 | 121.8 (2) | O1E—C2E—C3E | 106.6 (5) |
C30—N4—Cu4 | 110.24 (16) | O4E—C5E—C6E | 110.7 (5) |
C11—N2—Cu2 | 110.48 (17) | C9E—C8E—O7E | 104.3 (9) |
C12—N2—Cu2 | 127.20 (19) | ||
Cu3—O5—C29—C30 | −83.1 (2) | N2—Cu2—O3—C19 | 5.5 (2) |
Cu3—O5—C29—C28 | 39.9 (2) | N2—C12—C14—C19 | 12.4 (4) |
Cu3—O4—C20—C25 | −25.9 (3) | N2—C12—C14—C15 | −165.9 (3) |
Cu3—O4—C20—C21 | 155.9 (2) | N6—Cu6—O9—C57 | 9.4 (2) |
Cu3—O7—C39—C44 | 167.82 (19) | C7—N1—C9—C10 | −165.0 (2) |
Cu3—O7—C39—C40 | −10.6 (4) | C7—C6—C5—C4 | 178.6 (3) |
Cu3—N3—C26—C25 | −13.9 (4) | C20—C25—C24—C23 | −0.1 (5) |
Cu3—N3—C26—C27 | 165.9 (2) | C20—C21—C22—C23 | −0.2 (6) |
Cu3—N3—C28—C29 | 30.0 (3) | C1—C6—C5—C4 | −1.5 (4) |
Cu1—O2—C10—C11 | −78.1 (2) | C1—C2—C3—C4 | −0.4 (5) |
Cu1—O2—C10—C9 | 43.3 (2) | C26—N3—C28—C29 | −162.2 (2) |
Cu1—O4—C20—C25 | 168.43 (19) | C26—C25—C24—C23 | 180.0 (4) |
Cu1—O4—C20—C21 | −9.8 (4) | C25—C20—C21—C22 | −1.2 (5) |
Cu1—O1—C1—C6 | −23.0 (4) | C25—C24—C23—C22 | −1.3 (7) |
Cu1—O1—C1—C2 | 159.2 (2) | C11—N2—C12—C14 | 179.0 (2) |
Cu1—N1—C7—C6 | −15.7 (3) | C11—N2—C12—C13 | −1.6 (4) |
Cu1—N1—C7—C8 | 164.7 (2) | C11—C10—C9—N1 | 72.4 (3) |
Cu1—N1—C9—C10 | 28.2 (3) | C45—N5—C47—C48 | −159.8 (2) |
Cu5—O8—C48—C49 | −82.9 (2) | C45—C44—C43—C42 | 177.0 (4) |
Cu5—O8—C48—C47 | 40.2 (2) | C39—C44—C43—C42 | −1.1 (6) |
Cu5—O1—C1—C6 | 152.5 (2) | C39—C40—C41—C42 | −0.6 (6) |
Cu5—O1—C1—C2 | −25.3 (4) | C12—N2—C11—C10 | −171.9 (2) |
Cu5—O7—C39—C44 | −27.5 (4) | C12—C14—C19—O3 | 2.8 (4) |
Cu5—O7—C39—C40 | 154.0 (2) | C12—C14—C19—C18 | −178.7 (3) |
Cu5—N5—C45—C44 | −13.1 (4) | C12—C14—C15—C16 | 178.2 (3) |
Cu5—N5—C45—C46 | 168.1 (2) | C33—C38—C37—C36 | −0.5 (4) |
Cu5—N5—C47—C48 | 29.9 (3) | C33—C34—C35—C36 | −0.1 (5) |
Cu4—O5—C29—C30 | 47.4 (2) | C38—C33—C31—N4 | 4.6 (4) |
Cu4—O5—C29—C28 | 170.32 (17) | C38—C33—C31—C32 | −174.6 (3) |
Cu4—O6—C38—C33 | −1.1 (4) | C38—C33—C34—C35 | 0.1 (4) |
Cu4—O6—C38—C37 | 179.6 (2) | C38—C37—C36—C35 | 0.5 (5) |
Cu4—N4—C31—C33 | −10.9 (4) | C14—C19—C18—C17 | 0.5 (4) |
Cu4—N4—C31—C32 | 168.2 (2) | C14—C15—C16—C17 | 0.6 (6) |
Cu4—N4—C30—C29 | 17.8 (2) | C31—N4—C30—C29 | −171.1 (2) |
Cu2—O11—N102—O12 | 17.8 (4) | C31—C33—C38—O6 | 1.8 (4) |
Cu2—O11—N102—O13 | −162.3 (3) | C31—C33—C38—C37 | −178.9 (3) |
Cu2—O2—C10—C11 | 46.2 (2) | C31—C33—C34—C35 | 179.3 (3) |
Cu2—O2—C10—C9 | 167.61 (17) | C6—C1—C2—C3 | −1.8 (5) |
Cu2—O3—C19—C14 | −11.2 (4) | C6—C5—C4—C3 | −0.6 (5) |
Cu2—O3—C19—C18 | 170.3 (2) | C52—C57—C56—C55 | 2.2 (5) |
Cu2—N2—C11—C10 | 22.4 (2) | C52—C53—C54—C55 | −0.3 (6) |
Cu2—N2—C12—C14 | −17.9 (4) | C57—C52—C50—N6 | 14.5 (4) |
Cu2—N2—C12—C13 | 161.5 (2) | C57—C52—C50—C51 | −164.8 (3) |
O11—Cu2—O3—C19 | −175.2 (2) | C57—C52—C53—C54 | 0.7 (5) |
Cu6—O14B—N202—O16B | −108 (3) | C57—C56—C55—C54 | −1.9 (6) |
Cu6—O14B—N202—O15B | 99 (4) | C50—N6—C49—C48 | −168.5 (2) |
Cu6—O8—C48—C49 | 48.0 (2) | C50—C52—C57—O9 | 0.9 (4) |
Cu6—O8—C48—C47 | 171.09 (17) | C50—C52—C57—C56 | 178.9 (3) |
Cu6—O9—C57—C52 | −13.1 (4) | C50—C52—C53—C54 | −179.8 (3) |
Cu6—O9—C57—C56 | 168.9 (2) | C30—N4—C31—C33 | 179.5 (2) |
Cu6—N6—C50—C52 | −16.4 (4) | C30—N4—C31—C32 | −1.4 (4) |
Cu6—N6—C50—C51 | 162.9 (2) | C30—C29—C28—N3 | 74.9 (3) |
Cu6—N6—C49—C48 | 22.4 (2) | C28—N3—C26—C25 | −179.5 (2) |
O14B—Cu6—O9—C57 | −88.6 (8) | C28—N3—C26—C27 | 0.4 (4) |
O10—Cu3—O4—Cu1 | 5.17 (7) | C28—C29—C30—N4 | −163.9 (2) |
O10—Cu3—O4—C20 | −165.2 (2) | C49—N6—C50—C52 | 176.4 (2) |
O10—Cu1—O1—Cu5 | 8.93 (7) | C49—N6—C50—C51 | −4.3 (4) |
O10—Cu1—O1—C1 | −173.9 (2) | C49—C48—C47—N5 | 74.7 (3) |
O10—Cu5—O7—Cu3 | 6.37 (8) | C47—N5—C45—C44 | 178.6 (2) |
O10—Cu5—O7—C39 | −163.5 (2) | C47—N5—C45—C46 | −0.3 (4) |
O2—C10—C11—N2 | −45.5 (3) | C47—C48—C49—N6 | −168.3 (2) |
O2—C10—C9—N1 | −47.3 (3) | C34—C33—C38—O6 | −179.1 (3) |
O5—C29—C30—N4 | −43.1 (3) | C34—C33—C38—C37 | 0.2 (4) |
O5—C29—C28—N3 | −45.9 (3) | C34—C33—C31—N4 | −174.5 (3) |
O8—C48—C49—N6 | −46.7 (3) | C34—C33—C31—C32 | 6.3 (4) |
O8—C48—C47—N5 | −46.5 (3) | C34—C35—C36—C37 | −0.2 (5) |
O4—Cu1—O1—Cu5 | 80.85 (7) | C9—N1—C7—C6 | 180.0 (2) |
O4—Cu1—O1—C1 | −102.0 (2) | C9—N1—C7—C8 | 0.4 (4) |
O4—C20—C25—C26 | 3.0 (4) | C9—C10—C11—N2 | −165.2 (2) |
O4—C20—C25—C24 | −176.9 (3) | C44—C39—C40—C41 | 0.3 (5) |
O4—C20—C21—C22 | 177.1 (3) | C44—C43—C42—C41 | 0.8 (7) |
O1—Cu5—O7—Cu3 | 78.46 (7) | C19—C14—C15—C16 | −0.1 (5) |
O1—Cu5—O7—C39 | −91.4 (2) | C19—C18—C17—C16 | 0.0 (5) |
O1—C1—C6—C7 | 4.7 (4) | C40—C39—C44—C45 | −177.4 (3) |
O1—C1—C6—C5 | −175.2 (2) | C40—C39—C44—C43 | 0.5 (4) |
O1—C1—C2—C3 | 176.2 (3) | C40—C41—C42—C43 | 0.1 (7) |
O7—Cu3—O4—Cu1 | 76.57 (7) | C21—C20—C25—C26 | −178.8 (3) |
O7—Cu3—O4—C20 | −93.8 (2) | C21—C20—C25—C24 | 1.3 (4) |
O7—C39—C44—C45 | 4.1 (4) | C21—C22—C23—C24 | 1.4 (7) |
O7—C39—C44—C43 | −177.9 (3) | C27—C26—C25—C20 | −162.0 (3) |
O7—C39—C40—C41 | 178.9 (3) | C27—C26—C25—C24 | 18.0 (4) |
O9—C57—C56—C55 | −179.6 (3) | C56—C55—C54—C53 | 0.8 (6) |
O3—C19—C18—C17 | 179.1 (3) | C5—C4—C3—C2 | 1.6 (5) |
O2W—Cu6—O9—C57 | −175.9 (2) | C8—C7—C6—C1 | −165.0 (3) |
O6—C38—C37—C36 | 178.8 (3) | C8—C7—C6—C5 | 14.9 (4) |
O1W—Cu4—O6—C38 | −177.0 (2) | C53—C52—C57—O9 | −179.6 (3) |
N5—Cu5—O7—Cu3 | −165.33 (8) | C53—C52—C57—C56 | −1.6 (4) |
N5—Cu5—O7—C39 | 24.8 (2) | C53—C52—C50—N6 | −165.0 (3) |
N5—C45—C44—C39 | 17.2 (4) | C53—C52—C50—C51 | 15.7 (4) |
N5—C45—C44—C43 | −160.8 (3) | C2—C1—C6—C7 | −177.5 (3) |
N1—Cu1—O1—Cu5 | −158.80 (8) | C2—C1—C6—C5 | 2.6 (4) |
N1—Cu1—O1—C1 | 18.4 (2) | C18—C17—C16—C15 | −0.5 (6) |
N1—C7—C6—C1 | 15.4 (4) | C13—C12—C14—C19 | −167.0 (3) |
N1—C7—C6—C5 | −164.7 (2) | C13—C12—C14—C15 | 14.7 (4) |
N3—Cu3—O4—Cu1 | −166.14 (8) | C46—C45—C44—C39 | −164.0 (3) |
N3—Cu3—O4—C20 | 23.5 (2) | C46—C45—C44—C43 | 18.1 (4) |
N3—C26—C25—C20 | 17.9 (4) | C15—C14—C19—O3 | −178.9 (3) |
N3—C26—C25—C24 | −162.2 (3) | C15—C14—C19—C18 | −0.4 (4) |
N4—Cu4—O6—C38 | −3.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10···O11 | 0.51 (4) | 2.43 (4) | 2.854 (3) | 142 (6) |
O10—H10···O2W | 0.51 (4) | 2.75 (3) | 2.910 (3) | 103 (4) |
O10—H10···O1W | 0.51 (4) | 2.73 (4) | 3.155 (3) | 143 (6) |
O1W—H1WA···O1E | 0.86 | 2.26 | 2.625 (4) | 106 |
O1W—H1WB···O13 | 0.86 | 2.21 | 2.876 (4) | 135 |
C11—H11B···O4Ei | 0.97 | 2.31 | 3.280 (4) | 174 |
C18—H18···O13ii | 0.93 | 2.54 | 3.328 (4) | 143 |
O4E—H4E···N202 | 0.82 | 2.66 | 3.447 (5) | 161 |
O4E—H4E···O16B | 0.82 | 2.45 | 3.13 (2) | 141 |
O4E—H4E···O15B | 0.82 | 2.12 | 2.87 (3) | 151 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Funding information
The authors are grateful to the Sonatel Foundation for financial support.
References
Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661. Web of Science CSD CrossRef CAS PubMed Google Scholar
Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375. Web of Science CSD CrossRef CAS Google Scholar
Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Masison, Wisconsin, USA. Google Scholar
Bonanno, N. M., Lough, A. J. & Lemaire, M. T. (2018). Inorg. Chem. 57, 4837–4840. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004). Acta Cryst. E60, m1550–m1551. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208. Web of Science CSD CrossRef Google Scholar
Gamez, P., Aubel, P. G., Driessen, W. L. & Reedijk, J. (2001). Chem. Soc. Rev. 30, 376–385. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grundmeier, A. & Dau, H. (2012). BBA-Bioenergetics 1817, 88–105. Web of Science CrossRef CAS Google Scholar
Gungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646–1652. Web of Science CSD CrossRef CAS Google Scholar
Haldar, S., Dutta, N., Vijaykumar, G., Das, A., Carrella, L., Oliver, A. & Bera, M. (2019). Polyhedron, 172, 58–66. Web of Science CSD CrossRef CAS Google Scholar
Liang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313. Web of Science CSD CrossRef CAS Google Scholar
Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188. Web of Science CSD CrossRef CAS Google Scholar
Mikuriya, M., Kudo, S., Matsumoto, C., Kurahashi, S., Tomohara, S., Koyama, Y., Yoshioka, D. & Mitsuhashi, R. (2018). Chem. Pap. 72, 853–862. Web of Science CSD CrossRef CAS Google Scholar
Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795. Web of Science CSD CrossRef CAS Google Scholar
Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74. Web of Science CSD CrossRef CAS Google Scholar
Noor, S., Kumar, S., Sabir, S., Seidel, R. W. & Goddard, R. (2015). Acta Cryst. E71, m205–m206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004. Web of Science CSD CrossRef Google Scholar
Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4. Web of Science CSD CrossRef CAS Google Scholar
Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018b). Eur. J. Chem. 9, 67–73. CSD CrossRef CAS Google Scholar
Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018a). Acta Cryst. E74, 1862–1866. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Nandy, M., Rosair, G., Salah El Fallah, M., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969. Web of Science CSD CrossRef CAS Google Scholar
Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928. Web of Science CSD CrossRef Google Scholar
Song, Y., Massera, C., Roubeau, O., Gamez, P., Lanfredi, A. M. M. & Reedijk, J. (2004). Inorg. Chem. 43, 6842–6847. Web of Science CSD CrossRef PubMed CAS Google Scholar
Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, X.-Y., Li, Y. & Pullarkat, S. A. (2014). Inorg. Chem. 53, 10232–10239. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.