research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and magnetic study of the complex salt [RuCp(PTA)2μ-CN-1κC:2κN–RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]

crossmark logo

aArea Quimica Inorganica, Facultad de Quimica, Universidad de la República, 11800, Montevideo, Uruguay, bArea de Quimica Inorganica-CIESOL, Universidad de Almeria, 04120 Almeria, Spain, and cInstituto de Ciencia Molecular, Universidad de Valencia, C/ Catedratico Jose, Beltran 2, 46980 Paterna, Valencia, Spain
*Correspondence e-mail: mpacheco@fq.edu.uy

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 4 June 2021; accepted 18 June 2021; online 30 June 2021)

A new RuII–ReII complex salt, μ-cyanido-κ2C:N-bis­[(η5-cyclo­penta­dien­yl)bis(3,5,7-tri­aza­phosphaadamantane-κP)ruthenium(II)] tetra­bromido­(ethanol/methanol-κO)nitrosylrhenate(II), [Ru(CN)(C5H5)2(C6H12N3P)4][ReBr4(NO)(CH4O)0.5(C2H6O)0.5] or [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] (PTA = 3,5,7-tri­aza­phosphaadaman­tane) was obtained and characterized by single-crystal X-ray diffraction, elemental analysis and infrared spectroscopy. The title salt was obtained by liquid–liquid diffusion of methanol/DMSO solutions of (NBu4)[Re(NO)Br4(EtOH)] and [(PTA)2CpRu–μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3). The RuII and ReII independent moieties correspond to a binuclear and mononuclear complex ion, respectively. A deep geometrical parameter analysis was performed, and no significant differences were found with earlier reports containing similar mol­ecules. The magnetic properties were investigated in the temperature range 2.0–300 K, and the complex behaves as a quasi-magnetically isolated spin doublet with weak anti­ferromagnetic inter­actions.

1. Chemical context

Ruthenium-arene-PTA (PTA = 3,5,7-tri­aza-phosphaadamantane) or RAPTA complexes are known in inorganic medicinal chemistry for their potent anti­tumor activity in vitro and in vivo, constituting a potential alternative to platinum-based drugs (Antonarakis & Emadi, 2010[Antonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1-9.]; Gasser et al., 2011[Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3-25.]; Liang et al., 2017[Liang, J.-X., Zhong, H.-J., Yang, G., Vellaisamy, K., Ma, D.-L. & Leung, C.-H. (2017). J. Inorg. Biochem. 177, 276-286.]; Hey-Hawkins & Hissler, 2019[Hey-Hawkins, E. & Hissler, M. (2019). Smart Inorganic Polymers: Synthesis, Properties, and emerging applications in Materials and Life Sciences. Weinheim: Wiley-VCH.]). Furthermore, PTA presents variable denticity allowing it to act as a versatile building block towards the synthesis of coordination polymers with applications in other areas such as chemical catalysis (Darensbourg et al., 1995[Darensbourg, D. J., Decuir, T. J. & Reibenspies, J. H. (1995). Aqueous Organometallic Chemistry and Catalysis, Vol. edited by I. T. Horváth & F. Joó, pp. 61-80. Dordrecht: Springer Netherlands.]; Scalambra et al., 2017[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2017). Dalton Trans. 46, 5864-5871.]; Scalambra, Lopez-Sanchez et al., 2020[Scalambra, F., López-Sánchez, B., Holzmann, N., Bernasconi, L. & Romerosa, A. (2020). Organometallics, 39, 4491-4499.]) and material science (Phillips et al., 2004[Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955-993.]). Professor Romerosa's group and coworkers have developed a family of water-soluble and air-stable organometallic polymers containing an `RuCp(PTA)2' (Cp = Cyclo­penta­dien­yl) fragment. Most of them fit the general formula [{RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2}-μ-MXm]n (M = Cd, Ag, Ni, Au, Co; X = halide or pseudohalide) (Serrano Ruiz et al., 2008[Serrano Ruiz, M., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. (2008). Angew. Chem. Int. Ed. 47, 8665-8669.]; Lidrissi et al., 2005[Lidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568-2572.]; Scalambra et al., 2015[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689-693.], 2018[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2018). Dalton Trans. 47, 3588-3595.]; Scalambra, Sierra-Martin et al., 2020[Scalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441-9444.]). These polymers show exciting properties such as the formation of structured microparticles, amorphization under low pressures (Scalambra et al., 2015[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689-693.], 2016[Scalambra, F., Serrano-Ruiz, M., Gudat, D. & Romerosa, A. (2016). ChemistrySelect, 1, 901-905.]), the formation of layered structures that can be exfoliated in ultra-thin 3D layers (Scalambra, Sierra-Martin et al., 2020[Scalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441-9444.]), the formation of gels in the presence of water (Sierra-Martin et al., 2018[Sierra-Martin, B., Serrano-Ruiz, M., García-Sakai, V., Scalambra, F., Romerosa, A. & Fernandez-Barbero, A. (2018). Polymers, 10, 528.], 2019[Sierra-Martin, B., Serrano-Ruiz, M., Scalambra, F., Fernandez-Barbero, A. & Romerosa, A. (2019). Polymers, 11, 1249.]; Serrano Ruiz et al., 2008[Serrano Ruiz, M., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. (2008). Angew. Chem. Int. Ed. 47, 8665-8669.]) or the capacity to capture water mol­ecules in nanochannels (Scalambra et al., 2017[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2017). Dalton Trans. 46, 5864-5871.]). The described polymers include a wide variety of arrangements from one to three dimensions, and they may be classified as a new class of materials lying between metal–organic frameworks (MOFs) and infinite coordination polymers (ICPs) (Spokoyny et al., 2009[Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. (2009). Chem. Soc. Rev. 38, 1218-1227.]). The preparation mostly involves the use of the bimet­allic precursor RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) in the reaction with other transition-metal cation salts or complexes, in an easy, robust and reproducible method (Serrano-Ruiz et al., 2014[Serrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587-11590.]).

On top of that, rhenium nitrosyl complexes applications are widely recognized: catalysis, production of organo­nitro­gen compounds, pollutant control, nitric oxide release drugs, assembly of devices with novel optical and magnetic properties, among other uses (Machura, 2005[Machura, B. (2005). Coord. Chem. Rev. 249, 2277-2307.]; Jiang et al., 2011[Jiang, Y., Blacque, O. & Berke, H. (2011). Dalton Trans. 40, 2578-2587.]; Probst et al., 2009[Probst, B., Kolano, C., Hamm, P. & Alberto, R. (2009). Inorg. Chem. 48, 1836-1843.]; Ghosh et al., 2014[Ghosh, S., Paul, S. S., Mitra, J. & Mukherjea, K. K. (2014). J. Coord. Chem. 67, 1809-1834.]; Dilworth, 2021[Dilworth, J. R. (2021). Coord. Chem. Rev. 436, 213822.]). Kremer's group has performed a thorough magnetic study of a series of complexes (NBu4)[ReII(NO)Br4(L)] (L is an N,O or P-donor neutral ligand) (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.]; Pacheco, Cuevas, González-Platas, Lloret et al., 2015[Pacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636-11648.]). The low-spin outer 5d5 shell results in strong spin-orbit inter­actions giving rise to a significant magnetic anisotropy, an essential feature for the potential construction of mol­ecule-based magnets (Wang et al., 2011[Wang, X.-Y., Avendaño, C. & Dunbar, K. R. (2011). Chem. Soc. Rev. 40, 3213-3238.]). In this work, we present the complex salt [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]. The synthesis, single crystal X-ray crystal structure, and magnetic properties are discussed.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] consists of discrete [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2]+ cations and [Re(NO)Br4(EtOH)0.5(MeOH)0.5] anions (Fig. 1[link]), which coform the asymmetric unit.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.

The cation is an homobinuclear RuII complex with two piano-stool fashion {RuCp(PTA)2} moieties that are linked by a –CN– bridging ligand. The {CpRu(PTA)2}+ moieties in each Ru2 unit exhibit a transoid arrangement related to the Ru—C≡N—Ru axis. The Ru1—C25 and Ru2—N13 distances are 2.008 (7) and 2.030 (8) Å, respectively. The Ru—CN—Ru arrangement is practically linear: <(Ru1—C25—N13) = 175.5 (7)° and <(C25—N13—Ru2) = 176.3 (7)°. The C≡N bond length of the cyano group is 1.14 (1) Å. The distances from the centroid of each Cp ligand to the respective ruthenium atom are 1.886 Å (Cp—Ru1) and 1.878 (Cp—Ru2). The Ru—PPTA distances are in the range 2.243 (2)–2.281 (2) Å, which is in agreement with those found in similar compounds.

The complex anion is constituted by an ReII atom and displays a distorted octa­hedral geometry formed by four bromide ions in the equatorial plane, one nitro­gen atom from the nitrosyl ligand, and one oxygen atom from an –OH group in apical positions. The –OH group comes from a methanol or an ethanol mol­ecule, both with an s.o.f. of 0.5. The O1M and C1E atomic positions are the same for both the MeOH and the EtOH ligand. The Re1—O1m—C1e angle is 128.3 (6)°. The NO group is practically linear with an O101—N101—Re1 angle of 178.6 (10)°. The three atoms are also aligned with the O1M atom of the alcohol ligand, exhibiting a N101—Re1—O1M angle of 178.9 (3)°. The rhenium atom is shifted from the main plane of Br ligands towards the apical NO group by 0.157 Å.

3. Supra­molecular features

The complex crystallizes in the monoclinic P21/c space group. The cations inter­connect adjacent anions via O—H⋯N hydrogen bonds and C—H⋯Br inter­actions, forming an infinite three-dimensional framework (Table 1[link]). The O—H⋯N inter­actions are given along the bc plane and are defined by O1m as the donor atom from the MeOH/EtOH ligand and N8i atom from a PTA ligand at (x − 1, y, z) (Fig. 2[link]). The H1M⋯N8i and O1M⋯N8i distances are 1.88 and 2.709 (9) Å, respectively. The angle defined by O1M—H1M⋯N8i is 165.5°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Br3i 0.97 3.12 3.944 (12) 143
C10—H10B⋯Br2 0.97 2.83 3.709 (10) 150
C1—H1B⋯Br4ii 0.97 3.03 3.967 (9) 163
C7—H7B⋯N9iii 0.97 2.59 3.309 (11) 131
C8—H8A⋯Br3i 0.97 2.89 3.772 (12) 151
C4—H4B⋯Br3i 0.97 3.10 4.062 (10) 169
C5—H5A⋯Br1ii 0.97 3.10 3.918 (10) 143
C18—H18A⋯N4iv 0.97 2.53 3.208 (11) 127
C18—H18B⋯Br2v 0.97 2.92 3.858 (9) 163
C19—H19B⋯Br1vi 0.97 3.09 3.938 (11) 147
C22—H22B⋯Br1vi 0.97 3.00 3.861 (10) 148
C23—H23A⋯Br4vii 0.97 3.10 4.007 (12) 156
C24—H24A⋯Br3vii 0.97 2.98 3.799 (11) 143
O1M—H1M⋯N8iii 0.85 1.88 2.709 (9) 166
C1EB—H101⋯Br3 0.97 2.80 3.527 (13) 132
C2E—H2E3⋯N6i 0.96 2.36 3.15 (3) 140
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, y, z]; (iv) x+1, y, z; (v) [-x+1, -y, -z]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x+1, y+1, z.
[Figure 2]
Figure 2
View along the a axis of the title compound, with the O1M—H⋯N8 contacts (see Table 1[link] for details) represented by blue dashed lines. For clarity, H atoms have been omitted.

The remaining hydrogen bonds are found between the PTA ligands from one cationic unit [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2]+ and bromides from [Re(NO)Br4(EtOH)0.5(MeOH)0.5] units. The multiplicity and lack of defined directionality in the hydrogen-bond network are related to the fact that the major forces that stabilize the crystal are of electrostatic origin. The C—H⋯Br and the C⋯Br distances range from 2.53–3.12 Å and 3.208 (11)–3.944 (12) Å, respectively. The hydrogen-bond angle involving the C—H⋯Br atoms vary between 127 and 169°. These geometrical values are in concordance with weak hydrogen-bonding inter­actions (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Metrangolo et al., 2006[Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946-947.]; Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: Wiley.]). The effect of the combined weak C—H⋯Br bonds and their effect on the crystal assembly can be as significant as that of the strong inter­actions (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). The C2E—H⋯N6 bond is probably negligible because of the low energy expected for all C—H bonds (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: Wiley.]) and particularly considering the C2E 50% atomic site occupation.

4. Hirshfeld analysis

To further understand the inter­molecular inter­actions between the ionic complexes within the crystal structure, a Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was constructed around each ion. In addition, a 2D fingerprint plot analysis (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) was performed for each case. Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) was used to determine the surface and construct the plots. The Hirshfeld surfaces of both the anion and cation are illustrated in Fig. 3[link] (left) and 3 (right), respectively, showing surfaces that have been mapped over a dnorm range of −0.6854 to 1.6426 a.u. (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The color code employed for dnorm is red for the shortest dnorm and blue for the longest dnorm. Red spots in the surface correspond to the shortest contacts within the surface, indicating the formation of inter­molecular bonds as those detailed in the previous section (supra­molecular features).

[Figure 3]
Figure 3
Projections of dnorm mapped on Hirshfeld surfaces, showing the inter­actions between mol­ecules and the two-dimensional (di,de) fingerprint plot for the anionic unit [Re(NO)Br4(EtOH)0.5(MeOH)0.5] (left) and the cationic unit [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2]+ (right).

The anion Hirshfeld surface shows how the most significant inter­action is due to the O1m—H⋯N8 bond, which is illustrated by bright-red spots in Fig. 3[link] (left), while the weaker spot corresponds to the C2E—H⋯N6 bond. What is more, the other minor red spots can be identified as Br⋯H inter­actions. These red spots (and thus the inter­ionic inter­actions) can be correlated with the spikes observed in the two-dimensional fingerprint plots. In fact, the anion fingerprint for all inter­actions exhibits characteristic spikes in the region 1.8 Å < di + de < 2.8 Å resulting from H⋯N and Br⋯H inter­actions. There is a high-density area close to the Br⋯H spike, indicating a significant number of Br⋯H contacts in the crystal structure. In addition, the broad central spike extending up to the (di,de) region of (0.65 Å, 0.78 Å) reflects the significant amount of H⋯H contacts in the structure. Nevertheless, it is important to point out that the H⋯H contacts are usually difficult to localize in the Hirshfeld surface as they are spread all over the crystal packing. The Hirshfeld surface analysis for the cationic unit and its fingerprint also shows how H⋯N, N⋯H, H⋯Br, and H⋯H contacts surround the [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2] unit. The relative contributions of the different inter­molecular contacts to the Hirshfeld area for both ions are shown in Fig. 4[link]. In the anion, the major contributors (∼93%) are from Br⋯H, O⋯H and H⋯H contacts while in the cation, the Hirshfeld area is accounted mostly by the Br⋯H, N⋯H and H⋯H contacts (over 90%).

[Figure 4]
Figure 4
Relative contributions to Hirshfeld surface area for the close mol­ecular contacts.

5. Database survey

A search in the Cambridge Structural Database (CSD) version 5.42 in the last update of February 2021 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures containing the anion and cation was performed. The {(PTA)2CpRu-μ-CN-RuCp(PTA)2} moiety has been reported previously, once as an independent cationic unit in VOHCUS (Serrano-Ruiz et al., 2014[Serrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587-11590.]) as well as a fragment within polynuclear polymeric structures CEQPEW (Scalambra et al., 2018[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2018). Dalton Trans. 47, 3588-3595.]), EDONET (Scalambra et al., 2016[Scalambra, F., Serrano-Ruiz, M., Gudat, D. & Romerosa, A. (2016). ChemistrySelect, 1, 901-905.]), GUVZUV (Scalambra, Sierra-Martin et al., 2020[Scalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441-9444.]) and XADHES (Scalambra et al., 2015[Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689-693.]).

Regarding the anionic unit, examples of crystal structures containing tetra­bromo­nitro­sylrhenium(II) complexes are scarce. The CSD search yielded 19 hits. In all of them, the rhenium coordination sphere exhibits an octa­hedral geometry, with a practically lineal {Re—NO} unit and a π-acceptor ligand such as phosphine or aromatic amines, usually coordinating trans- to the –NO group. The found π-acceptor ligands include: MeCN (Ciani et al., 1975[Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156-2161.]), EtOH (Ciani et al., 1975[Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156-2161.]), pyrazine (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.], 2014[Pacheco, M., Cuevas, A., González-Platas, J., Gancheff, J. S. & Kremer, C. (2014). J. Coord. Chem. 67, 4028-4038.]; Pacheco, Cuevas, González-Platas, & Kremer, 2015[Pacheco, M., Cuevas, A., González-Platas, J. & Kremer, C. (2015). Commun. Inorg. Synth. 2, 20-24.]), nitrosyl (Mronga et al., 1982[Mronga, N., Dehnicke, K. & Fenske, D. (1982). Z. Anorg. Allg. Chem. 491, 237-244.]), tri­cyclo­hexyl­phosphine and triiso­propyl­phosphine (Jiang et al., 2010[Jiang, Y., Blacque, O., Fox, T., Frech, C. M. & Berke, H. (2010). Chem. Eur. J. 16, 2240-2249.]), nicotinic acid and nicotinate anion (Pacheco, Cuevas, González-Platas, Lloret et al., 2015[Pacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636-11648.]), pyridine, pyrimidine and pyridazine (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.]). All Re—Br distances observed in the complex reported herein, as well as the Re—N and N—O distances found, agree with those found for previously reported structures (see Figs. 1–3 in the supporting information).

A search in the CSD for complexes containing a metal ion coordinating a MeOH mol­ecule yielded 13705 structures with the M—O—C angle lying in the range 123.333–130.865° (without considering possible outlier values). The same angle for metals coordinating an EtOH is in the range 124.464–132.412° (without considering possible outliers), in a total of 3503 reported structures. There are only five structures reported in the database containing ethanol coordinating to a rhenium atom, ABENRE (Ciani et al., 1975[Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156-2161.]), PIXTOF (Masood & Hodgson, 1994[Masood, Md. A. & Hodgson, D. J. (1994). Inorg. Chem. 33, 2488-2490.]), GEMVUR (Ikeda et al., 2012[Ikeda, H., Yoshimura, T., Ito, A., Sakuda, E., Kitamura, N., Takayama, T., Sekine, T. & Shinohara, A. (2012). Inorg. Chem. 51, 12065-12074.]), EGAVEP (Hołyńska & Lis, 2014[Hołyńska, M. & Lis, T. (2014). Inorg. Chim. Acta, 419, 96-104.]) and PIMRAH (Pino-Cuevas et al., 2018[Pino-Cuevas, A., Graña, A., Abram, U., Carballo, R. & Vázquez-López, E. M. (2018). CrystEngComm, 20, 4781-4792.]). In those, the Re—O—C angles vary between 115.8 (4) and 135 (1)°. The same search but for Re-OHMe complexes yielded 15 structures, with the Re—O—C angles in the 121.232–133.389° range. The only reported crystal structure in the CSD containing the [Re(NO)Br4(EtOH)] unit dates back to 1975 (ABENRE; Ciani et al., 1975[Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156-2161.]). On the other hand, this is the first report of a crystal structure evidencing the coordination of a methanol mol­ecule substituting ethanol.

Given that C—H⋯Br bonds account for a significant fraction of inter­molecular contacts, as seen in section 4, a search was conducted involving this bonding scheme to check if the values presented in this article are within the bin frequently encountered in transition-metal compounds. The search restrained metal–Br⋯H distances to be lower than the sum of the vdW radius (∼3.5 Å). Compounds containing a C—Br⋯H angle of less than 90° were discarded, as the hydrogen atom in the hydrogen bond must not point away from the acceptor atom (Aakeröy et al., 1999[Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145-152.]). The search resulted in 36099 hits from 12143 structures. The histograms of C⋯Br distances and C—H⋯Br angles (Figs. 4 and 5 in the supporting information) confirm that these H⋯Br contacts, considering the distance/angle criteria, can be identified as hydrogen bonds (Aakeröy et al., 1999[Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145-152.]; Metrangolo et al., 2006[Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946-947.]; Shimpi et al., 2007[Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958-1963.]; Zhang et al., 2008[Zhang, W., Tang, X., Ma, H., Sun, W.-H. & Janiak, C. (2008). Eur. J. Inorg. Chem. pp. 2830-2836.]).

6. Magnetic measurements

Magnetic susceptibility measurements on polycrystalline samples were carried out with a Superconducting Quantum Inter­ference Design (SQUID) magnetometer in the temperature range 2.0–300 K. In order to avoid saturation phenomena, we used external dc magnetic fields of 500 G (T < 20 K) and 5000 G (T ≥ 50 K). Experimental susceptibilities were carefully corrected for the diamagnetism of the holder (gelatine capsule) and constituent atoms by applying Pascal's constants.

The magnetic behaviour of [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] is shown in Fig. 5[link] in the form of a χMT versus T plot where χM is the molar magnetic susceptibility per one ReII ion and T the absolute temperature. As expected, a straight line is observed for this compound (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.]). The thermal dependence of χMT is in line with one unpaired electron (S = ½) and a temperature independent paramagnetic contribution (TIP). The χMT value at room temperature is higher than that expected for an S = ½ with g = 2.0 (0.375 cm3 K mol−1) due to the temperature-independent paramagnetism (TIP). The slight decrease below 10 K must be attributed to very weak inter­molecular anti­ferromagnetic (AF) inter­actions between the [Re(NO)Br4(EtOH)0.5(MeOH)0.5] anions.

[Figure 5]
Figure 5
χMT versus T plot for the title compound.

In this sense, we use equation (1), with S = ½, to fit the experimental data.

[ \chi _{M} = {{N\beta ^{2}}g^{2}\over{3k(T-\theta) }} S(S+1)] (1)

Best-fit parameters were g = 2.01 (1), TIP = 155 (3) 10−6 cm3 mol−1 and θ = – 0.100 (1) K. The calculated g and TIP values are very close to those observed for similar complexes previously reported (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.]; Pacheco, Cuevas, González-Platas, Lloret et al., 2015[Pacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636-11648.]). However, the Weiss parameter (inter­molecular anti­ferromagnetic inter­action), θ, is lower, indicating that the paramagnetic anion is much more isolated, probably due to the vast diamagnetic counter-ion.

7. Synthesis and crystallization

7.1. Experimental details

(NBu4)[Re(NO)Br4(EtOH)] and [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) were prepared as previously reported (Pacheco et al., 2013[Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361-15371.]; Serrano-Ruiz et al., 2014[Serrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587-11590.]). Solvents employed in the synthesis were purchased from commercial sources and used without further purification. Elemental analyses (C, H, N, S) were performed using a Flash 2000 (Thermo Scientific) elemental analyser. The IR spectra were recorded as 1% KBr pellets on FTIR Shimadzu Prestige-21 spectrophotometer in the range 4000-400 cm−1.

7.2. Synthesis

A solution of (NBu4)[Re(NO)Br4(EtOH)] (0.012 mmol, 10 mg) dissolved in 5 mL of a methanol–DMSO (400:1, v/v) mixture was layered in an test tube with a solution of [RuCp(PTA)2μ-CN–1κC:2κ2N-RuCp(PTA)2](CF3SO3) (0.012 mmol, 13 mg) in 5 mL of the same methanol–DMSO mixture; ca 5 mL of the solvent mixture should be added between the two reactant layers to decrease diffusion time. Deep reddish-brown plate-like crystals, suitable for single crystal X-ray diffraction were obtained after one week. The product was filtered and washed by deca­ntation with methanol. Yield: 24%. Analysis calculated for Ru2C36.5N14Re1O2Br4H63P4: C, 28.07; H, 4.07; N, 12.56; S. 0,00%. Found: C, 27.18; H, 4.39; N, 12.53; S. 0,00%. Selected IR absorption bands (KBr, νmax/cm−1): 3413[s, br, νs(–OH)], 2922(w), 2114[m, νs(μ–N≡C)], 1759[s, νs (–NO)], 1280(m), 1242(s), 1097(m), 1016(s), 970(s), 948(s), 833(w), 744(w), 574(m), 480(m).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding: C—H distance between 0.94 and 0.98 Å with Uiso(H) = 1.2Ueq(C). Methanol/ethanol coordinating mol­ecules were treated as positionally disordered utilizing the PART instruction with occupancy fixed to 0.5 applied to C1E, C1M, and C2E. C1M and C1E were constrained to occupy equivalent positions. Meanwhile, C2E was located in the Fourier difference map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Ru(CN)(C5H5)2(C6H12N3P)4]2[ReBr4(NO)(CH4O)0.5(C2H6O)0.5]2
Mr 3123.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.6027 (4), 17.7075 (6), 23.0252 (9)
β (°) 101.914 (1)
V3) 5027.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.35
Crystal size (mm) 0.48 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker D8 venture diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.485, 0.751
No. of measured, independent and observed [I > 2σ(I)] reflections 56882, 8565, 6494
Rint 0.079
(sin θ/λ)max−1) 0.589
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 0.99
No. of reflections 8565
No. of parameters 572
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.34
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).

µ-Cyanido-κ2C:N-bis[(η5-cyclopentadienyl)bis(3,5,7-triazaphosphaadamantane-κP)ruthenium(II)] tetrabromido(ethanol/methanol-κO)nitrosylrhenate(II) top
Crystal data top
[Ru(CN)(C5H5)2(C6H12N3P)4]2[ReBr4(NO)(CH4O)0.5(C2H6O)0.5]2F(000) = 3036
Mr = 3123.73Dx = 2.063 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6027 (4) ÅCell parameters from 125 reflections
b = 17.7075 (6) Åθ = 3.1–16.9°
c = 23.0252 (9) ŵ = 6.35 mm1
β = 101.914 (1)°T = 296 K
V = 5027.7 (3) Å3Prism, orange
Z = 20.48 × 0.10 × 0.03 mm
Data collection top
Bruker D8 venture
diffractometer
8565 independent reflections
Radiation source: sealed tube, SIEMENS KFFMO2K-90C model 101903806494 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.079
Detector resolution: 10.4167 pixels mm-1θmax = 24.7°, θmin = 2.8°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.485, Tmax = 0.751l = 2727
56882 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.118H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0568P)2 + 32.4246P]
where P = (Fo2 + 2Fc2)/3
8565 reflections(Δ/σ)max < 0.001
572 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 1.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.05570 (3)0.18588 (2)0.11322 (2)0.03581 (11)
Ru10.48233 (5)0.25106 (4)0.22334 (3)0.02682 (15)
Ru20.66214 (5)0.27893 (4)0.04193 (3)0.02792 (16)
Br10.04222 (9)0.12082 (7)0.20632 (4)0.0584 (3)
Br20.04855 (10)0.10735 (7)0.05355 (5)0.0667 (3)
Br30.16673 (10)0.23895 (6)0.01809 (4)0.0595 (3)
Br40.17972 (8)0.24939 (6)0.17119 (4)0.0518 (3)
P10.35033 (15)0.33600 (12)0.18506 (8)0.0268 (4)
P20.40014 (16)0.15060 (12)0.17422 (9)0.0318 (5)
P30.79305 (16)0.20690 (12)0.09819 (8)0.0279 (4)
P40.72619 (16)0.39303 (12)0.07922 (9)0.0294 (4)
O1010.0961 (8)0.3111 (6)0.1265 (5)0.110 (4)
N10.1390 (6)0.3853 (4)0.1485 (3)0.0434 (18)
N20.2668 (7)0.4759 (5)0.2046 (4)0.054 (2)
N30.2747 (6)0.4471 (5)0.1013 (4)0.050 (2)
N40.2311 (6)0.0505 (4)0.1466 (4)0.055 (2)
N60.3384 (9)0.0693 (5)0.0709 (4)0.072 (3)
N70.8856 (6)0.1427 (4)0.2069 (3)0.048 (2)
N80.8650 (5)0.0578 (4)0.1213 (3)0.0384 (17)
N91.0030 (5)0.1578 (4)0.1354 (3)0.0389 (17)
N100.7525 (8)0.5001 (5)0.1692 (4)0.063 (2)
N110.6862 (10)0.5468 (5)0.0695 (5)0.079 (3)
N120.8770 (8)0.5093 (5)0.1015 (5)0.068 (3)
C100.2299 (9)0.0593 (6)0.0845 (6)0.075 (4)
H10A0.1855180.1026990.0696900.090*
H10B0.1961480.0150880.0634810.090*
C110.4070 (11)0.0061 (7)0.0987 (7)0.088 (4)
H11A0.3795850.0401780.0785160.106*
H11B0.4798290.0137890.0920990.106*
N130.5859 (5)0.2744 (4)0.1114 (3)0.0363 (16)
N1010.0350 (7)0.2596 (5)0.1217 (4)0.057 (2)
C10.2033 (6)0.3182 (5)0.1677 (4)0.043 (2)
H1A0.1874940.2803710.1366280.052*
H1B0.1819460.2977680.2026460.052*
C20.3562 (7)0.3865 (5)0.1154 (4)0.044 (2)
H2A0.4279040.4080710.1187610.053*
H2B0.3449820.3504730.0829620.053*
C30.3459 (8)0.4201 (5)0.2319 (4)0.053 (3)
H3A0.3290670.4042290.2692730.063*
H3B0.4171420.4433260.2404830.063*
C70.2643 (7)0.1199 (6)0.1800 (5)0.053 (3)
H7A0.2627150.1115700.2214480.064*
H7B0.2128690.1596780.1652590.064*
C80.3864 (9)0.1426 (6)0.0934 (4)0.057 (3)
H8A0.3408770.1832770.0740700.069*
H8B0.4572430.1477510.0835540.069*
C90.4687 (8)0.0597 (5)0.1959 (6)0.064 (3)
H9A0.5427540.0626720.1902200.077*
H9B0.4713970.0509910.2377860.077*
N50.4139 (8)0.0044 (5)0.1616 (5)0.071 (3)
C40.1629 (7)0.4158 (6)0.0938 (4)0.048 (2)
H4A0.1110210.4553410.0790970.057*
H4B0.1537390.3760660.0641650.057*
C50.1567 (8)0.4440 (6)0.1932 (4)0.055 (3)
H5A0.1427350.4235270.2299640.066*
H5B0.1050070.4844050.1806830.066*
C60.2891 (9)0.5031 (5)0.1497 (5)0.061 (3)
H6A0.3633000.5212250.1569640.074*
H6B0.2420570.5457890.1366300.074*
C120.3026 (9)0.0125 (5)0.1703 (5)0.064 (3)
H12A0.3043990.0169600.2125160.077*
H12B0.2722520.0588580.1515180.077*
C130.8036 (8)0.1997 (5)0.1790 (4)0.043 (2)
H13A0.8233280.2486270.1969160.051*
H13B0.7334330.1860030.1868400.051*
C140.7814 (7)0.1043 (5)0.0826 (4)0.038 (2)
H14A0.7103860.0873060.0871480.046*
H14B0.7862600.0958620.0415970.046*
C150.9390 (6)0.2153 (5)0.0987 (4)0.0356 (19)
H15A0.9500210.2109540.0583390.043*
H15B0.9640590.2648820.1134230.043*
C160.8588 (8)0.0680 (5)0.1841 (4)0.049 (2)
H16A0.7857480.0560390.1885130.058*
H16B0.9075540.0322850.2079820.058*
C170.9918 (7)0.1643 (6)0.1968 (4)0.049 (2)
H17A1.0061690.2161830.2095530.059*
H17B1.0463530.1328400.2213100.059*
C180.9748 (7)0.0812 (5)0.1149 (4)0.041 (2)
H18A1.0275530.0465800.1371830.049*
H18B0.9791710.0774870.0734750.049*
C190.7220 (10)0.4204 (6)0.1561 (4)0.061 (3)
H19A0.6493460.4122120.1627380.073*
H19B0.7710120.3882180.1833920.073*
C200.6489 (11)0.4732 (6)0.0421 (5)0.077 (4)
H20A0.6550780.4738910.0007610.092*
H20B0.5729640.4664750.0431190.092*
C210.8624 (9)0.4296 (6)0.0794 (6)0.069 (3)
H21A0.9155540.3976000.1043950.083*
H21B0.8755920.4273270.0394120.083*
C220.8613 (9)0.5136 (6)0.1613 (5)0.065 (3)
H22A0.8834350.5634050.1767120.078*
H22B0.9090560.4772180.1850630.078*
C230.6783 (10)0.5495 (7)0.1312 (6)0.075 (4)
H23A0.6915300.6008580.1454810.090*
H23B0.6049210.5362330.1341780.090*
C240.7978 (14)0.5580 (7)0.0637 (5)0.087 (5)
H24A0.8175200.6101830.0730330.104*
H24B0.8020660.5493760.0226680.104*
C250.5470 (5)0.2690 (4)0.1518 (3)0.0225 (15)
C260.5553 (8)0.3156 (5)0.3068 (4)0.046 (2)
H260.5551500.3705300.3121460.055*
C270.4748 (8)0.2631 (7)0.3181 (4)0.053 (3)
H270.4098890.2763140.3331300.063*
C280.5087 (9)0.1890 (6)0.3085 (4)0.054 (3)
H280.4730250.1420540.3163670.065*
C290.6103 (7)0.1955 (6)0.2917 (4)0.045 (2)
H290.6564170.1534120.2845910.053*
C300.6369 (7)0.2727 (6)0.2907 (4)0.050 (3)
H300.7040520.2929200.2816750.060*
C310.5113 (8)0.2551 (7)0.0273 (4)0.061 (3)
H310.4381820.2490960.0194770.074*
C320.5831 (10)0.1982 (7)0.0281 (4)0.062 (3)
H320.5689910.1448790.0210770.075*
C330.6779 (10)0.2255 (8)0.0420 (4)0.068 (4)
H330.7393280.1952170.0487910.081*
C340.6636 (10)0.3038 (8)0.0516 (4)0.074 (4)
H340.7139390.3379210.0658570.089*
C350.5567 (9)0.3237 (7)0.0416 (4)0.064 (3)
H350.5211570.3731310.0474660.077*
O1M0.1667 (5)0.0925 (4)0.1036 (3)0.0546 (17)
H1m0.1456980.0468690.1081870.082*
C1EB0.2859 (10)0.0942 (7)0.0884 (6)0.076 (3)0.5
H1010.2969610.1447480.0719280.091*0.5
H1020.3012920.0990330.1277830.091*0.5
C2E0.3839 (19)0.0593 (14)0.0584 (12)0.076 (3)0.5
H2e10.4057090.0218930.0837270.114*0.5
H2e20.4396690.0968180.0485110.114*0.5
H2e30.3721880.0356700.0226990.114*0.5
C1EA0.2859 (10)0.0942 (7)0.0884 (6)0.076 (3)0.5
H1eA0.3196310.0561880.0583290.114*0.5
H1eB0.3204510.0936140.1214970.114*0.5
H1eC0.3144440.1460630.0656670.114*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0446 (2)0.0355 (2)0.02719 (18)0.00580 (16)0.00707 (14)0.00453 (14)
Ru10.0259 (3)0.0327 (3)0.0212 (3)0.0019 (3)0.0033 (2)0.0023 (3)
Ru20.0300 (3)0.0349 (4)0.0180 (3)0.0006 (3)0.0031 (2)0.0007 (3)
Br10.0624 (6)0.0696 (7)0.0382 (5)0.0096 (5)0.0010 (4)0.0183 (5)
Br20.0934 (8)0.0612 (7)0.0558 (6)0.0312 (6)0.0394 (6)0.0125 (5)
Br30.0914 (8)0.0437 (6)0.0345 (5)0.0140 (5)0.0078 (5)0.0047 (4)
Br40.0577 (6)0.0529 (6)0.0480 (6)0.0077 (5)0.0184 (4)0.0064 (4)
P10.0280 (10)0.0299 (11)0.0227 (10)0.0032 (9)0.0056 (8)0.0018 (8)
P20.0303 (10)0.0297 (11)0.0330 (11)0.0023 (9)0.0010 (8)0.0038 (9)
P30.0303 (10)0.0310 (11)0.0222 (10)0.0000 (9)0.0054 (8)0.0006 (8)
P40.0339 (11)0.0292 (11)0.0242 (10)0.0016 (9)0.0038 (8)0.0049 (8)
O1010.093 (7)0.097 (8)0.141 (10)0.045 (6)0.028 (6)0.009 (7)
N10.037 (4)0.046 (5)0.044 (4)0.003 (4)0.002 (3)0.003 (4)
N20.063 (5)0.046 (5)0.045 (5)0.015 (4)0.005 (4)0.015 (4)
N30.056 (5)0.047 (5)0.051 (5)0.014 (4)0.018 (4)0.022 (4)
N40.043 (4)0.033 (4)0.082 (7)0.010 (4)0.007 (4)0.010 (4)
N60.102 (8)0.053 (6)0.056 (6)0.038 (6)0.007 (5)0.019 (5)
N70.064 (5)0.047 (5)0.030 (4)0.024 (4)0.006 (3)0.006 (3)
N80.037 (4)0.030 (4)0.048 (4)0.009 (3)0.007 (3)0.003 (3)
N90.030 (4)0.049 (4)0.037 (4)0.004 (3)0.005 (3)0.005 (3)
N100.091 (7)0.053 (6)0.047 (5)0.018 (5)0.018 (5)0.010 (4)
N110.104 (8)0.040 (5)0.078 (7)0.010 (5)0.013 (6)0.008 (5)
N120.067 (6)0.050 (6)0.093 (8)0.018 (5)0.032 (5)0.013 (5)
C100.072 (8)0.048 (7)0.087 (9)0.025 (6)0.029 (7)0.001 (6)
C110.083 (9)0.055 (8)0.127 (13)0.015 (7)0.023 (8)0.051 (8)
N130.031 (4)0.034 (4)0.039 (4)0.001 (3)0.005 (3)0.003 (3)
N1010.053 (5)0.062 (6)0.054 (5)0.006 (5)0.011 (4)0.003 (4)
C10.032 (4)0.050 (6)0.046 (5)0.000 (4)0.002 (4)0.018 (4)
C20.051 (5)0.038 (5)0.048 (5)0.009 (4)0.022 (4)0.012 (4)
C30.060 (6)0.041 (5)0.047 (6)0.009 (5)0.011 (5)0.020 (4)
C70.038 (5)0.045 (6)0.075 (7)0.010 (4)0.009 (5)0.010 (5)
C80.082 (7)0.051 (6)0.037 (5)0.030 (6)0.008 (5)0.015 (5)
C90.052 (6)0.030 (5)0.097 (9)0.002 (5)0.014 (6)0.000 (5)
N50.062 (6)0.027 (5)0.111 (9)0.005 (4)0.012 (5)0.007 (5)
C40.051 (5)0.051 (6)0.036 (5)0.013 (5)0.004 (4)0.003 (4)
C50.055 (6)0.062 (7)0.050 (6)0.026 (5)0.018 (5)0.003 (5)
C60.058 (6)0.033 (5)0.089 (9)0.001 (5)0.005 (6)0.001 (5)
C120.081 (8)0.021 (5)0.083 (8)0.016 (5)0.001 (6)0.007 (5)
C130.060 (6)0.040 (5)0.030 (5)0.019 (4)0.013 (4)0.001 (4)
C140.040 (5)0.037 (5)0.037 (5)0.001 (4)0.008 (4)0.001 (4)
C150.031 (4)0.039 (5)0.034 (5)0.001 (4)0.002 (3)0.005 (4)
C160.055 (6)0.046 (6)0.048 (6)0.016 (5)0.019 (4)0.022 (5)
C170.038 (5)0.053 (6)0.047 (6)0.007 (4)0.014 (4)0.001 (5)
C180.042 (5)0.031 (5)0.052 (6)0.009 (4)0.013 (4)0.006 (4)
C190.091 (8)0.057 (7)0.036 (5)0.030 (6)0.016 (5)0.008 (5)
C200.102 (9)0.043 (6)0.064 (8)0.016 (6)0.030 (7)0.003 (5)
C210.056 (6)0.041 (6)0.122 (11)0.014 (5)0.044 (7)0.008 (6)
C220.076 (8)0.043 (6)0.062 (7)0.011 (6)0.018 (6)0.008 (5)
C230.072 (8)0.067 (8)0.091 (10)0.012 (7)0.029 (7)0.038 (7)
C240.171 (15)0.040 (7)0.054 (7)0.015 (8)0.032 (8)0.019 (5)
C250.018 (3)0.029 (4)0.022 (4)0.005 (3)0.007 (3)0.005 (3)
C260.057 (6)0.044 (5)0.031 (5)0.013 (5)0.003 (4)0.005 (4)
C270.048 (5)0.083 (8)0.027 (5)0.001 (5)0.007 (4)0.006 (5)
C280.075 (7)0.054 (6)0.029 (5)0.016 (6)0.002 (5)0.014 (4)
C290.044 (5)0.052 (6)0.033 (5)0.010 (5)0.004 (4)0.003 (4)
C300.035 (5)0.083 (8)0.027 (5)0.009 (5)0.006 (4)0.002 (5)
C310.049 (6)0.093 (9)0.038 (6)0.004 (6)0.001 (4)0.023 (6)
C320.084 (8)0.061 (7)0.040 (6)0.020 (7)0.008 (5)0.023 (5)
C330.080 (8)0.090 (9)0.027 (5)0.048 (7)0.005 (5)0.018 (5)
C340.078 (8)0.128 (12)0.014 (5)0.028 (8)0.002 (5)0.008 (6)
C350.076 (8)0.069 (8)0.033 (5)0.011 (6)0.022 (5)0.010 (5)
O1M0.056 (4)0.038 (4)0.066 (5)0.001 (3)0.004 (3)0.006 (3)
C1EB0.067 (7)0.067 (7)0.093 (9)0.012 (6)0.017 (6)0.002 (6)
C2E0.067 (7)0.067 (7)0.093 (9)0.012 (6)0.017 (6)0.002 (6)
C1EA0.067 (7)0.067 (7)0.093 (9)0.012 (6)0.017 (6)0.002 (6)
Geometric parameters (Å, º) top
Re1—N1011.720 (10)N3—C21.476 (11)
Re1—O1M2.147 (6)N3—C41.491 (12)
Re1—Br22.5085 (10)N4—C101.435 (15)
Re1—Br42.5200 (10)N4—C71.465 (13)
Re1—Br12.5206 (10)N4—C121.466 (12)
Re1—Br32.5245 (10)N6—C101.475 (16)
Ru1—C252.008 (7)N6—C111.478 (17)
Ru1—C282.212 (9)N6—C81.479 (12)
Ru1—C272.214 (9)N7—C161.437 (12)
Ru1—C292.235 (8)N7—C171.457 (12)
Ru1—P22.243 (2)N7—C131.491 (11)
Ru1—C302.258 (8)N8—C161.475 (11)
Ru1—C262.261 (8)N8—C181.480 (11)
Ru1—P12.281 (2)N8—C141.482 (10)
Ru2—N132.030 (8)N9—C171.454 (12)
Ru2—C332.198 (9)N9—C181.454 (11)
Ru2—C342.202 (9)N9—C151.458 (11)
Ru2—C322.229 (9)N10—C231.437 (16)
Ru2—C352.245 (9)N10—C221.440 (14)
Ru2—C312.255 (9)N10—C191.476 (13)
Ru2—P32.268 (2)N11—C231.446 (16)
Ru2—P42.277 (2)N11—C241.453 (17)
P1—C11.840 (8)N11—C201.482 (14)
P1—C31.846 (9)N12—C221.433 (14)
P1—C21.850 (8)N12—C241.462 (16)
P2—C71.827 (9)N12—C211.498 (13)
P2—C81.838 (9)C11—N51.444 (17)
P2—C91.846 (10)N13—C251.142 (10)
P3—C131.841 (8)C9—N51.473 (13)
P3—C151.843 (8)N5—C121.464 (14)
P3—C141.853 (9)C26—C301.388 (14)
P4—C201.831 (10)C26—C271.441 (14)
P4—C211.834 (10)C27—C281.410 (15)
P4—C191.847 (9)C28—C291.417 (14)
O101—N1011.183 (11)C29—C301.409 (14)
N1—C51.447 (12)C31—C321.357 (16)
N1—C11.456 (11)C31—C351.411 (16)
N1—C41.458 (12)C32—C331.387 (16)
N2—C61.434 (14)C33—C341.410 (17)
N2—C31.451 (12)C34—C351.456 (16)
N2—C51.470 (13)O1M—C1EB1.471 (13)
N3—C61.473 (13)C1EB—C2E1.43 (3)
N101—Re1—O1M178.9 (3)C5—N1—C1112.1 (7)
N101—Re1—Br294.1 (3)C5—N1—C4108.7 (8)
O1M—Re1—Br285.44 (19)C1—N1—C4111.3 (7)
N101—Re1—Br494.1 (3)C6—N2—C3111.5 (8)
O1M—Re1—Br486.33 (19)C6—N2—C5108.7 (8)
Br2—Re1—Br4171.77 (4)C3—N2—C5110.8 (8)
N101—Re1—Br193.0 (3)C6—N3—C2110.6 (8)
O1M—Re1—Br185.96 (18)C6—N3—C4107.7 (8)
Br2—Re1—Br189.58 (4)C2—N3—C4110.6 (7)
Br4—Re1—Br190.10 (4)C10—N4—C7112.1 (8)
N101—Re1—Br393.0 (3)C10—N4—C12109.5 (10)
O1M—Re1—Br387.99 (18)C7—N4—C12110.8 (8)
Br2—Re1—Br389.45 (4)C10—N6—C11107.6 (9)
Br4—Re1—Br390.01 (4)C10—N6—C8111.2 (9)
Br1—Re1—Br3173.93 (4)C11—N6—C8110.6 (9)
C25—Ru1—C28142.5 (4)C16—N7—C17109.7 (7)
C25—Ru1—C27154.2 (3)C16—N7—C13112.1 (7)
C28—Ru1—C2737.2 (4)C17—N7—C13109.3 (7)
C25—Ru1—C29106.9 (3)C16—N8—C18107.6 (7)
C28—Ru1—C2937.1 (4)C16—N8—C14110.3 (6)
C27—Ru1—C2961.3 (4)C18—N8—C14110.3 (7)
C25—Ru1—P286.3 (2)C17—N9—C18108.8 (7)
C28—Ru1—P291.3 (3)C17—N9—C15110.8 (7)
C27—Ru1—P2117.6 (3)C18—N9—C15113.2 (7)
C29—Ru1—P2101.4 (3)C23—N10—C22109.8 (9)
C25—Ru1—C3095.6 (3)C23—N10—C19110.3 (9)
C28—Ru1—C3061.6 (4)C22—N10—C19110.3 (9)
C27—Ru1—C3060.9 (3)C23—N11—C24110.5 (10)
C29—Ru1—C3036.5 (4)C23—N11—C20111.6 (10)
P2—Ru1—C30136.4 (3)C24—N11—C20107.9 (11)
C25—Ru1—C26117.0 (3)C22—N12—C24109.1 (9)
C28—Ru1—C2662.5 (4)C22—N12—C21110.1 (9)
C27—Ru1—C2637.5 (4)C24—N12—C21109.4 (10)
C29—Ru1—C2661.1 (4)N4—C10—N6113.8 (8)
P2—Ru1—C26153.3 (2)N5—C11—N6116.1 (10)
C30—Ru1—C2635.8 (3)C25—N13—Ru2176.3 (7)
C25—Ru1—P188.1 (2)O101—N101—Re1178.6 (10)
C28—Ru1—P1129.4 (3)N1—C1—P1113.5 (6)
C27—Ru1—P198.1 (3)N3—C2—P1113.1 (6)
C29—Ru1—P1157.7 (3)N2—C3—P1113.4 (6)
P2—Ru1—P195.97 (8)N4—C7—P2112.5 (7)
C30—Ru1—P1127.6 (3)N6—C8—P2111.6 (7)
C26—Ru1—P197.5 (3)N5—C9—P2112.7 (7)
N13—Ru2—C33145.0 (4)C11—N5—C12106.9 (9)
N13—Ru2—C34151.6 (4)C11—N5—C9111.3 (10)
C33—Ru2—C3437.4 (5)C12—N5—C9110.9 (9)
N13—Ru2—C32109.3 (4)N1—C4—N3113.3 (7)
C33—Ru2—C3236.5 (4)N1—C5—N2113.8 (7)
C34—Ru2—C3260.9 (4)N2—C6—N3115.1 (8)
N13—Ru2—C35113.3 (4)N5—C12—N4114.0 (8)
C33—Ru2—C3562.8 (4)N7—C13—P3112.5 (5)
C34—Ru2—C3538.2 (4)N8—C14—P3114.2 (6)
C32—Ru2—C3560.6 (4)N9—C15—P3112.3 (6)
N13—Ru2—C3194.7 (3)N7—C16—N8114.5 (7)
C33—Ru2—C3160.9 (4)N9—C17—N7114.3 (7)
C34—Ru2—C3161.5 (4)N9—C18—N8113.6 (7)
C32—Ru2—C3135.2 (4)N10—C19—P4112.9 (7)
C35—Ru2—C3136.6 (4)N11—C20—P4113.0 (7)
N13—Ru2—P386.25 (19)N12—C21—P4112.5 (7)
C33—Ru2—P394.2 (3)N12—C22—N10115.9 (9)
C34—Ru2—P3121.3 (4)N10—C23—N11114.2 (9)
C32—Ru2—P3102.5 (3)N11—C24—N12114.9 (9)
C35—Ru2—P3156.9 (3)N13—C25—Ru1175.5 (7)
C31—Ru2—P3134.9 (3)C30—C26—C27106.4 (9)
N13—Ru2—P485.8 (2)C30—C26—Ru172.0 (5)
C33—Ru2—P4128.6 (4)C27—C26—Ru169.4 (5)
C34—Ru2—P496.7 (4)C28—C27—C26108.9 (9)
C32—Ru2—P4155.8 (3)C28—C27—Ru171.4 (5)
C35—Ru2—P496.4 (3)C26—C27—Ru173.0 (5)
C31—Ru2—P4127.9 (3)C27—C28—C29106.7 (9)
P3—Ru2—P497.13 (7)C27—C28—Ru171.5 (5)
C1—P1—C396.6 (5)C29—C28—Ru172.3 (5)
C1—P1—C296.5 (4)C30—C29—C28108.3 (9)
C3—P1—C297.4 (5)C30—C29—Ru172.6 (5)
C1—P1—Ru1126.3 (3)C28—C29—Ru170.6 (5)
C3—P1—Ru1114.4 (3)C26—C30—C29109.6 (8)
C2—P1—Ru1119.8 (3)C26—C30—Ru172.2 (5)
C7—P2—C899.0 (5)C29—C30—Ru170.8 (5)
C7—P2—C996.6 (5)C32—C31—C35109.4 (10)
C8—P2—C998.5 (6)C32—C31—Ru271.4 (6)
C7—P2—Ru1122.8 (4)C35—C31—Ru271.4 (5)
C8—P2—Ru1120.6 (3)C31—C32—C33110.7 (11)
C9—P2—Ru1114.4 (3)C31—C32—Ru273.4 (6)
C13—P3—C1597.8 (4)C33—C32—Ru270.5 (6)
C13—P3—C1496.6 (4)C32—C33—C34106.9 (10)
C15—P3—C1496.9 (4)C32—C33—Ru273.0 (6)
C13—P3—Ru2120.6 (3)C34—C33—Ru271.4 (6)
C15—P3—Ru2124.4 (3)C33—C34—C35107.8 (11)
C14—P3—Ru2115.0 (3)C33—C34—Ru271.2 (6)
C20—P4—C2197.7 (6)C35—C34—Ru272.5 (6)
C20—P4—C1997.3 (6)C31—C35—C34105.2 (10)
C21—P4—C1996.7 (5)C31—C35—Ru272.1 (6)
C20—P4—Ru2113.5 (4)C34—C35—Ru269.3 (5)
C21—P4—Ru2125.0 (4)C1EB—O1M—Re1128.3 (6)
C19—P4—Ru2121.1 (3)C2E—C1EB—O1M147.8 (14)
C7—N4—C10—N667.9 (11)C13—N7—C16—N867.5 (10)
C12—N4—C10—N655.4 (11)C18—N8—C16—N754.6 (9)
C11—N6—C10—N453.3 (12)C14—N8—C16—N765.7 (10)
C8—N6—C10—N468.0 (12)C18—N9—C17—N754.8 (10)
C10—N6—C11—N554.7 (12)C15—N9—C17—N770.3 (10)
C8—N6—C11—N567.0 (13)C16—N7—C17—N953.9 (10)
C5—N1—C1—P159.7 (9)C13—N7—C17—N969.3 (10)
C4—N1—C1—P162.2 (9)C17—N9—C18—N856.1 (9)
C3—P1—C1—N148.0 (7)C15—N9—C18—N867.6 (9)
C2—P1—C1—N150.2 (7)C16—N8—C18—N955.5 (9)
Ru1—P1—C1—N1175.0 (5)C14—N8—C18—N964.8 (9)
C6—N3—C2—P158.7 (9)C23—N10—C19—P461.3 (11)
C4—N3—C2—P160.6 (9)C22—N10—C19—P460.2 (11)
C1—P1—C2—N349.7 (8)C20—P4—C19—N1048.6 (10)
C3—P1—C2—N347.8 (8)C21—P4—C19—N1050.1 (10)
Ru1—P1—C2—N3171.5 (5)Ru2—P4—C19—N10171.8 (7)
C6—N2—C3—P160.1 (10)C23—N11—C20—P459.0 (14)
C5—N2—C3—P161.1 (10)C24—N11—C20—P462.6 (12)
C1—P1—C3—N249.3 (8)C21—P4—C20—N1150.6 (11)
C2—P1—C3—N248.1 (8)C19—P4—C20—N1147.2 (11)
Ru1—P1—C3—N2175.7 (6)Ru2—P4—C20—N11175.8 (9)
C10—N4—C7—P259.8 (10)C22—N12—C21—P460.6 (12)
C12—N4—C7—P262.8 (10)C24—N12—C21—P459.3 (12)
C8—P2—C7—N447.8 (8)C20—P4—C21—N1248.4 (10)
C9—P2—C7—N452.0 (8)C19—P4—C21—N1249.9 (10)
Ru1—P2—C7—N4176.6 (5)Ru2—P4—C21—N12174.3 (7)
C10—N6—C8—P259.5 (11)C24—N12—C22—N1052.2 (12)
C11—N6—C8—P260.0 (12)C21—N12—C22—N1067.9 (12)
C7—P2—C8—N648.0 (9)C23—N10—C22—N1253.9 (12)
C9—P2—C8—N650.1 (9)C19—N10—C22—N1267.9 (12)
Ru1—P2—C8—N6175.1 (7)C22—N10—C23—N1152.8 (12)
C7—P2—C9—N550.9 (10)C19—N10—C23—N1169.0 (12)
C8—P2—C9—N549.2 (10)C24—N11—C23—N1052.0 (13)
Ru1—P2—C9—N5178.5 (8)C20—N11—C23—N1068.0 (13)
N6—C11—N5—C1255.5 (12)C23—N11—C24—N1250.9 (14)
N6—C11—N5—C965.7 (13)C20—N11—C24—N1271.3 (13)
P2—C9—N5—C1158.3 (12)C22—N12—C24—N1150.4 (13)
P2—C9—N5—C1260.5 (12)C21—N12—C24—N1170.2 (13)
C5—N1—C4—N356.5 (10)C30—C26—C27—C280.2 (10)
C1—N1—C4—N367.4 (10)Ru1—C26—C27—C2862.7 (6)
C6—N3—C4—N154.3 (10)C30—C26—C27—Ru163.0 (6)
C2—N3—C4—N166.7 (10)C26—C27—C28—C290.4 (10)
C1—N1—C5—N266.4 (10)Ru1—C27—C28—C2964.2 (6)
C4—N1—C5—N257.0 (10)C26—C27—C28—Ru163.8 (6)
C6—N2—C5—N155.9 (11)C27—C28—C29—C300.4 (10)
C3—N2—C5—N167.0 (10)Ru1—C28—C29—C3063.2 (6)
C3—N2—C6—N367.6 (11)C27—C28—C29—Ru163.6 (6)
C5—N2—C6—N354.8 (11)C27—C26—C30—C290.0 (10)
C2—N3—C6—N266.8 (11)Ru1—C26—C30—C2961.3 (6)
C4—N3—C6—N254.2 (11)C27—C26—C30—Ru161.3 (6)
C11—N5—C12—N455.5 (12)C28—C29—C30—C260.3 (10)
C9—N5—C12—N466.0 (13)Ru1—C29—C30—C2662.2 (6)
C10—N4—C12—N556.9 (11)C28—C29—C30—Ru161.9 (6)
C7—N4—C12—N567.2 (12)C35—C31—C32—C330.5 (12)
C16—N7—C13—P361.3 (9)Ru2—C31—C32—C3361.0 (7)
C17—N7—C13—P360.6 (9)C35—C31—C32—Ru261.6 (7)
C15—P3—C13—N749.0 (7)C31—C32—C33—C341.1 (11)
C14—P3—C13—N748.9 (7)Ru2—C32—C33—C3463.8 (7)
Ru2—P3—C13—N7173.0 (5)C31—C32—C33—Ru262.8 (7)
C16—N8—C14—P359.5 (8)C32—C33—C34—C351.2 (11)
C18—N8—C14—P359.3 (8)Ru2—C33—C34—C3563.7 (6)
C13—P3—C14—N849.6 (7)C32—C33—C34—Ru264.9 (7)
C15—P3—C14—N849.1 (6)C32—C31—C35—C340.2 (11)
Ru2—P3—C14—N8177.7 (5)Ru2—C31—C35—C3461.8 (6)
C17—N9—C15—P361.0 (8)C32—C31—C35—Ru261.6 (7)
C18—N9—C15—P361.6 (8)C33—C34—C35—C310.8 (10)
C13—P3—C15—N949.0 (7)Ru2—C34—C35—C3163.7 (7)
C14—P3—C15—N948.7 (6)C33—C34—C35—Ru262.8 (6)
Ru2—P3—C15—N9175.4 (4)Re1—O1M—C1EB—C2E144 (3)
C17—N7—C16—N854.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Br3i0.973.123.944 (12)143
C10—H10B···Br20.972.833.709 (10)150
C1—H1B···Br4ii0.973.033.967 (9)163
C7—H7B···N9iii0.972.593.309 (11)131
C8—H8A···Br3i0.972.893.772 (12)151
C4—H4B···Br3i0.973.104.062 (10)169
C5—H5A···Br1ii0.973.103.918 (10)143
C18—H18A···N4iv0.972.533.208 (11)127
C18—H18B···Br2v0.972.923.858 (9)163
C19—H19B···Br1vi0.973.093.938 (11)147
C22—H22B···Br1vi0.973.003.861 (10)148
C23—H23A···Br4vii0.973.104.007 (12)156
C24—H24A···Br3vii0.972.983.799 (11)143
O1M—H1m···N8iii0.851.882.709 (9)166
C1EB—H101···Br30.972.803.527 (13)132
C2E—H2e3···N6i0.962.363.15 (3)140
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) (grant to MP, NA, AC, CK); Comisión Sectorial de Investigación Científica (Apoyo a Grupos de Investigación No. 2003 to MP, AC, CK); Comisión Académica de Posgrado (CAP) (studentship to MP); University of Almeria (grant No. PPUENTE2020/011 to AR; grant No. PAI team FQM-317 to AR); Agencia Nacional de Investigación e Innovación (studentship to MP); Spanish MINECO (grant No. PID2019-109735GB-I00; Unidad de Excelencia María de Maeztu CEX2019-000919-M); Generalitat Valenciana (grant No. AICO/2020/183).

References

First citationAakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationAntonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1–9.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156–2161.  CrossRef Google Scholar
First citationDarensbourg, D. J., Decuir, T. J. & Reibenspies, J. H. (1995). Aqueous Organometallic Chemistry and Catalysis, Vol. edited by I. T. Horváth & F. Joó, pp. 61–80. Dordrecht: Springer Netherlands.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDilworth, J. R. (2021). Coord. Chem. Rev. 436, 213822.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, S., Paul, S. S., Mitra, J. & Mukherjea, K. K. (2014). J. Coord. Chem. 67, 1809–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHey-Hawkins, E. & Hissler, M. (2019). Smart Inorganic Polymers: Synthesis, Properties, and emerging applications in Materials and Life Sciences. Weinheim: Wiley-VCH.  Google Scholar
First citationHołyńska, M. & Lis, T. (2014). Inorg. Chim. Acta, 419, 96–104.  Google Scholar
First citationIkeda, H., Yoshimura, T., Ito, A., Sakuda, E., Kitamura, N., Takayama, T., Sekine, T. & Shinohara, A. (2012). Inorg. Chem. 51, 12065–12074.  CrossRef CAS PubMed Google Scholar
First citationJiang, Y., Blacque, O. & Berke, H. (2011). Dalton Trans. 40, 2578–2587.  CrossRef CAS PubMed Google Scholar
First citationJiang, Y., Blacque, O., Fox, T., Frech, C. M. & Berke, H. (2010). Chem. Eur. J. 16, 2240–2249.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiang, J.-X., Zhong, H.-J., Yang, G., Vellaisamy, K., Ma, D.-L. & Leung, C.-H. (2017). J. Inorg. Biochem. 177, 276–286.  CrossRef CAS PubMed Google Scholar
First citationLidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568–2572.  Web of Science CSD CrossRef CAS Google Scholar
First citationMachura, B. (2005). Coord. Chem. Rev. 249, 2277–2307.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasood, Md. A. & Hodgson, D. J. (1994). Inorg. Chem. 33, 2488–2490.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMetrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946–947.  Web of Science CrossRef CAS Google Scholar
First citationMronga, N., Dehnicke, K. & Fenske, D. (1982). Z. Anorg. Allg. Chem. 491, 237–244.  CrossRef CAS Google Scholar
First citationPacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361–15371.  CrossRef CAS PubMed Google Scholar
First citationPacheco, M., Cuevas, A., González-Platas, J., Gancheff, J. S. & Kremer, C. (2014). J. Coord. Chem. 67, 4028–4038.  CrossRef CAS Google Scholar
First citationPacheco, M., Cuevas, A., González-Platas, J. & Kremer, C. (2015). Commun. Inorg. Synth. 2, 20–24.  Google Scholar
First citationPacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636–11648.  CrossRef CAS PubMed Google Scholar
First citationPhillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.  Web of Science CrossRef CAS Google Scholar
First citationPino-Cuevas, A., Graña, A., Abram, U., Carballo, R. & Vázquez-López, E. M. (2018). CrystEngComm, 20, 4781–4792.  CAS Google Scholar
First citationProbst, B., Kolano, C., Hamm, P. & Alberto, R. (2009). Inorg. Chem. 48, 1836–1843.  CrossRef PubMed CAS Google Scholar
First citationScalambra, F., López-Sánchez, B., Holzmann, N., Bernasconi, L. & Romerosa, A. (2020). Organometallics, 39, 4491–4499.  CrossRef CAS Google Scholar
First citationScalambra, F., Serrano-Ruiz, M., Gudat, D. & Romerosa, A. (2016). ChemistrySelect, 1, 901–905.  CrossRef CAS Google Scholar
First citationScalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689–693.  CrossRef CAS PubMed Google Scholar
First citationScalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2017). Dalton Trans. 46, 5864–5871.  CrossRef CAS PubMed Google Scholar
First citationScalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2018). Dalton Trans. 47, 3588–3595.  CrossRef CAS PubMed Google Scholar
First citationScalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441–9444.  CrossRef CAS Google Scholar
First citationSerrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587–11590.  CAS Google Scholar
First citationSerrano Ruiz, M., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. (2008). Angew. Chem. Int. Ed. 47, 8665–8669.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.  Web of Science CSD CrossRef CAS Google Scholar
First citationSierra-Martin, B., Serrano-Ruiz, M., García-Sakai, V., Scalambra, F., Romerosa, A. & Fernandez-Barbero, A. (2018). Polymers, 10, 528.  Google Scholar
First citationSierra-Martin, B., Serrano-Ruiz, M., Scalambra, F., Fernandez-Barbero, A. & Romerosa, A. (2019). Polymers, 11, 1249.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. (2009). Chem. Soc. Rev. 38, 1218–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: Wiley.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWang, X.-Y., Avendaño, C. & Dunbar, K. R. (2011). Chem. Soc. Rev. 40, 3213–3238.  CrossRef CAS PubMed Google Scholar
First citationZhang, W., Tang, X., Ma, H., Sun, W.-H. & Janiak, C. (2008). Eur. J. Inorg. Chem. pp. 2830–2836.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds