research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexanuclear copper(II) complex of 2-hy­dr­oxy-N,N′-bis­­[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]propane-1,3-di­amine incorporating an open-cubane core

crossmark logo

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Alioune Diop, Bambey, Senegal, cDépartement de Chimie, Faculté des Sciences et Techniques, Université Nouakchott Al Aasriya, Nouakchott, Mauritania, and dSubstances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 12 May 2021; accepted 31 May 2021; online 11 June 2021)

The title mol­ecular structure, namely, di­aqua­tris­(μ3-1,3-bis­{[1-(2-oxidophen­yl)ethyl­idene]amino}­propan-2-olato)-μ3-hydroxido-dinitrato­hexa­copper(II) ethanol tris­olvate, [Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H5OH, corres­ponds to a non-symmetric hexa­nuclear copper complex. The complex exhibits one core in which three CuII metal centres are mutually inter­connected, two by two, via three phenolato oxygen anions acting in a μ2-mode. These three copper cations are inter­connected in a μ3-mode by one hydroxyl group. An open-cube structure is generated in which each of the CuII cations of the three CuO4N units is connected by two μ2-O anions from phenolate groups and one μ3-O atom from a hy­droxy anion. Each of the three penta­coordinated CuII cations situated in the open-cube unit has a distorted NO4 square-pyramidal environment. Each of these three CuII centres is inter­connected with another CuII cation via one enolate O atom in μ2-mode, yielding one CuNO4 unit and two CuNO3 units. The penta­coordinated CuII atom has a distorted square-pyramidal environment while the two tetra­coordinated copper(II) cations are situated in a square-planar environment. A series of intra­molecular O—H⋯O hydrogen bonds are observed. In the crystal, the units are connected two by two by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane.

1. Chemical context

The coordination chemistry of penta­dentate ligands has been studied extensively. That their structures present symmetrical or asymmetrical pendant arms and bear donor atoms is an asset widely exploited in coordination chemistry. The presence of donor sites on aliphatic or aromatic arms has made it possible to prepare a wide variety of compounds with various structures and inter­esting physical and chemical properties. 1,3-Di­amino­propan-2-ol, which has three donor sites, is a good precursor for the synthesis of ligands with several cavities that can act as chelating agents and/or as bridging ligands (Song et al., 2004[Song, Y., Massera, C., Roubeau, O., Gamez, P., Lanfredi, A. M. M. & Reedijk, J. (2004). Inorg. Chem. 43, 6842-6847.]; Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Salah El Fallah, M., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963-969.]). These types of ligands can generate high nuclearity complexes with original structures. Indeed, ligands rich in hydroxyl groups and containing other donor sites such as nitro­gen are used to prepare complexes with very diverse structures (Gungor & Kara, 2015[Gungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646-1652.]; Dutta et al., 2020[Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.]; Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Salah El Fallah, M., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963-969.]; Sarı et al., 2006[Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563-m565.]). Several synthetic strategies have been developed to control the nuclearity and lead to specific applications in mol­ecular magnetism (Popov et al., 2012[Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1-4.]; Mikuriya et al., 2018[Mikuriya, M., Kudo, S., Matsumoto, C., Kurahashi, S., Tomohara, S., Koyama, Y., Yoshioka, D. & Mitsuhashi, R. (2018). Chem. Pap. 72, 853-862.]), mol­ecular biology (Grundmeier & Dau, 2012[Grundmeier, A. & Dau, H. (2012). BBA-Bioenergetics 1817, 88-105.]), electrochemistry (Musie et al., 2003[Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69-74.]) and catalysis (Gamez et al., 2001[Gamez, P., Aubel, P. G., Driessen, W. L. & Reedijk, J. (2001). Chem. Soc. Rev. 30, 376-385.]). The self-assembly synthetic strategy involving transition-metal cations and multidentate ligands has been widely used by coordination chemists, as a result of the wide variety of fascinating structures with the presence of multiple metal centres. The high nuclearity of these complexes and the inter­actions that can take place between metal cations has increased their inter­est to chemists (Bonanno et al., 2018[Bonanno, N. M., Lough, A. J. & Lemaire, M. T. (2018). Inorg. Chem. 57, 4837-4840.]; Yang et al., 2014[Yang, X.-Y., Li, Y. & Pullarkat, S. A. (2014). Inorg. Chem. 53, 10232-10239.]; Haldar et al., 2019[Haldar, S., Dutta, N., Vijaykumar, G., Das, A., Carrella, L., Oliver, A. & Bera, M. (2019). Polyhedron, 172, 58-66.]).

[Scheme 1]

In a continuation of our work on multidentate Schiff base complexes (Sall et al., 2019[Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069-1075.]; Sarr et al., 2018a[Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018a). Acta Cryst. E74, 1862-1866.],b[Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018b). Eur. J. Chem. 9, 67-73.]; Mamour et al., 2018[Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642-645.]), we have explored the possibility of preparing high nuclearity complexes using a Schiff base rich in hydroxyl groups. From 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone, we obtained a ligand containing three hydroxyl groups. The reaction of this ligand with copper nitrate resulted in the hexa­nuclear title complex, whose structure presents an open cube involving three of the six copper cations.

2. Structural commentary

The reaction of 1-(2-hy­droxy­phen­yl)ethanone and 1,3-di­amino­propan-2-ol in a 2:1 ratio in ethanol yielded the ligand N,N′-bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene]}-2-hy­droxy­pro­pane-1,3-di­amine (H3L). The reaction of ligand H3L with copper nitrate yielded a complex in which the ligand reacted in tri-deprotonated form as L3−. The coordination complex is formulated as [Cu6L3(NO3)2(OH)(H2O)2]·3(EtOH) (I)[link] (Fig. 1[link]). In this hexa­nuclear open-cubane complex, each of the tri-deprotonated ligand acts as a bridge linking one copper(II) cation to two neighbouring CuII cations. The two imino nitro­gen atoms of the ligand are coordinated to two different Cu cations. One of the phenolato O atoms bridges two copper cations, while the second phenolato O atom is coordinated to a third copper cation. The third copper cation is bridged to the central copper cation via the enolato oxygen anion. The tri-deprotonated ligand coordinates in a hepta­dentate mode (μ2-Ophenolate, η1-Nimino, μ2-Oenolato, η1-Nimino, η1-Ophenolato), thus forming four fused chelate rings (two five-membered and two six-membered). Two discrete environments are observed in the structure: CuNO4 and CuNO3. The coordination environments for Cu1, Cu3, Cu5 and Cu6 are best described as square-pyramidal, as shown by the Addison τ parameter calculated from the largest angles (Table 1[link]) around Cu1, Cu3, Cu5 and Cu6: τ = 0.045 (Cu1), τ = 0.007 (Cu3), τ = 0.010 (Cu5), τ = 0.040 (Cu6), (τ = 0 or 1 for perfect square-pyramidal and trigonal–bipyramidal geometries respectively). For Cu6, the basal plane is occupied by one phenolato oxygen anion, one enolate oxygen anion, one water O atom and one azomethine nitro­gen atom, the apical position being occupied by an anion oxygen of an unidentate nitrate group. The donor atoms (O8, N6, O9, O2W) of the basal coordination plane are almost coplanar and the Cu6 cation is displaced toward the apical atom (O201) by 0.0963 (9) Å. The cissoid angles are in the range 86.12 (9)–94.66 (9)° while the transoid angles are 171.23 (9) and 174.18 (9)°. In the basal plane, the Cu6—N6 [1.942 (2) Å] and the Cu6—Oligand distances [1.935 (2) and 1.863 (2) Å] are shorter than the distance of Cu6—O2W [2.028 (2) Å]. The distance between the copper and the nitrato oxygen anion [Cu6—O14B = 2.45 (2) Å] in the apical position is longer than the distances to the atoms in the equatorial plane because of Jahn–Teller distortion, which is typical for copper(II) d9 atoms (Monfared et al., 2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]). This distance is in accordance with reported values for nitrato square-pyramidal copper complexes (Noor et al., 2015[Noor, S., Kumar, S., Sabir, S., Seidel, R. W. & Goddard, R. (2015). Acta Cryst. E71, m205-m206.]).

Table 1
Selected geometric parameters (Å, °)

Cu3—O10 2.0040 (17) Cu2—O2 1.9385 (17)
Cu3—O4 1.8963 (17) Cu2—O3 1.855 (2)
Cu3—O7 2.3648 (17) Cu2—N2 1.941 (2)
Cu1—O10 2.0043 (19) Cu6—O14B 2.45 (2)
Cu1—O4 2.3893 (17) Cu6—O8 1.9350 (18)
Cu1—O1 1.8767 (18) Cu6—O9 1.863 (2)
Cu5—O10 1.9778 (19) Cu6—O2W 2.0273 (19)
Cu5—O1 2.4533 (18) Cu6—N6 1.942 (2)
Cu4—O5 1.9155 (17) N1—C7 1.295 (3)
Cu4—O6 1.8496 (19) N3—C26 1.286 (3)
Cu4—O1W 1.961 (2) N4—C31 1.294 (3)
Cu4—N4 1.934 (2) N2—C12 1.295 (4)
Cu2—O11 1.986 (2) N6—C50 1.294 (3)
       
O4—Cu3—O5 170.39 (8) O3—Cu2—O2 171.60 (8)
N3—Cu3—O10 170.79 (8) N2—Cu2—O11 174.77 (9)
O1—Cu1—O2 170.60 (8) Cu3—O10—Cu1 106.62 (9)
N1—Cu1—O10 167.74 (8) Cu5—O10—Cu3 106.11 (8)
O7—Cu5—O8 171.86 (8) Cu5—O10—Cu1 105.99 (9)
N5—Cu5—O10 171.32 (9) Cu3—O4—Cu1 96.50 (7)
O6—Cu4—O5 173.69 (9) Cu1—O1—Cu5 93.56 (7)
N4—Cu4—O1W 171.10 (9) Cu5—O7—Cu3 96.20 (7)
[Figure 1]
Figure 1
A view of the title compound, showing partial atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. H atoms and solvent molecules and atom labels for C atoms have been omitted for clarity.

For Cu1, Cu3 and Cu5, which are situated on the vertices of the Cu3O4 open cube, the basal planes are occupied by one imino nitro­gen atom, one phenolate oxygen anion, one enolato oxygen anion from the same ligand mol­ecule and the O atom of the hy­droxy oxygen anion that connects the three copper cations. The copper cations situated on the corners of the open cube are connected by two μ2-Ophenolato and one μ3-Ohy­droxy atoms. In each case, the apical position is occupied by one phenolate oxygen anion from another ligand. The donor atoms of the basal coordination planes of Cu1, Cu3 and Cu5 centres are situated almost in the same plane and the copper cations are displaced from the corresponding apical positions [−0.1462 (8) Å for Cu1, −0.1253 (8) Å for Cu3 and 0.1122 (8) Å for Cu5). The open cube, defined as cube missing one corner, is distorted, as shown by the Cu—O—Cu [93.56 (8)–106.62 (9)°] and O—Cu—O [72.34 (7)–86.17 (8)°] angles, which deviate severely from the ideal value of 90° expected for a perfect cube. The atoms defining the three sides of the open cube are almost coplanar (Cu1/O1/Cu5/O10, r.m.s. deviation = 0.0864 Å; Cu5/O7/Cu3/O10, r.m.s. deviation = 0.0588 Å; Cu1/O4/Cu3/O10, r.m.s. deviation = 0.0487 Å) and are irregular with edges of different lengths, i.e. for Cu1/O1/Cu5/O10 these are O1—Cu1 = 1.877 (2) Å, O10—Cu1 = 2.004 (2) Å, O1—Cu5 = 2.453 (2) Å and O10—Cu5 = 1.978 (2) Å. Additionally, the dihedral angles values of 78.11 (6), 75.77 (5) and 77.57 (5)° between the sides, two by two, confirm the distortion of the open cube. The bond lengths involving the bridging phenolate oxygen anions and the copper cations are asymmetrical: O1—Cu1 = 1.877 (2) Å and O1—Cu5 = 2. 453 (2) Å; O4—Cu1 = 2.389 (2) Å and O4—Cu3 = 1.896 (2); and O7—Cu5 = 1.889 (2) Å and O7—Cu3 = 2.365 (2) Å. The distances of the μ3-bridging O atom to the copper cations are slightly different: O10—Cu1 = 2.005 (2) Å, O10—Cu5 = 1.978 (2) Å and O10—Cu3 = 2.004 (2) Å. The axial bond lengths are longer than the equatorial bond lengths as a result of the Jahn–Teller distortion [Cu1—O4 = 2.389 (2) Å, Cu3—O7 = 2.365 (2) Å and Cu5—O1 = 2.453 (2) Å]. The three copper cations are placed at the vertices of an almost isosceles triangle with distances values of 3.1801 (4) Å (Cu1—Cu5), 3.1823 (4) Å (Cu3—Cu5) and 3.2140 (5) Å (Cu1—Cu3) and angle values of 60.68 (1)° (Cu1—Cu5—Cu3), 59.69 (1)° (Cu5—Cu1—Cu3) and 59.62 (1)° (Cu1—Cu3—Cu5).

For the Cu2 and Cu4 centres, the coordination environments can be best described as slightly distorted square planar with r.m.s. deviations from planarity of 0.0601 Å for Cu2/O2/N2/O3/O11 and 0.0909 Å for Cu4/N4/O5/O1W/O6. The τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) values of 0.097 (Cu2) and 0.106 (Cu4) are in accordance with slightly distorted square-planar geometries. For each copper(II) centre (Cu2 and Cu4), the coordination plane and the nearest neighbouring phenyl ring of the ligand are almost co-planar, with respective dihedral angles values of 4.014 (8) and 3.423 (5)°. The copper cation Cu2 is coordinated by one enolato oxygen anion (O2), one phenoxo oxygen anion (O3), one azomethine nitro­gen atom (N2) of the ligand, and one oxygen anion (O11) of an unidentate nitrate group. The Cu2—O2 [1.939 (2) Å], Cu2—O3 [1.855 (2) Å] and Cu2—N2 [1.941 (2) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Popov et al., 2012[Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1-4.]; Chen et al., 2004[Chen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004). Acta Cryst. E60, m1550-m1551.]; Dutta et al., 2020[Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.]). The Cu2—O11 bond length [1.9856 (2) Å] is comparable to the distance reported for a nitrato copper complex with square-planar geometry (Thiam et al., 2010[Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136.]). The cissoid angle values are in the range 86.37(9)–94.26 (10)°] and the transoid angles are 171.59 (9) and 174.77 (10)°. The Cu4 cation is coordinated by one enolato oxygen anion (O5), one phenoxo oxygen anion (O6), one azomethine nitro­gen atom (N4) of the ligand, and one O atom from a coordinated water mol­ecule. The distances of Cu4 to the coordinated atoms from the ligand [1.916 (2), 1.850 (2) and 1.934 (2) Å] are comparable with those involving Cu2. The Cu4—O1W distance value of 1.961 (2) Å is similar to those reported for square-planar copper(II) complexes (Liang et al., 2010[Liang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40.]). The cissoid angles are in the range 86.56 (8)–95.34 (9)° and the transoid angles are 171.10 (9) and 173.69 (9)°. The double-bond character of the C—N bonds [overall values 1.286 (3)–1.295 (3) Å] is indicative of the presence of the imino groups in the three ligands.

3. Supra­molecular features

In the crystal, intra­molecular and inter­molecular O—H⋯O hydrogen bonds involving the hydroxyl group, the coordinated water mol­ecules and the nitrate and ethanol groups are observed. The complex mol­ecules are inter­connected by inter­molecular hydrogen bonds of type O—H⋯O (Owater—H⋯Oethanol and Owater—H⋯Onitrate) and C—H⋯O (Cphenolate—H⋯Onitrate) (Fig. 2[link], Table 2[link]). The complex mol­ecules are disposed into zigzagging two-dimensional sheets parallel to the ac plane (Fig. 3[link]). The coordinating water mol­ecules are directed toward the inter­layer region, which is also occupied by the uncoordinated ethanol mol­ecules. Adjacent sheets are linked to one another by hydrogen bonds of type C—H⋯Oethanol or C—H⋯Onitrate) (C11—H11B⋯O4ethanol and C18—H18⋯O13nitrate; Table 3[link]). The series of inter­molecular and intra­molecular hydrogen bonds stabilize and link the components into a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11 0.51 (4) 2.43 (4) 2.854 (3) 142 (6)
O10—H10⋯O2W 0.51 (4) 2.75 (3) 2.910 (3) 103 (4)
O10—H10⋯O1W 0.51 (4) 2.73 (4) 3.155 (3) 143 (6)
O1W—H1WA⋯O1E 0.86 2.26 2.625 (4) 106
O1W—H1WB⋯O13 0.86 2.21 2.876 (4) 135
C11—H11B⋯O4Ei 0.97 2.31 3.280 (4) 174
C18—H18⋯O13ii 0.93 2.54 3.328 (4) 143
O4E—H4E⋯N202 0.82 2.66 3.447 (5) 161
O4E—H4E⋯O16B 0.82 2.45 3.13 (2) 141
O4E—H4E⋯O15B 0.82 2.12 2.87 (3) 151
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+1, -z].

Table 3
Experimental details

Crystal data
Chemical formula [Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H6O
Mr 1666.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 13.6406 (5), 14.0568 (5), 18.5907 (7)
α, β, γ (°) 83.626 (3), 86.186 (3), 72.288 (3)
V3) 3372.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.94
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 73743, 14284, 12395
Rint 0.033
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.04
No. of reflections 14284
No. of parameters 929
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.56
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Masison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).
[Figure 2]
Figure 2
Sheets parallel to the ac plane.
[Figure 3]
Figure 3
Two views of the zigzagging two-dimensional sheets parallel to the ac plane.

4. Database survey

The ligand N,N′-bis­[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­propane-1,3-di­amine has been widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave ten hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012[Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310-1313.]); OMOFUS (Banerjee et al., 2011[Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652-1661.])]. Three other entries are complexes of CuII cations [KUKTAM (Basak et al., 2009[Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366-375.]), NADDIJ and NADDOP (Osypiuk et al., 2020[Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.])]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011[Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652-1661.]), one FeII (RIDHUJ; Biswas et al., 2013[Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274-12283.]) and one VV complex (KEWGUQ; Maurya et al., 2013[Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180-188.]) have been reported. In all of the ten cases, the ligand acts in a penta­dentate mode through the two soft azomethine nitro­gen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetra­nuclear while two dinuclear (OMOFOM and RIDHUJ) and one mononuclear (KEWGUQ) complexes have been reported.

5. Synthesis and crystallization

Reaction of 1-(2-hy­droxy­phen­yl)ethanone and 2-hy­droxy­propane-1,3-di­amine in a 2:1 ratio in ethanol yielded the ligand N,N'-bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene]}-2-hy­droxy­propane-1,3-di­amine (HL3), which was prepared according to a literature method (Song et al., 2003[Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924-2928.]) with slight modifications. To a solution of 1,3-di­amino­propane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added, dropwise, (2-hy­droxy­phen­yl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 180 min, affording the organic ligand H3L. The yellow precipitate that appeared on cooling was recovered by filtration and dried in air. Yield 75%, m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%. A solution of Cu(NO3)2·3H2O (0.241 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned dark green and was stirred for 30 min. The mixture was filtered, and the filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu6L3(NO3)2(OH)(H2O)2]·3EtOH. FT–IR (KBr, ν, cm−1): 1625, 1600, 1540, 1446, 1382, 1304, 1258, 1180, 1120, 1007, 895, 760. Analysis calculated for C63H80Cu6N8O21: C, 45.40; H, 4.84; N, 6.72. Found: C, 45.38; H, 4.82; N, 6.74%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydroxyl H atoms were located from difference-Fourier maps and refined. Other H atoms (CH, CH2, CH3 groups, hydroxyl groups of ethanol mol­ecules and water mol­ecules) were geometrically optimized (C—H = 0.93–0.98 Å, O—Hhy­droxy = 0.82 Å and O—Hwater = 0.86–0.87 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 and OH groups).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) top
Crystal data top
[Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H6OZ = 2
Mr = 1666.59F(000) = 1712
Triclinic, P1Dx = 1.641 Mg m3
a = 13.6406 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0568 (5) ÅCell parameters from 5100 reflections
c = 18.5907 (7) Åθ = 2.4–28.6°
α = 83.626 (3)°µ = 1.94 mm1
β = 86.186 (3)°T = 293 K
γ = 72.288 (3)°Prismatic, green
V = 3372.7 (2) Å30.3 × 0.2 × 0.1 mm
Data collection top
KappaCCD
diffractometer
12395 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.033
CCD scansθmax = 26.7°, θmin = 2.8°
Absorption correction: multi-scanh = 1717
Tmin = 0.967, Tmax = 1.000k = 1717
73743 measured reflectionsl = 2323
14284 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0432P)2 + 3.2696P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14284 reflectionsΔρmax = 0.82 e Å3
929 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu30.26915 (2)0.40125 (2)0.15888 (2)0.03091 (7)
Cu10.27776 (2)0.42624 (2)0.32790 (2)0.03074 (7)
Cu50.34276 (2)0.20896 (2)0.27233 (2)0.03197 (7)
Cu40.45315 (2)0.20182 (2)0.10809 (2)0.03414 (8)
Cu20.34537 (2)0.58294 (2)0.20408 (2)0.03620 (8)
O110.47163 (16)0.47175 (15)0.18459 (13)0.0555 (6)
N1020.54911 (19)0.49292 (17)0.15507 (13)0.0430 (5)
O120.5566 (2)0.57631 (18)0.15453 (17)0.0771 (8)
O130.6141 (2)0.4241 (2)0.12800 (19)0.0958 (11)
Cu60.46902 (2)0.25221 (2)0.40915 (2)0.03727 (8)
O14B0.6475 (14)0.152 (2)0.4307 (18)0.074 (6)0.43 (8)
N2020.6961 (3)0.1605 (3)0.4849 (2)0.0743 (9)
O16B0.7637 (19)0.203 (3)0.4682 (15)0.087 (7)0.43 (8)
O15B0.708 (5)0.102 (5)0.5418 (17)0.143 (11)0.43 (8)
O100.35231 (15)0.34640 (13)0.24727 (10)0.0291 (4)
H100.384 (2)0.350 (4)0.232 (2)0.073 (17)*
O20.34884 (13)0.52783 (13)0.30453 (9)0.0348 (4)
O50.37695 (14)0.34071 (12)0.09029 (9)0.0347 (4)
O80.45828 (14)0.16793 (13)0.33636 (9)0.0364 (4)
O40.17301 (13)0.47876 (13)0.22424 (9)0.0374 (4)
O10.22912 (15)0.31642 (14)0.35827 (10)0.0415 (4)
O70.24464 (15)0.24428 (13)0.19929 (10)0.0397 (4)
O90.46067 (17)0.34675 (16)0.47384 (10)0.0495 (5)
O30.33169 (16)0.62254 (15)0.10579 (11)0.0482 (5)
O2W0.52462 (16)0.34018 (16)0.33383 (11)0.0478 (5)
H2WA0.4831260.4007820.3304140.072*
H2WB0.5247120.3211090.2910440.072*
O60.52042 (16)0.06843 (14)0.13553 (12)0.0483 (5)
O1W0.55379 (17)0.24409 (15)0.15701 (14)0.0562 (6)
H1WA0.5526280.2248270.2023740.084*
H1WB0.5352060.3082420.1554170.084*
N50.34465 (17)0.06909 (15)0.28312 (12)0.0366 (5)
N10.23171 (16)0.48927 (16)0.41787 (11)0.0354 (4)
N30.19297 (17)0.47496 (15)0.07387 (11)0.0353 (4)
N40.35642 (17)0.17511 (15)0.04761 (11)0.0356 (4)
N20.22263 (17)0.68655 (16)0.23230 (12)0.0376 (5)
N60.40344 (17)0.17147 (17)0.47557 (12)0.0387 (5)
C70.18607 (19)0.4560 (2)0.47399 (13)0.0371 (5)
C200.07635 (19)0.52770 (19)0.21000 (14)0.0352 (5)
C10.1607 (2)0.31345 (19)0.41129 (14)0.0380 (5)
C260.1061 (2)0.54451 (18)0.07321 (13)0.0363 (5)
C100.2991 (2)0.6107 (2)0.34627 (14)0.0395 (6)
H10A0.3445980.6525850.3475560.047*
C250.0398 (2)0.5632 (2)0.13906 (15)0.0391 (6)
C480.4605 (2)0.07339 (19)0.37428 (15)0.0403 (6)
H480.5300440.0405090.3918730.048*
C110.2003 (2)0.6723 (2)0.31042 (14)0.0413 (6)
H11A0.1483990.6376640.3193440.050*
H11B0.1744020.7367400.3300300.050*
C450.2881 (2)0.0286 (2)0.25189 (14)0.0402 (6)
C390.1788 (2)0.1953 (2)0.19148 (13)0.0387 (6)
C120.1539 (2)0.74659 (19)0.19013 (15)0.0406 (6)
C330.4114 (2)0.00413 (19)0.07486 (14)0.0369 (5)
C380.4955 (2)0.00899 (19)0.11758 (14)0.0393 (6)
C140.1755 (2)0.7628 (2)0.11249 (15)0.0432 (6)
C310.3412 (2)0.0897 (2)0.04257 (14)0.0388 (6)
C60.1395 (2)0.3760 (2)0.46934 (14)0.0389 (6)
C290.3363 (2)0.35247 (19)0.02049 (13)0.0385 (6)
H290.3927880.3460290.0158820.046*
C520.3861 (2)0.2683 (2)0.57706 (14)0.0425 (6)
C570.4333 (2)0.3393 (2)0.54279 (15)0.0430 (6)
C500.3630 (2)0.1919 (2)0.53911 (14)0.0407 (6)
C300.2873 (2)0.26973 (19)0.01504 (14)0.0403 (6)
H30A0.2207240.2850680.0405030.048*
H30B0.2772180.2641100.0353040.048*
C280.2603 (2)0.45634 (19)0.00831 (14)0.0430 (6)
H28A0.2966470.5062370.0006810.052*
H28B0.2194960.4603800.0333600.052*
C490.3854 (2)0.0910 (2)0.43897 (15)0.0420 (6)
H49A0.3151130.1107080.4231440.050*
H49B0.3969500.0301610.4716900.050*
C470.4357 (2)0.0077 (2)0.32343 (16)0.0447 (6)
H47A0.4936010.0165130.2901480.054*
H47B0.4211400.0497760.3506870.054*
C340.3961 (2)0.0959 (2)0.06230 (17)0.0456 (6)
H340.3414280.0941170.0343230.055*
C90.2783 (2)0.5696 (2)0.42281 (15)0.0433 (6)
H9A0.3420470.5434340.4484570.052*
H9B0.2318060.6223680.4489390.052*
C440.1967 (2)0.0912 (2)0.21363 (15)0.0433 (6)
C190.2634 (2)0.7014 (2)0.07612 (15)0.0430 (6)
C370.5581 (2)0.1043 (2)0.14436 (16)0.0465 (6)
H370.6138350.1085700.1720970.056*
C400.0862 (2)0.2485 (2)0.15771 (16)0.0507 (7)
H400.0740050.3163810.1428630.061*
C210.0055 (2)0.5483 (2)0.26906 (16)0.0500 (7)
H210.0278770.5246110.3157010.060*
C270.0697 (3)0.6096 (2)0.00429 (16)0.0498 (7)
H27A0.0278490.6748210.0158510.075*
H27B0.0299290.5795110.0214640.075*
H27C0.1281400.6159130.0254050.075*
C350.4583 (2)0.1876 (2)0.08949 (18)0.0503 (7)
H350.4457660.2463870.0801610.060*
C560.4501 (3)0.4105 (3)0.58486 (17)0.0558 (8)
H560.4787370.4588960.5626060.067*
C50.0698 (2)0.3587 (2)0.52516 (16)0.0508 (7)
H50.0563420.3976950.5640320.061*
C80.1792 (3)0.4997 (2)0.54539 (15)0.0510 (7)
H8A0.1970190.4462780.5836470.076*
H8B0.1101820.5415250.5539910.076*
H8C0.2259580.5389420.5439590.076*
C360.5394 (3)0.1909 (2)0.13075 (17)0.0514 (7)
H360.5820000.2525650.1496310.062*
C530.3612 (3)0.2718 (3)0.65203 (17)0.0572 (8)
H530.3308920.2254140.6755950.069*
C20.1082 (3)0.2418 (2)0.41137 (19)0.0539 (7)
H20.1199180.2018600.3731360.065*
C180.2780 (3)0.7253 (3)0.00078 (16)0.0537 (7)
H180.3346280.6855430.0238130.064*
C40.0214 (3)0.2868 (3)0.5242 (2)0.0618 (9)
H40.0235760.2769280.5620310.074*
C510.2902 (2)0.1381 (3)0.57490 (18)0.0547 (8)
H51A0.2303340.1859920.5937330.082*
H51B0.3237950.0912600.6137900.082*
H51C0.2699210.1028230.5400510.082*
C130.0494 (2)0.8001 (2)0.22090 (19)0.0543 (7)
H13A0.0001380.8174720.1834040.081*
H13B0.0519060.8599590.2400060.081*
H13C0.0294100.7569480.2589350.081*
C170.2110 (3)0.8051 (3)0.03647 (18)0.0633 (9)
H170.2224390.8190800.0858370.076*
C460.3131 (3)0.0840 (2)0.25508 (18)0.0549 (8)
H46A0.2887930.1016140.2126330.082*
H46B0.2801450.1079840.2974330.082*
H46C0.3862850.1141110.2571900.082*
C550.4253 (3)0.4100 (3)0.65739 (18)0.0658 (10)
H550.4390530.4565220.6839470.079*
C240.0643 (2)0.6184 (3)0.13261 (19)0.0600 (9)
H240.0890300.6420320.0865240.072*
C30.0399 (3)0.2292 (3)0.4666 (2)0.0630 (9)
H30.0057860.1814090.4651040.076*
C430.1199 (3)0.0485 (3)0.1994 (2)0.0666 (10)
H430.1307760.0196210.2126850.080*
C150.1093 (3)0.8438 (2)0.07133 (19)0.0606 (8)
H150.0515290.8845160.0942370.073*
C220.0961 (3)0.6029 (3)0.2594 (2)0.0684 (10)
H220.1412800.6153010.2993380.082*
C160.1263 (3)0.8651 (3)0.0012 (2)0.0701 (10)
H160.0810910.9198270.0266540.084*
C320.2496 (3)0.0849 (3)0.0041 (2)0.0599 (8)
H32A0.2145450.0443650.0340030.090*
H32B0.2721930.0557640.0407590.090*
H32C0.2034610.1513450.0056290.090*
C410.0132 (3)0.2032 (3)0.1459 (2)0.0661 (10)
H410.0476570.2405430.1238630.079*
C540.3801 (3)0.3410 (3)0.69121 (18)0.0684 (10)
H540.3624830.3413610.7403960.082*
C420.0301 (3)0.1023 (3)0.1669 (2)0.0790 (13)
H420.0189590.0713180.1590120.095*
C230.1314 (3)0.6392 (4)0.1910 (2)0.0774 (12)
H230.1996530.6772800.1845040.093*
O1E0.7184 (3)0.1473 (3)0.2304 (2)0.1102 (12)
H1E0.6964260.1878180.2605360.165*
C2E0.7195 (4)0.0498 (4)0.2618 (3)0.0964 (15)
H2EA0.6499870.0448520.2676540.116*
H2EB0.7501870.0357640.3088620.116*
C3E0.7804 (5)0.0208 (5)0.2123 (4)0.133 (2)
H3EA0.7801310.0875310.2299660.200*
H3EB0.8499510.0176890.2089770.200*
H3EC0.7514120.0037530.1651910.200*
O4E0.8827 (3)0.1187 (3)0.6110 (2)0.1057 (12)
H4E0.8290860.1364270.5887920.159*
C5E0.9362 (5)0.0241 (4)0.5980 (3)0.1034 (17)
H5EA0.9373970.0174190.5465630.124*
H5EB0.9025340.0222160.6232920.124*
C6E1.0416 (6)0.0011 (5)0.6222 (4)0.137 (3)
H6EA1.0805920.0658470.6078590.206*
H6EB1.0407580.0024820.6739430.206*
H6EC1.0727980.0483810.6005600.206*
O7E0.7319 (3)0.2834 (4)0.3279 (2)0.1182 (13)
H7E0.6959810.3161980.3590880.177*
C8E0.8232 (9)0.3177 (8)0.3102 (4)0.172 (4)
H8EA0.8363580.3524310.3490680.207*
H8EB0.8836620.2615110.3018510.207*
C9E0.7977 (8)0.3837 (7)0.2462 (6)0.229 (6)
H9EA0.7785790.3495470.2099750.343*
H9EB0.8561150.4050520.2285750.343*
H9EC0.7410380.4411380.2565690.343*
O16A0.750 (2)0.216 (2)0.4779 (17)0.112 (7)0.57 (8)
O15A0.675 (2)0.138 (2)0.5466 (7)0.115 (5)0.57 (8)
O14A0.6499 (14)0.1441 (17)0.4376 (16)0.085 (6)0.57 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu30.03783 (16)0.02639 (14)0.02544 (14)0.00612 (12)0.00082 (11)0.00037 (11)
Cu10.03459 (15)0.02884 (15)0.02828 (14)0.00970 (12)0.00320 (11)0.00249 (11)
Cu50.03869 (16)0.02569 (14)0.03087 (15)0.01019 (12)0.00316 (12)0.00283 (11)
Cu40.03985 (16)0.02640 (14)0.03622 (16)0.01025 (12)0.00088 (12)0.00257 (12)
Cu20.03940 (17)0.02984 (15)0.03844 (16)0.01114 (13)0.00403 (13)0.00033 (12)
O110.0483 (12)0.0390 (11)0.0702 (14)0.0103 (9)0.0211 (10)0.0112 (10)
N1020.0496 (13)0.0350 (12)0.0455 (13)0.0153 (10)0.0081 (10)0.0062 (10)
O120.0838 (18)0.0415 (13)0.115 (2)0.0322 (13)0.0159 (16)0.0004 (13)
O130.085 (2)0.0660 (17)0.124 (3)0.0127 (15)0.0622 (19)0.0254 (17)
Cu60.03732 (16)0.04047 (17)0.03351 (16)0.01265 (13)0.00105 (12)0.00147 (13)
O14B0.036 (8)0.096 (13)0.082 (9)0.000 (7)0.007 (6)0.025 (8)
N2020.062 (2)0.079 (2)0.083 (3)0.0231 (18)0.0093 (18)0.002 (2)
O16B0.064 (8)0.143 (18)0.073 (8)0.060 (8)0.008 (5)0.004 (9)
O15B0.15 (2)0.15 (2)0.148 (16)0.09 (2)0.043 (12)0.053 (12)
O100.0297 (8)0.0275 (8)0.0283 (8)0.0077 (7)0.0015 (7)0.0012 (6)
O20.0359 (9)0.0329 (9)0.0366 (9)0.0124 (7)0.0012 (7)0.0030 (7)
O50.0433 (10)0.0277 (8)0.0313 (8)0.0088 (7)0.0034 (7)0.0034 (7)
O80.0381 (9)0.0327 (9)0.0360 (9)0.0093 (7)0.0032 (7)0.0037 (7)
O40.0376 (9)0.0372 (9)0.0304 (8)0.0004 (7)0.0027 (7)0.0036 (7)
O10.0538 (11)0.0369 (10)0.0358 (9)0.0192 (8)0.0127 (8)0.0045 (7)
O70.0506 (11)0.0328 (9)0.0392 (9)0.0189 (8)0.0118 (8)0.0062 (7)
O90.0616 (13)0.0546 (12)0.0377 (10)0.0262 (10)0.0034 (9)0.0053 (9)
O30.0530 (12)0.0456 (11)0.0401 (10)0.0093 (9)0.0065 (9)0.0002 (8)
O2W0.0545 (12)0.0488 (11)0.0429 (10)0.0219 (10)0.0029 (9)0.0001 (9)
O60.0573 (12)0.0292 (9)0.0592 (12)0.0113 (9)0.0216 (10)0.0006 (8)
O1W0.0556 (12)0.0344 (10)0.0829 (16)0.0175 (9)0.0196 (11)0.0020 (10)
N50.0442 (12)0.0274 (10)0.0369 (11)0.0106 (9)0.0014 (9)0.0014 (8)
N10.0379 (11)0.0364 (11)0.0304 (10)0.0085 (9)0.0008 (8)0.0047 (8)
N30.0476 (12)0.0284 (10)0.0276 (10)0.0096 (9)0.0022 (9)0.0019 (8)
N40.0445 (12)0.0296 (10)0.0318 (10)0.0102 (9)0.0018 (9)0.0019 (8)
N20.0427 (12)0.0299 (10)0.0402 (11)0.0108 (9)0.0006 (9)0.0033 (9)
N60.0386 (11)0.0389 (12)0.0352 (11)0.0091 (9)0.0035 (9)0.0047 (9)
C70.0342 (12)0.0395 (13)0.0304 (12)0.0007 (10)0.0018 (10)0.0013 (10)
C200.0348 (12)0.0322 (12)0.0376 (13)0.0087 (10)0.0035 (10)0.0012 (10)
C10.0375 (13)0.0342 (13)0.0379 (13)0.0081 (10)0.0022 (10)0.0060 (10)
C260.0467 (14)0.0296 (12)0.0339 (12)0.0131 (11)0.0094 (11)0.0014 (10)
C100.0474 (15)0.0369 (13)0.0389 (13)0.0180 (12)0.0003 (11)0.0094 (11)
C250.0388 (13)0.0359 (13)0.0408 (14)0.0101 (11)0.0055 (11)0.0023 (11)
C480.0390 (13)0.0315 (13)0.0437 (14)0.0030 (10)0.0060 (11)0.0058 (11)
C110.0505 (15)0.0340 (13)0.0386 (13)0.0113 (11)0.0049 (11)0.0076 (11)
C450.0535 (16)0.0326 (13)0.0358 (13)0.0179 (12)0.0075 (11)0.0003 (10)
C390.0503 (15)0.0436 (14)0.0280 (12)0.0239 (12)0.0012 (10)0.0005 (10)
C120.0466 (15)0.0285 (12)0.0482 (15)0.0128 (11)0.0018 (12)0.0053 (11)
C330.0439 (14)0.0304 (12)0.0377 (13)0.0138 (11)0.0037 (11)0.0043 (10)
C380.0481 (15)0.0288 (12)0.0402 (13)0.0118 (11)0.0009 (11)0.0015 (10)
C140.0551 (16)0.0323 (13)0.0439 (14)0.0155 (12)0.0076 (12)0.0002 (11)
C310.0459 (14)0.0348 (13)0.0374 (13)0.0143 (11)0.0007 (11)0.0053 (10)
C60.0340 (13)0.0401 (14)0.0348 (13)0.0031 (11)0.0024 (10)0.0047 (10)
C290.0533 (15)0.0317 (12)0.0281 (12)0.0112 (11)0.0060 (11)0.0008 (10)
C520.0358 (13)0.0501 (16)0.0349 (13)0.0042 (12)0.0035 (10)0.0006 (11)
C570.0344 (13)0.0557 (17)0.0366 (13)0.0095 (12)0.0043 (11)0.0042 (12)
C500.0340 (13)0.0411 (14)0.0383 (13)0.0028 (11)0.0027 (10)0.0092 (11)
C300.0522 (15)0.0330 (13)0.0322 (12)0.0069 (11)0.0061 (11)0.0019 (10)
C280.0644 (18)0.0317 (13)0.0279 (12)0.0103 (12)0.0027 (12)0.0038 (10)
C490.0467 (15)0.0374 (14)0.0398 (14)0.0125 (12)0.0030 (11)0.0065 (11)
