research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 9-[bis­­(benzyl­sulfan­yl)meth­yl]anthracene and of cyclo-dodeca­kis­(μ2-phenyl­methane­thiol­ato-κ2S:S)hexa­palladium(6 PdPd)–anthracene-9,10-dione (1/1)

crossmark logo

aInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon, France, and bAnorganische Chemie, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 June 2021; accepted 11 June 2021; online 18 June 2021)

The first title compound, C29H24S2, L1, represents an example of an anthracene-based functionalized di­thio­ether, which may be useful as a potential chelating or terminal ligand for coordination chemistry. This di­thio­acetal L1 crystallizes in the monoclinic space group P21/c. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)° and the crystal structure displays short C–H⋯π contacts. Surprisingly, when attempting to coordinate L1 to [PdCl2(PhCN)2], instead of the targeted chelate complex [PdCl2(κ2-L1)], a cleavage reaction leads to the formation of the centrosymmetric hexa­nuclear cyclic cluster of composition [Pd6(μ2-SCH2Ph)12] Pd6, or [Pd6(C7H7S)12]·C14H8O2. This tiara-shaped hexa­mer crystallizing in the triclinic space group P[\overline{1}] consists of six approximately square planar Pd(II)S4 centers, which are inter­connected through twelve μ2-bridging benzyl thiol­ate groups. The Pd⋯Pd contacts range from 3.0892 (2) to 3.1609 (2) Å and can be considered as weakly bonding. The unit cell of Pd6 contains also a co-crystallized anthracene-9,10-dione mol­ecule.

1. Chemical context

Acyclic and cyclic thio­acetals with the –S–C(R)(H)–S (R = H, alkyl, ar­yl) unit can either be synthesized by nucleophilic substitution of geminal dihalides X–C(R)(H)–X by thiol­ates RS (Murray et al., 1981[Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185-189.]) or by reaction of aldehydes and ketones with thiols and di­thiols (Shaterian et al., 2011[Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85-91.]). Because of their soft nature, organosulfur compounds preferentially inter­act with late transition metals in lower oxidation states. A variety of complexes as well as coordination polymers (CPs) of varying dimensionality, ranging from zero-dimensional (mol­ecular) to three-dimensional, have been synthesized using these types of di­thio­ether ligands and structurally characterized (Knaust & Keller, 2003[Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459-465.]; Awaleh et al., 2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, m1586-m1587.], 2008[Awaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964-2974.]). However, many factors including the structural characteristics of the organic ligands, temperature, solvent, molar ratio, etc., greatly influence the formation of the resulting materials.

Over the last few years, we have been engaged in exploring the assembly of mol­ecular cluster compounds and coordination polymers using thio­ether ligands RSCH2SR (Peindy et al., 2007[Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823-1828.]; Knorr et al., 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; Schlachter et al., 2020[Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. M. & Knorr, M. (2020). Inorg. Chem. 59, 3686-3708.]). Recently, we have also reported the synthesis of CuI coordination complexes ligated with cyclic thio­acetal ligands bearing various substituents (Raghuvanshi et al., 2017[Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501-1513.], 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]; Schlachter et al., 2018[Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564-13576.]; Knauer et al., 2020[Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38-41.]). Convenient synthetic protocols and inter­esting luminescent properties displayed by these complexes intrigued us to explore this field further.

Since the presence of an anthracene unit provides both rigidity as well as inter­esting luminescent properties to a given system, a large number of anthracene-based MOFs and CPs have been reported for various applications (for example: Hu et al., 2020[Hu, X.-L., Wang, K., Li, X., Pan, Q.-Q. & Su, Z.-M. (2020). New J. Chem. 44, 12496-12502.]; Mohanty et al., 2020[Mohanty, A., Singh, U. P., Butcher, R. J., Das, N. & Roy, P. (2020). CrystEngComm, 22, 4468-4477.]; Quah et al., 2016[Quah, H. S., Ng, L. T., Donnadieu, B., Tan, G. K. & Vittal, J. J. (2016). Inorg. Chem. 55, 10851-10854.]; Wang et al., 2016[Wang, X., Gao, W.-Y., Luan, J., Wojtas, L. & Ma, S. (2016). Chem. Commun. 52, 1971-1974.]). In most of these reports, either N- or O-donor substituents attached to the anthracene scaffold have been used as coordinating sites. In contrast, there are few reports where anthracene-based thio­ether ligands have been used for the construction of CPs. For example, a series of emissive mol­ecular compounds and CPs have been assembled by reaction of 9,10-bis­[(alkyl­thio)­meth­yl]anthracenes with AgI salts (Hu et al., 2006[Hu, T.-L., Li, J.-R., Xie, Y.-B. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 648-655.]). The synthesis of anthracene-based thio­acetals with different –SR substituents including L1 has been briefly reported (Goswami et al., 2008[Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092-3096.] and Shaterian et al., 2011[Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85-91.]). However, no spectroscopic characterization data have been communicated. Furthermore, no examples of structurally characterized anthracene-based thio­acetals could be found within the Cambridge Structural Database. These disparities make this field inter­esting for further investigations.

[Scheme 1]

In this context, we synthesized the anthracene thio­acetal L1 with the objective of using it as an S-donor ligand for the assembly of potentially luminescent coordination compounds. L1 was prepared straightforwardly by the reaction of benzyl mercaptan and 9-anthracenecarboxaldehyde in the presence of an excess conc. HCl at room temperature (Fig. 1[link]) and obtained in 80% yield as a yellow solid. Characteristic for its 1H NMR spectrum are two doublets at δ 3.55 and 3.79 ppm for the diastereotopic methyl­ene protons and a singlet at δ 5.94 ppm for the methine proton. The complete spectroscopic data are reported in the Synthesis and crystallization section.

[Figure 1]
Figure 1
Synthesis scheme for L1 and the cluster Pd6·C14H8O2

With this starting material in hand, we attempted to ligate L1 to [PdCl2(PhCN)2], (Fig. 1[link]). Although the coordination chemistry of [PdCl2(S∩S)] compounds is dominated by chelate complexes in which open-chain di­thio­ether or macrocyclic polythio­ether ligands form five- or six-membered rings such as [PdCl2(1,2-bis­(phenyl­thio)­ethane-S,S′] (Rao et al., 2015[Rao, G. K., Kumar, A., Saleem, F., Singh, M. P., Kumar, S., Kumar, B., Mukherjee, G. & Singh, A. K. (2015). Dalton Trans. 44, 6600-6612.]; Cambridge Structural Database refcode: CEYBUD01) or [PdCl2(1,4,7-tri­thia­cyclo­nonane-S,S′)] (GATLES; Blake et al., 1988[Blake, A. J., Holder, A. J., Roberts, Y. V. & Schröder, M. (1988). Acta Cryst. C44, 360-361.]), there is just one structurally characterized example of a chelate complex [PdCl2(1,3,5,7-tetra­methyl-2,4,6,8,9,10-hexa­thia-adamantane-S4,S6)], in which the thia­macrocycle forms a strained four-membered chelate ring (DOCNOY; Pickardt & Rautenberg, 1986[Pickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409-412.]). It has also been reported that upon treatment of PhSCH2SPh with [M(MeCN)4][ClO4]2, the strained chelate complexes [M(PhSCH2SPh)4](ClO4)2 (M = Pd, Pt) are formed (Murray et al., 1981[Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185-189.]). However, to our surprise, the targeted compound [PdCl2(anthracen-9-yl­methyl­ene)bis­(benzyl­sulfane)-S,S′)] was not formed according to the NMR data. Instead, a crystallographic study of a yellow–orange crystal revealed the formation of a cyclic hexa­nuclear thiol­ate-bridged cluster [Pd6(μ2-SCH2Ph)12], Pd6. It is well known that thio­acetals can be cleaved by soft HgII ions yielding aldehydes or other oxygenated products. One example is the HgIII-promoted deprotection of 3,5-bis­(di­thio­acetal)BODIPYs, in which cleavage of a di­thio­acetal function to aldehyde groups occurs (Madhu et al., 2014[Madhu, S., Josimuddin, S. & Ravikanth, M. (2014). New J. Chem. 38, 3770-3776.]). A mild qu­anti­tative AgNO3-promoted cleavage of fluorenenyl­ethanediyl-S,S-acetals with tri­chloro­isocyanuric acid yielding 9-fluorenone has also been reported (Olah et al., 1980[Olah, G. A., Narang, S. C. & Salem, G. F. (1980). Synthesis, pp. 659-660.]). We suppose that in our case PdCl2 behaves similarly, acting as electrophilic agent. We have not examined the mechanistic aspects of this unexpected reaction in detail, but the fact that Pd6 co-crystallizes with one mol­ecule of anthracene-9,10-dione and smaller amounts of 9-anthraldehyde is in line with this hypothesis. It is noteworthy that this diketone has also been detected as one of the numerous oxidation products stemming from the oxidation of (anthracen-9-ylmeth­yl)(benz­yl)sulfane with ceric ammonium nitrate (Gopalakrishnan et al., 2015[Gopalakrishnan, R., Jacob, J. P., Moideen, S. F. T., Lalu, L. M., Unnikrishnan, P. A. & Prathapan, S. (2015). Arkivoc, 7, 316-329.]).

Looking for a more rational manner to synthesize this tiara-like cluster, we attempted to prepare Pd6 independently by reacting [PdCl2(PhCN)2] with 2.1 equivalents of benzyl mercaptan in CH2Cl2 solution. However, the isolation of Pd6 was hampered by the co-crystallization of important amounts of the eight-membered cluster Pd8 [Pd8(μ2-SCH2Ph)16], having a structure similar to that of [Pd8(μ2-SPr)16] (Higgins et al., 1988[Higgins, J. D. & Suggs, J. W. (1988). Inorg. Chim. Acta, 145, 247-252.]). Details of this reaction will be reported elsewhere.

2. Structural commentary

Compound L1 crystallizes from the mixed solvents CH2Cl2/hexane in the monoclinic crystal system with P21/c space group. The mol­ecular structure of L1 is presented in Fig. 2[link] and selected bond lengths and bond angles are given in Table 1[link]. The C15—S1 and C15—S2 bond lengths of 1.8309 (12) and 1.8220 (12) Å are comparable with those of [BzSC(H)(C6H4NO2-p)SBz] (SUNMAQ) [1.8262 (19) and 1.818 (2) Å; Binkowska et al., 2009[Binkowska, I., Ratajczak-Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54-58.]], but are elongated compared with those of bis­(benzyl­sulfan­yl)methane (TUQPAX) [1.7988 (13) and 1.8013 (13) Å; Yang et al., 2010[Yang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519.]) and 2-[bis­(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol (IGOBOY) [1.8132 (12) and 1.8189 (12) Å; Raghuvanshi et al., 2020[Raghuvanshi, A., Knauer, L., Viau, L., Knorr, M. & Strohmann, C. (2020). Acta Cryst. E76, 484-487.]). The angle S1—C15—S2 of 110.93 (6)° in L1 is wider than those of 4-nitro­phenyl­bis­(benzyl­sulfan­yl)methane [107.26 (6)°] and 2-[bis­(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol [107.76 (10)°], but considerably less than in [BzSCH2SBz] [117.33 (7)°]. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)°.

Table 1
Selected geometric parameters (Å, °) for L1[link]

S1—C15 1.8309 (12) S2—C15 1.8220 (12)
       
S1—C15—S2 110.93 (6)    
[Figure 2]
Figure 2
The mol­ecular structure of L1 with atom labelling and displacement ellipsoids drawn at the 50% probability level.

The inorganic part of the crystal structure of the reaction product of L1 with [PdCl2(PhCN)2] shown in Fig. 3[link] is very similar overall to the structures of a series of other structurally characterized tiara-like hexa­nuclear clusters bridged by aliphatic thiol­ate groups such as [Pd6(μ2-SPr)12] (Kunchur, 1971[Kunchur, N. R. (1971). Acta Cryst. B27, 2292.]; PDPRMC), [Pd6(μ2-SEt)12] (Stash et al., 2001[Stash, A. I., Perepelkova, T. I., Noskov, Yu. G., Buslaeva, T. M. & Romm, I. P. (2001). Russ. J. Coord. Chem. 27, 585-590.]; UCIXAF), [Pd6(μ2-SCH2CH2OH)12] (Mahmudov et al., 2013[Mahmudov, K. T., Hasanov, X. I., Maharramov, A. M., Azizova, A. N., Ragimov, K. Q., Askerov, R. K., Kopylovich, M. N., Ma, Z. & Pombeiro, A. J. L. (2013). Inorg. Chem. Commun. 29, 37-39.]; XIPCUW), [Pd6(μ2-SBu)12] (Stash et al., 2009[Stash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal'kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136-141.]; LAFBUR) and [Pd6(μ2-SHex­yl)12] (Ananikov et al., 2012[Ananikov, V. P., Orlov, N. V., Zalesskiy, S. S., Beletskaya, I. P., Khrustalev, V. N., Morokuma, K. & Musaev, D. G. (2012). J. Am. Chem. Soc. 134, 6637-6649.]; FAVQEA). Furthermore, the structure of the thio­pheno­late-spanned compound [Pd6(μ2-SPh)12] has been reported (Stash et al., 2009[Stash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal'kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136-141.]). However, within this series of metallacycles, the most reminiscent structure to our benzylic derivative [Pd6(μ2-SCH2Ph)12] is that of the phenyl­ethane­thiol­ate-decorated nanocluster [Pd6(μ2-SCH2CH2Ph)12] (Chen et al., 2017[Chen, J., Pan, Y., Wang, Z. & Zhao, P. (2017). Dalton Trans. 46, 12964-12970.]; HEGPAN).

[Figure 3]
Figure 3
The mol­ecular structure of Pd6·C14H8O2 with the atom labelling and displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2]. The H atoms are not shown for clarity.

The core of Pd6 consists of three crystallographically different PdII centers forming a centrosymmetric, almost planar, six-membered ring with Pd⋯Pd contacts ranging from 3.0892 (2) to 3.1609 (2) Å. The mean Pd⋯Pd separation of 3.1213 (2) Å is quite similar to that of the other derivatives and may be considered as weakly bonding (Stash et al., 2009[Stash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal'kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136-141.]), being significantly shorter than the sum of the van der Waals radii for Pd (3.26 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The mean separation of two symmetry-related opposite Pd nuclei is about 6.22 Å, the longest being that of 6.453 Å between Pd3 and Pd3′, justifying describing these compounds as nano-sized clusters. Each palladium atom is coordinated covalently to four μ2-sulfur atoms with an approximately square-planar geometry, and the average Pd—S bond length of 2.327 (5) Å is close to those of the other [Pd6(μ2-SR)12] analogues. The S—Pd—S bridge angles vary within the range 81.033 (16)–99.246 (16)°. The twelve sulfur atoms form two S6 hexa­gons parallel to the central Pd6 ring from both sides, conferring finally a tiara-like shape to the Pd6S12 scaffold.

Note that the crystal structure of anthracene-9,10-dione (also named 9,10-anthra­quinone) has already been the object of several crystallographic studies and is therefore not commented herein (Fu & Brock, 1998[Fu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308-315.]; Slouf, 2002[Slouf, M. (2002). J. Mol. Struct. 611, 139-146.]).

3. Supra­molecular features

The crystal packing of di­thio­actal L1 is shown in Fig. 4[link]. Three different types of C—H⋯π inter­actions are observed in the crystal structure (Fig. 5[link]) where the H⋯π distances range from 2.51 to 2.84 Å. The C21—H21⋯Cg(C16/C17/C22/C23/C24/C29 centroid) distance of 2.519 (18) Å, the C14—H14⋯C24 distance of 2.741 (18) Å and the C1—H1B⋯C9 distance of 2.847 (16) Å are short enough to be considered as weak inter­molecular inter­actions (see Table 2[link]). The closest C—H⋯S contact of 2.702 Å occurs between the aromatic H18 atom and S; however, the C18—H18⋯S1 angle of 123° suggests that this contribution has a neglectable impact on the conformation of L1.

Table 2
Close contacts (Å, °) for L1[link]

Cg is the centroid of the C16/C17/C22–C24/C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯C16i 0.951 (17) 2.775 (17) 3.7095 (17) 167.6 (13)
C21—H21⋯C17i 0.951 (17) 2.856 (17) 3.7737 (18) 162.6 (13)
C21—H21⋯C29i 0.951 (17) 2.816 (17) 3.6338 (17) 144.7 (12)
C21—H21⋯Cgi 0.951 (17) 2.519 (18) 3.4116 (14) 156.3 (13)
C14—H14⋯C24ii 0.976 (17) 2.741 (18) 3.5982 (19) 146.9 (13)
C1—H1B⋯C9iii 0.972 (16) 2.847 (16) 3.8023 (17) 168.0 (12)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) [x, y-1, z].
[Figure 4]
Figure 4
A view along the b-axis direction of the crystal packing of L1.
[Figure 5]
Figure 5
Inter­molecular C—H⋯π inter­actions occurring in L1 generating a one-dimensional supra­molecular ribbon [symmetry codes: (i) x, y + 1, z; (ii) −x + 2, y + [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]]

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for the further investigation of close contacts and inter­molecular inter­actions was performed for L1 using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Figs. 6[link]a and 7[link] illustrate the three-dimensional Hirshfeld surface mapped over dnorm in the range from −1.11 to 1.36 (arbitrary units). The red spots on the surface indicate the close contacts to adjacent mol­ecules. There are three areas of red spots which can be classified as C—H⋯π inter­actions. The first and most important inter­action is the C—H⋯π contact of one of the phenyl­methane­thiol­ate substituents to the anthracene scaffold of a neighboring mol­ecule (C14—H14⋯C24). Furthermore, there are significant inter­actions of the anthracene unit to an adjacent anthracene unit (C21—H21⋯C16/17/29). Then, there is also a weak C—H⋯π contact of two phenyl­methane­thiol­ate substituents (C1—H1B⋯C9). The contributions of the different types of inter­molecular inter­actions are shown in the two-dimensional fingerprint plots in Fig. 8[link]. The weak van der Waals H⋯H contacts appear as the largest region with a 51.0% contribution. The C⋯H/H⋯C contacts exhibit a significant contribution at 40.4% and constitute a major contribution to the packing arrangement within the crystal structure. Fig. 6[link]b and 6c illustrate the Hirshfeld surface mapped over the shape-index and the curvedness. The shape-index shows large red regions of concave curvature for the anthracene motif, whereas the C—H-donors shows opposite curvature.

[Figure 6]
Figure 6
Hirshfeld surface mapped with (a) dnorm, (b) shape-index and (c) curvedness for L1.
[Figure 7]
Figure 7
Hirshfeld surface analysis of L1 showing close contacts in the crystal.
[Figure 8]
Figure 8
(a) Two-dimensional fingerprint plots of L1, showing all contributions, and delineated (b)–(d) showing the contributions of atoms within specific inter­acting pairs (blue areas).

Concerning the cluster Pd6, there are no particular directional inter­molecular inter­actions in the packing warranting any discussion. The packing is shown in Fig. 9[link].

[Figure 9]
Figure 9
A view along the b-axis direction of the crystal packing of Pd6·C14H8O2.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related anthracene-substituted di­thio­acetals did not reveal any structure hits. However, there are several examples of mono­thio­ethers attached on an anthracenyl scaffold and include {9-[(2-chloro­eth­yl)thio]­meth­yl}anthracene (CETMAN; Lewis et al., 1976[Lewis, M., Carrell, H. L., Glusker, J. P. & Sparks, R. A. (1976). Acta Cryst. B32, 2040-2044.]), 1,6-bis­(9-anthr­yl)-2,5-di­thia­hexane (LEYHIH; Schwarze et al., 2007[Schwarze, T., Müller, H., Dosche, C., Klamroth, T., Mickler, W., Kelling, A., Löhmannsröben, H.-G., Saalfrank, P. & Holdt, H.-J. (2007). Angew. Chem. Int. Ed. 46, 1671-1674.]) and S-(9-anthr­yl)methyl-3,5-di­nitro­thio­benzoate (VEZLUI; Fowelin et al., 2007[Fowelin, C., Schüpbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. pp. 1013-1017.]). A search for the bis­(benzyl­thio)­methane motif HC(SCH2Ph)2 revealed only three similar structures, namely 2,6,10,14,19,24-hexa-p-benz-4,8,12,16,17,21,22,26-octa­thia­tri­cyclo­(9.5.5.53,9)hexa­cosa­phane benzene clathrate (CUHLUM; Takemura et al., 1984[Takemura, T., Kozawa, K., Uchida, T. & Mori, N. (1984). Chem. Lett. 13, 1839-1842.]), 4-nitro­phenyl-[bis­(benzyl­thio)]methane (SUNMAQ; Binkowska et al., 2009[Binkowska, I., Ratajczak-Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54-58.]) and 2-[bis(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol (IGOBOY; Raghuvanshi et al., 2020[Raghuvanshi, A., Knauer, L., Viau, L., Knorr, M. & Strohmann, C. (2020). Acta Cryst. E76, 484-487.]).

In contrast to mononuclear palladium complexes bearing terminal phenyl­methane­thiol­ate groups such as trans-[Pd(SCH2Ph)2(PMe3)2] (Lee et al. 2015[Lee, S. G., Choi, K.-Y., Kim, Y.-J., Park, S. & Lee, S. W. (2015). Polyhedron, 85, 880-887.]; NOQZOK), [Pd(SCH2Ph)2(1,2-bis­(di­phenyl­phosphino)ethane)] (Su et al. 1997a[Su, W., Cao, R., Hong, M., Zhou, Z., Xie, F., Liu, H. & Mak, T. C. W. (1997a). Polyhedron, 16, 2531-2535.],b[Su, W., Hong, M., Cao, R. & Liu, H. (1997b). Acta Cryst. C53, 66-67.]; TERREN) and [Pd(SCH2Ph)2(1,3-bis­(di­phenyl­phosphino)propane)] (Su et al. 1997[Su, W., Hong, M., Cao, R. & Liu, H. (1997b). Acta Cryst. C53, 66-67.][Su, W., Cao, R., Hong, M., Zhou, Z., Xie, F., Liu, H. & Mak, T. C. W. (1997a). Polyhedron, 16, 2531-2535.]; SUTMOJ), those of phenyl­methane­thiol­ate-bridged di- and polynuclear Pd complexes are scare. The only crystallographically characterized hit is the tetra­nuclear cluster [Pd4Se4(μ2-SCH2Ph)2(bis­(di­phenyl­phosphino)methane)Cl2] (Cao et al. 1998[Cao, R., Su, W., Hong, M., Zhang, W., Lu, J. & Wong, W. (1998). Chem. Commun. pp. 2083-2084.]; JIXRAJ). The aforementioned [Pd6(μ2-SR)12] clusters have found applications as precursors for the preparation of monodisperse PdS nanoparticles (Yang et al., 2007[Yang, Z., Klabunde, K. J. & Sorensen, C. M. (2007). J. Phys. Chem. C, 111, 18143-18147.]), for the self-assembly of palladiumthiol­ate bilayers (Thomas et al., 2001[Thomas, P. J., Lavanya, A., Sabareesh, V. & Kulkarni, G. U. (2001). J. Chem. Sci. 113, 611-619.]), as fluorescence materials (Chen et al., 2017[Chen, J., Pan, Y., Wang, Z. & Zhao, P. (2017). Dalton Trans. 46, 12964-12970.]) and as electrocatalysts for H and O evolution reactions (Gao & Chen, 2017[Gao, X. & Chen, W. (2017). Chem. Commun. 53, 9733-9736.]). Also noteworthy is the observation that individual [Pd6(μ2-SCH2CH2OH)12] mol­ecules are inter­connected in the solid state by hydrogen bonds through the hy­droxy groups of the thiol­ate ligands, thus generating an infinite three-dimensional supra­molecular network (Mahmudov et al., 2013[Mahmudov, K. T., Hasanov, X. I., Maharramov, A. M., Azizova, A. N., Ragimov, K. Q., Askerov, R. K., Kopylovich, M. N., Ma, Z. & Pombeiro, A. J. L. (2013). Inorg. Chem. Commun. 29, 37-39.]). Concerning the influence of hydrogen-bonding interactions on nuclearity and structure for other tiara-like palladium complexes, see: Martin et al. (2018[Martin, H. J., Pfeiffer, C. R., Davies, S. E., Davis, A. L., Lewis, W. & Champness, N. R. (2018). ACS Omega, 3, 8769-8776.]). Recently, a structurally related PtII thiol­ate complex [Pt6(μ2-SC12H23)12] has been prepared and probed as a macrocyclic host to include an AgI ion as guest (Shichibu et al., 2016[Shichibu, Y., Yoshida, K. & Konishi, K. (2016). Inorg. Chem. 55, 9147-9149.]).

5. Synthesis and crystallization

9-Anthracenecarboxaldehyde (206 mg, 1 mmol) and benzyl mercaptan (348 mg, 3 mmol) were suspended in conc. HCl (2 ml) and allowed to stir at room temperature. After 2 h, the reaction mixture was neutralized with aqueous NaHCO3 solution and extracted with di­chloro­methane. The organic fraction was dried over Na2SO4, filtered and concentrated under reduced pressure. Purification by column chromatography using a hexa­ne/di­chloro­methane solvent mixture as eluent gives a pale-yellow solid product in 80% yield (350 mg). Crystals suitable for single-crystal X-ray crystallography were grown by slow diffusion of hexane into a di­chloro­methane solution of L1, m.p. 438–440 K. 1H NMR (400 MHz, δ in ppm, CD2Cl2): 9.03 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H18), 8.39 (s, 1H, H23), 8.00 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H21), 7.95 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H25), 7.55–7.47 (m, 2H, H19, H27), ddd (J = 8.5 Hz, J = 6.5 Hz, J = 1.1 Hz, 1H, H3), 7.28–7.22 (m, 6H, HPh + H6), 7.14–7.09 (m, 5H, HPh), 6.91 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H28), 5.94 (s, 1H, CHS2), 3.79 (d, J = 13.7 Hz, 2H, CH2), 3.55 (d, J = 13.7 Hz, 2H, CH2). 13C{1H} NMR (101 MHz, δ in ppm, CD2Cl2) 138.34 (C16), 132.50 (C17), 131.46 (Cq), 131.36 (Cq), 130.28 (Cq), 129.58 (CHAr), 129.56 (C21), 129.47 (C25), 129.13 (Cq), 128.96 (CHAr), 128.84 (C23), 127.75 (C18), 127.53 (CHAr), 126.63 (C26), 125.61 (C19), 125.12 (C20), 124.91 (C27), 122.99 (C28), 45.02 (S2CH), 37.89 (SCH2). IR (ATR) cm −1: 3050 and 3025 (C—H Ar), 2998, 2948 and 2906 (C—H aliphatic), 1589, 1519 (C=C), 696 (C—S).

Reaction of L1 with PdCl2(PhCN)2: L1 (43 mg, 0.1 mmol) and PdCl2(PhCN)2 (38 mg, 0.1 mmol) were dissolved in 5 ml of di­chloro­methane and allowed to stir at room temperature for 30 minutes. During the reaction, a red solution was obtained, which was kept in refrigerator overnight yielding yellow crystals of 9-anthraldehyde along with yellow–orange co-crystals of the [Pd6(SCH2Ph)12·anthracene-9,10-dione] cluster, Pd6. 1H NMR (400 MHz, δ in ppm, CD2Cl2)): 8.92–6.86 (m, overlapping benzylic and anthracenyl H), 3.61 (s, SCH2), 3.58 (s, SCH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms H1B, H14 and H21 for L1 were located in the difference-Fourier map and refined freely.

Table 3
Experimental details

  L1 Pd6
Crystal data
Chemical formula C29H24S2 [Pd6(C7H7S)12]·C14H8O2
Mr 436.60 2324.83
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 123 100
a, b, c (Å) 18.0842 (13), 7.5279 (5), 17.4975 (13) 12.4037 (6), 13.2255 (6), 14.7347 (7)
α, β, γ (°) 90, 108.439 (3), 90 109.842 (2), 91.616 (2), 91.191 (2)
V3) 2259.7 (3) 2271.56 (19)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 1.49
Crystal size (mm) 0.95 × 0.44 × 0.30 0.33 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.522, 0.563 0.300, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 25688, 4994, 4423 109169, 10078, 9452
Rint 0.025 0.028
(sin θ/λ)max−1) 0.641 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05 0.019, 0.048, 1.10
No. of reflections 4994 10078
No. of parameters 295 532
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.30 1.20, −0.79
Computer programs: APEX2 (Bruker, 2018[Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), CrystalExplorer17 (Turner et al., 2017), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020).

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m) top
Crystal data top
C29H24S2F(000) = 920
Mr = 436.60Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.0842 (13) ÅCell parameters from 9706 reflections
b = 7.5279 (5) Åθ = 2.8–27.1°
c = 17.4975 (13) ŵ = 0.25 mm1
β = 108.439 (3)°T = 123 K
V = 2259.7 (3) Å3Block, yellow
Z = 40.95 × 0.44 × 0.30 mm
Data collection top
Bruker D8 Venture
diffractometer
4994 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4423 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.025
Detector resolution: 10.4167 pixels mm-1θmax = 27.1°, θmin = 2.8°
ω and φ scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.522, Tmax = 0.563l = 2222
25688 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9034P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4994 reflectionsΔρmax = 0.24 e Å3
295 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68666 (2)0.64448 (5)0.70893 (2)0.02319 (9)
S20.80911 (2)0.92465 (4)0.72381 (2)0.02454 (9)
C10.62676 (7)0.52418 (17)0.62051 (8)0.0205 (2)
H1A0.6175 (9)0.602 (2)0.5751 (9)0.025*
C20.55092 (7)0.47989 (16)0.63477 (7)0.0185 (2)
C30.54888 (7)0.35800 (16)0.69428 (8)0.0221 (3)
H30.59500.29660.72350.027*
C40.47989 (8)0.32580 (18)0.71106 (8)0.0269 (3)
H40.47930.24430.75230.032*
C50.41191 (8)0.41281 (18)0.66757 (8)0.0270 (3)
H50.36480.39090.67900.032*
C60.41294 (7)0.53190 (18)0.60730 (8)0.0250 (3)
H60.36630.58990.57680.030*
C70.48232 (7)0.56614 (16)0.59167 (7)0.0213 (3)
H70.48290.64940.55110.026*
C80.73177 (9)1.08485 (18)0.67732 (9)0.0324 (3)
H8A0.68791.06570.69870.039*
H8B0.75191.20660.69220.039*
C90.70229 (8)1.06923 (16)0.58667 (9)0.0269 (3)
C100.62799 (8)1.00169 (18)0.54845 (9)0.0298 (3)
H100.59450.97490.57920.036*
C110.60257 (9)0.97328 (19)0.46564 (9)0.0350 (3)
H110.55210.92590.44020.042*
C120.65053 (10)1.0137 (2)0.42027 (9)0.0368 (3)
H120.63320.99370.36380.044*
C130.72407 (10)1.08361 (19)0.45753 (10)0.0378 (4)
H130.75681.11340.42640.045*
C140.74995 (9)1.11021 (18)0.54031 (10)0.0330 (3)
C150.76483 (7)0.72278 (16)0.67172 (7)0.0177 (2)
H150.73930.75700.61420.021*
C160.82754 (6)0.59003 (15)0.67177 (7)0.0151 (2)
C170.87649 (7)0.51631 (15)0.74463 (7)0.0160 (2)
C180.86799 (7)0.55321 (17)0.82190 (7)0.0203 (2)
H180.82660.62740.82510.024*
C190.91823 (8)0.48387 (18)0.89085 (7)0.0240 (3)
H190.91100.50980.94110.029*
C200.98118 (8)0.37349 (18)0.88869 (8)0.0251 (3)
H201.01630.32810.93730.030*
C210.99092 (8)0.33320 (17)0.81703 (8)0.0231 (3)
C220.93948 (7)0.40166 (15)0.74321 (7)0.0178 (2)
C230.95162 (7)0.36306 (16)0.67019 (7)0.0196 (2)
H230.99330.28660.66970.024*
C240.90401 (7)0.43409 (15)0.59806 (7)0.0172 (2)
C250.91875 (7)0.39569 (17)0.52438 (8)0.0228 (3)
H250.96080.31940.52510.027*
C260.87412 (8)0.46550 (19)0.45322 (8)0.0257 (3)
H260.88490.43870.40480.031*
C270.81107 (8)0.57903 (18)0.45207 (7)0.0239 (3)
H270.77970.62780.40230.029*
C280.79469 (7)0.61934 (16)0.52090 (7)0.0203 (2)
H280.75200.69540.51800.024*
C290.84043 (6)0.54966 (15)0.59774 (7)0.0154 (2)
H1B0.6540 (9)0.417 (2)0.6137 (9)0.025 (4)*
H211.0321 (9)0.258 (2)0.8136 (9)0.033 (4)*
H140.8029 (10)1.152 (2)0.5669 (10)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01573 (15)0.03525 (18)0.02062 (16)0.00149 (12)0.00864 (12)0.00719 (12)
S20.02187 (17)0.02029 (16)0.02713 (17)0.00168 (11)0.00160 (13)0.00742 (12)
C10.0191 (6)0.0225 (6)0.0207 (6)0.0010 (5)0.0076 (5)0.0028 (5)
C20.0183 (6)0.0188 (5)0.0187 (6)0.0005 (4)0.0060 (5)0.0038 (4)
C30.0209 (6)0.0208 (6)0.0228 (6)0.0017 (5)0.0043 (5)0.0017 (5)
C40.0283 (7)0.0261 (6)0.0266 (6)0.0042 (5)0.0093 (5)0.0040 (5)
C50.0208 (6)0.0304 (7)0.0311 (7)0.0060 (5)0.0102 (5)0.0030 (6)
C60.0175 (6)0.0260 (6)0.0286 (7)0.0018 (5)0.0032 (5)0.0016 (5)
C70.0221 (6)0.0202 (6)0.0202 (6)0.0004 (5)0.0047 (5)0.0009 (5)
C80.0315 (7)0.0227 (6)0.0377 (8)0.0088 (6)0.0032 (6)0.0093 (6)
C90.0253 (7)0.0145 (6)0.0364 (7)0.0061 (5)0.0032 (6)0.0024 (5)
C100.0222 (6)0.0246 (6)0.0399 (8)0.0062 (5)0.0058 (6)0.0022 (6)
C110.0276 (7)0.0288 (7)0.0388 (8)0.0039 (6)0.0033 (6)0.0016 (6)
C120.0449 (9)0.0272 (7)0.0324 (8)0.0068 (6)0.0039 (7)0.0053 (6)
C130.0439 (9)0.0263 (7)0.0453 (9)0.0049 (6)0.0171 (7)0.0116 (6)
C140.0282 (7)0.0192 (6)0.0479 (9)0.0019 (5)0.0068 (7)0.0025 (6)
C150.0156 (5)0.0190 (5)0.0188 (5)0.0003 (4)0.0058 (4)0.0032 (4)
C160.0133 (5)0.0154 (5)0.0177 (5)0.0017 (4)0.0064 (4)0.0015 (4)
C170.0147 (5)0.0168 (5)0.0177 (6)0.0018 (4)0.0066 (4)0.0005 (4)
C180.0195 (6)0.0244 (6)0.0187 (6)0.0010 (5)0.0083 (5)0.0018 (5)
C190.0256 (6)0.0312 (7)0.0172 (6)0.0034 (5)0.0095 (5)0.0001 (5)
C200.0227 (6)0.0310 (7)0.0195 (6)0.0001 (5)0.0036 (5)0.0082 (5)
C210.0203 (6)0.0243 (6)0.0243 (6)0.0042 (5)0.0064 (5)0.0054 (5)
C220.0162 (6)0.0174 (5)0.0195 (6)0.0004 (4)0.0052 (5)0.0022 (4)
C230.0163 (6)0.0200 (6)0.0235 (6)0.0036 (4)0.0077 (5)0.0008 (5)
C240.0158 (5)0.0178 (5)0.0189 (6)0.0011 (4)0.0068 (4)0.0024 (4)
C250.0201 (6)0.0287 (6)0.0220 (6)0.0026 (5)0.0101 (5)0.0045 (5)
C260.0259 (7)0.0357 (7)0.0178 (6)0.0006 (6)0.0102 (5)0.0041 (5)
C270.0224 (6)0.0312 (7)0.0171 (6)0.0000 (5)0.0047 (5)0.0021 (5)
C280.0176 (6)0.0228 (6)0.0202 (6)0.0014 (5)0.0057 (5)0.0010 (5)
C290.0137 (5)0.0155 (5)0.0175 (5)0.0024 (4)0.0056 (4)0.0015 (4)
Geometric parameters (Å, º) top
S1—C11.8240 (13)C13—C141.389 (2)
S1—C151.8309 (12)C14—H140.976 (17)
S2—C81.8309 (14)C15—H151.0000
S2—C151.8220 (12)C15—C161.5114 (15)
C1—H1A0.958 (16)C16—C171.4153 (16)
C1—C21.5070 (17)C16—C291.4197 (16)
C1—H1B0.971 (16)C17—C181.4355 (16)
C2—C31.3971 (18)C17—C221.4356 (16)
C2—C71.3920 (17)C18—H180.9500
C3—H30.9500C18—C191.3639 (18)
C3—C41.3905 (19)C19—H190.9500
C4—H40.9500C19—C201.4195 (19)
C4—C51.3884 (19)C20—H200.9500
C5—H50.9500C20—C211.3545 (19)
C5—C61.3887 (19)C21—C221.4281 (17)
C6—H60.9500C21—H210.951 (17)
C6—C71.3902 (18)C22—C231.3937 (17)
C7—H70.9500C23—H230.9500
C8—H8A0.9900C23—C241.3902 (17)
C8—H8B0.9900C24—C251.4262 (16)
C8—C91.510 (2)C24—C291.4405 (16)
C9—C101.3938 (19)C25—H250.9500
C9—C141.392 (2)C25—C261.3573 (19)
C10—H100.9500C26—H260.9500
C10—C111.391 (2)C26—C271.4200 (19)
C11—H110.9500C27—H270.9500
C11—C121.382 (2)C27—C281.3623 (18)
C12—H120.9500C28—H280.9500
C12—C131.386 (2)C28—C291.4365 (16)
C13—H130.9500
C1—S1—C15100.16 (6)C13—C14—H14120.0 (10)
C15—S2—C8100.02 (6)S1—C15—H15106.2
S1—C1—H1A107.5 (9)S1—C15—S2110.93 (6)
S1—C1—H1B109.1 (9)S2—C15—H15106.2
H1A—C1—H1B111.7 (13)C16—C15—S1116.78 (8)
C2—C1—S1107.27 (8)C16—C15—S2109.89 (8)
C2—C1—H1A110.1 (9)C16—C15—H15106.2
C2—C1—H1B111.0 (9)C17—C16—C15121.01 (10)
C3—C2—C1120.58 (11)C17—C16—C29120.10 (10)
C7—C2—C1120.60 (11)C29—C16—C15118.73 (10)
C7—C2—C3118.75 (11)C16—C17—C18123.35 (11)
C2—C3—H3119.7C16—C17—C22119.59 (10)
C4—C3—C2120.59 (12)C18—C17—C22117.04 (11)
C4—C3—H3119.7C17—C18—H18119.4
C3—C4—H4120.0C19—C18—C17121.28 (12)
C5—C4—C3120.01 (12)C19—C18—H18119.4
C5—C4—H4120.0C18—C19—H19119.5
C4—C5—H5120.0C18—C19—C20121.06 (12)
C4—C5—C6119.91 (12)C20—C19—H19119.5
C6—C5—H5120.0C19—C20—H20120.1
C5—C6—H6120.0C21—C20—C19119.74 (12)
C5—C6—C7119.92 (12)C21—C20—H20120.1
C7—C6—H6120.0C20—C21—C22121.21 (12)
C2—C7—H7119.6C20—C21—H21121.7 (10)
C6—C7—C2120.81 (12)C22—C21—H21117.1 (10)
C6—C7—H7119.6C21—C22—C17119.65 (11)
S2—C8—H8A109.1C23—C22—C17119.81 (11)
S2—C8—H8B109.1C23—C22—C21120.50 (11)
H8A—C8—H8B107.8C22—C23—H23119.3
C9—C8—S2112.44 (9)C24—C23—C22121.35 (11)
C9—C8—H8A109.1C24—C23—H23119.3
C9—C8—H8B109.1C23—C24—C25120.23 (11)
C10—C9—C8119.94 (14)C23—C24—C29120.02 (11)
C14—C9—C8121.12 (13)C25—C24—C29119.74 (11)
C14—C9—C10118.80 (14)C24—C25—H25119.2
C9—C10—H10119.8C26—C25—C24121.59 (12)
C11—C10—C9120.45 (14)C26—C25—H25119.2
C11—C10—H10119.8C25—C26—H26120.4
C10—C11—H11119.9C25—C26—C27119.19 (11)
C12—C11—C10120.24 (14)C27—C26—H26120.4
C12—C11—H11119.9C26—C27—H27119.3
C11—C12—H12120.1C28—C27—C26121.32 (12)
C11—C12—C13119.75 (15)C28—C27—H27119.3
C13—C12—H12120.1C27—C28—H28119.2
C12—C13—H13119.9C27—C28—C29121.61 (11)
C12—C13—C14120.13 (15)C29—C28—H28119.2
C14—C13—H13119.9C16—C29—C24119.14 (10)
C9—C14—H14119.3 (10)C16—C29—C28124.31 (11)
C13—C14—C9120.61 (14)C28—C29—C24116.54 (10)
S1—C1—C2—C367.96 (13)C15—C16—C29—C24175.17 (10)
S1—C1—C2—C7108.83 (11)C15—C16—C29—C283.66 (17)
S1—C15—C16—C1763.16 (13)C16—C17—C18—C19177.73 (12)
S1—C15—C16—C29121.33 (10)C16—C17—C22—C21177.36 (11)
S2—C8—C9—C10109.50 (13)C16—C17—C22—C230.39 (17)
S2—C8—C9—C1466.21 (15)C17—C16—C29—C240.38 (16)
S2—C15—C16—C1764.29 (12)C17—C16—C29—C28179.21 (11)
S2—C15—C16—C29111.22 (10)C17—C18—C19—C200.44 (19)
C1—S1—C15—S2153.75 (6)C17—C22—C23—C240.29 (18)
C1—S1—C15—C1679.31 (9)C18—C17—C22—C211.20 (17)
C1—C2—C3—C4175.75 (11)C18—C17—C22—C23178.95 (11)
C1—C2—C7—C6176.90 (11)C18—C19—C20—C211.3 (2)
C2—C3—C4—C51.1 (2)C19—C20—C21—C220.8 (2)
C3—C2—C7—C60.05 (18)C20—C21—C22—C170.42 (19)
C3—C4—C5—C60.0 (2)C20—C21—C22—C23178.16 (12)
C4—C5—C6—C71.2 (2)C21—C22—C23—C24177.45 (11)
C5—C6—C7—C21.19 (19)C22—C17—C18—C190.77 (17)
C7—C2—C3—C41.10 (19)C22—C23—C24—C25178.59 (11)
C8—S2—C15—S173.63 (8)C22—C23—C24—C290.23 (18)
C8—S2—C15—C16155.73 (9)C23—C24—C25—C26178.85 (12)
C8—C9—C10—C11174.81 (12)C23—C24—C29—C160.27 (17)
C8—C9—C14—C13175.49 (13)C23—C24—C29—C28179.19 (11)
C9—C10—C11—C120.7 (2)C24—C25—C26—C270.2 (2)
C10—C9—C14—C130.3 (2)C25—C24—C29—C16178.55 (11)
C10—C11—C12—C130.3 (2)C25—C24—C29—C280.37 (16)
C11—C12—C13—C141.0 (2)C25—C26—C27—C280.1 (2)
C12—C13—C14—C90.8 (2)C26—C27—C28—C290.2 (2)
C14—C9—C10—C111.00 (19)C27—C28—C29—C16178.40 (12)
C15—S1—C1—C2169.19 (8)C27—C28—C29—C240.46 (17)
C15—S2—C8—C947.89 (12)C29—C16—C17—C18178.91 (11)
C15—C16—C17—C183.46 (17)C29—C16—C17—C220.44 (16)
C15—C16—C17—C22175.01 (10)C29—C24—C25—C260.04 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16/C17/C22–C24/C29 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···C16i0.951 (17)2.775 (17)3.7095 (17)167.6 (13)
C21—H21···C17i0.951 (17)2.856 (17)3.7737 (18)162.6 (13)
C21—H21···C29i0.951 (17)2.816 (17)3.6338 (17)144.7 (12)
C21—H21···Cgi0.951 (17)2.519 (18)3.4116 (14)156.3 (13)
C14—H14···C24ii0.976 (17)2.741 (18)3.5982 (19)146.9 (13)
C1—H1B···C9iii0.972 (16)2.847 (16)3.8023 (17)168.0 (12)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1, z; (iii) x, y1, z.
cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) top
Crystal data top
[Pd6(C7H7S)12]·C14H8O2Z = 1
Mr = 2324.83F(000) = 1164
Triclinic, P1Dx = 1.699 Mg m3
a = 12.4037 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2255 (6) ÅCell parameters from 9790 reflections
c = 14.7347 (7) Åθ = 2.4–27.2°
α = 109.842 (2)°µ = 1.49 mm1
β = 91.616 (2)°T = 100 K
γ = 91.191 (2)°Block, yellow
V = 2271.56 (19) Å30.33 × 0.24 × 0.18 mm
Data collection top
Bruker D8 Venture
diffractometer
10078 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs9452 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 27.3°, θmin = 2.3°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1616
Tmin = 0.300, Tmax = 0.333l = 1818
109169 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0198P)2 + 2.3315P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
10078 reflectionsΔρmax = 1.20 e Å3
532 parametersΔρmin = 0.79 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.44100 (2)0.57757 (2)0.01264 (3)
Pd20.67651 (2)0.61284 (2)0.01273 (4)
Pd30.74009 (2)0.53617 (2)0.01294 (4)
S10.27073 (4)0.62062 (3)0.01475 (8)
S20.53960 (4)0.71742 (3)0.01514 (8)
S30.61070 (4)0.53538 (3)0.01522 (9)
S40.74917 (4)0.69054 (3)0.01469 (8)
S50.79906 (4)0.49857 (3)0.01519 (9)
S60.65044 (4)0.56887 (3)0.01522 (9)
C10.28536 (15)0.71060 (13)0.0183 (4)
H1A0.29140.67730.022*
H1B0.35210.75080.022*
C20.18968 (15)0.77377 (13)0.0183 (4)
C30.18149 (16)0.84843 (14)0.0232 (4)
H30.23640.85860.028*
C40.09401 (19)0.90784 (15)0.0306 (5)
H40.08970.95890.037*
C50.01266 (18)0.89271 (17)0.0344 (5)
H50.04770.93300.041*
C60.01964 (17)0.81929 (17)0.0307 (5)
H60.03590.80900.037*
C70.10780 (16)0.75997 (15)0.0229 (4)
H70.11210.70960.027*
C80.57745 (16)0.77333 (14)0.0200 (4)
H8A0.60940.72440.024*
H8B0.51210.79660.024*
C90.65716 (16)0.85634 (14)0.0204 (4)
C100.76764 (18)0.84224 (17)0.0292 (5)
H100.79290.77970.035*
C110.8405 (2)0.9192 (2)0.0423 (6)
H110.91570.90940.051*
C120.8046 (2)1.0104 (2)0.0457 (7)
H120.85501.06300.055*
C130.6952 (2)1.02487 (17)0.0410 (6)
H130.67051.08750.049*
C140.6216 (2)0.94840 (15)0.0286 (5)
H140.54650.95860.034*
C150.62522 (16)0.40406 (13)0.0186 (4)
H15A0.68400.38910.022*
H15B0.55750.37260.022*
C160.65046 (15)0.36623 (13)0.0173 (4)
C170.74129 (16)0.31192 (14)0.0217 (4)
H170.78690.29810.026*
C180.76570 (19)0.27772 (15)0.0297 (5)
H180.82790.24080.036*
C190.6997 (2)0.29739 (15)0.0346 (6)
H190.71690.27510.042*
C200.6084 (2)0.34971 (15)0.0317 (5)
H200.56230.36210.038*
C210.58351 (18)0.38428 (14)0.0236 (4)
H210.52070.42040.028*
C220.65300 (15)0.77154 (13)0.0173 (4)
H22A0.59080.78030.021*
H22B0.62570.74330.021*
C230.71036 (15)0.86724 (13)0.0170 (4)
C240.76401 (17)0.88386 (15)0.0238 (4)
H240.76440.83450.029*
C250.81688 (19)0.97204 (17)0.0337 (5)
H250.85410.98270.040*
C260.8154 (2)1.04440 (16)0.0379 (6)
H260.85031.10530.046*
C270.7634 (2)1.02844 (16)0.0351 (5)
H270.76321.07810.042*
C280.71125 (17)0.93983 (15)0.0250 (4)
H280.67600.92890.030*
C290.93066 (15)0.55928 (15)0.0193 (4)
H29A0.93760.61840.023*
H29B0.98870.51610.023*
C300.94446 (14)0.58605 (13)0.0161 (3)
C310.99352 (16)0.67410 (14)0.0219 (4)
H311.01520.71830.026*
C321.01116 (18)0.69817 (15)0.0271 (4)
H321.04550.75850.033*
C330.97909 (17)0.63512 (16)0.0249 (4)
H330.99200.65160.030*
C340.92801 (17)0.54779 (15)0.0237 (4)
H340.90450.50460.028*
C350.91107 (16)0.52327 (14)0.0206 (4)
H350.87630.46300.025*
C360.74754 (16)0.55010 (14)0.0204 (4)
H36A0.70850.53190.025*
H36B0.79540.49710.025*
C370.81360 (15)0.64207 (14)0.0185 (4)
C380.78166 (18)0.70989 (15)0.0257 (4)
H380.71790.69780.031*
C390.8426 (2)0.79530 (16)0.0317 (5)
H390.82010.84130.038*
C400.93562 (19)0.81318 (16)0.0319 (5)
H400.97770.87100.038*
C410.96730 (17)0.74663 (16)0.0287 (5)
H411.03100.75900.034*
C420.90628 (16)0.66178 (15)0.0225 (4)
H420.92810.61680.027*
O10.40792 (18)0.82446 (14)0.0565 (5)
C430.44804 (19)0.90584 (17)0.0368 (6)
C440.50130 (18)0.92599 (16)0.0339 (5)
C450.55287 (18)1.01771 (17)0.0345 (5)
C460.6016 (2)1.03389 (19)0.0461 (7)
H460.63601.09510.055*
C470.6028 (2)0.9611 (2)0.0513 (7)
H470.63720.97300.062*
C480.5518 (2)0.8727 (2)0.0460 (6)
H480.54950.82380.055*
C490.50413 (19)0.85410 (16)0.0323 (5)
H490.47330.79180.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01360 (7)0.01177 (6)0.01328 (6)0.00124 (5)0.00019 (5)0.00521 (5)
Pd20.01367 (7)0.01141 (6)0.01350 (6)0.00108 (5)0.00006 (5)0.00477 (5)
Pd30.01424 (7)0.01067 (6)0.01404 (7)0.00100 (5)0.00019 (5)0.00438 (5)
S10.0155 (2)0.0137 (2)0.0150 (2)0.00133 (16)0.00174 (16)0.00482 (16)
S20.0157 (2)0.0155 (2)0.0145 (2)0.00187 (16)0.00014 (16)0.00552 (16)
S30.0163 (2)0.0148 (2)0.0164 (2)0.00159 (16)0.00165 (16)0.00749 (16)
S40.0163 (2)0.0140 (2)0.0142 (2)0.00107 (16)0.00068 (16)0.00557 (16)
S50.0169 (2)0.01204 (19)0.0169 (2)0.00067 (16)0.00173 (16)0.00513 (16)
S60.0175 (2)0.0136 (2)0.0157 (2)0.00024 (16)0.00150 (16)0.00665 (16)
C10.0190 (9)0.0196 (9)0.0184 (9)0.0021 (7)0.0018 (7)0.0092 (7)
C20.0168 (9)0.0238 (9)0.0170 (9)0.0006 (7)0.0003 (7)0.0106 (7)
C30.0221 (10)0.0253 (10)0.0210 (10)0.0006 (8)0.0003 (8)0.0064 (8)
C40.0321 (12)0.0398 (13)0.0195 (10)0.0128 (10)0.0042 (8)0.0085 (9)
C50.0225 (11)0.0615 (16)0.0314 (12)0.0134 (10)0.0113 (9)0.0301 (12)
C60.0178 (10)0.0461 (14)0.0401 (13)0.0043 (9)0.0012 (9)0.0306 (11)
C70.0221 (10)0.0254 (10)0.0246 (10)0.0031 (8)0.0029 (8)0.0135 (8)
C80.0243 (10)0.0144 (9)0.0191 (9)0.0036 (7)0.0010 (7)0.0031 (7)
C90.0262 (10)0.0123 (8)0.0198 (9)0.0027 (7)0.0018 (8)0.0017 (7)
C100.0268 (11)0.0276 (11)0.0319 (11)0.0027 (9)0.0033 (9)0.0089 (9)
C110.0315 (13)0.0372 (13)0.0557 (16)0.0077 (10)0.0188 (12)0.0148 (12)
C120.0607 (18)0.0309 (13)0.0402 (14)0.0060 (12)0.0312 (13)0.0081 (11)
C130.0710 (19)0.0274 (12)0.0195 (11)0.0039 (12)0.0085 (11)0.0020 (9)
C140.0393 (12)0.0232 (10)0.0203 (10)0.0076 (9)0.0028 (9)0.0029 (8)
C150.0225 (9)0.0179 (9)0.0170 (9)0.0036 (7)0.0036 (7)0.0076 (7)
C160.0202 (9)0.0180 (9)0.0146 (8)0.0011 (7)0.0029 (7)0.0067 (7)
C170.0230 (10)0.0251 (10)0.0180 (9)0.0002 (8)0.0010 (7)0.0090 (8)
C180.0390 (12)0.0334 (12)0.0173 (9)0.0142 (10)0.0016 (9)0.0104 (9)
C190.0666 (17)0.0205 (10)0.0180 (10)0.0128 (10)0.0086 (10)0.0099 (8)
C200.0575 (15)0.0172 (10)0.0192 (10)0.0096 (10)0.0094 (10)0.0051 (8)
C210.0314 (11)0.0207 (10)0.0183 (9)0.0063 (8)0.0022 (8)0.0062 (8)
C220.0169 (9)0.0187 (9)0.0179 (9)0.0002 (7)0.0000 (7)0.0082 (7)
C230.0165 (9)0.0203 (9)0.0156 (8)0.0013 (7)0.0032 (7)0.0077 (7)
C240.0254 (10)0.0256 (10)0.0224 (10)0.0019 (8)0.0007 (8)0.0108 (8)
C250.0325 (12)0.0444 (14)0.0322 (12)0.0009 (10)0.0055 (9)0.0243 (11)
C260.0393 (13)0.0556 (16)0.0218 (11)0.0131 (12)0.0089 (9)0.0186 (11)
C270.0419 (13)0.0369 (13)0.0187 (10)0.0124 (10)0.0015 (9)0.0000 (9)
C280.0284 (11)0.0220 (10)0.0223 (10)0.0013 (8)0.0041 (8)0.0042 (8)
C290.0146 (9)0.0156 (9)0.0286 (10)0.0010 (7)0.0001 (7)0.0089 (8)
C300.0127 (8)0.0150 (8)0.0221 (9)0.0014 (7)0.0036 (7)0.0079 (7)
C310.0222 (10)0.0226 (10)0.0234 (10)0.0014 (8)0.0026 (8)0.0113 (8)
C320.0318 (11)0.0228 (10)0.0233 (10)0.0062 (8)0.0042 (8)0.0042 (8)
C330.0271 (10)0.0141 (9)0.0324 (11)0.0021 (8)0.0020 (8)0.0066 (8)
C340.0259 (10)0.0201 (10)0.0294 (10)0.0001 (8)0.0004 (8)0.0141 (8)
C350.0231 (10)0.0181 (9)0.0212 (9)0.0033 (7)0.0032 (7)0.0081 (8)
C360.0252 (10)0.0139 (9)0.0214 (9)0.0035 (7)0.0040 (8)0.0051 (7)
C370.0203 (9)0.0158 (9)0.0197 (9)0.0054 (7)0.0010 (7)0.0062 (7)
C380.0268 (11)0.0240 (10)0.0296 (11)0.0023 (8)0.0008 (8)0.0136 (9)
C390.0426 (13)0.0329 (12)0.0248 (11)0.0110 (10)0.0012 (9)0.0161 (9)
C400.0358 (12)0.0333 (12)0.0226 (10)0.0122 (10)0.0092 (9)0.0046 (9)
C410.0213 (10)0.0270 (11)0.0325 (11)0.0030 (8)0.0057 (8)0.0036 (9)
C420.0207 (10)0.0217 (10)0.0250 (10)0.0042 (8)0.0008 (8)0.0075 (8)
O10.0614 (13)0.0745 (15)0.0344 (10)0.0014 (11)0.0080 (9)0.0205 (10)
C430.0286 (12)0.0586 (16)0.0255 (11)0.0101 (11)0.0076 (9)0.0186 (11)
C440.0256 (11)0.0528 (15)0.0261 (11)0.0107 (10)0.0017 (9)0.0181 (10)
C450.0242 (11)0.0483 (14)0.0310 (12)0.0096 (10)0.0036 (9)0.0140 (11)
C460.0350 (13)0.080 (2)0.0313 (13)0.0133 (13)0.0103 (10)0.0308 (14)
C470.0313 (14)0.088 (2)0.0444 (16)0.0005 (14)0.0021 (11)0.0351 (16)
C480.0423 (15)0.0525 (16)0.0411 (14)0.0083 (12)0.0014 (12)0.0136 (13)
C490.0310 (12)0.0455 (14)0.0190 (10)0.0032 (10)0.0067 (9)0.0099 (9)
Geometric parameters (Å, º) top
Pd1—Pd23.1609 (2)C19—H190.9500
Pd1—Pd3i3.1139 (2)C19—C201.381 (4)
Pd1—S12.3231 (5)C20—H200.9500
Pd1—S22.3374 (5)C20—C211.384 (3)
Pd1—S32.3281 (5)C21—H210.9500
Pd1—S6i2.3264 (5)C22—H22A0.9900
Pd2—Pd33.0892 (2)C22—H22B0.9900
Pd2—S22.3342 (5)C22—C231.504 (2)
Pd2—S32.3154 (4)C23—C241.394 (3)
Pd2—S42.3250 (4)C23—C281.387 (3)
Pd2—S52.3277 (5)C24—H240.9500
Pd3—Pd1i3.1139 (2)C24—C251.387 (3)
Pd3—S1i2.3367 (5)C25—H250.9500
Pd3—S42.3230 (5)C25—C261.382 (4)
Pd3—S52.3197 (4)C26—H260.9500
Pd3—S62.3264 (5)C26—C271.380 (4)
S1—Pd3i2.3367 (5)C27—H270.9500
S1—C11.8402 (18)C27—C281.390 (3)
S2—C81.8440 (19)C28—H280.9500
S3—C151.8378 (19)C29—H29A0.9900
S4—C221.8411 (19)C29—H29B0.9900
S5—C291.8365 (19)C29—C301.507 (2)
S6—Pd1i2.3264 (5)C30—C311.385 (3)
S6—C361.8434 (19)C30—C351.396 (3)
C1—H1A0.9900C31—H310.9500
C1—H1B0.9900C31—C321.391 (3)
C1—C21.501 (3)C32—H320.9500
C2—C31.398 (3)C32—C331.383 (3)
C2—C71.392 (3)C33—H330.9500
C3—H30.9500C33—C341.384 (3)
C3—C41.386 (3)C34—H340.9500
C4—H40.9500C34—C351.385 (3)
C4—C51.390 (4)C35—H350.9500
C5—H50.9500C36—H36A0.9900
C5—C61.376 (4)C36—H36B0.9900
C6—H60.9500C36—C371.505 (3)
C6—C71.392 (3)C37—C381.393 (3)
C7—H70.9500C37—C421.389 (3)
C8—H8A0.9900C38—H380.9500
C8—H8B0.9900C38—C391.394 (3)
C8—C91.501 (3)C39—H390.9500
C9—C101.394 (3)C39—C401.382 (4)
C9—C141.396 (3)C40—H400.9500
C10—H100.9500C40—C411.383 (3)
C10—C111.384 (3)C41—H410.9500
C11—H110.9500C41—C421.389 (3)
C11—C121.384 (4)C42—H420.9500
C12—H120.9500O1—C431.240 (3)
C12—C131.382 (4)C43—C441.470 (4)
C13—H130.9500C43—C45ii1.473 (4)
C13—C141.384 (3)C44—C451.425 (3)
C14—H140.9500C44—C491.383 (3)
C15—H15A0.9900C45—C43ii1.473 (4)
C15—H15B0.9900C45—C461.354 (4)
C15—C161.501 (2)C46—H460.9500
C16—C171.393 (3)C46—C471.436 (5)
C16—C211.394 (3)C47—H470.9500
C17—H170.9500C47—C481.387 (4)
C17—C181.391 (3)C48—H480.9500
C18—H180.9500C48—C491.389 (4)
C18—C191.383 (4)C49—H490.9500
Pd3i—Pd1—Pd2122.696 (6)C16—C15—S3109.37 (13)
S1—Pd1—Pd2133.948 (12)C16—C15—H15A109.8
S1—Pd1—Pd3i48.255 (11)C16—C15—H15B109.8
S1—Pd1—S299.152 (16)C17—C16—C15120.28 (17)
S1—Pd1—S3178.778 (16)C17—C16—C21118.90 (18)
S1—Pd1—S6i81.998 (16)C21—C16—C15120.82 (18)
S2—Pd1—Pd247.378 (11)C16—C17—H17119.8
S2—Pd1—Pd3i129.132 (12)C18—C17—C16120.5 (2)
S3—Pd1—Pd246.933 (11)C18—C17—H17119.8
S3—Pd1—Pd3i132.454 (13)C17—C18—H18119.9
S3—Pd1—S281.033 (16)C19—C18—C17120.1 (2)
S6i—Pd1—Pd2128.215 (13)C19—C18—H18119.9
S6i—Pd1—Pd3i47.991 (11)C18—C19—H19120.2
S6i—Pd1—S2174.139 (16)C20—C19—C18119.59 (19)
S6i—Pd1—S397.940 (16)C20—C19—H19120.2
Pd3—Pd2—Pd1121.425 (6)C19—C20—H20119.6
S2—Pd2—Pd147.463 (11)C19—C20—C21120.8 (2)
S2—Pd2—Pd3128.222 (12)C21—C20—H20119.6
S3—Pd2—Pd147.270 (12)C16—C21—H21119.9
S3—Pd2—Pd3131.984 (12)C20—C21—C16120.1 (2)
S3—Pd2—S281.367 (16)C20—C21—H21119.9
S3—Pd2—S4177.813 (17)S4—C22—H22A110.0
S3—Pd2—S598.089 (16)S4—C22—H22B110.0
S4—Pd2—Pd1134.849 (12)H22A—C22—H22B108.4
S4—Pd2—Pd348.318 (11)C23—C22—S4108.39 (12)
S4—Pd2—S299.980 (16)C23—C22—H22A110.0
S4—Pd2—S580.756 (16)C23—C22—H22B110.0
S5—Pd2—Pd1128.271 (13)C24—C23—C22120.23 (17)
S5—Pd2—Pd348.229 (11)C28—C23—C22120.67 (17)
S5—Pd2—S2173.880 (17)C28—C23—C24119.10 (18)
Pd2—Pd3—Pd1i115.879 (6)C23—C24—H24119.8
S1i—Pd3—Pd1i47.884 (11)C25—C24—C23120.4 (2)
S1i—Pd3—Pd2130.174 (12)C25—C24—H24119.8
S4—Pd3—Pd1i132.157 (12)C24—C25—H25120.0
S4—Pd3—Pd248.373 (11)C26—C25—C24119.9 (2)
S4—Pd3—S1i178.547 (16)C26—C25—H25120.0
S4—Pd3—S699.246 (16)C25—C26—H26119.9
S5—Pd3—Pd1i125.043 (13)C27—C26—C25120.1 (2)
S5—Pd3—Pd248.449 (12)C27—C26—H26119.9
S5—Pd3—S1i97.903 (16)C26—C27—H27120.0
S5—Pd3—S480.964 (16)C26—C27—C28120.1 (2)
S5—Pd3—S6169.831 (17)C28—C27—H27120.0
S6—Pd3—Pd1i47.990 (11)C23—C28—C27120.3 (2)
S6—Pd3—Pd2124.764 (13)C23—C28—H28119.8
S6—Pd3—S1i81.707 (16)C27—C28—H28119.8
Pd1—S1—Pd3i83.862 (15)S5—C29—H29A109.2
C1—S1—Pd1109.07 (6)S5—C29—H29B109.2
C1—S1—Pd3i111.18 (6)H29A—C29—H29B107.9
Pd2—S2—Pd185.159 (15)C30—C29—S5111.89 (13)
C8—S2—Pd1103.40 (6)C30—C29—H29A109.2
C8—S2—Pd2106.26 (7)C30—C29—H29B109.2
Pd2—S3—Pd185.797 (15)C31—C30—C29119.56 (17)
C15—S3—Pd1110.88 (7)C31—C30—C35118.78 (17)
C15—S3—Pd2111.96 (6)C35—C30—C29121.64 (17)
Pd3—S4—Pd283.308 (15)C30—C31—H31119.8
C22—S4—Pd2111.99 (6)C30—C31—C32120.31 (18)
C22—S4—Pd3112.72 (6)C32—C31—H31119.8
Pd3—S5—Pd283.321 (15)C31—C32—H32119.7
C29—S5—Pd2103.36 (6)C33—C32—C31120.59 (19)
C29—S5—Pd3109.93 (6)C33—C32—H32119.7
Pd1i—S6—Pd384.020 (15)C32—C33—H33120.3
C36—S6—Pd1i108.12 (6)C32—C33—C34119.45 (18)
C36—S6—Pd3106.45 (7)C34—C33—H33120.3
S1—C1—H1A109.6C33—C34—H34119.9
S1—C1—H1B109.6C33—C34—C35120.10 (18)
H1A—C1—H1B108.1C35—C34—H34119.9
C2—C1—S1110.14 (13)C30—C35—H35119.6
C2—C1—H1A109.6C34—C35—C30120.75 (18)
C2—C1—H1B109.6C34—C35—H35119.6
C3—C2—C1120.30 (17)S6—C36—H36A109.9
C7—C2—C1121.12 (18)S6—C36—H36B109.9
C7—C2—C3118.57 (18)H36A—C36—H36B108.3
C2—C3—H3119.7C37—C36—S6108.93 (13)
C4—C3—C2120.7 (2)C37—C36—H36A109.9
C4—C3—H3119.7C37—C36—H36B109.9
C3—C4—H4120.0C38—C37—C36120.57 (18)
C3—C4—C5120.0 (2)C42—C37—C36120.61 (17)
C5—C4—H4120.0C42—C37—C38118.81 (18)
C4—C5—H5120.1C37—C38—H38119.8
C6—C5—C4119.9 (2)C37—C38—C39120.4 (2)
C6—C5—H5120.1C39—C38—H38119.8
C5—C6—H6119.9C38—C39—H39119.9
C5—C6—C7120.3 (2)C40—C39—C38120.1 (2)
C7—C6—H6119.9C40—C39—H39119.9
C2—C7—C6120.6 (2)C39—C40—H40120.1
C2—C7—H7119.7C39—C40—C41119.8 (2)
C6—C7—H7119.7C41—C40—H40120.1
S2—C8—H8A109.5C40—C41—H41119.9
S2—C8—H8B109.5C40—C41—C42120.2 (2)
H8A—C8—H8B108.0C42—C41—H41119.9
C9—C8—S2110.92 (13)C37—C42—H42119.7
C9—C8—H8A109.5C41—C42—C37120.6 (2)
C9—C8—H8B109.5C41—C42—H42119.7
C10—C9—C8120.45 (18)O1—C43—C44120.5 (3)
C10—C9—C14119.15 (19)O1—C43—C45ii120.3 (3)
C14—C9—C8120.40 (19)C44—C43—C45ii119.2 (2)
C9—C10—H10120.0C45—C44—C43120.8 (2)
C11—C10—C9120.1 (2)C49—C44—C43119.5 (2)
C11—C10—H10120.0C49—C44—C45119.6 (2)
C10—C11—H11119.8C44—C45—C43ii120.0 (2)
C10—C11—C12120.5 (3)C46—C45—C43ii120.6 (2)
C12—C11—H11119.8C46—C45—C44119.4 (2)
C11—C12—H12120.1C45—C46—H46119.1
C13—C12—C11119.8 (2)C45—C46—C47121.9 (2)
C13—C12—H12120.1C47—C46—H46119.1
C12—C13—H13119.9C46—C47—H47121.4
C12—C13—C14120.2 (2)C48—C47—C46117.2 (3)
C14—C13—H13119.9C48—C47—H47121.4
C9—C14—H14119.9C47—C48—H48119.2
C13—C14—C9120.3 (2)C47—C48—C49121.6 (3)
C13—C14—H14119.9C49—C48—H48119.2
S3—C15—H15A109.8C44—C49—C48120.2 (2)
S3—C15—H15B109.8C44—C49—H49119.9
H15A—C15—H15B108.2C48—C49—H49119.9
Pd1—S1—C1—C2152.50 (12)C17—C18—C19—C201.1 (3)
Pd1—S2—C8—C9170.66 (13)C18—C19—C20—C211.3 (3)
Pd1—S3—C15—C16121.75 (12)C19—C20—C21—C160.2 (3)
Pd1i—S6—C36—C37175.62 (12)C21—C16—C17—C181.1 (3)
Pd2—S2—C8—C981.85 (14)C22—C23—C24—C25179.93 (19)
Pd2—S3—C15—C16144.29 (11)C22—C23—C28—C27179.26 (19)
Pd2—S4—C22—C23132.34 (11)C23—C24—C25—C260.8 (3)
Pd2—S5—C29—C3060.03 (14)C24—C23—C28—C271.1 (3)
Pd3i—S1—C1—C2116.78 (12)C24—C25—C26—C271.4 (4)
Pd3—S4—C22—C23135.78 (11)C25—C26—C27—C280.7 (4)
Pd3—S5—C29—C30147.68 (12)C26—C27—C28—C230.5 (3)
Pd3—S6—C36—C3786.64 (13)C28—C23—C24—C250.5 (3)
S1—C1—C2—C378.1 (2)C29—C30—C31—C32177.18 (19)
S1—C1—C2—C7102.25 (18)C29—C30—C35—C34177.65 (18)
S2—C8—C9—C1093.6 (2)C30—C31—C32—C330.6 (3)
S2—C8—C9—C1485.6 (2)C31—C30—C35—C340.9 (3)
S3—C15—C16—C17125.44 (16)C31—C32—C33—C340.7 (3)
S3—C15—C16—C2154.9 (2)C32—C33—C34—C351.2 (3)
S4—C22—C23—C2489.47 (19)C33—C34—C35—C300.4 (3)
S4—C22—C23—C2890.15 (19)C35—C30—C31—C321.4 (3)
S5—C29—C30—C31139.77 (16)C36—C37—C38—C39179.55 (19)
S5—C29—C30—C3541.7 (2)C36—C37—C42—C41179.97 (18)
S6—C36—C37—C3892.23 (19)C37—C38—C39—C400.2 (3)
S6—C36—C37—C4286.4 (2)C38—C37—C42—C411.3 (3)
C1—C2—C3—C4179.22 (18)C38—C39—C40—C410.9 (3)
C1—C2—C7—C6179.76 (18)C39—C40—C41—C420.4 (3)
C2—C3—C4—C50.8 (3)C40—C41—C42—C370.7 (3)
C3—C2—C7—C60.1 (3)C42—C37—C38—C390.9 (3)
C3—C4—C5—C60.6 (3)O1—C43—C44—C45176.5 (2)
C4—C5—C6—C70.1 (3)O1—C43—C44—C491.6 (4)
C5—C6—C7—C20.3 (3)C43—C44—C45—C43ii0.8 (4)
C7—C2—C3—C40.5 (3)C43—C44—C45—C46179.7 (2)
C8—C9—C10—C11179.8 (2)C43—C44—C49—C48178.4 (2)
C8—C9—C14—C13179.77 (19)C43ii—C45—C46—C47179.3 (2)
C9—C10—C11—C120.5 (4)C44—C45—C46—C470.1 (4)
C10—C9—C14—C131.0 (3)C45ii—C43—C44—C450.8 (4)
C10—C11—C12—C130.0 (4)C45ii—C43—C44—C49178.9 (2)
C11—C12—C13—C140.0 (4)C45—C44—C49—C483.5 (4)
C12—C13—C14—C90.6 (3)C45—C46—C47—C480.0 (4)
C14—C9—C10—C111.0 (3)C46—C47—C48—C491.8 (4)
C15—C16—C17—C18179.22 (18)C47—C48—C49—C443.6 (4)
C15—C16—C21—C20179.37 (18)C49—C44—C45—C43ii178.9 (2)
C16—C17—C18—C190.1 (3)C49—C44—C45—C461.7 (3)
C17—C16—C21—C200.9 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
 

Footnotes

Current address: Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, MP, India.

Acknowledgements

The authors thank Stéphanie Boullanger for recording the IR and NMR spectra.

Funding information

We are grateful to the region of Franche-Comté for funding a postdoctoral fellowship for A. Raghuvanshi (grant No. RECH-MOB15–000017).

References

First citationAnanikov, V. P., Orlov, N. V., Zalesskiy, S. S., Beletskaya, I. P., Khrustalev, V. N., Morokuma, K. & Musaev, D. G. (2012). J. Am. Chem. Soc. 134, 6637–6649.  CSD CrossRef CAS PubMed Google Scholar
First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, m1586–m1587.  CSD CrossRef IUCr Journals Google Scholar
First citationAwaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964–2974.  CSD CrossRef PubMed CAS Google Scholar
First citationBinkowska, I., Ratajczak–Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Holder, A. J., Roberts, Y. V. & Schröder, M. (1988). Acta Cryst. C44, 360–361.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Su, W., Hong, M., Zhang, W., Lu, J. & Wong, W. (1998). Chem. Commun. pp. 2083–2084.  CSD CrossRef Google Scholar
First citationChen, J., Pan, Y., Wang, Z. & Zhao, P. (2017). Dalton Trans. 46, 12964–12970.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFowelin, C., Schüpbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. pp. 1013–1017.  CSD CrossRef Google Scholar
First citationFu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308–315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGao, X. & Chen, W. (2017). Chem. Commun. 53, 9733–9736.  CrossRef CAS Google Scholar
First citationGopalakrishnan, R., Jacob, J. P., Moideen, S. F. T., Lalu, L. M., Unnikrishnan, P. A. & Prathapan, S. (2015). Arkivoc, 7, 316–329.  CrossRef Google Scholar
First citationGoswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiggins, J. D. & Suggs, J. W. (1988). Inorg. Chim. Acta, 145, 247–252.  CSD CrossRef CAS Google Scholar
First citationHu, T.-L., Li, J.-R., Xie, Y.-B. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 648–655.  CSD CrossRef CAS Google Scholar
First citationHu, X.-L., Wang, K., Li, X., Pan, Q.-Q. & Su, Z.-M. (2020). New J. Chem. 44, 12496–12502.  CSD CrossRef CAS Google Scholar
First citationKnauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationKunchur, N. R. (1971). Acta Cryst. B27, 2292.  CrossRef IUCr Journals Google Scholar
First citationLee, S. G., Choi, K.-Y., Kim, Y.-J., Park, S. & Lee, S. W. (2015). Polyhedron, 85, 880–887.  CSD CrossRef CAS Google Scholar
First citationLewis, M., Carrell, H. L., Glusker, J. P. & Sparks, R. A. (1976). Acta Cryst. B32, 2040–2044.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhu, S., Josimuddin, S. & Ravikanth, M. (2014). New J. Chem. 38, 3770–3776.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Hasanov, X. I., Maharramov, A. M., Azizova, A. N., Ragimov, K. Q., Askerov, R. K., Kopylovich, M. N., Ma, Z. & Pombeiro, A. J. L. (2013). Inorg. Chem. Commun. 29, 37–39.  CSD CrossRef CAS Google Scholar
First citationMartin, H. J., Pfeiffer, C. R., Davies, S. E., Davis, A. L., Lewis, W. & Champness, N. R. (2018). ACS Omega, 3, 8769–8776.  CSD CrossRef CAS PubMed Google Scholar
First citationMohanty, A., Singh, U. P., Butcher, R. J., Das, N. & Roy, P. (2020). CrystEngComm, 22, 4468–4477.  CSD CrossRef CAS Google Scholar
First citationMurray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185–189.  CrossRef CAS Web of Science Google Scholar
First citationOlah, G. A., Narang, S. C. & Salem, G. F. (1980). Synthesis, pp. 659–660.  Google Scholar
First citationPeindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828.  Web of Science CSD CrossRef Google Scholar
First citationPickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409–412.  CrossRef Google Scholar
First citationQuah, H. S., Ng, L. T., Donnadieu, B., Tan, G. K. & Vittal, J. J. (2016). Inorg. Chem. 55, 10851–10854.  CSD CrossRef CAS PubMed Google Scholar
First citationRaghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Knauer, L., Viau, L., Knorr, M. & Strohmann, C. (2020). Acta Cryst. E76, 484–487.  CSD CrossRef IUCr Journals Google Scholar
First citationRaghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRao, G. K., Kumar, A., Saleem, F., Singh, M. P., Kumar, S., Kumar, B., Mukherjee, G. & Singh, A. K. (2015). Dalton Trans. 44, 6600–6612.  PubMed Google Scholar
First citationSchlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. M. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708.  CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchwarze, T., Müller, H., Dosche, C., Klamroth, T., Mickler, W., Kelling, A., Löhmannsröben, H.-G., Saalfrank, P. & Holdt, H.-J. (2007). Angew. Chem. Int. Ed. 46, 1671–1674.  CSD CrossRef CAS Google Scholar
First citationShaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85–91.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShichibu, Y., Yoshida, K. & Konishi, K. (2016). Inorg. Chem. 55, 9147–9149.  CSD CrossRef CAS PubMed Google Scholar
First citationSlouf, M. (2002). J. Mol. Struct. 611, 139–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal'kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136–141.  CrossRef CAS Google Scholar
First citationStash, A. I., Perepelkova, T. I., Noskov, Yu. G., Buslaeva, T. M. & Romm, I. P. (2001). Russ. J. Coord. Chem. 27, 585–590.  CrossRef CAS Google Scholar
First citationSu, W., Cao, R., Hong, M., Zhou, Z., Xie, F., Liu, H. & Mak, T. C. W. (1997a). Polyhedron, 16, 2531–2535.  CSD CrossRef CAS Google Scholar
First citationSu, W., Hong, M., Cao, R. & Liu, H. (1997b). Acta Cryst. C53, 66–67.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTakemura, T., Kozawa, K., Uchida, T. & Mori, N. (1984). Chem. Lett. 13, 1839–1842.  CSD CrossRef Google Scholar
First citationThomas, P. J., Lavanya, A., Sabareesh, V. & Kulkarni, G. U. (2001). J. Chem. Sci. 113, 611–619.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWang, X., Gao, W.-Y., Luan, J., Wojtas, L. & Ma, S. (2016). Chem. Commun. 52, 1971–1974.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Z., Klabunde, K. J. & Sorensen, C. M. (2007). J. Phys. Chem. C, 111, 18143–18147.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds