research communications
2–μ-CN-1κC:2κN–RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]
and magnetic study of the complex salt [RuCp(PTA)aArea Quimica Inorganica, Facultad de Quimica, Universidad de la República, 11800, Montevideo, Uruguay, bArea de Quimica Inorganica-CIESOL, Universidad de Almeria, 04120 Almeria, Spain, and cInstituto de Ciencia Molecular, Universidad de Valencia, C/ Catedratico Jose, Beltran 2, 46980 Paterna, Valencia, Spain
*Correspondence e-mail: mpacheco@fq.edu.uy
A new RuII–ReII complex salt, μ-cyanido-κ2C:N-bis[(η5-cyclopentadienyl)bis(3,5,7-triazaphosphaadamantane-κP)ruthenium(II)] tetrabromido(ethanol/methanol-κO)nitrosylrhenate(II), [Ru(CN)(C5H5)2(C6H12N3P)4][ReBr4(NO)(CH4O)0.5(C2H6O)0.5] or [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] (PTA = 3,5,7-triazaphosphaadamantane) was obtained and characterized by single-crystal X-ray diffraction, elemental analysis and infrared spectroscopy. The title salt was obtained by liquid–liquid diffusion of methanol/DMSO solutions of (NBu4)[Re(NO)Br4(EtOH)] and [(PTA)2CpRu–μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3). The RuII and ReII independent moieties correspond to a binuclear and mononuclear complex ion, respectively. A deep geometrical parameter analysis was performed, and no significant differences were found with earlier reports containing similar molecules. The magnetic properties were investigated in the temperature range 2.0–300 K, and the complex behaves as a quasi-magnetically isolated spin doublet with weak antiferromagnetic interactions.
Keywords: X-ray structure; ruthenium(II); rhenium(II); PTA; magnetism; crystal structure.
CCDC reference: 2075886
1. Chemical context
Ruthenium-arene-PTA (PTA = 3,5,7-triaza-phosphaadamantane) or RAPTA complexes are known in inorganic medicinal chemistry for their potent antitumor activity in vitro and in vivo, constituting a potential alternative to platinum-based drugs (Antonarakis & Emadi, 2010; Gasser et al., 2011; Liang et al., 2017; Hey-Hawkins & Hissler, 2019). Furthermore, PTA presents variable allowing it to act as a versatile building block towards the synthesis of coordination polymers with applications in other areas such as chemical catalysis (Darensbourg et al., 1995; Scalambra et al., 2017; Scalambra, Lopez-Sanchez et al., 2020) and material science (Phillips et al., 2004). Professor Romerosa's group and coworkers have developed a family of water-soluble and air-stable organometallic polymers containing an `RuCp(PTA)2' (Cp = Cyclopentadienyl) fragment. Most of them fit the general formula [{RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2}-μ-MXm]n (M = Cd, Ag, Ni, Au, Co; X = halide or pseudohalide) (Serrano Ruiz et al., 2008; Lidrissi et al., 2005; Scalambra et al., 2015, 2018; Scalambra, Sierra-Martin et al., 2020). These polymers show exciting properties such as the formation of structured microparticles, amorphization under low pressures (Scalambra et al., 2015, 2016), the formation of layered structures that can be exfoliated in ultra-thin 3D layers (Scalambra, Sierra-Martin et al., 2020), the formation of gels in the presence of water (Sierra-Martin et al., 2018, 2019; Serrano Ruiz et al., 2008) or the capacity to capture water molecules in nanochannels (Scalambra et al., 2017). The described polymers include a wide variety of arrangements from one to three dimensions, and they may be classified as a new class of materials lying between metal–organic frameworks (MOFs) and infinite coordination polymers (ICPs) (Spokoyny et al., 2009). The preparation mostly involves the use of the bimetallic precursor RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) in the reaction with other transition-metal cation salts or complexes, in an easy, robust and reproducible method (Serrano-Ruiz et al., 2014).
On top of that, rhenium nitrosyl complexes applications are widely recognized: catalysis, production of organonitrogen compounds, pollutant control, nitric oxide release drugs, assembly of devices with novel optical and magnetic properties, among other uses (Machura, 2005; Jiang et al., 2011; Probst et al., 2009; Ghosh et al., 2014; Dilworth, 2021). Kremer's group has performed a thorough magnetic study of a series of complexes (NBu4)[ReII(NO)Br4(L)] (L is an N,O or P-donor neutral ligand) (Pacheco et al., 2013; Pacheco, Cuevas, González-Platas, Lloret et al., 2015). The low-spin outer 5d5 shell results in strong spin-orbit interactions giving rise to a significant magnetic anisotropy, an essential feature for the potential construction of molecule-based magnets (Wang et al., 2011). In this work, we present the complex salt [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]. The synthesis, single crystal X-ray and magnetic properties are discussed.
2. Structural commentary
The molecular structure of [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] consists of discrete [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2]+ cations and [Re(NO)Br4(EtOH)0.5(MeOH)0.5]− anions (Fig. 1), which coform the asymmetric unit.
The cation is an homobinuclear RuII complex with two piano-stool fashion {RuCp(PTA)2} moieties that are linked by a –CN– bridging ligand. The {CpRu(PTA)2}+ moieties in each Ru2 unit exhibit a transoid arrangement related to the Ru—C≡N—Ru axis. The Ru1—C25 and Ru2—N13 distances are 2.008 (7) and 2.030 (8) Å, respectively. The Ru—CN—Ru arrangement is practically linear: <(Ru1—C25—N13) = 175.5 (7)° and <(C25—N13—Ru2) = 176.3 (7)°. The C≡N bond length of the cyano group is 1.14 (1) Å. The distances from the centroid of each Cp ligand to the respective ruthenium atom are 1.886 Å (Cp—Ru1) and 1.878 (Cp—Ru2). The Ru—PPTA distances are in the range 2.243 (2)–2.281 (2) Å, which is in agreement with those found in similar compounds.
The complex anion is constituted by an ReII atom and displays a distorted octahedral geometry formed by four bromide ions in the equatorial plane, one nitrogen atom from the nitrosyl ligand, and one oxygen atom from an –OH group in apical positions. The –OH group comes from a methanol or an ethanol molecule, both with an s.o.f. of 0.5. The O1M and C1E atomic positions are the same for both the MeOH and the EtOH ligand. The Re1—O1m—C1e angle is 128.3 (6)°. The NO group is practically linear with an O101—N101—Re1 angle of 178.6 (10)°. The three atoms are also aligned with the O1M atom of the alcohol ligand, exhibiting a N101—Re1—O1M angle of 178.9 (3)°. The rhenium atom is shifted from the main plane of Br ligands towards the apical NO group by 0.157 Å.
3. Supramolecular features
The complex crystallizes in the monoclinic P21/c The cations interconnect adjacent anions via O—H⋯N hydrogen bonds and C—H⋯Br interactions, forming an infinite three-dimensional framework (Table 1). The O—H⋯N interactions are given along the bc plane and are defined by O1m as the donor atom from the MeOH/EtOH ligand and N8i atom from a PTA ligand at (x − 1, y, z) (Fig. 2). The H1M⋯N8i and O1M⋯N8i distances are 1.88 and 2.709 (9) Å, respectively. The angle defined by O1M—H1M⋯N8i is 165.5°.
The remaining hydrogen bonds are found between the PTA ligands from one cationic unit [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2]+ and bromides from [Re(NO)Br4(EtOH)0.5(MeOH)0.5]− units. The multiplicity and lack of defined directionality in the hydrogen-bond network are related to the fact that the major forces that stabilize the crystal are of electrostatic origin. The C—H⋯Br and the C⋯Br distances range from 2.53–3.12 Å and 3.208 (11)–3.944 (12) Å, respectively. The hydrogen-bond angle involving the C—H⋯Br atoms vary between 127 and 169°. These geometrical values are in concordance with weak hydrogen-bonding interactions (Desiraju, 1995; Metrangolo et al., 2006; Steed & Atwood, 2009). The effect of the combined weak C—H⋯Br bonds and their effect on the crystal assembly can be as significant as that of the strong interactions (Desiraju & Steiner, 2001). The C2E—H⋯N6 bond is probably negligible because of the low energy expected for all C—H bonds (Steed & Atwood, 2009) and particularly considering the C2E 50% atomic site occupation.
4. Hirshfeld analysis
To further understand the intermolecular interactions between the ionic complexes within the ) was constructed around each ion. In addition, a 2D fingerprint plot analysis (Spackman & McKinnon, 2002) was performed for each case. Crystal Explorer17 (Turner et al., 2017) was used to determine the surface and construct the plots. The Hirshfeld surfaces of both the anion and cation are illustrated in Fig. 3 (left) and 3 (right), respectively, showing surfaces that have been mapped over a dnorm range of −0.6854 to 1.6426 a.u. (McKinnon et al., 2007). The color code employed for dnorm is red for the shortest dnorm and blue for the longest dnorm. Red spots in the surface correspond to the shortest contacts within the surface, indicating the formation of intermolecular bonds as those detailed in the previous section (supramolecular features).
a Hirshfeld surface (Spackman & Jayatilaka, 2009The anion Hirshfeld surface shows how the most significant interaction is due to the O1m—H⋯N8 bond, which is illustrated by bright-red spots in Fig. 3 (left), while the weaker spot corresponds to the C2E—H⋯N6 bond. What is more, the other minor red spots can be identified as Br⋯H interactions. These red spots (and thus the interionic interactions) can be correlated with the spikes observed in the two-dimensional fingerprint plots. In fact, the anion fingerprint for all interactions exhibits characteristic spikes in the region 1.8 Å < di + de < 2.8 Å resulting from H⋯N and Br⋯H interactions. There is a high-density area close to the Br⋯H spike, indicating a significant number of Br⋯H contacts in the In addition, the broad central spike extending up to the (di,de) region of (0.65 Å, 0.78 Å) reflects the significant amount of H⋯H contacts in the structure. Nevertheless, it is important to point out that the H⋯H contacts are usually difficult to localize in the Hirshfeld surface as they are spread all over the crystal packing. The Hirshfeld surface analysis for the cationic unit and its fingerprint also shows how H⋯N, N⋯H, H⋯Br, and H⋯H contacts surround the [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2] unit. The relative contributions of the different intermolecular contacts to the Hirshfeld area for both ions are shown in Fig. 4. In the anion, the major contributors (∼93%) are from Br⋯H, O⋯H and H⋯H contacts while in the cation, the Hirshfeld area is accounted mostly by the Br⋯H, N⋯H and H⋯H contacts (over 90%).
5. Database survey
A search in the Cambridge Structural Database (CSD) version 5.42 in the last update of February 2021 (Groom et al., 2016) for similar structures containing the anion and cation was performed. The {(PTA)2CpRu-μ-CN-RuCp(PTA)2} moiety has been reported previously, once as an independent cationic unit in VOHCUS (Serrano-Ruiz et al., 2014) as well as a fragment within polynuclear polymeric structures CEQPEW (Scalambra et al., 2018), EDONET (Scalambra et al., 2016), GUVZUV (Scalambra, Sierra-Martin et al., 2020) and XADHES (Scalambra et al., 2015).
Regarding the anionic unit, examples of crystal structures containing tetrabromonitrosylrhenium(II) complexes are scarce. The CSD search yielded 19 hits. In all of them, the rhenium coordination sphere exhibits an octahedral geometry, with a practically lineal {Re—NO} unit and a π-acceptor ligand such as phosphine or aromatic usually coordinating trans- to the –NO group. The found π-acceptor ligands include: MeCN (Ciani et al., 1975), EtOH (Ciani et al., 1975), pyrazine (Pacheco et al., 2013, 2014; Pacheco, Cuevas, González-Platas, & Kremer, 2015), nitrosyl (Mronga et al., 1982), tricyclohexylphosphine and triisopropylphosphine (Jiang et al., 2010), nicotinic acid and nicotinate anion (Pacheco, Cuevas, González-Platas, Lloret et al., 2015), pyridine, pyrimidine and pyridazine (Pacheco et al., 2013). All Re—Br distances observed in the complex reported herein, as well as the Re—N and N—O distances found, agree with those found for previously reported structures (see Figs. 1–3 in the supporting information).
A search in the CSD for complexes containing a metal ion coordinating a MeOH molecule yielded 13705 structures with the M—O—C angle lying in the range 123.333–130.865° (without considering possible outlier values). The same angle for metals coordinating an EtOH is in the range 124.464–132.412° (without considering possible outliers), in a total of 3503 reported structures. There are only five structures reported in the database containing ethanol coordinating to a rhenium atom, ABENRE (Ciani et al., 1975), PIXTOF (Masood & Hodgson, 1994), GEMVUR (Ikeda et al., 2012), EGAVEP (Hołyńska & Lis, 2014) and PIMRAH (Pino-Cuevas et al., 2018). In those, the Re—O—C angles vary between 115.8 (4) and 135 (1)°. The same search but for Re-OHMe complexes yielded 15 structures, with the Re—O—C angles in the 121.232–133.389° range. The only reported in the CSD containing the [Re(NO)Br4(EtOH)]− unit dates back to 1975 (ABENRE; Ciani et al., 1975). On the other hand, this is the first report of a evidencing the coordination of a methanol molecule substituting ethanol.
Given that C—H⋯Br bonds account for a significant fraction of intermolecular contacts, as seen in section 4, a search was conducted involving this bonding scheme to check if the values presented in this article are within the bin frequently encountered in transition-metal compounds. The search restrained metal–Br⋯H distances to be lower than the sum of the vdW radius (∼3.5 Å). Compounds containing a C—Br⋯H angle of less than 90° were discarded, as the hydrogen atom in the hydrogen bond must not point away from the acceptor atom (Aakeröy et al., 1999). The search resulted in 36099 hits from 12143 structures. The histograms of C⋯Br distances and C—H⋯Br angles (Figs. 4 and 5 in the supporting information) confirm that these H⋯Br contacts, considering the distance/angle criteria, can be identified as hydrogen bonds (Aakeröy et al., 1999; Metrangolo et al., 2006; Shimpi et al., 2007; Zhang et al., 2008).
6. Magnetic measurements
dc magnetic fields of 500 G (T < 20 K) and 5000 G (T ≥ 50 K). Experimental susceptibilities were carefully corrected for the diamagnetism of the holder (gelatine capsule) and constituent atoms by applying Pascal's constants.
measurements on polycrystalline samples were carried out with a Superconducting Quantum Interference Design (SQUID) magnetometer in the temperature range 2.0–300 K. In order to avoid saturation phenomena, we used externalThe magnetic behaviour of [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] is shown in Fig. 5 in the form of a χMT versus T plot where χM is the molar per one ReII ion and T the absolute temperature. As expected, a straight line is observed for this compound (Pacheco et al., 2013). The thermal dependence of χMT is in line with one unpaired electron (S = ½) and a temperature independent paramagnetic contribution (TIP). The χMT value at room temperature is higher than that expected for an S = ½ with g = 2.0 (0.375 cm3 K mol−1) due to the temperature-independent paramagnetism (TIP). The slight decrease below 10 K must be attributed to very weak intermolecular antiferromagnetic (AF) interactions between the [Re(NO)Br4(EtOH)0.5(MeOH)0.5]− anions.
In this sense, we use equation (1), with S = ½, to fit the experimental data.
(1)
Best-fit parameters were g = 2.01 (1), TIP = 155 (3) 10−6 cm3 mol−1 and θ = – 0.100 (1) K. The calculated g and TIP values are very close to those observed for similar complexes previously reported (Pacheco et al., 2013; Pacheco, Cuevas, González-Platas, Lloret et al., 2015). However, the Weiss parameter (intermolecular antiferromagnetic interaction), θ, is lower, indicating that the paramagnetic anion is much more isolated, probably due to the vast diamagnetic counter-ion.
7. Synthesis and crystallization
7.1. Experimental details
(NBu4)[Re(NO)Br4(EtOH)] and [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) were prepared as previously reported (Pacheco et al., 2013; Serrano-Ruiz et al., 2014). Solvents employed in the synthesis were purchased from commercial sources and used without further purification. Elemental analyses (C, H, N, S) were performed using a Flash 2000 (Thermo Scientific) elemental analyser. The IR spectra were recorded as 1% KBr pellets on FTIR Shimadzu Prestige-21 spectrophotometer in the range 4000-400 cm−1.
7.2. Synthesis
A solution of (NBu4)[Re(NO)Br4(EtOH)] (0.012 mmol, 10 mg) dissolved in 5 mL of a methanol–DMSO (400:1, v/v) mixture was layered in an test tube with a solution of [RuCp(PTA)2–μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) (0.012 mmol, 13 mg) in 5 mL of the same methanol–DMSO mixture; ca 5 mL of the solvent mixture should be added between the two reactant layers to decrease diffusion time. Deep reddish-brown plate-like crystals, suitable for single crystal X-ray diffraction were obtained after one week. The product was filtered and washed by decantation with methanol. Yield: 24%. Analysis calculated for Ru2C36.5N14Re1O2Br4H63P4: C, 28.07; H, 4.07; N, 12.56; S. 0,00%. Found: C, 27.18; H, 4.39; N, 12.53; S. 0,00%. Selected IR absorption bands (KBr, νmax/cm−1): 3413[s, br, νs(–OH)], 2922(w), 2114[m, νs(μ–N≡C)], 1759[s, νs (–NO)], 1280(m), 1242(s), 1097(m), 1016(s), 970(s), 948(s), 833(w), 744(w), 574(m), 480(m).
8. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding: C—H distance between 0.94 and 0.98 Å with Uiso(H) = 1.2Ueq(C). Methanol/ethanol coordinating molecules were treated as positionally disordered utilizing the PART instruction with occupancy fixed to 0.5 applied to C1E, C1M, and C2E. C1M and C1E were constrained to occupy equivalent positions. Meanwhile, C2E was located in the Fourier difference map and refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2075886
https://doi.org/10.1107/S2056989021006381/ex2046sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006381/ex2046Isup2.hkl
Histogram showing the number of Re-Br distances hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: https://doi.org/10.1107/S2056989021006381/ex2046sup3.png
Histogram showing the number of Re-N(NO) distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: https://doi.org/10.1107/S2056989021006381/ex2046sup4.png
Histogram showing the number of N-O nitrosyl distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: https://doi.org/10.1107/S2056989021006381/ex2046sup5.png
Histogram showing the number of C...Br distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: https://doi.org/10.1107/S2056989021006381/ex2046sup6.png
Histogram showing the number of C...H-Br angles in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: https://doi.org/10.1107/S2056989021006381/ex2046sup7.png
Data collection: APEX2 (Bruker, 2007); cell
APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).[Ru(CN)(C5H5)2(C6H12N3P)4]2[ReBr4(NO)(CH4O)0.5(C2H6O)0.5]2 | F(000) = 3036 |
Mr = 3123.73 | Dx = 2.063 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.6027 (4) Å | Cell parameters from 125 reflections |
b = 17.7075 (6) Å | θ = 3.1–16.9° |
c = 23.0252 (9) Å | µ = 6.35 mm−1 |
β = 101.914 (1)° | T = 296 K |
V = 5027.7 (3) Å3 | Prism, orange |
Z = 2 | 0.48 × 0.10 × 0.03 mm |
Bruker D8 venture diffractometer | 8565 independent reflections |
Radiation source: sealed tube, SIEMENS KFFMO2K-90C model 10190380 | 6494 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.079 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 24.7°, θmin = 2.8° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→20 |
Tmin = 0.485, Tmax = 0.751 | l = −27→27 |
56882 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0568P)2 + 32.4246P] where P = (Fo2 + 2Fc2)/3 |
8565 reflections | (Δ/σ)max < 0.001 |
572 parameters | Δρmax = 1.45 e Å−3 |
0 restraints | Δρmin = −1.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re1 | −0.05570 (3) | −0.18588 (2) | 0.11322 (2) | 0.03581 (11) | |
Ru1 | 0.48233 (5) | 0.25106 (4) | 0.22334 (3) | 0.02682 (15) | |
Ru2 | 0.66214 (5) | 0.27893 (4) | 0.04193 (3) | 0.02792 (16) | |
Br1 | 0.04222 (9) | −0.12082 (7) | 0.20632 (4) | 0.0584 (3) | |
Br2 | 0.04855 (10) | −0.10735 (7) | 0.05355 (5) | 0.0667 (3) | |
Br3 | −0.16673 (10) | −0.23895 (6) | 0.01809 (4) | 0.0595 (3) | |
Br4 | −0.17972 (8) | −0.24939 (6) | 0.17119 (4) | 0.0518 (3) | |
P1 | 0.35033 (15) | 0.33600 (12) | 0.18506 (8) | 0.0268 (4) | |
P2 | 0.40014 (16) | 0.15060 (12) | 0.17422 (9) | 0.0318 (5) | |
P3 | 0.79305 (16) | 0.20690 (12) | 0.09819 (8) | 0.0279 (4) | |
P4 | 0.72619 (16) | 0.39303 (12) | 0.07922 (9) | 0.0294 (4) | |
O101 | 0.0961 (8) | −0.3111 (6) | 0.1265 (5) | 0.110 (4) | |
N1 | 0.1390 (6) | 0.3853 (4) | 0.1485 (3) | 0.0434 (18) | |
N2 | 0.2668 (7) | 0.4759 (5) | 0.2046 (4) | 0.054 (2) | |
N3 | 0.2747 (6) | 0.4471 (5) | 0.1013 (4) | 0.050 (2) | |
N4 | 0.2311 (6) | 0.0505 (4) | 0.1466 (4) | 0.055 (2) | |
N6 | 0.3384 (9) | 0.0693 (5) | 0.0709 (4) | 0.072 (3) | |
N7 | 0.8856 (6) | 0.1427 (4) | 0.2069 (3) | 0.048 (2) | |
N8 | 0.8650 (5) | 0.0578 (4) | 0.1213 (3) | 0.0384 (17) | |
N9 | 1.0030 (5) | 0.1578 (4) | 0.1354 (3) | 0.0389 (17) | |
N10 | 0.7525 (8) | 0.5001 (5) | 0.1692 (4) | 0.063 (2) | |
N11 | 0.6862 (10) | 0.5468 (5) | 0.0695 (5) | 0.079 (3) | |
N12 | 0.8770 (8) | 0.5093 (5) | 0.1015 (5) | 0.068 (3) | |
C10 | 0.2299 (9) | 0.0593 (6) | 0.0845 (6) | 0.075 (4) | |
H10A | 0.185518 | 0.102699 | 0.069690 | 0.090* | |
H10B | 0.196148 | 0.015088 | 0.063481 | 0.090* | |
C11 | 0.4070 (11) | 0.0061 (7) | 0.0987 (7) | 0.088 (4) | |
H11A | 0.379585 | −0.040178 | 0.078516 | 0.106* | |
H11B | 0.479829 | 0.013789 | 0.092099 | 0.106* | |
N13 | 0.5859 (5) | 0.2744 (4) | 0.1114 (3) | 0.0363 (16) | |
N101 | 0.0350 (7) | −0.2596 (5) | 0.1217 (4) | 0.057 (2) | |
C1 | 0.2033 (6) | 0.3182 (5) | 0.1677 (4) | 0.043 (2) | |
H1A | 0.187494 | 0.280371 | 0.136628 | 0.052* | |
H1B | 0.181946 | 0.297768 | 0.202646 | 0.052* | |
C2 | 0.3562 (7) | 0.3865 (5) | 0.1154 (4) | 0.044 (2) | |
H2A | 0.427904 | 0.408071 | 0.118761 | 0.053* | |
H2B | 0.344982 | 0.350473 | 0.082962 | 0.053* | |
C3 | 0.3459 (8) | 0.4201 (5) | 0.2319 (4) | 0.053 (3) | |
H3A | 0.329067 | 0.404229 | 0.269273 | 0.063* | |
H3B | 0.417142 | 0.443326 | 0.240483 | 0.063* | |
C7 | 0.2643 (7) | 0.1199 (6) | 0.1800 (5) | 0.053 (3) | |
H7A | 0.262715 | 0.111570 | 0.221448 | 0.064* | |
H7B | 0.212869 | 0.159678 | 0.165259 | 0.064* | |
C8 | 0.3864 (9) | 0.1426 (6) | 0.0934 (4) | 0.057 (3) | |
H8A | 0.340877 | 0.183277 | 0.074070 | 0.069* | |
H8B | 0.457243 | 0.147751 | 0.083554 | 0.069* | |
C9 | 0.4687 (8) | 0.0597 (5) | 0.1959 (6) | 0.064 (3) | |
H9A | 0.542754 | 0.062672 | 0.190220 | 0.077* | |
H9B | 0.471397 | 0.050991 | 0.237786 | 0.077* | |
N5 | 0.4139 (8) | −0.0044 (5) | 0.1616 (5) | 0.071 (3) | |
C4 | 0.1629 (7) | 0.4158 (6) | 0.0938 (4) | 0.048 (2) | |
H4A | 0.111021 | 0.455341 | 0.079097 | 0.057* | |
H4B | 0.153739 | 0.376066 | 0.064165 | 0.057* | |
C5 | 0.1567 (8) | 0.4440 (6) | 0.1932 (4) | 0.055 (3) | |
H5A | 0.142735 | 0.423527 | 0.229964 | 0.066* | |
H5B | 0.105007 | 0.484405 | 0.180683 | 0.066* | |
C6 | 0.2891 (9) | 0.5031 (5) | 0.1497 (5) | 0.061 (3) | |
H6A | 0.363300 | 0.521225 | 0.156964 | 0.074* | |
H6B | 0.242057 | 0.545789 | 0.136630 | 0.074* | |
C12 | 0.3026 (9) | −0.0125 (5) | 0.1703 (5) | 0.064 (3) | |
H12A | 0.304399 | −0.016960 | 0.212516 | 0.077* | |
H12B | 0.272252 | −0.058858 | 0.151518 | 0.077* | |
C13 | 0.8036 (8) | 0.1997 (5) | 0.1790 (4) | 0.043 (2) | |
H13A | 0.823328 | 0.248627 | 0.196916 | 0.051* | |
H13B | 0.733433 | 0.186003 | 0.186840 | 0.051* | |
C14 | 0.7814 (7) | 0.1043 (5) | 0.0826 (4) | 0.038 (2) | |
H14A | 0.710386 | 0.087306 | 0.087148 | 0.046* | |
H14B | 0.786260 | 0.095862 | 0.041597 | 0.046* | |
C15 | 0.9390 (6) | 0.2153 (5) | 0.0987 (4) | 0.0356 (19) | |
H15A | 0.950021 | 0.210954 | 0.058339 | 0.043* | |
H15B | 0.964059 | 0.264882 | 0.113423 | 0.043* | |
C16 | 0.8588 (8) | 0.0680 (5) | 0.1841 (4) | 0.049 (2) | |
H16A | 0.785748 | 0.056039 | 0.188513 | 0.058* | |
H16B | 0.907554 | 0.032285 | 0.207982 | 0.058* | |
C17 | 0.9918 (7) | 0.1643 (6) | 0.1968 (4) | 0.049 (2) | |
H17A | 1.006169 | 0.216183 | 0.209553 | 0.059* | |
H17B | 1.046353 | 0.132840 | 0.221310 | 0.059* | |
C18 | 0.9748 (7) | 0.0812 (5) | 0.1149 (4) | 0.041 (2) | |
H18A | 1.027553 | 0.046580 | 0.137183 | 0.049* | |
H18B | 0.979171 | 0.077487 | 0.073475 | 0.049* | |
C19 | 0.7220 (10) | 0.4204 (6) | 0.1561 (4) | 0.061 (3) | |
H19A | 0.649346 | 0.412212 | 0.162738 | 0.073* | |
H19B | 0.771012 | 0.388218 | 0.183392 | 0.073* | |
C20 | 0.6489 (11) | 0.4732 (6) | 0.0421 (5) | 0.077 (4) | |
H20A | 0.655078 | 0.473891 | 0.000761 | 0.092* | |
H20B | 0.572964 | 0.466475 | 0.043119 | 0.092* | |
C21 | 0.8624 (9) | 0.4296 (6) | 0.0794 (6) | 0.069 (3) | |
H21A | 0.915554 | 0.397600 | 0.104395 | 0.083* | |
H21B | 0.875592 | 0.427327 | 0.039412 | 0.083* | |
C22 | 0.8613 (9) | 0.5136 (6) | 0.1613 (5) | 0.065 (3) | |
H22A | 0.883435 | 0.563405 | 0.176712 | 0.078* | |
H22B | 0.909056 | 0.477218 | 0.185063 | 0.078* | |
C23 | 0.6783 (10) | 0.5495 (7) | 0.1312 (6) | 0.075 (4) | |
H23A | 0.691530 | 0.600858 | 0.145481 | 0.090* | |
H23B | 0.604921 | 0.536233 | 0.134178 | 0.090* | |
C24 | 0.7978 (14) | 0.5580 (7) | 0.0637 (5) | 0.087 (5) | |
H24A | 0.817520 | 0.610183 | 0.073033 | 0.104* | |
H24B | 0.802066 | 0.549376 | 0.022668 | 0.104* | |
C25 | 0.5470 (5) | 0.2690 (4) | 0.1518 (3) | 0.0225 (15) | |
C26 | 0.5553 (8) | 0.3156 (5) | 0.3068 (4) | 0.046 (2) | |
H26 | 0.555150 | 0.370530 | 0.312146 | 0.055* | |
C27 | 0.4748 (8) | 0.2631 (7) | 0.3181 (4) | 0.053 (3) | |
H27 | 0.409889 | 0.276314 | 0.333130 | 0.063* | |
C28 | 0.5087 (9) | 0.1890 (6) | 0.3085 (4) | 0.054 (3) | |
H28 | 0.473025 | 0.142054 | 0.316367 | 0.065* | |
C29 | 0.6103 (7) | 0.1955 (6) | 0.2917 (4) | 0.045 (2) | |
H29 | 0.656417 | 0.153412 | 0.284591 | 0.053* | |
C30 | 0.6369 (7) | 0.2727 (6) | 0.2907 (4) | 0.050 (3) | |
H30 | 0.704052 | 0.292920 | 0.281675 | 0.060* | |
C31 | 0.5113 (8) | 0.2551 (7) | −0.0273 (4) | 0.061 (3) | |
H31 | 0.438182 | 0.249096 | −0.019477 | 0.074* | |
C32 | 0.5831 (10) | 0.1982 (7) | −0.0281 (4) | 0.062 (3) | |
H32 | 0.568991 | 0.144879 | −0.021077 | 0.075* | |
C33 | 0.6779 (10) | 0.2255 (8) | −0.0420 (4) | 0.068 (4) | |
H33 | 0.739328 | 0.195217 | −0.048791 | 0.081* | |
C34 | 0.6636 (10) | 0.3038 (8) | −0.0516 (4) | 0.074 (4) | |
H34 | 0.713939 | 0.337921 | −0.065857 | 0.089* | |
C35 | 0.5567 (9) | 0.3237 (7) | −0.0416 (4) | 0.064 (3) | |
H35 | 0.521157 | 0.373131 | −0.047466 | 0.077* | |
O1M | −0.1667 (5) | −0.0925 (4) | 0.1036 (3) | 0.0546 (17) | |
H1m | −0.145698 | −0.046869 | 0.108187 | 0.082* | |
C1EB | −0.2859 (10) | −0.0942 (7) | 0.0884 (6) | 0.076 (3) | 0.5 |
H101 | −0.296961 | −0.144748 | 0.071928 | 0.091* | 0.5 |
H102 | −0.301292 | −0.099033 | 0.127783 | 0.091* | 0.5 |
C2E | −0.3839 (19) | −0.0593 (14) | 0.0584 (12) | 0.076 (3) | 0.5 |
H2e1 | −0.405709 | −0.021893 | 0.083727 | 0.114* | 0.5 |
H2e2 | −0.439669 | −0.096818 | 0.048511 | 0.114* | 0.5 |
H2e3 | −0.372188 | −0.035670 | 0.022699 | 0.114* | 0.5 |
C1EA | −0.2859 (10) | −0.0942 (7) | 0.0884 (6) | 0.076 (3) | 0.5 |
H1eA | −0.319631 | −0.056188 | 0.058329 | 0.114* | 0.5 |
H1eB | −0.320451 | −0.093614 | 0.121497 | 0.114* | 0.5 |
H1eC | −0.314444 | −0.146063 | 0.065667 | 0.114* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.0446 (2) | 0.0355 (2) | 0.02719 (18) | −0.00580 (16) | 0.00707 (14) | −0.00453 (14) |
Ru1 | 0.0259 (3) | 0.0327 (3) | 0.0212 (3) | −0.0019 (3) | 0.0033 (2) | 0.0023 (3) |
Ru2 | 0.0300 (3) | 0.0349 (4) | 0.0180 (3) | 0.0006 (3) | 0.0031 (2) | −0.0007 (3) |
Br1 | 0.0624 (6) | 0.0696 (7) | 0.0382 (5) | −0.0096 (5) | −0.0010 (4) | −0.0183 (5) |
Br2 | 0.0934 (8) | 0.0612 (7) | 0.0558 (6) | −0.0312 (6) | 0.0394 (6) | −0.0125 (5) |
Br3 | 0.0914 (8) | 0.0437 (6) | 0.0345 (5) | −0.0140 (5) | −0.0078 (5) | −0.0047 (4) |
Br4 | 0.0577 (6) | 0.0529 (6) | 0.0480 (6) | −0.0077 (5) | 0.0184 (4) | 0.0064 (4) |
P1 | 0.0280 (10) | 0.0299 (11) | 0.0227 (10) | −0.0032 (9) | 0.0056 (8) | −0.0018 (8) |
P2 | 0.0303 (10) | 0.0297 (11) | 0.0330 (11) | −0.0023 (9) | 0.0010 (8) | 0.0038 (9) |
P3 | 0.0303 (10) | 0.0310 (11) | 0.0222 (10) | 0.0000 (9) | 0.0054 (8) | 0.0006 (8) |
P4 | 0.0339 (11) | 0.0292 (11) | 0.0242 (10) | 0.0016 (9) | 0.0038 (8) | 0.0049 (8) |
O101 | 0.093 (7) | 0.097 (8) | 0.141 (10) | 0.045 (6) | 0.028 (6) | 0.009 (7) |
N1 | 0.037 (4) | 0.046 (5) | 0.044 (4) | 0.003 (4) | 0.002 (3) | 0.003 (4) |
N2 | 0.063 (5) | 0.046 (5) | 0.045 (5) | 0.015 (4) | −0.005 (4) | −0.015 (4) |
N3 | 0.056 (5) | 0.047 (5) | 0.051 (5) | 0.014 (4) | 0.018 (4) | 0.022 (4) |
N4 | 0.043 (4) | 0.033 (4) | 0.082 (7) | −0.010 (4) | −0.007 (4) | 0.010 (4) |
N6 | 0.102 (8) | 0.053 (6) | 0.056 (6) | −0.038 (6) | 0.007 (5) | −0.019 (5) |
N7 | 0.064 (5) | 0.047 (5) | 0.030 (4) | 0.024 (4) | 0.006 (3) | 0.006 (3) |
N8 | 0.037 (4) | 0.030 (4) | 0.048 (4) | 0.009 (3) | 0.007 (3) | 0.003 (3) |
N9 | 0.030 (4) | 0.049 (4) | 0.037 (4) | 0.004 (3) | 0.005 (3) | 0.005 (3) |
N10 | 0.091 (7) | 0.053 (6) | 0.047 (5) | −0.018 (5) | 0.018 (5) | −0.010 (4) |
N11 | 0.104 (8) | 0.040 (5) | 0.078 (7) | 0.010 (5) | −0.013 (6) | 0.008 (5) |
N12 | 0.067 (6) | 0.050 (6) | 0.093 (8) | −0.018 (5) | 0.032 (5) | −0.013 (5) |
C10 | 0.072 (8) | 0.048 (7) | 0.087 (9) | −0.025 (6) | −0.029 (7) | −0.001 (6) |
C11 | 0.083 (9) | 0.055 (8) | 0.127 (13) | −0.015 (7) | 0.023 (8) | −0.051 (8) |
N13 | 0.031 (4) | 0.034 (4) | 0.039 (4) | 0.001 (3) | −0.005 (3) | −0.003 (3) |
N101 | 0.053 (5) | 0.062 (6) | 0.054 (5) | −0.006 (5) | 0.011 (4) | −0.003 (4) |
C1 | 0.032 (4) | 0.050 (6) | 0.046 (5) | 0.000 (4) | 0.002 (4) | 0.018 (4) |
C2 | 0.051 (5) | 0.038 (5) | 0.048 (5) | 0.009 (4) | 0.022 (4) | 0.012 (4) |
C3 | 0.060 (6) | 0.041 (5) | 0.047 (6) | 0.009 (5) | −0.011 (5) | −0.020 (4) |
C7 | 0.038 (5) | 0.045 (6) | 0.075 (7) | −0.010 (4) | 0.009 (5) | 0.010 (5) |
C8 | 0.082 (7) | 0.051 (6) | 0.037 (5) | −0.030 (6) | 0.008 (5) | −0.015 (5) |
C9 | 0.052 (6) | 0.030 (5) | 0.097 (9) | −0.002 (5) | −0.014 (6) | 0.000 (5) |
N5 | 0.062 (6) | 0.027 (5) | 0.111 (9) | 0.005 (4) | −0.012 (5) | −0.007 (5) |
C4 | 0.051 (5) | 0.051 (6) | 0.036 (5) | 0.013 (5) | −0.004 (4) | −0.003 (4) |
C5 | 0.055 (6) | 0.062 (7) | 0.050 (6) | 0.026 (5) | 0.018 (5) | −0.003 (5) |
C6 | 0.058 (6) | 0.033 (5) | 0.089 (9) | 0.001 (5) | 0.005 (6) | 0.001 (5) |
C12 | 0.081 (8) | 0.021 (5) | 0.083 (8) | −0.016 (5) | −0.001 (6) | 0.007 (5) |
C13 | 0.060 (6) | 0.040 (5) | 0.030 (5) | 0.019 (4) | 0.013 (4) | −0.001 (4) |
C14 | 0.040 (5) | 0.037 (5) | 0.037 (5) | 0.001 (4) | 0.008 (4) | −0.001 (4) |
C15 | 0.031 (4) | 0.039 (5) | 0.034 (5) | 0.001 (4) | 0.002 (3) | −0.005 (4) |
C16 | 0.055 (6) | 0.046 (6) | 0.048 (6) | 0.016 (5) | 0.019 (4) | 0.022 (5) |
C17 | 0.038 (5) | 0.053 (6) | 0.047 (6) | 0.007 (4) | −0.014 (4) | 0.001 (5) |
C18 | 0.042 (5) | 0.031 (5) | 0.052 (6) | 0.009 (4) | 0.013 (4) | 0.006 (4) |
C19 | 0.091 (8) | 0.057 (7) | 0.036 (5) | −0.030 (6) | 0.016 (5) | −0.008 (5) |
C20 | 0.102 (9) | 0.043 (6) | 0.064 (8) | 0.016 (6) | −0.030 (7) | 0.003 (5) |
C21 | 0.056 (6) | 0.041 (6) | 0.122 (11) | −0.014 (5) | 0.044 (7) | −0.008 (6) |
C22 | 0.076 (8) | 0.043 (6) | 0.062 (7) | −0.011 (6) | −0.018 (6) | 0.008 (5) |
C23 | 0.072 (8) | 0.067 (8) | 0.091 (10) | −0.012 (7) | 0.029 (7) | −0.038 (7) |
C24 | 0.171 (15) | 0.040 (7) | 0.054 (7) | −0.015 (8) | 0.032 (8) | 0.019 (5) |
C25 | 0.018 (3) | 0.029 (4) | 0.022 (4) | −0.005 (3) | 0.007 (3) | 0.005 (3) |
C26 | 0.057 (6) | 0.044 (5) | 0.031 (5) | −0.013 (5) | −0.003 (4) | −0.005 (4) |
C27 | 0.048 (5) | 0.083 (8) | 0.027 (5) | 0.001 (5) | 0.007 (4) | −0.006 (5) |
C28 | 0.075 (7) | 0.054 (6) | 0.029 (5) | −0.016 (6) | 0.002 (5) | 0.014 (4) |
C29 | 0.044 (5) | 0.052 (6) | 0.033 (5) | 0.010 (5) | −0.004 (4) | 0.003 (4) |
C30 | 0.035 (5) | 0.083 (8) | 0.027 (5) | −0.009 (5) | −0.006 (4) | 0.002 (5) |
C31 | 0.049 (6) | 0.093 (9) | 0.038 (6) | −0.004 (6) | −0.001 (4) | −0.023 (6) |
C32 | 0.084 (8) | 0.061 (7) | 0.040 (6) | −0.020 (7) | 0.008 (5) | −0.023 (5) |
C33 | 0.080 (8) | 0.090 (9) | 0.027 (5) | 0.048 (7) | −0.005 (5) | −0.018 (5) |
C34 | 0.078 (8) | 0.128 (12) | 0.014 (5) | −0.028 (8) | 0.002 (5) | 0.008 (6) |
C35 | 0.076 (8) | 0.069 (8) | 0.033 (5) | 0.011 (6) | −0.022 (5) | −0.010 (5) |
O1M | 0.056 (4) | 0.038 (4) | 0.066 (5) | −0.001 (3) | 0.004 (3) | −0.006 (3) |
C1EB | 0.067 (7) | 0.067 (7) | 0.093 (9) | −0.012 (6) | 0.017 (6) | −0.002 (6) |
C2E | 0.067 (7) | 0.067 (7) | 0.093 (9) | −0.012 (6) | 0.017 (6) | −0.002 (6) |
C1EA | 0.067 (7) | 0.067 (7) | 0.093 (9) | −0.012 (6) | 0.017 (6) | −0.002 (6) |
Re1—N101 | 1.720 (10) | N3—C2 | 1.476 (11) |
Re1—O1M | 2.147 (6) | N3—C4 | 1.491 (12) |
Re1—Br2 | 2.5085 (10) | N4—C10 | 1.435 (15) |
Re1—Br4 | 2.5200 (10) | N4—C7 | 1.465 (13) |
Re1—Br1 | 2.5206 (10) | N4—C12 | 1.466 (12) |
Re1—Br3 | 2.5245 (10) | N6—C10 | 1.475 (16) |
Ru1—C25 | 2.008 (7) | N6—C11 | 1.478 (17) |
Ru1—C28 | 2.212 (9) | N6—C8 | 1.479 (12) |
Ru1—C27 | 2.214 (9) | N7—C16 | 1.437 (12) |
Ru1—C29 | 2.235 (8) | N7—C17 | 1.457 (12) |
Ru1—P2 | 2.243 (2) | N7—C13 | 1.491 (11) |
Ru1—C30 | 2.258 (8) | N8—C16 | 1.475 (11) |
Ru1—C26 | 2.261 (8) | N8—C18 | 1.480 (11) |
Ru1—P1 | 2.281 (2) | N8—C14 | 1.482 (10) |
Ru2—N13 | 2.030 (8) | N9—C17 | 1.454 (12) |
Ru2—C33 | 2.198 (9) | N9—C18 | 1.454 (11) |
Ru2—C34 | 2.202 (9) | N9—C15 | 1.458 (11) |
Ru2—C32 | 2.229 (9) | N10—C23 | 1.437 (16) |
Ru2—C35 | 2.245 (9) | N10—C22 | 1.440 (14) |
Ru2—C31 | 2.255 (9) | N10—C19 | 1.476 (13) |
Ru2—P3 | 2.268 (2) | N11—C23 | 1.446 (16) |
Ru2—P4 | 2.277 (2) | N11—C24 | 1.453 (17) |
P1—C1 | 1.840 (8) | N11—C20 | 1.482 (14) |
P1—C3 | 1.846 (9) | N12—C22 | 1.433 (14) |
P1—C2 | 1.850 (8) | N12—C24 | 1.462 (16) |
P2—C7 | 1.827 (9) | N12—C21 | 1.498 (13) |
P2—C8 | 1.838 (9) | C11—N5 | 1.444 (17) |
P2—C9 | 1.846 (10) | N13—C25 | 1.142 (10) |
P3—C13 | 1.841 (8) | C9—N5 | 1.473 (13) |
P3—C15 | 1.843 (8) | N5—C12 | 1.464 (14) |
P3—C14 | 1.853 (9) | C26—C30 | 1.388 (14) |
P4—C20 | 1.831 (10) | C26—C27 | 1.441 (14) |
P4—C21 | 1.834 (10) | C27—C28 | 1.410 (15) |
P4—C19 | 1.847 (9) | C28—C29 | 1.417 (14) |
O101—N101 | 1.183 (11) | C29—C30 | 1.409 (14) |
N1—C5 | 1.447 (12) | C31—C32 | 1.357 (16) |
N1—C1 | 1.456 (11) | C31—C35 | 1.411 (16) |
N1—C4 | 1.458 (12) | C32—C33 | 1.387 (16) |
N2—C6 | 1.434 (14) | C33—C34 | 1.410 (17) |
N2—C3 | 1.451 (12) | C34—C35 | 1.456 (16) |
N2—C5 | 1.470 (13) | O1M—C1EB | 1.471 (13) |
N3—C6 | 1.473 (13) | C1EB—C2E | 1.43 (3) |
N101—Re1—O1M | 178.9 (3) | C5—N1—C1 | 112.1 (7) |
N101—Re1—Br2 | 94.1 (3) | C5—N1—C4 | 108.7 (8) |
O1M—Re1—Br2 | 85.44 (19) | C1—N1—C4 | 111.3 (7) |
N101—Re1—Br4 | 94.1 (3) | C6—N2—C3 | 111.5 (8) |
O1M—Re1—Br4 | 86.33 (19) | C6—N2—C5 | 108.7 (8) |
Br2—Re1—Br4 | 171.77 (4) | C3—N2—C5 | 110.8 (8) |
N101—Re1—Br1 | 93.0 (3) | C6—N3—C2 | 110.6 (8) |
O1M—Re1—Br1 | 85.96 (18) | C6—N3—C4 | 107.7 (8) |
Br2—Re1—Br1 | 89.58 (4) | C2—N3—C4 | 110.6 (7) |
Br4—Re1—Br1 | 90.10 (4) | C10—N4—C7 | 112.1 (8) |
N101—Re1—Br3 | 93.0 (3) | C10—N4—C12 | 109.5 (10) |
O1M—Re1—Br3 | 87.99 (18) | C7—N4—C12 | 110.8 (8) |
Br2—Re1—Br3 | 89.45 (4) | C10—N6—C11 | 107.6 (9) |
Br4—Re1—Br3 | 90.01 (4) | C10—N6—C8 | 111.2 (9) |
Br1—Re1—Br3 | 173.93 (4) | C11—N6—C8 | 110.6 (9) |
C25—Ru1—C28 | 142.5 (4) | C16—N7—C17 | 109.7 (7) |
C25—Ru1—C27 | 154.2 (3) | C16—N7—C13 | 112.1 (7) |
C28—Ru1—C27 | 37.2 (4) | C17—N7—C13 | 109.3 (7) |
C25—Ru1—C29 | 106.9 (3) | C16—N8—C18 | 107.6 (7) |
C28—Ru1—C29 | 37.1 (4) | C16—N8—C14 | 110.3 (6) |
C27—Ru1—C29 | 61.3 (4) | C18—N8—C14 | 110.3 (7) |
C25—Ru1—P2 | 86.3 (2) | C17—N9—C18 | 108.8 (7) |
C28—Ru1—P2 | 91.3 (3) | C17—N9—C15 | 110.8 (7) |
C27—Ru1—P2 | 117.6 (3) | C18—N9—C15 | 113.2 (7) |
C29—Ru1—P2 | 101.4 (3) | C23—N10—C22 | 109.8 (9) |
C25—Ru1—C30 | 95.6 (3) | C23—N10—C19 | 110.3 (9) |
C28—Ru1—C30 | 61.6 (4) | C22—N10—C19 | 110.3 (9) |
C27—Ru1—C30 | 60.9 (3) | C23—N11—C24 | 110.5 (10) |
C29—Ru1—C30 | 36.5 (4) | C23—N11—C20 | 111.6 (10) |
P2—Ru1—C30 | 136.4 (3) | C24—N11—C20 | 107.9 (11) |
C25—Ru1—C26 | 117.0 (3) | C22—N12—C24 | 109.1 (9) |
C28—Ru1—C26 | 62.5 (4) | C22—N12—C21 | 110.1 (9) |
C27—Ru1—C26 | 37.5 (4) | C24—N12—C21 | 109.4 (10) |
C29—Ru1—C26 | 61.1 (4) | N4—C10—N6 | 113.8 (8) |
P2—Ru1—C26 | 153.3 (2) | N5—C11—N6 | 116.1 (10) |
C30—Ru1—C26 | 35.8 (3) | C25—N13—Ru2 | 176.3 (7) |
C25—Ru1—P1 | 88.1 (2) | O101—N101—Re1 | 178.6 (10) |
C28—Ru1—P1 | 129.4 (3) | N1—C1—P1 | 113.5 (6) |
C27—Ru1—P1 | 98.1 (3) | N3—C2—P1 | 113.1 (6) |
C29—Ru1—P1 | 157.7 (3) | N2—C3—P1 | 113.4 (6) |
P2—Ru1—P1 | 95.97 (8) | N4—C7—P2 | 112.5 (7) |
C30—Ru1—P1 | 127.6 (3) | N6—C8—P2 | 111.6 (7) |
C26—Ru1—P1 | 97.5 (3) | N5—C9—P2 | 112.7 (7) |
N13—Ru2—C33 | 145.0 (4) | C11—N5—C12 | 106.9 (9) |
N13—Ru2—C34 | 151.6 (4) | C11—N5—C9 | 111.3 (10) |
C33—Ru2—C34 | 37.4 (5) | C12—N5—C9 | 110.9 (9) |
N13—Ru2—C32 | 109.3 (4) | N1—C4—N3 | 113.3 (7) |
C33—Ru2—C32 | 36.5 (4) | N1—C5—N2 | 113.8 (7) |
C34—Ru2—C32 | 60.9 (4) | N2—C6—N3 | 115.1 (8) |
N13—Ru2—C35 | 113.3 (4) | N5—C12—N4 | 114.0 (8) |
C33—Ru2—C35 | 62.8 (4) | N7—C13—P3 | 112.5 (5) |
C34—Ru2—C35 | 38.2 (4) | N8—C14—P3 | 114.2 (6) |
C32—Ru2—C35 | 60.6 (4) | N9—C15—P3 | 112.3 (6) |
N13—Ru2—C31 | 94.7 (3) | N7—C16—N8 | 114.5 (7) |
C33—Ru2—C31 | 60.9 (4) | N9—C17—N7 | 114.3 (7) |
C34—Ru2—C31 | 61.5 (4) | N9—C18—N8 | 113.6 (7) |
C32—Ru2—C31 | 35.2 (4) | N10—C19—P4 | 112.9 (7) |
C35—Ru2—C31 | 36.6 (4) | N11—C20—P4 | 113.0 (7) |
N13—Ru2—P3 | 86.25 (19) | N12—C21—P4 | 112.5 (7) |
C33—Ru2—P3 | 94.2 (3) | N12—C22—N10 | 115.9 (9) |
C34—Ru2—P3 | 121.3 (4) | N10—C23—N11 | 114.2 (9) |
C32—Ru2—P3 | 102.5 (3) | N11—C24—N12 | 114.9 (9) |
C35—Ru2—P3 | 156.9 (3) | N13—C25—Ru1 | 175.5 (7) |
C31—Ru2—P3 | 134.9 (3) | C30—C26—C27 | 106.4 (9) |
N13—Ru2—P4 | 85.8 (2) | C30—C26—Ru1 | 72.0 (5) |
C33—Ru2—P4 | 128.6 (4) | C27—C26—Ru1 | 69.4 (5) |
C34—Ru2—P4 | 96.7 (4) | C28—C27—C26 | 108.9 (9) |
C32—Ru2—P4 | 155.8 (3) | C28—C27—Ru1 | 71.4 (5) |
C35—Ru2—P4 | 96.4 (3) | C26—C27—Ru1 | 73.0 (5) |
C31—Ru2—P4 | 127.9 (3) | C27—C28—C29 | 106.7 (9) |
P3—Ru2—P4 | 97.13 (7) | C27—C28—Ru1 | 71.5 (5) |
C1—P1—C3 | 96.6 (5) | C29—C28—Ru1 | 72.3 (5) |
C1—P1—C2 | 96.5 (4) | C30—C29—C28 | 108.3 (9) |
C3—P1—C2 | 97.4 (5) | C30—C29—Ru1 | 72.6 (5) |
C1—P1—Ru1 | 126.3 (3) | C28—C29—Ru1 | 70.6 (5) |
C3—P1—Ru1 | 114.4 (3) | C26—C30—C29 | 109.6 (8) |
C2—P1—Ru1 | 119.8 (3) | C26—C30—Ru1 | 72.2 (5) |
C7—P2—C8 | 99.0 (5) | C29—C30—Ru1 | 70.8 (5) |
C7—P2—C9 | 96.6 (5) | C32—C31—C35 | 109.4 (10) |
C8—P2—C9 | 98.5 (6) | C32—C31—Ru2 | 71.4 (6) |
C7—P2—Ru1 | 122.8 (4) | C35—C31—Ru2 | 71.4 (5) |
C8—P2—Ru1 | 120.6 (3) | C31—C32—C33 | 110.7 (11) |
C9—P2—Ru1 | 114.4 (3) | C31—C32—Ru2 | 73.4 (6) |
C13—P3—C15 | 97.8 (4) | C33—C32—Ru2 | 70.5 (6) |
C13—P3—C14 | 96.6 (4) | C32—C33—C34 | 106.9 (10) |
C15—P3—C14 | 96.9 (4) | C32—C33—Ru2 | 73.0 (6) |
C13—P3—Ru2 | 120.6 (3) | C34—C33—Ru2 | 71.4 (6) |
C15—P3—Ru2 | 124.4 (3) | C33—C34—C35 | 107.8 (11) |
C14—P3—Ru2 | 115.0 (3) | C33—C34—Ru2 | 71.2 (6) |
C20—P4—C21 | 97.7 (6) | C35—C34—Ru2 | 72.5 (6) |
C20—P4—C19 | 97.3 (6) | C31—C35—C34 | 105.2 (10) |
C21—P4—C19 | 96.7 (5) | C31—C35—Ru2 | 72.1 (6) |
C20—P4—Ru2 | 113.5 (4) | C34—C35—Ru2 | 69.3 (5) |
C21—P4—Ru2 | 125.0 (4) | C1EB—O1M—Re1 | 128.3 (6) |
C19—P4—Ru2 | 121.1 (3) | C2E—C1EB—O1M | 147.8 (14) |
C7—N4—C10—N6 | 67.9 (11) | C13—N7—C16—N8 | 67.5 (10) |
C12—N4—C10—N6 | −55.4 (11) | C18—N8—C16—N7 | 54.6 (9) |
C11—N6—C10—N4 | 53.3 (12) | C14—N8—C16—N7 | −65.7 (10) |
C8—N6—C10—N4 | −68.0 (12) | C18—N9—C17—N7 | −54.8 (10) |
C10—N6—C11—N5 | −54.7 (12) | C15—N9—C17—N7 | 70.3 (10) |
C8—N6—C11—N5 | 67.0 (13) | C16—N7—C17—N9 | 53.9 (10) |
C5—N1—C1—P1 | −59.7 (9) | C13—N7—C17—N9 | −69.3 (10) |
C4—N1—C1—P1 | 62.2 (9) | C17—N9—C18—N8 | 56.1 (9) |
C3—P1—C1—N1 | 48.0 (7) | C15—N9—C18—N8 | −67.6 (9) |
C2—P1—C1—N1 | −50.2 (7) | C16—N8—C18—N9 | −55.5 (9) |
Ru1—P1—C1—N1 | 175.0 (5) | C14—N8—C18—N9 | 64.8 (9) |
C6—N3—C2—P1 | 58.7 (9) | C23—N10—C19—P4 | 61.3 (11) |
C4—N3—C2—P1 | −60.6 (9) | C22—N10—C19—P4 | −60.2 (11) |
C1—P1—C2—N3 | 49.7 (8) | C20—P4—C19—N10 | −48.6 (10) |
C3—P1—C2—N3 | −47.8 (8) | C21—P4—C19—N10 | 50.1 (10) |
Ru1—P1—C2—N3 | −171.5 (5) | Ru2—P4—C19—N10 | −171.8 (7) |
C6—N2—C3—P1 | −60.1 (10) | C23—N11—C20—P4 | −59.0 (14) |
C5—N2—C3—P1 | 61.1 (10) | C24—N11—C20—P4 | 62.6 (12) |
C1—P1—C3—N2 | −49.3 (8) | C21—P4—C20—N11 | −50.6 (11) |
C2—P1—C3—N2 | 48.1 (8) | C19—P4—C20—N11 | 47.2 (11) |
Ru1—P1—C3—N2 | 175.7 (6) | Ru2—P4—C20—N11 | 175.8 (9) |
C10—N4—C7—P2 | −59.8 (10) | C22—N12—C21—P4 | 60.6 (12) |
C12—N4—C7—P2 | 62.8 (10) | C24—N12—C21—P4 | −59.3 (12) |
C8—P2—C7—N4 | 47.8 (8) | C20—P4—C21—N12 | 48.4 (10) |
C9—P2—C7—N4 | −52.0 (8) | C19—P4—C21—N12 | −49.9 (10) |
Ru1—P2—C7—N4 | −176.6 (5) | Ru2—P4—C21—N12 | 174.3 (7) |
C10—N6—C8—P2 | 59.5 (11) | C24—N12—C22—N10 | 52.2 (12) |
C11—N6—C8—P2 | −60.0 (12) | C21—N12—C22—N10 | −67.9 (12) |
C7—P2—C8—N6 | −48.0 (9) | C23—N10—C22—N12 | −53.9 (12) |
C9—P2—C8—N6 | 50.1 (9) | C19—N10—C22—N12 | 67.9 (12) |
Ru1—P2—C8—N6 | 175.1 (7) | C22—N10—C23—N11 | 52.8 (12) |
C7—P2—C9—N5 | 50.9 (10) | C19—N10—C23—N11 | −69.0 (12) |
C8—P2—C9—N5 | −49.2 (10) | C24—N11—C23—N10 | −52.0 (13) |
Ru1—P2—C9—N5 | −178.5 (8) | C20—N11—C23—N10 | 68.0 (13) |
N6—C11—N5—C12 | 55.5 (12) | C23—N11—C24—N12 | 50.9 (14) |
N6—C11—N5—C9 | −65.7 (13) | C20—N11—C24—N12 | −71.3 (13) |
P2—C9—N5—C11 | 58.3 (12) | C22—N12—C24—N11 | −50.4 (13) |
P2—C9—N5—C12 | −60.5 (12) | C21—N12—C24—N11 | 70.2 (13) |
C5—N1—C4—N3 | 56.5 (10) | C30—C26—C27—C28 | −0.2 (10) |
C1—N1—C4—N3 | −67.4 (10) | Ru1—C26—C27—C28 | 62.7 (6) |
C6—N3—C4—N1 | −54.3 (10) | C30—C26—C27—Ru1 | −63.0 (6) |
C2—N3—C4—N1 | 66.7 (10) | C26—C27—C28—C29 | 0.4 (10) |
C1—N1—C5—N2 | 66.4 (10) | Ru1—C27—C28—C29 | 64.2 (6) |
C4—N1—C5—N2 | −57.0 (10) | C26—C27—C28—Ru1 | −63.8 (6) |
C6—N2—C5—N1 | 55.9 (11) | C27—C28—C29—C30 | −0.4 (10) |
C3—N2—C5—N1 | −67.0 (10) | Ru1—C28—C29—C30 | 63.2 (6) |
C3—N2—C6—N3 | 67.6 (11) | C27—C28—C29—Ru1 | −63.6 (6) |
C5—N2—C6—N3 | −54.8 (11) | C27—C26—C30—C29 | 0.0 (10) |
C2—N3—C6—N2 | −66.8 (11) | Ru1—C26—C30—C29 | −61.3 (6) |
C4—N3—C6—N2 | 54.2 (11) | C27—C26—C30—Ru1 | 61.3 (6) |
C11—N5—C12—N4 | −55.5 (12) | C28—C29—C30—C26 | 0.3 (10) |
C9—N5—C12—N4 | 66.0 (13) | Ru1—C29—C30—C26 | 62.2 (6) |
C10—N4—C12—N5 | 56.9 (11) | C28—C29—C30—Ru1 | −61.9 (6) |
C7—N4—C12—N5 | −67.2 (12) | C35—C31—C32—C33 | 0.5 (12) |
C16—N7—C13—P3 | −61.3 (9) | Ru2—C31—C32—C33 | −61.0 (7) |
C17—N7—C13—P3 | 60.6 (9) | C35—C31—C32—Ru2 | 61.6 (7) |
C15—P3—C13—N7 | −49.0 (7) | C31—C32—C33—C34 | −1.1 (11) |
C14—P3—C13—N7 | 48.9 (7) | Ru2—C32—C33—C34 | −63.8 (7) |
Ru2—P3—C13—N7 | 173.0 (5) | C31—C32—C33—Ru2 | 62.8 (7) |
C16—N8—C14—P3 | 59.5 (8) | C32—C33—C34—C35 | 1.2 (11) |
C18—N8—C14—P3 | −59.3 (8) | Ru2—C33—C34—C35 | −63.7 (6) |
C13—P3—C14—N8 | −49.6 (7) | C32—C33—C34—Ru2 | 64.9 (7) |
C15—P3—C14—N8 | 49.1 (6) | C32—C31—C35—C34 | 0.2 (11) |
Ru2—P3—C14—N8 | −177.7 (5) | Ru2—C31—C35—C34 | 61.8 (6) |
C17—N9—C15—P3 | −61.0 (8) | C32—C31—C35—Ru2 | −61.6 (7) |
C18—N9—C15—P3 | 61.6 (8) | C33—C34—C35—C31 | −0.8 (10) |
C13—P3—C15—N9 | 49.0 (7) | Ru2—C34—C35—C31 | −63.7 (7) |
C14—P3—C15—N9 | −48.7 (6) | C33—C34—C35—Ru2 | 62.8 (6) |
Ru2—P3—C15—N9 | −175.4 (4) | Re1—O1M—C1EB—C2E | −144 (3) |
C17—N7—C16—N8 | −54.2 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···Br3i | 0.97 | 3.12 | 3.944 (12) | 143 |
C10—H10B···Br2 | 0.97 | 2.83 | 3.709 (10) | 150 |
C1—H1B···Br4ii | 0.97 | 3.03 | 3.967 (9) | 163 |
C7—H7B···N9iii | 0.97 | 2.59 | 3.309 (11) | 131 |
C8—H8A···Br3i | 0.97 | 2.89 | 3.772 (12) | 151 |
C4—H4B···Br3i | 0.97 | 3.10 | 4.062 (10) | 169 |
C5—H5A···Br1ii | 0.97 | 3.10 | 3.918 (10) | 143 |
C18—H18A···N4iv | 0.97 | 2.53 | 3.208 (11) | 127 |
C18—H18B···Br2v | 0.97 | 2.92 | 3.858 (9) | 163 |
C19—H19B···Br1vi | 0.97 | 3.09 | 3.938 (11) | 147 |
C22—H22B···Br1vi | 0.97 | 3.00 | 3.861 (10) | 148 |
C23—H23A···Br4vii | 0.97 | 3.10 | 4.007 (12) | 156 |
C24—H24A···Br3vii | 0.97 | 2.98 | 3.799 (11) | 143 |
O1M—H1m···N8iii | 0.85 | 1.88 | 2.709 (9) | 166 |
C1EB—H101···Br3 | 0.97 | 2.80 | 3.527 (13) | 132 |
C2E—H2e3···N6i | 0.96 | 2.36 | 3.15 (3) | 140 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y, −z; (vi) −x+1, y+1/2, −z+1/2; (vii) x+1, y+1, z. |
Funding information
Funding for this research was provided by: Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) (grant to MP, NA, AC, CK); Comisión Sectorial de Investigación Científica (Apoyo a Grupos de Investigación No. 2003 to MP, AC, CK); Comisión Académica de Posgrado (CAP) (studentship to MP); University of Almeria (grant No. PPUENTE2020/011 to AR; grant No. PAI team FQM-317 to AR); Agencia Nacional de Investigación e Innovación (studentship to MP); Spanish MINECO (grant No. PID2019-109735GB-I00; Unidad de Excelencia María de Maeztu CEX2019-000919-M); Generalitat Valenciana (grant No. AICO/2020/183).
References
Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152. Web of Science CrossRef CAS Google Scholar
Antonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1–9. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). SAINT Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156–2161. CrossRef Google Scholar
Darensbourg, D. J., Decuir, T. J. & Reibenspies, J. H. (1995). Aqueous Organometallic Chemistry and Catalysis, Vol. edited by I. T. Horváth & F. Joó, pp. 61–80. Dordrecht: Springer Netherlands. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press. Google Scholar
Dilworth, J. R. (2021). Coord. Chem. Rev. 436, 213822. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. Web of Science CrossRef CAS PubMed Google Scholar
Ghosh, S., Paul, S. S., Mitra, J. & Mukherjea, K. K. (2014). J. Coord. Chem. 67, 1809–1834. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hey-Hawkins, E. & Hissler, M. (2019). Smart Inorganic Polymers: Synthesis, Properties, and emerging applications in Materials and Life Sciences. Weinheim: Wiley-VCH. Google Scholar
Hołyńska, M. & Lis, T. (2014). Inorg. Chim. Acta, 419, 96–104. Google Scholar
Ikeda, H., Yoshimura, T., Ito, A., Sakuda, E., Kitamura, N., Takayama, T., Sekine, T. & Shinohara, A. (2012). Inorg. Chem. 51, 12065–12074. CrossRef CAS PubMed Google Scholar
Jiang, Y., Blacque, O. & Berke, H. (2011). Dalton Trans. 40, 2578–2587. CrossRef CAS PubMed Google Scholar
Jiang, Y., Blacque, O., Fox, T., Frech, C. M. & Berke, H. (2010). Chem. Eur. J. 16, 2240–2249. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liang, J.-X., Zhong, H.-J., Yang, G., Vellaisamy, K., Ma, D.-L. & Leung, C.-H. (2017). J. Inorg. Biochem. 177, 276–286. CrossRef CAS PubMed Google Scholar
Lidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568–2572. Web of Science CSD CrossRef CAS Google Scholar
Machura, B. (2005). Coord. Chem. Rev. 249, 2277–2307. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masood, Md. A. & Hodgson, D. J. (1994). Inorg. Chem. 33, 2488–2490. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946–947. Web of Science CrossRef CAS Google Scholar
Mronga, N., Dehnicke, K. & Fenske, D. (1982). Z. Anorg. Allg. Chem. 491, 237–244. CrossRef CAS Google Scholar
Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361–15371. CrossRef CAS PubMed Google Scholar
Pacheco, M., Cuevas, A., González-Platas, J., Gancheff, J. S. & Kremer, C. (2014). J. Coord. Chem. 67, 4028–4038. CrossRef CAS Google Scholar
Pacheco, M., Cuevas, A., González-Platas, J. & Kremer, C. (2015). Commun. Inorg. Synth. 2, 20–24. Google Scholar
Pacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636–11648. CrossRef CAS PubMed Google Scholar
Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993. Web of Science CrossRef CAS Google Scholar
Pino-Cuevas, A., Graña, A., Abram, U., Carballo, R. & Vázquez-López, E. M. (2018). CrystEngComm, 20, 4781–4792. CAS Google Scholar
Probst, B., Kolano, C., Hamm, P. & Alberto, R. (2009). Inorg. Chem. 48, 1836–1843. CrossRef PubMed CAS Google Scholar
Scalambra, F., López-Sánchez, B., Holzmann, N., Bernasconi, L. & Romerosa, A. (2020). Organometallics, 39, 4491–4499. CrossRef CAS Google Scholar
Scalambra, F., Serrano-Ruiz, M., Gudat, D. & Romerosa, A. (2016). ChemistrySelect, 1, 901–905. CrossRef CAS Google Scholar
Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689–693. CrossRef CAS PubMed Google Scholar
Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2017). Dalton Trans. 46, 5864–5871. CrossRef CAS PubMed Google Scholar
Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2018). Dalton Trans. 47, 3588–3595. CrossRef CAS PubMed Google Scholar
Scalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441–9444. CrossRef CAS Google Scholar
Serrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587–11590. CAS Google Scholar
Serrano Ruiz, M., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. (2008). Angew. Chem. Int. Ed. 47, 8665–8669. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963. Web of Science CSD CrossRef CAS Google Scholar
Sierra-Martin, B., Serrano-Ruiz, M., García-Sakai, V., Scalambra, F., Romerosa, A. & Fernandez-Barbero, A. (2018). Polymers, 10, 528. Google Scholar
Sierra-Martin, B., Serrano-Ruiz, M., Scalambra, F., Fernandez-Barbero, A. & Romerosa, A. (2019). Polymers, 11, 1249. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. (2009). Chem. Soc. Rev. 38, 1218–1227. Web of Science CrossRef PubMed CAS Google Scholar
Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: Wiley. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Wang, X.-Y., Avendaño, C. & Dunbar, K. R. (2011). Chem. Soc. Rev. 40, 3213–3238. CrossRef CAS PubMed Google Scholar
Zhang, W., Tang, X., Ma, H., Sun, W.-H. & Janiak, C. (2008). Eur. J. Inorg. Chem. pp. 2830–2836. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.