C470.0490 (16)0.0299 (13)0.0477 (15)0.0025 (11)0.0013 (12)0.0015 (11)
C340.0503 (16)0.0335 (14)0.0556 (17)0.0158 (12)0.0020 (13)0.0082 (12)
C90.0516 (16)0.0431 (15)0.0382 (14)0.0161 (12)0.0047 (12)0.0096 (11)
C440.0564 (17)0.0439 (15)0.0365 (13)0.0267 (13)0.0019 (12)0.0008 (11)
C190.0552 (16)0.0393 (14)0.0400 (14)0.0231 (13)0.0020 (12)0.0013 (11)
C370.0517 (16)0.0336 (14)0.0506 (16)0.0079 (12)0.0053 (13)0.0005 (12)
C400.0572 (18)0.0539 (17)0.0438 (15)0.0236 (15)0.0126 (13)0.0093 (13)
C210.0418 (15)0.0606 (19)0.0417 (15)0.0098 (13)0.0017 (12)0.0031 (13)
C270.0617 (18)0.0384 (15)0.0429 (15)0.0074 (13)0.0128 (13)0.0086 (12)
C350.0557 (17)0.0277 (13)0.069 (2)0.0148 (12)0.0074 (15)0.0098 (13)
C560.0505 (17)0.074 (2)0.0495 (17)0.0266 (16)0.0019 (14)0.0121 (15)
C50.0443 (16)0.0526 (17)0.0445 (15)0.0036 (13)0.0123 (12)0.0031 (13)
C80.0582 (18)0.0596 (18)0.0302 (13)0.0099 (15)0.0014 (12)0.0072 (12)
C360.0610 (19)0.0292 (13)0.0584 (18)0.0076 (13)0.0040 (15)0.0004 (12)
C530.0567 (19)0.069 (2)0.0405 (16)0.0149 (16)0.0021 (13)0.0031 (15)
C20.0582 (18)0.0448 (16)0.0604 (19)0.0217 (14)0.0079 (15)0.0001 (14)
C180.073 (2)0.0538 (18)0.0413 (15)0.0307 (16)0.0010 (14)0.0009 (13)
C40.0477 (17)0.0582 (19)0.069 (2)0.0117 (15)0.0221 (16)0.0105 (17)
C510.0522 (17)0.0555 (18)0.0509 (17)0.0146 (14)0.0097 (14)0.0066 (14)
C130.0498 (17)0.0438 (16)0.0611 (19)0.0030 (13)0.0000 (14)0.0024 (14)
C170.097 (3)0.059 (2)0.0423 (16)0.037 (2)0.0127 (17)0.0060 (15)
C460.074 (2)0.0353 (15)0.0597 (19)0.0242 (15)0.0043 (16)0.0052 (13)
C550.064 (2)0.096 (3)0.0469 (18)0.033 (2)0.0036 (15)0.0220 (18)
C240.0399 (16)0.077 (2)0.0536 (18)0.0075 (15)0.0102 (14)0.0090 (16)
C30.0552 (19)0.0545 (19)0.082 (2)0.0274 (16)0.0138 (17)0.0050 (17)
C430.083 (2)0.061 (2)0.071 (2)0.048 (2)0.0197 (19)0.0135 (17)
C150.075 (2)0.0427 (17)0.0579 (19)0.0069 (15)0.0136 (17)0.0016 (14)
C220.0390 (16)0.094 (3)0.059 (2)0.0081 (17)0.0104 (14)0.0062 (19)
C160.098 (3)0.0488 (19)0.058 (2)0.0136 (19)0.026 (2)0.0095 (16)
C320.063 (2)0.0502 (18)0.072 (2)0.0216 (16)0.0243 (17)0.0025 (16)
C410.064 (2)0.080 (2)0.063 (2)0.0385 (19)0.0237 (17)0.0187 (18)
C540.075 (2)0.098 (3)0.0357 (16)0.030 (2)0.0003 (15)0.0097 (17)
C420.086 (3)0.090 (3)0.083 (3)0.063 (2)0.035 (2)0.023 (2)
C230.0350 (16)0.104 (3)0.075 (2)0.0010 (18)0.0054 (16)0.012 (2)
O1E0.116 (3)0.078 (2)0.135 (3)0.0183 (19)0.056 (2)0.004 (2)
C2E0.104 (4)0.096 (4)0.085 (3)0.030 (3)0.010 (3)0.017 (3)
C3E0.089 (4)0.109 (5)0.207 (8)0.025 (3)0.013 (4)0.054 (5)
O4E0.103 (3)0.088 (2)0.129 (3)0.0157 (19)0.024 (2)0.052 (2)
C5E0.136 (5)0.077 (3)0.095 (4)0.026 (3)0.011 (3)0.026 (3)
C6E0.137 (6)0.127 (5)0.118 (5)0.012 (4)0.026 (4)0.020 (4)
O7E0.087 (2)0.172 (4)0.103 (3)0.061 (3)0.001 (2)0.016 (3)
C8E0.264 (12)0.177 (9)0.114 (6)0.123 (9)0.026 (7)0.033 (5)
C9E0.174 (10)0.172 (10)0.340 (18)0.053 (8)0.032 (11)0.045 (11)
O16A0.134 (14)0.103 (8)0.126 (13)0.070 (8)0.008 (9)0.025 (8)
O15A0.131 (10)0.146 (12)0.061 (8)0.043 (10)0.000 (5)0.026 (5)
O14A0.079 (10)0.071 (7)0.111 (12)0.027 (6)0.028 (7)0.015 (6)
Geometric parameters (Å, º) top
Cu3—O102.0040 (17)C7—C81.509 (4)
Cu3—O51.9346 (17)C20—C251.424 (4)
Cu3—O41.8963 (17)C20—C211.408 (4)
Cu3—O72.3648 (17)C1—C61.427 (4)
Cu3—N31.962 (2)C1—C21.402 (4)
Cu1—O102.0043 (19)C26—C251.471 (4)
Cu1—O21.9538 (17)C26—C271.508 (3)
Cu1—O42.3893 (17)C10—C111.514 (4)
Cu1—O11.8767 (18)C10—C91.518 (4)
Cu1—N11.956 (2)C25—C241.402 (4)
Cu5—O101.9778 (19)C48—C491.518 (4)
Cu5—O81.9434 (18)C48—C471.513 (4)
Cu5—O12.4533 (18)C45—C441.464 (4)
Cu5—O71.8894 (18)C45—C461.510 (4)
Cu5—N51.946 (2)C39—C441.426 (4)
Cu4—O51.9155 (17)C39—C401.405 (4)
Cu4—O61.8496 (19)C12—C141.461 (4)
Cu4—O1W1.961 (2)C12—C131.503 (4)
Cu4—N41.934 (2)C33—C381.419 (4)
Cu2—O111.986 (2)C33—C311.466 (4)
Cu2—O21.9385 (17)C33—C341.414 (4)
Cu2—O31.855 (2)C38—C371.409 (4)
Cu2—N21.941 (2)C14—C191.425 (4)
O11—N1021.259 (3)C14—C151.403 (4)
N102—O121.206 (3)C31—C321.503 (4)
N102—O131.225 (3)C6—C51.411 (4)
Cu6—O14B2.45 (2)C29—C301.523 (4)
Cu6—O81.9350 (18)C29—C281.515 (4)
Cu6—O91.863 (2)C52—C571.419 (4)
Cu6—O2W2.0273 (19)C52—C501.467 (4)
Cu6—N61.942 (2)C52—C531.415 (4)
O14B—N2021.28 (3)C57—C561.414 (4)
N202—O16B1.25 (2)C50—C511.503 (4)
N202—O15B1.26 (3)C34—C351.371 (4)
N202—O16A1.22 (2)C44—C431.409 (4)
N202—O15A1.196 (14)C19—C181.419 (4)
N202—O14A1.20 (2)C37—C361.370 (4)
O2—C101.438 (3)C40—C411.376 (4)
O5—C291.418 (3)C21—C221.378 (4)
O8—C481.426 (3)C35—C361.374 (5)
O4—C201.318 (3)C56—C551.368 (5)
O1—C11.318 (3)C5—C41.367 (5)
O7—C391.310 (3)C53—C541.371 (5)
O9—C571.313 (3)C2—C31.373 (4)
O3—C191.306 (4)C18—C171.364 (5)
O6—C381.316 (3)C4—C31.377 (5)
N5—C451.287 (4)C17—C161.380 (6)
N5—C471.475 (3)C55—C541.376 (5)
N1—C71.295 (3)C24—C231.369 (5)
N1—C91.468 (3)C43—C421.368 (6)
N3—C261.286 (3)C15—C161.369 (5)
N3—C281.474 (3)C22—C231.378 (5)
N4—C311.294 (3)C41—C421.381 (6)
N4—C301.469 (3)O1E—C2E1.426 (6)
N2—C111.468 (3)C2E—C3E1.456 (8)
N2—C121.295 (4)O4E—C5E1.348 (6)
N6—C501.294 (3)C5E—C6E1.461 (8)
N6—C491.472 (4)O7E—C8E1.473 (9)
C7—C61.463 (4)C8E—C9E1.420 (4)
O10—Cu3—O772.48 (7)C12—N2—C11120.5 (2)
O5—Cu3—O1095.79 (8)C50—N6—Cu6127.0 (2)
O5—Cu3—O791.62 (7)C50—N6—C49121.3 (2)
O5—Cu3—N385.86 (8)C49—N6—Cu6110.64 (16)
O4—Cu3—O1084.02 (8)N1—C7—C6120.7 (2)
O4—Cu3—O5170.39 (8)N1—C7—C8120.6 (3)
O4—Cu3—O797.46 (7)C6—C7—C8118.7 (2)
O4—Cu3—N392.84 (8)O4—C20—C25124.2 (2)
N3—Cu3—O10170.79 (8)O4—C20—C21117.6 (2)
N3—Cu3—O7116.59 (8)C21—C20—C25118.2 (2)
O10—Cu1—O472.34 (6)O1—C1—C6124.2 (2)
O2—Cu1—O1092.40 (8)O1—C1—C2117.4 (3)
O2—Cu1—O493.94 (7)C2—C1—C6118.4 (2)
O2—Cu1—N186.00 (8)N3—C26—C25121.4 (2)
O1—Cu1—O1086.17 (8)N3—C26—C27120.4 (2)
O1—Cu1—O2170.60 (8)C25—C26—C27118.2 (2)
O1—Cu1—O494.47 (8)O2—C10—C11108.7 (2)
O1—Cu1—N193.42 (8)O2—C10—C9108.7 (2)
N1—Cu1—O10167.74 (8)C11—C10—C9111.4 (2)
N1—Cu1—O4119.88 (8)C20—C25—C26123.0 (2)
O10—Cu5—O172.65 (7)C24—C25—C20117.7 (3)
O8—Cu5—O1094.68 (7)C24—C25—C26119.3 (3)
O8—Cu5—O193.29 (7)O8—C48—C49108.9 (2)
O8—Cu5—N586.72 (8)O8—C48—C47109.7 (2)
O7—Cu5—O1084.42 (7)C47—C48—C49112.2 (2)
O7—Cu5—O8171.86 (8)N2—C11—C10108.1 (2)
O7—Cu5—O194.15 (8)N5—C45—C44120.5 (2)
O7—Cu5—N592.98 (8)N5—C45—C46120.9 (3)
N5—Cu5—O10171.32 (9)C44—C45—C46118.6 (3)
N5—Cu5—O1115.87 (8)O7—C39—C44123.9 (3)
O5—Cu4—O1W87.84 (8)O7—C39—C40117.7 (2)
O5—Cu4—N486.56 (8)C40—C39—C44118.4 (2)
O6—Cu4—O5173.69 (9)N2—C12—C14121.1 (3)
O6—Cu4—O1W90.97 (9)N2—C12—C13119.9 (3)
O6—Cu4—N495.34 (9)C14—C12—C13119.0 (3)
N4—Cu4—O1W171.10 (9)C38—C33—C31123.9 (2)
O2—Cu2—O1188.40 (8)C34—C33—C38117.4 (2)
O2—Cu2—N286.37 (8)C34—C33—C31118.7 (2)
O3—Cu2—O1190.92 (9)O6—C38—C33125.7 (2)
O3—Cu2—O2171.60 (8)O6—C38—C37116.1 (3)
O3—Cu2—N294.27 (9)C37—C38—C33118.1 (2)
N2—Cu2—O11174.77 (9)C19—C14—C12122.9 (3)
N102—O11—Cu2118.74 (17)C15—C14—C12119.4 (3)
O12—N102—O11120.6 (3)C15—C14—C19117.7 (3)
O12—N102—O13123.8 (3)N4—C31—C33121.2 (2)
O13—N102—O11115.7 (2)N4—C31—C32120.4 (3)
O8—Cu6—O14B91.3 (6)C33—C31—C32118.5 (2)
O8—Cu6—O2W90.96 (8)C1—C6—C7123.7 (2)
O8—Cu6—N686.12 (9)C5—C6—C7118.7 (3)
O9—Cu6—O14B97.2 (6)C5—C6—C1117.6 (3)
O9—Cu6—O8171.27 (9)O5—C29—C30108.9 (2)
O9—Cu6—O2W87.48 (9)O5—C29—C28108.9 (2)
O9—Cu6—N694.66 (9)C28—C29—C30112.4 (2)
O2W—Cu6—O14B87.7 (8)C57—C52—C50123.6 (2)
N6—Cu6—O14B97.4 (8)C53—C52—C57117.5 (3)
N6—Cu6—O2W174.23 (9)C53—C52—C50119.0 (3)
N202—O14B—Cu6122.5 (12)O9—C57—C52125.2 (3)
O16B—N202—O14B113.4 (19)O9—C57—C56116.4 (3)
O16B—N202—O15B117.3 (19)C56—C57—C52118.4 (3)
O15B—N202—O14B123.7 (19)N6—C50—C52121.0 (2)
O15A—N202—O16A114 (2)N6—C50—C51120.1 (3)
O15A—N202—O14A119.3 (16)C52—C50—C51118.9 (3)
O14A—N202—O16A125 (2)N4—C30—C29108.1 (2)
Cu3—O10—Cu1106.62 (9)N3—C28—C29107.97 (19)
Cu5—O10—Cu3106.11 (8)N6—C49—C48107.0 (2)
Cu5—O10—Cu1105.99 (9)N5—C47—C48107.5 (2)
Cu2—O2—Cu1115.44 (9)C35—C34—C33123.0 (3)
C10—O2—Cu1107.68 (14)N1—C9—C10107.8 (2)
C10—O2—Cu2106.34 (14)C39—C44—C45123.6 (2)
Cu4—O5—Cu3119.32 (8)C43—C44—C45119.2 (3)
C29—O5—Cu3109.95 (15)C43—C44—C39117.2 (3)
C29—O5—Cu4106.28 (14)O3—C19—C14125.6 (2)
Cu6—O8—Cu5120.77 (9)O3—C19—C18116.2 (3)
C48—O8—Cu5108.23 (15)C18—C19—C14118.1 (3)
C48—O8—Cu6106.02 (15)C36—C37—C38122.0 (3)
Cu3—O4—Cu196.50 (7)C41—C40—C39122.0 (3)
C20—O4—Cu3124.71 (16)C22—C21—C20121.5 (3)
C20—O4—Cu1137.80 (16)C34—C35—C36118.9 (3)
Cu1—O1—Cu593.56 (7)C55—C56—C57121.8 (3)
C1—O1—Cu1125.52 (17)C4—C5—C6122.4 (3)
C1—O1—Cu5140.83 (16)C37—C36—C35120.6 (3)
Cu5—O7—Cu396.20 (7)C54—C53—C52122.5 (3)
C39—O7—Cu3138.45 (17)C3—C2—C1121.5 (3)
C39—O7—Cu5124.21 (16)C17—C18—C19121.6 (3)
C57—O9—Cu6125.90 (19)C5—C4—C3119.5 (3)
C19—O3—Cu2126.46 (18)C18—C17—C16120.3 (3)
C38—O6—Cu4125.81 (18)C56—C55—C54120.3 (3)
C45—N5—Cu5128.00 (19)C23—C24—C25123.1 (3)
C45—N5—C47121.5 (2)C2—C3—C4120.6 (3)
C47—N5—Cu5109.65 (17)C42—C43—C44123.1 (3)
C7—N1—Cu1127.63 (19)C16—C15—C14122.6 (3)
C7—N1—C9120.5 (2)C23—C22—C21120.6 (3)
C9—N1—Cu1110.30 (16)C15—C16—C17119.7 (3)
C26—N3—Cu3127.41 (18)C40—C41—C42120.0 (3)
C26—N3—C28121.8 (2)C53—C54—C55119.6 (3)
C28—N3—Cu3109.53 (16)C43—C42—C41119.3 (3)
C31—N4—Cu4127.25 (19)C24—C23—C22118.9 (3)
C31—N4—C30121.8 (2)O1E—C2E—C3E106.6 (5)
C30—N4—Cu4110.24 (16)O4E—C5E—C6E110.7 (5)
C11—N2—Cu2110.48 (17)C9E—C8E—O7E104.3 (9)
C12—N2—Cu2127.20 (19)
Cu3—O5—C29—C3083.1 (2)N2—Cu2—O3—C195.5 (2)
Cu3—O5—C29—C2839.9 (2)N2—C12—C14—C1912.4 (4)
Cu3—O4—C20—C2525.9 (3)N2—C12—C14—C15165.9 (3)
Cu3—O4—C20—C21155.9 (2)N6—Cu6—O9—C579.4 (2)
Cu3—O7—C39—C44167.82 (19)C7—N1—C9—C10165.0 (2)
Cu3—O7—C39—C4010.6 (4)C7—C6—C5—C4178.6 (3)
Cu3—N3—C26—C2513.9 (4)C20—C25—C24—C230.1 (5)
Cu3—N3—C26—C27165.9 (2)C20—C21—C22—C230.2 (6)
Cu3—N3—C28—C2930.0 (3)C1—C6—C5—C41.5 (4)
Cu1—O2—C10—C1178.1 (2)C1—C2—C3—C40.4 (5)
Cu1—O2—C10—C943.3 (2)C26—N3—C28—C29162.2 (2)
Cu1—O4—C20—C25168.43 (19)C26—C25—C24—C23180.0 (4)
Cu1—O4—C20—C219.8 (4)C25—C20—C21—C221.2 (5)
Cu1—O1—C1—C623.0 (4)C25—C24—C23—C221.3 (7)
Cu1—O1—C1—C2159.2 (2)C11—N2—C12—C14179.0 (2)
Cu1—N1—C7—C615.7 (3)C11—N2—C12—C131.6 (4)
Cu1—N1—C7—C8164.7 (2)C11—C10—C9—N172.4 (3)
Cu1—N1—C9—C1028.2 (3)C45—N5—C47—C48159.8 (2)
Cu5—O8—C48—C4982.9 (2)C45—C44—C43—C42177.0 (4)
Cu5—O8—C48—C4740.2 (2)C39—C44—C43—C421.1 (6)
Cu5—O1—C1—C6152.5 (2)C39—C40—C41—C420.6 (6)
Cu5—O1—C1—C225.3 (4)C12—N2—C11—C10171.9 (2)
Cu5—O7—C39—C4427.5 (4)C12—C14—C19—O32.8 (4)
Cu5—O7—C39—C40154.0 (2)C12—C14—C19—C18178.7 (3)
Cu5—N5—C45—C4413.1 (4)C12—C14—C15—C16178.2 (3)
Cu5—N5—C45—C46168.1 (2)C33—C38—C37—C360.5 (4)
Cu5—N5—C47—C4829.9 (3)C33—C34—C35—C360.1 (5)
Cu4—O5—C29—C3047.4 (2)C38—C33—C31—N44.6 (4)
Cu4—O5—C29—C28170.32 (17)C38—C33—C31—C32174.6 (3)
Cu4—O6—C38—C331.1 (4)C38—C33—C34—C350.1 (4)
Cu4—O6—C38—C37179.6 (2)C38—C37—C36—C350.5 (5)
Cu4—N4—C31—C3310.9 (4)C14—C19—C18—C170.5 (4)
Cu4—N4—C31—C32168.2 (2)C14—C15—C16—C170.6 (6)
Cu4—N4—C30—C2917.8 (2)C31—N4—C30—C29171.1 (2)
Cu2—O11—N102—O1217.8 (4)C31—C33—C38—O61.8 (4)
Cu2—O11—N102—O13162.3 (3)C31—C33—C38—C37178.9 (3)
Cu2—O2—C10—C1146.2 (2)C31—C33—C34—C35179.3 (3)
Cu2—O2—C10—C9167.61 (17)C6—C1—C2—C31.8 (5)
Cu2—O3—C19—C1411.2 (4)C6—C5—C4—C30.6 (5)
Cu2—O3—C19—C18170.3 (2)C52—C57—C56—C552.2 (5)
Cu2—N2—C11—C1022.4 (2)C52—C53—C54—C550.3 (6)
Cu2—N2—C12—C1417.9 (4)C57—C52—C50—N614.5 (4)
Cu2—N2—C12—C13161.5 (2)C57—C52—C50—C51164.8 (3)
O11—Cu2—O3—C19175.2 (2)C57—C52—C53—C540.7 (5)
Cu6—O14B—N202—O16B108 (3)C57—C56—C55—C541.9 (6)
Cu6—O14B—N202—O15B99 (4)C50—N6—C49—C48168.5 (2)
Cu6—O8—C48—C4948.0 (2)C50—C52—C57—O90.9 (4)
Cu6—O8—C48—C47171.09 (17)C50—C52—C57—C56178.9 (3)
Cu6—O9—C57—C5213.1 (4)C50—C52—C53—C54179.8 (3)
Cu6—O9—C57—C56168.9 (2)C30—N4—C31—C33179.5 (2)
Cu6—N6—C50—C5216.4 (4)C30—N4—C31—C321.4 (4)
Cu6—N6—C50—C51162.9 (2)C30—C29—C28—N374.9 (3)
Cu6—N6—C49—C4822.4 (2)C28—N3—C26—C25179.5 (2)
O14B—Cu6—O9—C5788.6 (8)C28—N3—C26—C270.4 (4)
O10—Cu3—O4—Cu15.17 (7)C28—C29—C30—N4163.9 (2)
O10—Cu3—O4—C20165.2 (2)C49—N6—C50—C52176.4 (2)
O10—Cu1—O1—Cu58.93 (7)C49—N6—C50—C514.3 (4)
O10—Cu1—O1—C1173.9 (2)C49—C48—C47—N574.7 (3)
O10—Cu5—O7—Cu36.37 (8)C47—N5—C45—C44178.6 (2)
O10—Cu5—O7—C39163.5 (2)C47—N5—C45—C460.3 (4)
O2—C10—C11—N245.5 (3)C47—C48—C49—N6168.3 (2)
O2—C10—C9—N147.3 (3)C34—C33—C38—O6179.1 (3)
O5—C29—C30—N443.1 (3)C34—C33—C38—C370.2 (4)
O5—C29—C28—N345.9 (3)C34—C33—C31—N4174.5 (3)
O8—C48—C49—N646.7 (3)C34—C33—C31—C326.3 (4)
O8—C48—C47—N546.5 (3)C34—C35—C36—C370.2 (5)
O4—Cu1—O1—Cu580.85 (7)C9—N1—C7—C6180.0 (2)
O4—Cu1—O1—C1102.0 (2)C9—N1—C7—C80.4 (4)
O4—C20—C25—C263.0 (4)C9—C10—C11—N2165.2 (2)
O4—C20—C25—C24176.9 (3)C44—C39—C40—C410.3 (5)
O4—C20—C21—C22177.1 (3)C44—C43—C42—C410.8 (7)
O1—Cu5—O7—Cu378.46 (7)C19—C14—C15—C160.1 (5)
O1—Cu5—O7—C3991.4 (2)C19—C18—C17—C160.0 (5)
O1—C1—C6—C74.7 (4)C40—C39—C44—C45177.4 (3)
O1—C1—C6—C5175.2 (2)C40—C39—C44—C430.5 (4)
O1—C1—C2—C3176.2 (3)C40—C41—C42—C430.1 (7)
O7—Cu3—O4—Cu176.57 (7)C21—C20—C25—C26178.8 (3)
O7—Cu3—O4—C2093.8 (2)C21—C20—C25—C241.3 (4)
O7—C39—C44—C454.1 (4)C21—C22—C23—C241.4 (7)
O7—C39—C44—C43177.9 (3)C27—C26—C25—C20162.0 (3)
O7—C39—C40—C41178.9 (3)C27—C26—C25—C2418.0 (4)
O9—C57—C56—C55179.6 (3)C56—C55—C54—C530.8 (6)
O3—C19—C18—C17179.1 (3)C5—C4—C3—C21.6 (5)
O2W—Cu6—O9—C57175.9 (2)C8—C7—C6—C1165.0 (3)
O6—C38—C37—C36178.8 (3)C8—C7—C6—C514.9 (4)
O1W—Cu4—O6—C38177.0 (2)C53—C52—C57—O9179.6 (3)
N5—Cu5—O7—Cu3165.33 (8)C53—C52—C57—C561.6 (4)
N5—Cu5—O7—C3924.8 (2)C53—C52—C50—N6165.0 (3)
N5—C45—C44—C3917.2 (4)C53—C52—C50—C5115.7 (4)
N5—C45—C44—C43160.8 (3)C2—C1—C6—C7177.5 (3)
N1—Cu1—O1—Cu5158.80 (8)C2—C1—C6—C52.6 (4)
N1—Cu1—O1—C118.4 (2)C18—C17—C16—C150.5 (6)
N1—C7—C6—C115.4 (4)C13—C12—C14—C19167.0 (3)
N1—C7—C6—C5164.7 (2)C13—C12—C14—C1514.7 (4)
N3—Cu3—O4—Cu1166.14 (8)C46—C45—C44—C39164.0 (3)
N3—Cu3—O4—C2023.5 (2)C46—C45—C44—C4318.1 (4)
N3—C26—C25—C2017.9 (4)C15—C14—C19—O3178.9 (3)
N3—C26—C25—C24162.2 (3)C15—C14—C19—C180.4 (4)
N4—Cu4—O6—C383.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O110.51 (4)2.43 (4)2.854 (3)142 (6)
O10—H10···O2W0.51 (4)2.75 (3)2.910 (3)103 (4)
O10—H10···O1W0.51 (4)2.73 (4)3.155 (3)143 (6)
O1W—H1WA···O1E0.862.262.625 (4)106
O1W—H1WB···O130.862.212.876 (4)135
C11—H11B···O4Ei0.972.313.280 (4)174
C18—H18···O13ii0.932.543.328 (4)143
O4E—H4E···N2020.822.663.447 (5)161
O4E—H4E···O16B0.822.453.13 (2)141
O4E—H4E···O15B0.822.122.87 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Funding information

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationBanerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBasak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationBiswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Masison, Wisconsin, USA.  Google Scholar
First citationBonanno, N. M., Lough, A. J. & Lemaire, M. T. (2018). Inorg. Chem. 57, 4837–4840.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004). Acta Cryst. E60, m1550–m1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.  Web of Science CSD CrossRef Google Scholar
First citationGamez, P., Aubel, P. G., Driessen, W. L. & Reedijk, J. (2001). Chem. Soc. Rev. 30, 376–385.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrundmeier, A. & Dau, H. (2012). BBA-Bioenergetics 1817, 88–105.  Web of Science CrossRef CAS Google Scholar
First citationGungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646–1652.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaldar, S., Dutta, N., Vijaykumar, G., Das, A., Carrella, L., Oliver, A. & Bera, M. (2019). Polyhedron, 172, 58–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMikuriya, M., Kudo, S., Matsumoto, C., Kurahashi, S., Tomohara, S., Koyama, Y., Yoshioka, D. & Mitsuhashi, R. (2018). Chem. Pap. 72, 853–862.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.  Web of Science CSD CrossRef CAS Google Scholar
First citationMusie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoor, S., Kumar, S., Sabir, S., Seidel, R. W. & Goddard, R. (2015). Acta Cryst. E71, m205–m206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOsypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.  Web of Science CSD CrossRef Google Scholar
First citationPopov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationSall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018b). Eur. J. Chem. 9, 67–73.  CSD CrossRef CAS Google Scholar
First citationSarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018a). Acta Cryst. E74, 1862–1866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Nandy, M., Rosair, G., Salah El Fallah, M., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.  Web of Science CSD CrossRef Google Scholar
First citationSong, Y., Massera, C., Roubeau, O., Gamez, P., Lanfredi, A. M. M. & Reedijk, J. (2004). Inorg. Chem. 43, 6842–6847.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, X.-Y., Li, Y. & Pullarkat, S. A. (2014). Inorg. Chem. 53, 10232–10239.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds