research communications
Crystal structures of 9-[bis(benzylsulfanyl)methyl]anthracene and of cyclo-dodecakis(μ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 Pd—Pd)–anthracene-9,10-dione (1/1)
aInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon, France, and bAnorganische Chemie, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de
The first title compound, C29H24S2, L1, represents an example of an anthracene-based functionalized dithioether, which may be useful as a potential chelating or terminal ligand for coordination chemistry. This dithioacetal L1 crystallizes in the monoclinic P21/c. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)° and the displays short C–H⋯π contacts. Surprisingly, when attempting to coordinate L1 to [PdCl2(PhCN)2], instead of the targeted chelate complex [PdCl2(κ2-L1)], a cleavage reaction leads to the formation of the centrosymmetric hexanuclear cyclic cluster of composition [Pd6(μ2-SCH2Ph)12] Pd6, or [Pd6(C7H7S)12]·C14H8O2. This tiara-shaped hexamer crystallizing in the triclinic P consists of six approximately square planar Pd(II)S4 centers, which are interconnected through twelve μ2-bridging benzyl thiolate groups. The Pd⋯Pd contacts range from 3.0892 (2) to 3.1609 (2) Å and can be considered as weakly bonding. The of Pd6 contains also a co-crystallized anthracene-9,10-dione molecule.
Keywords: crystal structure; cluster; palladium; thioether; thiolate; thioacetal; supramolecular network.
1. Chemical context
Acyclic and cyclic thioacetals with the –S–C(R)(H)–S (R = H, alkyl, aryl) unit can either be synthesized by nucleophilic substitution of geminal dihalides X–C(R)(H)–X by thiolates RS− (Murray et al., 1981) or by reaction of and with and dithiols (Shaterian et al., 2011). Because of their soft nature, organosulfur compounds preferentially interact with late transition metals in lower oxidation states. A variety of complexes as well as coordination polymers (CPs) of varying dimensionality, ranging from zero-dimensional (molecular) to three-dimensional, have been synthesized using these types of dithioether ligands and structurally characterized (Knaust & Keller, 2003; Awaleh et al., 2005, 2008). However, many factors including the structural characteristics of the organic ligands, temperature, solvent, molar ratio, etc., greatly influence the formation of the resulting materials.
Over the last few years, we have been engaged in exploring the assembly of molecular cluster compounds and coordination polymers using thioether ligands RSCH2SR (Peindy et al., 2007; Knorr et al., 2014; Schlachter et al., 2020). Recently, we have also reported the synthesis of CuI coordination complexes ligated with cyclic thioacetal ligands bearing various substituents (Raghuvanshi et al., 2017, 2019; Schlachter et al., 2018; Knauer et al., 2020). Convenient synthetic protocols and interesting luminescent properties displayed by these complexes intrigued us to explore this field further.
Since the presence of an anthracene unit provides both rigidity as well as interesting luminescent properties to a given system, a large number of anthracene-based MOFs and CPs have been reported for various applications (for example: Hu et al., 2020; Mohanty et al., 2020; Quah et al., 2016; Wang et al., 2016). In most of these reports, either N- or O-donor substituents attached to the anthracene scaffold have been used as coordinating sites. In contrast, there are few reports where anthracene-based thioether ligands have been used for the construction of CPs. For example, a series of emissive molecular compounds and CPs have been assembled by reaction of 9,10-bis[(alkylthio)methyl]anthracenes with AgI salts (Hu et al., 2006). The synthesis of anthracene-based thioacetals with different –SR substituents including L1 has been briefly reported (Goswami et al., 2008 and Shaterian et al., 2011). However, no spectroscopic characterization data have been communicated. Furthermore, no examples of structurally characterized anthracene-based thioacetals could be found within the Cambridge Structural Database. These disparities make this field interesting for further investigations.
In this context, we synthesized the anthracene thioacetal L1 with the objective of using it as an S-donor ligand for the assembly of potentially luminescent coordination compounds. L1 was prepared straightforwardly by the reaction of benzyl mercaptan and 9-anthracenecarboxaldehyde in the presence of an excess conc. HCl at room temperature (Fig. 1) and obtained in 80% yield as a yellow solid. Characteristic for its 1H NMR spectrum are two doublets at δ 3.55 and 3.79 ppm for the methylene protons and a singlet at δ 5.94 ppm for the methine proton. The complete spectroscopic data are reported in the Synthesis and crystallization section.
With this starting material in hand, we attempted to ligate L1 to [PdCl2(PhCN)2], (Fig. 1). Although the coordination chemistry of [PdCl2(S∩S)] compounds is dominated by chelate complexes in which open-chain dithioether or macrocyclic polythioether ligands form five- or six-membered rings such as [PdCl2(1,2-bis(phenylthio)ethane-S,S′] (Rao et al., 2015; Cambridge Structural Database refcode: CEYBUD01) or [PdCl2(1,4,7-trithiacyclononane-S,S′)] (GATLES; Blake et al., 1988), there is just one structurally characterized example of a chelate complex [PdCl2(1,3,5,7-tetramethyl-2,4,6,8,9,10-hexathia-adamantane-S4,S6)], in which the thiamacrocycle forms a strained four-membered chelate ring (DOCNOY; Pickardt & Rautenberg, 1986). It has also been reported that upon treatment of PhSCH2SPh with [M(MeCN)4][ClO4]2, the strained chelate complexes [M(PhSCH2SPh)4](ClO4)2 (M = Pd, Pt) are formed (Murray et al., 1981). However, to our surprise, the targeted compound [PdCl2(anthracen-9-ylmethylene)bis(benzylsulfane)-S,S′)] was not formed according to the NMR data. Instead, a crystallographic study of a yellow–orange crystal revealed the formation of a cyclic hexanuclear thiolate-bridged cluster [Pd6(μ2-SCH2Ph)12], Pd6. It is well known that thioacetals can be cleaved by soft HgII ions yielding or other oxygenated products. One example is the HgIII-promoted deprotection of 3,5-bis(dithioacetal)BODIPYs, in which cleavage of a dithioacetal function to aldehyde groups occurs (Madhu et al., 2014). A mild quantitative AgNO3-promoted cleavage of fluorenenylethanediyl-S,S-acetals with trichloroisocyanuric acid yielding 9-fluorenone has also been reported (Olah et al., 1980). We suppose that in our case PdCl2 behaves similarly, acting as electrophilic agent. We have not examined the mechanistic aspects of this unexpected reaction in detail, but the fact that Pd6 co-crystallizes with one molecule of anthracene-9,10-dione and smaller amounts of 9-anthraldehyde is in line with this hypothesis. It is noteworthy that this diketone has also been detected as one of the numerous oxidation products stemming from the oxidation of (anthracen-9-ylmethyl)(benzyl)sulfane with ceric ammonium nitrate (Gopalakrishnan et al., 2015).
Looking for a more rational manner to synthesize this tiara-like cluster, we attempted to prepare Pd6 independently by reacting [PdCl2(PhCN)2] with 2.1 equivalents of benzyl mercaptan in CH2Cl2 solution. However, the isolation of Pd6 was hampered by the co-crystallization of important amounts of the eight-membered cluster Pd8 [Pd8(μ2-SCH2Ph)16], having a structure similar to that of [Pd8(μ2-SPr)16] (Higgins et al., 1988). Details of this reaction will be reported elsewhere.
2. Structural commentary
Compound L1 crystallizes from the mixed solvents CH2Cl2/hexane in the monoclinic with P21/c The molecular structure of L1 is presented in Fig. 2 and selected bond lengths and bond angles are given in Table 1. The C15—S1 and C15—S2 bond lengths of 1.8309 (12) and 1.8220 (12) Å are comparable with those of [BzSC(H)(C6H4NO2-p)SBz] (SUNMAQ) [1.8262 (19) and 1.818 (2) Å; Binkowska et al., 2009], but are elongated compared with those of bis(benzylsulfanyl)methane (TUQPAX) [1.7988 (13) and 1.8013 (13) Å; Yang et al., 2010) and 2-[bis(benzylsulfanyl)methyl]-6-methoxyphenol (IGOBOY) [1.8132 (12) and 1.8189 (12) Å; Raghuvanshi et al., 2020). The angle S1—C15—S2 of 110.93 (6)° in L1 is wider than those of 4-nitrophenylbis(benzylsulfanyl)methane [107.26 (6)°] and 2-[bis(benzylsulfanyl)methyl]-6-methoxyphenol [107.76 (10)°], but considerably less than in [BzSCH2SBz] [117.33 (7)°]. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)°.
|
The inorganic part of the L1 with [PdCl2(PhCN)2] shown in Fig. 3 is very similar overall to the structures of a series of other structurally characterized tiara-like hexanuclear clusters bridged by aliphatic thiolate groups such as [Pd6(μ2-SPr)12] (Kunchur, 1971; PDPRMC), [Pd6(μ2-SEt)12] (Stash et al., 2001; UCIXAF), [Pd6(μ2-SCH2CH2OH)12] (Mahmudov et al., 2013; XIPCUW), [Pd6(μ2-SBu)12] (Stash et al., 2009; LAFBUR) and [Pd6(μ2-SHexyl)12] (Ananikov et al., 2012; FAVQEA). Furthermore, the structure of the thiophenolate-spanned compound [Pd6(μ2-SPh)12] has been reported (Stash et al., 2009). However, within this series of metallacycles, the most reminiscent structure to our benzylic derivative [Pd6(μ2-SCH2Ph)12] is that of the phenylethanethiolate-decorated nanocluster [Pd6(μ2-SCH2CH2Ph)12] (Chen et al., 2017; HEGPAN).
of the reaction product ofThe core of Pd6 consists of three crystallographically different PdII centers forming a centrosymmetric, almost planar, six-membered ring with Pd⋯Pd contacts ranging from 3.0892 (2) to 3.1609 (2) Å. The mean Pd⋯Pd separation of 3.1213 (2) Å is quite similar to that of the other derivatives and may be considered as weakly bonding (Stash et al., 2009), being significantly shorter than the sum of the van der Waals radii for Pd (3.26 Å; Bondi, 1964). The mean separation of two symmetry-related opposite Pd nuclei is about 6.22 Å, the longest being that of 6.453 Å between Pd3 and Pd3′, justifying describing these compounds as nano-sized clusters. Each palladium atom is coordinated covalently to four μ2-sulfur atoms with an approximately square-planar geometry, and the average Pd—S bond length of 2.327 (5) Å is close to those of the other [Pd6(μ2-SR)12] analogues. The S—Pd—S bridge angles vary within the range 81.033 (16)–99.246 (16)°. The twelve sulfur atoms form two S6 hexagons parallel to the central Pd6 ring from both sides, conferring finally a tiara-like shape to the Pd6S12 scaffold.
of anthracene-9,10-dione (also named 9,10-anthraquinone) has already been the object of several crystallographic studies and is therefore not commented herein (Fu & Brock, 19983. Supramolecular features
The crystal packing of dithioactal L1 is shown in Fig. 4. Three different types of C—H⋯π interactions are observed in the (Fig. 5) where the H⋯π distances range from 2.51 to 2.84 Å. The C21—H21⋯Cg(C16/C17/C22/C23/C24/C29 centroid) distance of 2.519 (18) Å, the C14—H14⋯C24 distance of 2.741 (18) Å and the C1—H1B⋯C9 distance of 2.847 (16) Å are short enough to be considered as weak intermolecular interactions (see Table 2). The closest C—H⋯S contact of 2.702 Å occurs between the aromatic H18 atom and S; however, the C18—H18⋯S1 angle of 123° suggests that this contribution has a neglectable impact on the conformation of L1.
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) for the further investigation of close contacts and intermolecular interactions was performed for L1 using CrystalExplorer17 (Turner et al., 2017). Figs. 6a and 7 illustrate the three-dimensional Hirshfeld surface mapped over dnorm in the range from −1.11 to 1.36 (arbitrary units). The red spots on the surface indicate the close contacts to adjacent molecules. There are three areas of red spots which can be classified as C—H⋯π interactions. The first and most important interaction is the C—H⋯π contact of one of the phenylmethanethiolate substituents to the anthracene scaffold of a neighboring molecule (C14—H14⋯C24). Furthermore, there are significant interactions of the anthracene unit to an adjacent anthracene unit (C21—H21⋯C16/17/29). Then, there is also a weak C—H⋯π contact of two phenylmethanethiolate substituents (C1—H1B⋯C9). The contributions of the different types of intermolecular interactions are shown in the two-dimensional fingerprint plots in Fig. 8. The weak van der Waals H⋯H contacts appear as the largest region with a 51.0% contribution. The C⋯H/H⋯C contacts exhibit a significant contribution at 40.4% and constitute a major contribution to the packing arrangement within the Fig. 6b and 6c illustrate the Hirshfeld surface mapped over the shape-index and the curvedness. The shape-index shows large red regions of concave curvature for the anthracene motif, whereas the C—H-donors shows opposite curvature.
Concerning the cluster Pd6, there are no particular directional intermolecular interactions in the packing warranting any discussion. The packing is shown in Fig. 9.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) for related anthracene-substituted dithioacetals did not reveal any structure hits. However, there are several examples of monothioethers attached on an anthracenyl scaffold and include {9-[(2-chloroethyl)thio]methyl}anthracene (CETMAN; Lewis et al., 1976), 1,6-bis(9-anthryl)-2,5-dithiahexane (LEYHIH; Schwarze et al., 2007) and S-(9-anthryl)methyl-3,5-dinitrothiobenzoate (VEZLUI; Fowelin et al., 2007). A search for the bis(benzylthio)methane motif HC(SCH2Ph)2 revealed only three similar structures, namely 2,6,10,14,19,24-hexa-p-benz-4,8,12,16,17,21,22,26-octathiatricyclo(9.5.5.53,9)hexacosaphane benzene clathrate (CUHLUM; Takemura et al., 1984), 4-nitrophenyl-[bis(benzylthio)]methane (SUNMAQ; Binkowska et al., 2009) and 2-[bis(benzylsulfanyl)methyl]-6-methoxyphenol (IGOBOY; Raghuvanshi et al., 2020).
In contrast to mononuclear palladium complexes bearing terminal phenylmethanethiolate groups such as trans-[Pd(SCH2Ph)2(PMe3)2] (Lee et al. 2015; NOQZOK), [Pd(SCH2Ph)2(1,2-bis(diphenylphosphino)ethane)] (Su et al. 1997a,b; TERREN) and [Pd(SCH2Ph)2(1,3-bis(diphenylphosphino)propane)] (Su et al. 1997; SUTMOJ), those of phenylmethanethiolate-bridged di- and polynuclear Pd complexes are scare. The only crystallographically characterized hit is the tetranuclear cluster [Pd4Se4(μ2-SCH2Ph)2(bis(diphenylphosphino)methane)Cl2] (Cao et al. 1998; JIXRAJ). The aforementioned [Pd6(μ2-SR)12] clusters have found applications as precursors for the preparation of monodisperse PdS nanoparticles (Yang et al., 2007), for the self-assembly of palladiumthiolate bilayers (Thomas et al., 2001), as fluorescence materials (Chen et al., 2017) and as electrocatalysts for H and O evolution reactions (Gao & Chen, 2017). Also noteworthy is the observation that individual [Pd6(μ2-SCH2CH2OH)12] molecules are interconnected in the solid state by hydrogen bonds through the hydroxy groups of the thiolate ligands, thus generating an infinite three-dimensional supramolecular network (Mahmudov et al., 2013). Concerning the influence of hydrogen-bonding interactions on nuclearity and structure for other tiara-like palladium complexes, see: Martin et al. (2018). Recently, a structurally related PtII thiolate complex [Pt6(μ2-SC12H23)12] has been prepared and probed as a macrocyclic host to include an AgI ion as guest (Shichibu et al., 2016).
5. Synthesis and crystallization
9-Anthracenecarboxaldehyde (206 mg, 1 mmol) and benzyl mercaptan (348 mg, 3 mmol) were suspended in conc. HCl (2 ml) and allowed to stir at room temperature. After 2 h, the reaction mixture was neutralized with aqueous NaHCO3 solution and extracted with dichloromethane. The organic fraction was dried over Na2SO4, filtered and concentrated under reduced pressure. Purification by using a hexane/dichloromethane solvent mixture as gives a pale-yellow solid product in 80% yield (350 mg). Crystals suitable for single-crystal X-ray crystallography were grown by slow diffusion of hexane into a dichloromethane solution of L1, m.p. 438–440 K. 1H NMR (400 MHz, δ in ppm, CD2Cl2): 9.03 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H18), 8.39 (s, 1H, H23), 8.00 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H21), 7.95 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H25), 7.55–7.47 (m, 2H, H19, H27), ddd (J = 8.5 Hz, J = 6.5 Hz, J = 1.1 Hz, 1H, H3), 7.28–7.22 (m, 6H, HPh + H6), 7.14–7.09 (m, 5H, HPh), 6.91 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H28), 5.94 (s, 1H, CHS2), 3.79 (d, J = 13.7 Hz, 2H, CH2), 3.55 (d, J = 13.7 Hz, 2H, CH2). 13C{1H} NMR (101 MHz, δ in ppm, CD2Cl2) 138.34 (C16), 132.50 (C17), 131.46 (Cq), 131.36 (Cq), 130.28 (Cq), 129.58 (CHAr), 129.56 (C21), 129.47 (C25), 129.13 (Cq), 128.96 (CHAr), 128.84 (C23), 127.75 (C18), 127.53 (CHAr), 126.63 (C26), 125.61 (C19), 125.12 (C20), 124.91 (C27), 122.99 (C28), 45.02 (S2CH), 37.89 (SCH2). IR (ATR) cm −1: 3050 and 3025 (C—H Ar), 2998, 2948 and 2906 (C—H aliphatic), 1589, 1519 (C=C), 696 (C—S).
Reaction of L1 with PdCl2(PhCN)2: L1 (43 mg, 0.1 mmol) and PdCl2(PhCN)2 (38 mg, 0.1 mmol) were dissolved in 5 ml of dichloromethane and allowed to stir at room temperature for 30 minutes. During the reaction, a red solution was obtained, which was kept in refrigerator overnight yielding yellow crystals of 9-anthraldehyde along with yellow–orange co-crystals of the [Pd6(SCH2Ph)12·anthracene-9,10-dione] cluster, Pd6. 1H NMR (400 MHz, δ in ppm, CD2Cl2)): 8.92–6.86 (m, overlapping benzylic and anthracenyl H), 3.61 (s, SCH2), 3.58 (s, SCH2).
6. Refinement
Crystal data, data collection and structure . For both compounds, the H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms H1B, H14 and H21 for L1 were located in the difference-Fourier map and refined freely.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989021006113/hb7976sup1.cif
contains datablocks mo_b0159_0m, mo_b0283_0m, New_Global_Publ_Block. DOI:Structure factors: contains datablock mo_b0159_0m. DOI: https://doi.org/10.1107/S2056989021006113/hb7976mo_b0159_0msup2.hkl
Structure factors: contains datablock mo_b0283_0m. DOI: https://doi.org/10.1107/S2056989021006113/hb7976mo_b0283_0msup3.hkl
For both structures, data collection: APEX2 (Bruker, 2018); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), CrystalExplorer17 (Turner et al., 2017), publCIF (Westrip, 2010), Mercury (Macrae et al., 2020).C29H24S2 | F(000) = 920 |
Mr = 436.60 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.0842 (13) Å | Cell parameters from 9706 reflections |
b = 7.5279 (5) Å | θ = 2.8–27.1° |
c = 17.4975 (13) Å | µ = 0.25 mm−1 |
β = 108.439 (3)° | T = 123 K |
V = 2259.7 (3) Å3 | Block, yellow |
Z = 4 | 0.95 × 0.44 × 0.30 mm |
Bruker D8 Venture diffractometer | 4994 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4423 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.025 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.1°, θmin = 2.8° |
ω and φ scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −9→9 |
Tmin = 0.522, Tmax = 0.563 | l = −22→22 |
25688 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9034P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4994 reflections | Δρmax = 0.24 e Å−3 |
295 parameters | Δρmin = −0.30 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.68666 (2) | 0.64448 (5) | 0.70893 (2) | 0.02319 (9) | |
S2 | 0.80911 (2) | 0.92465 (4) | 0.72381 (2) | 0.02454 (9) | |
C1 | 0.62676 (7) | 0.52418 (17) | 0.62051 (8) | 0.0205 (2) | |
H1A | 0.6175 (9) | 0.602 (2) | 0.5751 (9) | 0.025* | |
C2 | 0.55092 (7) | 0.47989 (16) | 0.63477 (7) | 0.0185 (2) | |
C3 | 0.54888 (7) | 0.35800 (16) | 0.69428 (8) | 0.0221 (3) | |
H3 | 0.5950 | 0.2966 | 0.7235 | 0.027* | |
C4 | 0.47989 (8) | 0.32580 (18) | 0.71106 (8) | 0.0269 (3) | |
H4 | 0.4793 | 0.2443 | 0.7523 | 0.032* | |
C5 | 0.41191 (8) | 0.41281 (18) | 0.66757 (8) | 0.0270 (3) | |
H5 | 0.3648 | 0.3909 | 0.6790 | 0.032* | |
C6 | 0.41294 (7) | 0.53190 (18) | 0.60730 (8) | 0.0250 (3) | |
H6 | 0.3663 | 0.5899 | 0.5768 | 0.030* | |
C7 | 0.48232 (7) | 0.56614 (16) | 0.59167 (7) | 0.0213 (3) | |
H7 | 0.4829 | 0.6494 | 0.5511 | 0.026* | |
C8 | 0.73177 (9) | 1.08485 (18) | 0.67732 (9) | 0.0324 (3) | |
H8A | 0.6879 | 1.0657 | 0.6987 | 0.039* | |
H8B | 0.7519 | 1.2066 | 0.6922 | 0.039* | |
C9 | 0.70229 (8) | 1.06923 (16) | 0.58667 (9) | 0.0269 (3) | |
C10 | 0.62799 (8) | 1.00169 (18) | 0.54845 (9) | 0.0298 (3) | |
H10 | 0.5945 | 0.9749 | 0.5792 | 0.036* | |
C11 | 0.60257 (9) | 0.97328 (19) | 0.46564 (9) | 0.0350 (3) | |
H11 | 0.5521 | 0.9259 | 0.4402 | 0.042* | |
C12 | 0.65053 (10) | 1.0137 (2) | 0.42027 (9) | 0.0368 (3) | |
H12 | 0.6332 | 0.9937 | 0.3638 | 0.044* | |
C13 | 0.72407 (10) | 1.08361 (19) | 0.45753 (10) | 0.0378 (4) | |
H13 | 0.7568 | 1.1134 | 0.4264 | 0.045* | |
C14 | 0.74995 (9) | 1.11021 (18) | 0.54031 (10) | 0.0330 (3) | |
C15 | 0.76483 (7) | 0.72278 (16) | 0.67172 (7) | 0.0177 (2) | |
H15 | 0.7393 | 0.7570 | 0.6142 | 0.021* | |
C16 | 0.82754 (6) | 0.59003 (15) | 0.67177 (7) | 0.0151 (2) | |
C17 | 0.87649 (7) | 0.51631 (15) | 0.74463 (7) | 0.0160 (2) | |
C18 | 0.86799 (7) | 0.55321 (17) | 0.82190 (7) | 0.0203 (2) | |
H18 | 0.8266 | 0.6274 | 0.8251 | 0.024* | |
C19 | 0.91823 (8) | 0.48387 (18) | 0.89085 (7) | 0.0240 (3) | |
H19 | 0.9110 | 0.5098 | 0.9411 | 0.029* | |
C20 | 0.98118 (8) | 0.37349 (18) | 0.88869 (8) | 0.0251 (3) | |
H20 | 1.0163 | 0.3281 | 0.9373 | 0.030* | |
C21 | 0.99092 (8) | 0.33320 (17) | 0.81703 (8) | 0.0231 (3) | |
C22 | 0.93948 (7) | 0.40166 (15) | 0.74321 (7) | 0.0178 (2) | |
C23 | 0.95162 (7) | 0.36306 (16) | 0.67019 (7) | 0.0196 (2) | |
H23 | 0.9933 | 0.2866 | 0.6697 | 0.024* | |
C24 | 0.90401 (7) | 0.43409 (15) | 0.59806 (7) | 0.0172 (2) | |
C25 | 0.91875 (7) | 0.39569 (17) | 0.52438 (8) | 0.0228 (3) | |
H25 | 0.9608 | 0.3194 | 0.5251 | 0.027* | |
C26 | 0.87412 (8) | 0.46550 (19) | 0.45322 (8) | 0.0257 (3) | |
H26 | 0.8849 | 0.4387 | 0.4048 | 0.031* | |
C27 | 0.81107 (8) | 0.57903 (18) | 0.45207 (7) | 0.0239 (3) | |
H27 | 0.7797 | 0.6278 | 0.4023 | 0.029* | |
C28 | 0.79469 (7) | 0.61934 (16) | 0.52090 (7) | 0.0203 (2) | |
H28 | 0.7520 | 0.6954 | 0.5180 | 0.024* | |
C29 | 0.84043 (6) | 0.54966 (15) | 0.59774 (7) | 0.0154 (2) | |
H1B | 0.6540 (9) | 0.417 (2) | 0.6137 (9) | 0.025 (4)* | |
H21 | 1.0321 (9) | 0.258 (2) | 0.8136 (9) | 0.033 (4)* | |
H14 | 0.8029 (10) | 1.152 (2) | 0.5669 (10) | 0.038 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01573 (15) | 0.03525 (18) | 0.02062 (16) | −0.00149 (12) | 0.00864 (12) | −0.00719 (12) |
S2 | 0.02187 (17) | 0.02029 (16) | 0.02713 (17) | 0.00168 (11) | 0.00160 (13) | −0.00742 (12) |
C1 | 0.0191 (6) | 0.0225 (6) | 0.0207 (6) | 0.0010 (5) | 0.0076 (5) | −0.0028 (5) |
C2 | 0.0183 (6) | 0.0188 (5) | 0.0187 (6) | −0.0005 (4) | 0.0060 (5) | −0.0038 (4) |
C3 | 0.0209 (6) | 0.0208 (6) | 0.0228 (6) | 0.0017 (5) | 0.0043 (5) | 0.0017 (5) |
C4 | 0.0283 (7) | 0.0261 (6) | 0.0266 (6) | −0.0042 (5) | 0.0093 (5) | 0.0040 (5) |
C5 | 0.0208 (6) | 0.0304 (7) | 0.0311 (7) | −0.0060 (5) | 0.0102 (5) | −0.0030 (6) |
C6 | 0.0175 (6) | 0.0260 (6) | 0.0286 (7) | 0.0018 (5) | 0.0032 (5) | −0.0016 (5) |
C7 | 0.0221 (6) | 0.0202 (6) | 0.0202 (6) | 0.0004 (5) | 0.0047 (5) | 0.0009 (5) |
C8 | 0.0315 (7) | 0.0227 (6) | 0.0377 (8) | 0.0088 (6) | 0.0032 (6) | −0.0093 (6) |
C9 | 0.0253 (7) | 0.0145 (6) | 0.0364 (7) | 0.0061 (5) | 0.0032 (6) | −0.0024 (5) |
C10 | 0.0222 (6) | 0.0246 (6) | 0.0399 (8) | 0.0062 (5) | 0.0058 (6) | 0.0022 (6) |
C11 | 0.0276 (7) | 0.0288 (7) | 0.0388 (8) | 0.0039 (6) | −0.0033 (6) | 0.0016 (6) |
C12 | 0.0449 (9) | 0.0272 (7) | 0.0324 (8) | 0.0068 (6) | 0.0039 (7) | 0.0053 (6) |
C13 | 0.0439 (9) | 0.0263 (7) | 0.0453 (9) | 0.0049 (6) | 0.0171 (7) | 0.0116 (6) |
C14 | 0.0282 (7) | 0.0192 (6) | 0.0479 (9) | −0.0019 (5) | 0.0068 (7) | 0.0025 (6) |
C15 | 0.0156 (5) | 0.0190 (5) | 0.0188 (5) | 0.0003 (4) | 0.0058 (4) | −0.0032 (4) |
C16 | 0.0133 (5) | 0.0154 (5) | 0.0177 (5) | −0.0017 (4) | 0.0064 (4) | −0.0015 (4) |
C17 | 0.0147 (5) | 0.0168 (5) | 0.0177 (6) | −0.0018 (4) | 0.0066 (4) | −0.0005 (4) |
C18 | 0.0195 (6) | 0.0244 (6) | 0.0187 (6) | −0.0010 (5) | 0.0083 (5) | −0.0018 (5) |
C19 | 0.0256 (6) | 0.0312 (7) | 0.0172 (6) | −0.0034 (5) | 0.0095 (5) | 0.0001 (5) |
C20 | 0.0227 (6) | 0.0310 (7) | 0.0195 (6) | −0.0001 (5) | 0.0036 (5) | 0.0082 (5) |
C21 | 0.0203 (6) | 0.0243 (6) | 0.0243 (6) | 0.0042 (5) | 0.0064 (5) | 0.0054 (5) |
C22 | 0.0162 (6) | 0.0174 (5) | 0.0195 (6) | 0.0004 (4) | 0.0052 (5) | 0.0022 (4) |
C23 | 0.0163 (6) | 0.0200 (6) | 0.0235 (6) | 0.0036 (4) | 0.0077 (5) | −0.0008 (5) |
C24 | 0.0158 (5) | 0.0178 (5) | 0.0189 (6) | −0.0011 (4) | 0.0068 (4) | −0.0024 (4) |
C25 | 0.0201 (6) | 0.0287 (6) | 0.0220 (6) | 0.0026 (5) | 0.0101 (5) | −0.0045 (5) |
C26 | 0.0259 (7) | 0.0357 (7) | 0.0178 (6) | −0.0006 (6) | 0.0102 (5) | −0.0041 (5) |
C27 | 0.0224 (6) | 0.0312 (7) | 0.0171 (6) | 0.0000 (5) | 0.0047 (5) | 0.0021 (5) |
C28 | 0.0176 (6) | 0.0228 (6) | 0.0202 (6) | 0.0014 (5) | 0.0057 (5) | 0.0010 (5) |
C29 | 0.0137 (5) | 0.0155 (5) | 0.0175 (5) | −0.0024 (4) | 0.0056 (4) | −0.0015 (4) |
S1—C1 | 1.8240 (13) | C13—C14 | 1.389 (2) |
S1—C15 | 1.8309 (12) | C14—H14 | 0.976 (17) |
S2—C8 | 1.8309 (14) | C15—H15 | 1.0000 |
S2—C15 | 1.8220 (12) | C15—C16 | 1.5114 (15) |
C1—H1A | 0.958 (16) | C16—C17 | 1.4153 (16) |
C1—C2 | 1.5070 (17) | C16—C29 | 1.4197 (16) |
C1—H1B | 0.971 (16) | C17—C18 | 1.4355 (16) |
C2—C3 | 1.3971 (18) | C17—C22 | 1.4356 (16) |
C2—C7 | 1.3920 (17) | C18—H18 | 0.9500 |
C3—H3 | 0.9500 | C18—C19 | 1.3639 (18) |
C3—C4 | 1.3905 (19) | C19—H19 | 0.9500 |
C4—H4 | 0.9500 | C19—C20 | 1.4195 (19) |
C4—C5 | 1.3884 (19) | C20—H20 | 0.9500 |
C5—H5 | 0.9500 | C20—C21 | 1.3545 (19) |
C5—C6 | 1.3887 (19) | C21—C22 | 1.4281 (17) |
C6—H6 | 0.9500 | C21—H21 | 0.951 (17) |
C6—C7 | 1.3902 (18) | C22—C23 | 1.3937 (17) |
C7—H7 | 0.9500 | C23—H23 | 0.9500 |
C8—H8A | 0.9900 | C23—C24 | 1.3902 (17) |
C8—H8B | 0.9900 | C24—C25 | 1.4262 (16) |
C8—C9 | 1.510 (2) | C24—C29 | 1.4405 (16) |
C9—C10 | 1.3938 (19) | C25—H25 | 0.9500 |
C9—C14 | 1.392 (2) | C25—C26 | 1.3573 (19) |
C10—H10 | 0.9500 | C26—H26 | 0.9500 |
C10—C11 | 1.391 (2) | C26—C27 | 1.4200 (19) |
C11—H11 | 0.9500 | C27—H27 | 0.9500 |
C11—C12 | 1.382 (2) | C27—C28 | 1.3623 (18) |
C12—H12 | 0.9500 | C28—H28 | 0.9500 |
C12—C13 | 1.386 (2) | C28—C29 | 1.4365 (16) |
C13—H13 | 0.9500 | ||
C1—S1—C15 | 100.16 (6) | C13—C14—H14 | 120.0 (10) |
C15—S2—C8 | 100.02 (6) | S1—C15—H15 | 106.2 |
S1—C1—H1A | 107.5 (9) | S1—C15—S2 | 110.93 (6) |
S1—C1—H1B | 109.1 (9) | S2—C15—H15 | 106.2 |
H1A—C1—H1B | 111.7 (13) | C16—C15—S1 | 116.78 (8) |
C2—C1—S1 | 107.27 (8) | C16—C15—S2 | 109.89 (8) |
C2—C1—H1A | 110.1 (9) | C16—C15—H15 | 106.2 |
C2—C1—H1B | 111.0 (9) | C17—C16—C15 | 121.01 (10) |
C3—C2—C1 | 120.58 (11) | C17—C16—C29 | 120.10 (10) |
C7—C2—C1 | 120.60 (11) | C29—C16—C15 | 118.73 (10) |
C7—C2—C3 | 118.75 (11) | C16—C17—C18 | 123.35 (11) |
C2—C3—H3 | 119.7 | C16—C17—C22 | 119.59 (10) |
C4—C3—C2 | 120.59 (12) | C18—C17—C22 | 117.04 (11) |
C4—C3—H3 | 119.7 | C17—C18—H18 | 119.4 |
C3—C4—H4 | 120.0 | C19—C18—C17 | 121.28 (12) |
C5—C4—C3 | 120.01 (12) | C19—C18—H18 | 119.4 |
C5—C4—H4 | 120.0 | C18—C19—H19 | 119.5 |
C4—C5—H5 | 120.0 | C18—C19—C20 | 121.06 (12) |
C4—C5—C6 | 119.91 (12) | C20—C19—H19 | 119.5 |
C6—C5—H5 | 120.0 | C19—C20—H20 | 120.1 |
C5—C6—H6 | 120.0 | C21—C20—C19 | 119.74 (12) |
C5—C6—C7 | 119.92 (12) | C21—C20—H20 | 120.1 |
C7—C6—H6 | 120.0 | C20—C21—C22 | 121.21 (12) |
C2—C7—H7 | 119.6 | C20—C21—H21 | 121.7 (10) |
C6—C7—C2 | 120.81 (12) | C22—C21—H21 | 117.1 (10) |
C6—C7—H7 | 119.6 | C21—C22—C17 | 119.65 (11) |
S2—C8—H8A | 109.1 | C23—C22—C17 | 119.81 (11) |
S2—C8—H8B | 109.1 | C23—C22—C21 | 120.50 (11) |
H8A—C8—H8B | 107.8 | C22—C23—H23 | 119.3 |
C9—C8—S2 | 112.44 (9) | C24—C23—C22 | 121.35 (11) |
C9—C8—H8A | 109.1 | C24—C23—H23 | 119.3 |
C9—C8—H8B | 109.1 | C23—C24—C25 | 120.23 (11) |
C10—C9—C8 | 119.94 (14) | C23—C24—C29 | 120.02 (11) |
C14—C9—C8 | 121.12 (13) | C25—C24—C29 | 119.74 (11) |
C14—C9—C10 | 118.80 (14) | C24—C25—H25 | 119.2 |
C9—C10—H10 | 119.8 | C26—C25—C24 | 121.59 (12) |
C11—C10—C9 | 120.45 (14) | C26—C25—H25 | 119.2 |
C11—C10—H10 | 119.8 | C25—C26—H26 | 120.4 |
C10—C11—H11 | 119.9 | C25—C26—C27 | 119.19 (11) |
C12—C11—C10 | 120.24 (14) | C27—C26—H26 | 120.4 |
C12—C11—H11 | 119.9 | C26—C27—H27 | 119.3 |
C11—C12—H12 | 120.1 | C28—C27—C26 | 121.32 (12) |
C11—C12—C13 | 119.75 (15) | C28—C27—H27 | 119.3 |
C13—C12—H12 | 120.1 | C27—C28—H28 | 119.2 |
C12—C13—H13 | 119.9 | C27—C28—C29 | 121.61 (11) |
C12—C13—C14 | 120.13 (15) | C29—C28—H28 | 119.2 |
C14—C13—H13 | 119.9 | C16—C29—C24 | 119.14 (10) |
C9—C14—H14 | 119.3 (10) | C16—C29—C28 | 124.31 (11) |
C13—C14—C9 | 120.61 (14) | C28—C29—C24 | 116.54 (10) |
S1—C1—C2—C3 | −67.96 (13) | C15—C16—C29—C24 | 175.17 (10) |
S1—C1—C2—C7 | 108.83 (11) | C15—C16—C29—C28 | −3.66 (17) |
S1—C15—C16—C17 | −63.16 (13) | C16—C17—C18—C19 | −177.73 (12) |
S1—C15—C16—C29 | 121.33 (10) | C16—C17—C22—C21 | 177.36 (11) |
S2—C8—C9—C10 | 109.50 (13) | C16—C17—C22—C23 | −0.39 (17) |
S2—C8—C9—C14 | −66.21 (15) | C17—C16—C29—C24 | −0.38 (16) |
S2—C15—C16—C17 | 64.29 (12) | C17—C16—C29—C28 | −179.21 (11) |
S2—C15—C16—C29 | −111.22 (10) | C17—C18—C19—C20 | 0.44 (19) |
C1—S1—C15—S2 | 153.75 (6) | C17—C22—C23—C24 | 0.29 (18) |
C1—S1—C15—C16 | −79.31 (9) | C18—C17—C22—C21 | −1.20 (17) |
C1—C2—C3—C4 | 175.75 (11) | C18—C17—C22—C23 | −178.95 (11) |
C1—C2—C7—C6 | −176.90 (11) | C18—C19—C20—C21 | −1.3 (2) |
C2—C3—C4—C5 | 1.1 (2) | C19—C20—C21—C22 | 0.8 (2) |
C3—C2—C7—C6 | −0.05 (18) | C20—C21—C22—C17 | 0.42 (19) |
C3—C4—C5—C6 | 0.0 (2) | C20—C21—C22—C23 | 178.16 (12) |
C4—C5—C6—C7 | −1.2 (2) | C21—C22—C23—C24 | −177.45 (11) |
C5—C6—C7—C2 | 1.19 (19) | C22—C17—C18—C19 | 0.77 (17) |
C7—C2—C3—C4 | −1.10 (19) | C22—C23—C24—C25 | 178.59 (11) |
C8—S2—C15—S1 | −73.63 (8) | C22—C23—C24—C29 | −0.23 (18) |
C8—S2—C15—C16 | 155.73 (9) | C23—C24—C25—C26 | −178.85 (12) |
C8—C9—C10—C11 | −174.81 (12) | C23—C24—C29—C16 | 0.27 (17) |
C8—C9—C14—C13 | 175.49 (13) | C23—C24—C29—C28 | 179.19 (11) |
C9—C10—C11—C12 | −0.7 (2) | C24—C25—C26—C27 | −0.2 (2) |
C10—C9—C14—C13 | −0.3 (2) | C25—C24—C29—C16 | −178.55 (11) |
C10—C11—C12—C13 | −0.3 (2) | C25—C24—C29—C28 | 0.37 (16) |
C11—C12—C13—C14 | 1.0 (2) | C25—C26—C27—C28 | 0.1 (2) |
C12—C13—C14—C9 | −0.8 (2) | C26—C27—C28—C29 | 0.2 (2) |
C14—C9—C10—C11 | 1.00 (19) | C27—C28—C29—C16 | 178.40 (12) |
C15—S1—C1—C2 | −169.19 (8) | C27—C28—C29—C24 | −0.46 (17) |
C15—S2—C8—C9 | −47.89 (12) | C29—C16—C17—C18 | 178.91 (11) |
C15—C16—C17—C18 | 3.46 (17) | C29—C16—C17—C22 | 0.44 (16) |
C15—C16—C17—C22 | −175.01 (10) | C29—C24—C25—C26 | −0.04 (19) |
Cg is the centroid of the C16/C17/C22–C24/C29 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···C16i | 0.951 (17) | 2.775 (17) | 3.7095 (17) | 167.6 (13) |
C21—H21···C17i | 0.951 (17) | 2.856 (17) | 3.7737 (18) | 162.6 (13) |
C21—H21···C29i | 0.951 (17) | 2.816 (17) | 3.6338 (17) | 144.7 (12) |
C21—H21···Cgi | 0.951 (17) | 2.519 (18) | 3.4116 (14) | 156.3 (13) |
C14—H14···C24ii | 0.976 (17) | 2.741 (18) | 3.5982 (19) | 146.9 (13) |
C1—H1B···C9iii | 0.972 (16) | 2.847 (16) | 3.8023 (17) | 168.0 (12) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, y+1, z; (iii) x, y−1, z. |
[Pd6(C7H7S)12]·C14H8O2 | Z = 1 |
Mr = 2324.83 | F(000) = 1164 |
Triclinic, P1 | Dx = 1.699 Mg m−3 |
a = 12.4037 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.2255 (6) Å | Cell parameters from 9790 reflections |
c = 14.7347 (7) Å | θ = 2.4–27.2° |
α = 109.842 (2)° | µ = 1.49 mm−1 |
β = 91.616 (2)° | T = 100 K |
γ = 91.191 (2)° | Block, yellow |
V = 2271.56 (19) Å3 | 0.33 × 0.24 × 0.18 mm |
Bruker D8 Venture diffractometer | 10078 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 9452 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.028 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.3°, θmin = 2.3° |
φ and ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −16→16 |
Tmin = 0.300, Tmax = 0.333 | l = −18→18 |
109169 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0198P)2 + 2.3315P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.003 |
10078 reflections | Δρmax = 1.20 e Å−3 |
532 parameters | Δρmin = −0.79 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.44100 (2) | 0.57757 (2) | 0.01264 (3) | ||
Pd2 | 0.67651 (2) | 0.61284 (2) | 0.01273 (4) | ||
Pd3 | 0.74009 (2) | 0.53617 (2) | 0.01294 (4) | ||
S1 | 0.27073 (4) | 0.62062 (3) | 0.01475 (8) | ||
S2 | 0.53960 (4) | 0.71742 (3) | 0.01514 (8) | ||
S3 | 0.61070 (4) | 0.53538 (3) | 0.01522 (9) | ||
S4 | 0.74917 (4) | 0.69054 (3) | 0.01469 (8) | ||
S5 | 0.79906 (4) | 0.49857 (3) | 0.01519 (9) | ||
S6 | 0.65044 (4) | 0.56887 (3) | 0.01522 (9) | ||
C1 | 0.28536 (15) | 0.71060 (13) | 0.0183 (4) | ||
H1A | 0.2914 | 0.6773 | 0.022* | ||
H1B | 0.3521 | 0.7508 | 0.022* | ||
C2 | 0.18968 (15) | 0.77377 (13) | 0.0183 (4) | ||
C3 | 0.18149 (16) | 0.84843 (14) | 0.0232 (4) | ||
H3 | 0.2364 | 0.8586 | 0.028* | ||
C4 | 0.09401 (19) | 0.90784 (15) | 0.0306 (5) | ||
H4 | 0.0897 | 0.9589 | 0.037* | ||
C5 | 0.01266 (18) | 0.89271 (17) | 0.0344 (5) | ||
H5 | −0.0477 | 0.9330 | 0.041* | ||
C6 | 0.01964 (17) | 0.81929 (17) | 0.0307 (5) | ||
H6 | −0.0359 | 0.8090 | 0.037* | ||
C7 | 0.10780 (16) | 0.75997 (15) | 0.0229 (4) | ||
H7 | 0.1121 | 0.7096 | 0.027* | ||
C8 | 0.57745 (16) | 0.77333 (14) | 0.0200 (4) | ||
H8A | 0.6094 | 0.7244 | 0.024* | ||
H8B | 0.5121 | 0.7966 | 0.024* | ||
C9 | 0.65716 (16) | 0.85634 (14) | 0.0204 (4) | ||
C10 | 0.76764 (18) | 0.84224 (17) | 0.0292 (5) | ||
H10 | 0.7929 | 0.7797 | 0.035* | ||
C11 | 0.8405 (2) | 0.9192 (2) | 0.0423 (6) | ||
H11 | 0.9157 | 0.9094 | 0.051* | ||
C12 | 0.8046 (2) | 1.0104 (2) | 0.0457 (7) | ||
H12 | 0.8550 | 1.0630 | 0.055* | ||
C13 | 0.6952 (2) | 1.02487 (17) | 0.0410 (6) | ||
H13 | 0.6705 | 1.0875 | 0.049* | ||
C14 | 0.6216 (2) | 0.94840 (15) | 0.0286 (5) | ||
H14 | 0.5465 | 0.9586 | 0.034* | ||
C15 | 0.62522 (16) | 0.40406 (13) | 0.0186 (4) | ||
H15A | 0.6840 | 0.3891 | 0.022* | ||
H15B | 0.5575 | 0.3726 | 0.022* | ||
C16 | 0.65046 (15) | 0.36623 (13) | 0.0173 (4) | ||
C17 | 0.74129 (16) | 0.31192 (14) | 0.0217 (4) | ||
H17 | 0.7869 | 0.2981 | 0.026* | ||
C18 | 0.76570 (19) | 0.27772 (15) | 0.0297 (5) | ||
H18 | 0.8279 | 0.2408 | 0.036* | ||
C19 | 0.6997 (2) | 0.29739 (15) | 0.0346 (6) | ||
H19 | 0.7169 | 0.2751 | 0.042* | ||
C20 | 0.6084 (2) | 0.34971 (15) | 0.0317 (5) | ||
H20 | 0.5623 | 0.3621 | 0.038* | ||
C21 | 0.58351 (18) | 0.38428 (14) | 0.0236 (4) | ||
H21 | 0.5207 | 0.4204 | 0.028* | ||
C22 | 0.65300 (15) | 0.77154 (13) | 0.0173 (4) | ||
H22A | 0.5908 | 0.7803 | 0.021* | ||
H22B | 0.6257 | 0.7433 | 0.021* | ||
C23 | 0.71036 (15) | 0.86724 (13) | 0.0170 (4) | ||
C24 | 0.76401 (17) | 0.88386 (15) | 0.0238 (4) | ||
H24 | 0.7644 | 0.8345 | 0.029* | ||
C25 | 0.81688 (19) | 0.97204 (17) | 0.0337 (5) | ||
H25 | 0.8541 | 0.9827 | 0.040* | ||
C26 | 0.8154 (2) | 1.04440 (16) | 0.0379 (6) | ||
H26 | 0.8503 | 1.1053 | 0.046* | ||
C27 | 0.7634 (2) | 1.02844 (16) | 0.0351 (5) | ||
H27 | 0.7632 | 1.0781 | 0.042* | ||
C28 | 0.71125 (17) | 0.93983 (15) | 0.0250 (4) | ||
H28 | 0.6760 | 0.9289 | 0.030* | ||
C29 | 0.93066 (15) | 0.55928 (15) | 0.0193 (4) | ||
H29A | 0.9376 | 0.6184 | 0.023* | ||
H29B | 0.9887 | 0.5161 | 0.023* | ||
C30 | 0.94446 (14) | 0.58605 (13) | 0.0161 (3) | ||
C31 | 0.99352 (16) | 0.67410 (14) | 0.0219 (4) | ||
H31 | 1.0152 | 0.7183 | 0.026* | ||
C32 | 1.01116 (18) | 0.69817 (15) | 0.0271 (4) | ||
H32 | 1.0455 | 0.7585 | 0.033* | ||
C33 | 0.97909 (17) | 0.63512 (16) | 0.0249 (4) | ||
H33 | 0.9920 | 0.6516 | 0.030* | ||
C34 | 0.92801 (17) | 0.54779 (15) | 0.0237 (4) | ||
H34 | 0.9045 | 0.5046 | 0.028* | ||
C35 | 0.91107 (16) | 0.52327 (14) | 0.0206 (4) | ||
H35 | 0.8763 | 0.4630 | 0.025* | ||
C36 | 0.74754 (16) | 0.55010 (14) | 0.0204 (4) | ||
H36A | 0.7085 | 0.5319 | 0.025* | ||
H36B | 0.7954 | 0.4971 | 0.025* | ||
C37 | 0.81360 (15) | 0.64207 (14) | 0.0185 (4) | ||
C38 | 0.78166 (18) | 0.70989 (15) | 0.0257 (4) | ||
H38 | 0.7179 | 0.6978 | 0.031* | ||
C39 | 0.8426 (2) | 0.79530 (16) | 0.0317 (5) | ||
H39 | 0.8201 | 0.8413 | 0.038* | ||
C40 | 0.93562 (19) | 0.81318 (16) | 0.0319 (5) | ||
H40 | 0.9777 | 0.8710 | 0.038* | ||
C41 | 0.96730 (17) | 0.74663 (16) | 0.0287 (5) | ||
H41 | 1.0310 | 0.7590 | 0.034* | ||
C42 | 0.90628 (16) | 0.66178 (15) | 0.0225 (4) | ||
H42 | 0.9281 | 0.6168 | 0.027* | ||
O1 | 0.40792 (18) | 0.82446 (14) | 0.0565 (5) | ||
C43 | 0.44804 (19) | 0.90584 (17) | 0.0368 (6) | ||
C44 | 0.50130 (18) | 0.92599 (16) | 0.0339 (5) | ||
C45 | 0.55287 (18) | 1.01771 (17) | 0.0345 (5) | ||
C46 | 0.6016 (2) | 1.03389 (19) | 0.0461 (7) | ||
H46 | 0.6360 | 1.0951 | 0.055* | ||
C47 | 0.6028 (2) | 0.9611 (2) | 0.0513 (7) | ||
H47 | 0.6372 | 0.9730 | 0.062* | ||
C48 | 0.5518 (2) | 0.8727 (2) | 0.0460 (6) | ||
H48 | 0.5495 | 0.8238 | 0.055* | ||
C49 | 0.50413 (19) | 0.85410 (16) | 0.0323 (5) | ||
H49 | 0.4733 | 0.7918 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.01360 (7) | 0.01177 (6) | 0.01328 (6) | 0.00124 (5) | 0.00019 (5) | 0.00521 (5) |
Pd2 | 0.01367 (7) | 0.01141 (6) | 0.01350 (6) | 0.00108 (5) | −0.00006 (5) | 0.00477 (5) |
Pd3 | 0.01424 (7) | 0.01067 (6) | 0.01404 (7) | 0.00100 (5) | 0.00019 (5) | 0.00438 (5) |
S1 | 0.0155 (2) | 0.0137 (2) | 0.0150 (2) | 0.00133 (16) | 0.00174 (16) | 0.00482 (16) |
S2 | 0.0157 (2) | 0.0155 (2) | 0.0145 (2) | 0.00187 (16) | 0.00014 (16) | 0.00552 (16) |
S3 | 0.0163 (2) | 0.0148 (2) | 0.0164 (2) | 0.00159 (16) | 0.00165 (16) | 0.00749 (16) |
S4 | 0.0163 (2) | 0.0140 (2) | 0.0142 (2) | 0.00107 (16) | −0.00068 (16) | 0.00557 (16) |
S5 | 0.0169 (2) | 0.01204 (19) | 0.0169 (2) | 0.00067 (16) | 0.00173 (16) | 0.00513 (16) |
S6 | 0.0175 (2) | 0.0136 (2) | 0.0157 (2) | 0.00024 (16) | −0.00150 (16) | 0.00665 (16) |
C1 | 0.0190 (9) | 0.0196 (9) | 0.0184 (9) | 0.0021 (7) | 0.0018 (7) | 0.0092 (7) |
C2 | 0.0168 (9) | 0.0238 (9) | 0.0170 (9) | 0.0006 (7) | −0.0003 (7) | 0.0106 (7) |
C3 | 0.0221 (10) | 0.0253 (10) | 0.0210 (10) | 0.0006 (8) | −0.0003 (8) | 0.0064 (8) |
C4 | 0.0321 (12) | 0.0398 (13) | 0.0195 (10) | 0.0128 (10) | 0.0042 (8) | 0.0085 (9) |
C5 | 0.0225 (11) | 0.0615 (16) | 0.0314 (12) | 0.0134 (10) | 0.0113 (9) | 0.0301 (12) |
C6 | 0.0178 (10) | 0.0461 (14) | 0.0401 (13) | −0.0043 (9) | −0.0012 (9) | 0.0306 (11) |
C7 | 0.0221 (10) | 0.0254 (10) | 0.0246 (10) | −0.0031 (8) | −0.0029 (8) | 0.0135 (8) |
C8 | 0.0243 (10) | 0.0144 (9) | 0.0191 (9) | 0.0036 (7) | −0.0010 (7) | 0.0031 (7) |
C9 | 0.0262 (10) | 0.0123 (8) | 0.0198 (9) | 0.0027 (7) | −0.0018 (8) | 0.0017 (7) |
C10 | 0.0268 (11) | 0.0276 (11) | 0.0319 (11) | −0.0027 (9) | −0.0033 (9) | 0.0089 (9) |
C11 | 0.0315 (13) | 0.0372 (13) | 0.0557 (16) | −0.0077 (10) | −0.0188 (12) | 0.0148 (12) |
C12 | 0.0607 (18) | 0.0309 (13) | 0.0402 (14) | −0.0060 (12) | −0.0312 (13) | 0.0081 (11) |
C13 | 0.0710 (19) | 0.0274 (12) | 0.0195 (11) | 0.0039 (12) | −0.0085 (11) | 0.0020 (9) |
C14 | 0.0393 (12) | 0.0232 (10) | 0.0203 (10) | 0.0076 (9) | 0.0028 (9) | 0.0029 (8) |
C15 | 0.0225 (9) | 0.0179 (9) | 0.0170 (9) | 0.0036 (7) | 0.0036 (7) | 0.0076 (7) |
C16 | 0.0202 (9) | 0.0180 (9) | 0.0146 (8) | 0.0011 (7) | −0.0029 (7) | 0.0067 (7) |
C17 | 0.0230 (10) | 0.0251 (10) | 0.0180 (9) | 0.0002 (8) | −0.0010 (7) | 0.0090 (8) |
C18 | 0.0390 (12) | 0.0334 (12) | 0.0173 (9) | −0.0142 (10) | −0.0016 (9) | 0.0104 (9) |
C19 | 0.0666 (17) | 0.0205 (10) | 0.0180 (10) | −0.0128 (10) | −0.0086 (10) | 0.0099 (8) |
C20 | 0.0575 (15) | 0.0172 (10) | 0.0192 (10) | 0.0096 (10) | −0.0094 (10) | 0.0051 (8) |
C21 | 0.0314 (11) | 0.0207 (10) | 0.0183 (9) | 0.0063 (8) | −0.0022 (8) | 0.0062 (8) |
C22 | 0.0169 (9) | 0.0187 (9) | 0.0179 (9) | 0.0002 (7) | 0.0000 (7) | 0.0082 (7) |
C23 | 0.0165 (9) | 0.0203 (9) | 0.0156 (8) | −0.0013 (7) | 0.0032 (7) | 0.0077 (7) |
C24 | 0.0254 (10) | 0.0256 (10) | 0.0224 (10) | 0.0019 (8) | 0.0007 (8) | 0.0108 (8) |
C25 | 0.0325 (12) | 0.0444 (14) | 0.0322 (12) | −0.0009 (10) | −0.0055 (9) | 0.0243 (11) |
C26 | 0.0393 (13) | 0.0556 (16) | 0.0218 (11) | −0.0131 (12) | −0.0089 (9) | 0.0186 (11) |
C27 | 0.0419 (13) | 0.0369 (13) | 0.0187 (10) | −0.0124 (10) | 0.0015 (9) | 0.0000 (9) |
C28 | 0.0284 (11) | 0.0220 (10) | 0.0223 (10) | −0.0013 (8) | 0.0041 (8) | 0.0042 (8) |
C29 | 0.0146 (9) | 0.0156 (9) | 0.0286 (10) | 0.0010 (7) | 0.0001 (7) | 0.0089 (8) |
C30 | 0.0127 (8) | 0.0150 (8) | 0.0221 (9) | 0.0014 (7) | 0.0036 (7) | 0.0079 (7) |
C31 | 0.0222 (10) | 0.0226 (10) | 0.0234 (10) | −0.0014 (8) | −0.0026 (8) | 0.0113 (8) |
C32 | 0.0318 (11) | 0.0228 (10) | 0.0233 (10) | −0.0062 (8) | −0.0042 (8) | 0.0042 (8) |
C33 | 0.0271 (10) | 0.0141 (9) | 0.0324 (11) | −0.0021 (8) | 0.0020 (8) | 0.0066 (8) |
C34 | 0.0259 (10) | 0.0201 (10) | 0.0294 (10) | −0.0001 (8) | −0.0004 (8) | 0.0141 (8) |
C35 | 0.0231 (10) | 0.0181 (9) | 0.0212 (9) | −0.0033 (7) | −0.0032 (7) | 0.0081 (8) |
C36 | 0.0252 (10) | 0.0139 (9) | 0.0214 (9) | 0.0035 (7) | −0.0040 (8) | 0.0051 (7) |
C37 | 0.0203 (9) | 0.0158 (9) | 0.0197 (9) | 0.0054 (7) | −0.0010 (7) | 0.0062 (7) |
C38 | 0.0268 (11) | 0.0240 (10) | 0.0296 (11) | 0.0023 (8) | −0.0008 (8) | 0.0136 (9) |
C39 | 0.0426 (13) | 0.0329 (12) | 0.0248 (11) | 0.0110 (10) | 0.0012 (9) | 0.0161 (9) |
C40 | 0.0358 (12) | 0.0333 (12) | 0.0226 (10) | 0.0122 (10) | −0.0092 (9) | 0.0046 (9) |
C41 | 0.0213 (10) | 0.0270 (11) | 0.0325 (11) | 0.0030 (8) | −0.0057 (8) | 0.0036 (9) |
C42 | 0.0207 (10) | 0.0217 (10) | 0.0250 (10) | 0.0042 (8) | 0.0008 (8) | 0.0075 (8) |
O1 | 0.0614 (13) | 0.0745 (15) | 0.0344 (10) | −0.0014 (11) | −0.0080 (9) | 0.0205 (10) |
C43 | 0.0286 (12) | 0.0586 (16) | 0.0255 (11) | −0.0101 (11) | −0.0076 (9) | 0.0186 (11) |
C44 | 0.0256 (11) | 0.0528 (15) | 0.0261 (11) | −0.0107 (10) | −0.0017 (9) | 0.0181 (10) |
C45 | 0.0242 (11) | 0.0483 (14) | 0.0310 (12) | −0.0096 (10) | 0.0036 (9) | 0.0140 (11) |
C46 | 0.0350 (13) | 0.080 (2) | 0.0313 (13) | −0.0133 (13) | −0.0103 (10) | 0.0308 (14) |
C47 | 0.0313 (14) | 0.088 (2) | 0.0444 (16) | 0.0005 (14) | 0.0021 (11) | 0.0351 (16) |
C48 | 0.0423 (15) | 0.0525 (16) | 0.0411 (14) | −0.0083 (12) | 0.0014 (12) | 0.0136 (13) |
C49 | 0.0310 (12) | 0.0455 (14) | 0.0190 (10) | −0.0032 (10) | −0.0067 (9) | 0.0099 (9) |
Pd1—Pd2 | 3.1609 (2) | C19—H19 | 0.9500 |
Pd1—Pd3i | 3.1139 (2) | C19—C20 | 1.381 (4) |
Pd1—S1 | 2.3231 (5) | C20—H20 | 0.9500 |
Pd1—S2 | 2.3374 (5) | C20—C21 | 1.384 (3) |
Pd1—S3 | 2.3281 (5) | C21—H21 | 0.9500 |
Pd1—S6i | 2.3264 (5) | C22—H22A | 0.9900 |
Pd2—Pd3 | 3.0892 (2) | C22—H22B | 0.9900 |
Pd2—S2 | 2.3342 (5) | C22—C23 | 1.504 (2) |
Pd2—S3 | 2.3154 (4) | C23—C24 | 1.394 (3) |
Pd2—S4 | 2.3250 (4) | C23—C28 | 1.387 (3) |
Pd2—S5 | 2.3277 (5) | C24—H24 | 0.9500 |
Pd3—Pd1i | 3.1139 (2) | C24—C25 | 1.387 (3) |
Pd3—S1i | 2.3367 (5) | C25—H25 | 0.9500 |
Pd3—S4 | 2.3230 (5) | C25—C26 | 1.382 (4) |
Pd3—S5 | 2.3197 (4) | C26—H26 | 0.9500 |
Pd3—S6 | 2.3264 (5) | C26—C27 | 1.380 (4) |
S1—Pd3i | 2.3367 (5) | C27—H27 | 0.9500 |
S1—C1 | 1.8402 (18) | C27—C28 | 1.390 (3) |
S2—C8 | 1.8440 (19) | C28—H28 | 0.9500 |
S3—C15 | 1.8378 (19) | C29—H29A | 0.9900 |
S4—C22 | 1.8411 (19) | C29—H29B | 0.9900 |
S5—C29 | 1.8365 (19) | C29—C30 | 1.507 (2) |
S6—Pd1i | 2.3264 (5) | C30—C31 | 1.385 (3) |
S6—C36 | 1.8434 (19) | C30—C35 | 1.396 (3) |
C1—H1A | 0.9900 | C31—H31 | 0.9500 |
C1—H1B | 0.9900 | C31—C32 | 1.391 (3) |
C1—C2 | 1.501 (3) | C32—H32 | 0.9500 |
C2—C3 | 1.398 (3) | C32—C33 | 1.383 (3) |
C2—C7 | 1.392 (3) | C33—H33 | 0.9500 |
C3—H3 | 0.9500 | C33—C34 | 1.384 (3) |
C3—C4 | 1.386 (3) | C34—H34 | 0.9500 |
C4—H4 | 0.9500 | C34—C35 | 1.385 (3) |
C4—C5 | 1.390 (4) | C35—H35 | 0.9500 |
C5—H5 | 0.9500 | C36—H36A | 0.9900 |
C5—C6 | 1.376 (4) | C36—H36B | 0.9900 |
C6—H6 | 0.9500 | C36—C37 | 1.505 (3) |
C6—C7 | 1.392 (3) | C37—C38 | 1.393 (3) |
C7—H7 | 0.9500 | C37—C42 | 1.389 (3) |
C8—H8A | 0.9900 | C38—H38 | 0.9500 |
C8—H8B | 0.9900 | C38—C39 | 1.394 (3) |
C8—C9 | 1.501 (3) | C39—H39 | 0.9500 |
C9—C10 | 1.394 (3) | C39—C40 | 1.382 (4) |
C9—C14 | 1.396 (3) | C40—H40 | 0.9500 |
C10—H10 | 0.9500 | C40—C41 | 1.383 (3) |
C10—C11 | 1.384 (3) | C41—H41 | 0.9500 |
C11—H11 | 0.9500 | C41—C42 | 1.389 (3) |
C11—C12 | 1.384 (4) | C42—H42 | 0.9500 |
C12—H12 | 0.9500 | O1—C43 | 1.240 (3) |
C12—C13 | 1.382 (4) | C43—C44 | 1.470 (4) |
C13—H13 | 0.9500 | C43—C45ii | 1.473 (4) |
C13—C14 | 1.384 (3) | C44—C45 | 1.425 (3) |
C14—H14 | 0.9500 | C44—C49 | 1.383 (3) |
C15—H15A | 0.9900 | C45—C43ii | 1.473 (4) |
C15—H15B | 0.9900 | C45—C46 | 1.354 (4) |
C15—C16 | 1.501 (2) | C46—H46 | 0.9500 |
C16—C17 | 1.393 (3) | C46—C47 | 1.436 (5) |
C16—C21 | 1.394 (3) | C47—H47 | 0.9500 |
C17—H17 | 0.9500 | C47—C48 | 1.387 (4) |
C17—C18 | 1.391 (3) | C48—H48 | 0.9500 |
C18—H18 | 0.9500 | C48—C49 | 1.389 (4) |
C18—C19 | 1.383 (4) | C49—H49 | 0.9500 |
Pd3i—Pd1—Pd2 | 122.696 (6) | C16—C15—S3 | 109.37 (13) |
S1—Pd1—Pd2 | 133.948 (12) | C16—C15—H15A | 109.8 |
S1—Pd1—Pd3i | 48.255 (11) | C16—C15—H15B | 109.8 |
S1—Pd1—S2 | 99.152 (16) | C17—C16—C15 | 120.28 (17) |
S1—Pd1—S3 | 178.778 (16) | C17—C16—C21 | 118.90 (18) |
S1—Pd1—S6i | 81.998 (16) | C21—C16—C15 | 120.82 (18) |
S2—Pd1—Pd2 | 47.378 (11) | C16—C17—H17 | 119.8 |
S2—Pd1—Pd3i | 129.132 (12) | C18—C17—C16 | 120.5 (2) |
S3—Pd1—Pd2 | 46.933 (11) | C18—C17—H17 | 119.8 |
S3—Pd1—Pd3i | 132.454 (13) | C17—C18—H18 | 119.9 |
S3—Pd1—S2 | 81.033 (16) | C19—C18—C17 | 120.1 (2) |
S6i—Pd1—Pd2 | 128.215 (13) | C19—C18—H18 | 119.9 |
S6i—Pd1—Pd3i | 47.991 (11) | C18—C19—H19 | 120.2 |
S6i—Pd1—S2 | 174.139 (16) | C20—C19—C18 | 119.59 (19) |
S6i—Pd1—S3 | 97.940 (16) | C20—C19—H19 | 120.2 |
Pd3—Pd2—Pd1 | 121.425 (6) | C19—C20—H20 | 119.6 |
S2—Pd2—Pd1 | 47.463 (11) | C19—C20—C21 | 120.8 (2) |
S2—Pd2—Pd3 | 128.222 (12) | C21—C20—H20 | 119.6 |
S3—Pd2—Pd1 | 47.270 (12) | C16—C21—H21 | 119.9 |
S3—Pd2—Pd3 | 131.984 (12) | C20—C21—C16 | 120.1 (2) |
S3—Pd2—S2 | 81.367 (16) | C20—C21—H21 | 119.9 |
S3—Pd2—S4 | 177.813 (17) | S4—C22—H22A | 110.0 |
S3—Pd2—S5 | 98.089 (16) | S4—C22—H22B | 110.0 |
S4—Pd2—Pd1 | 134.849 (12) | H22A—C22—H22B | 108.4 |
S4—Pd2—Pd3 | 48.318 (11) | C23—C22—S4 | 108.39 (12) |
S4—Pd2—S2 | 99.980 (16) | C23—C22—H22A | 110.0 |
S4—Pd2—S5 | 80.756 (16) | C23—C22—H22B | 110.0 |
S5—Pd2—Pd1 | 128.271 (13) | C24—C23—C22 | 120.23 (17) |
S5—Pd2—Pd3 | 48.229 (11) | C28—C23—C22 | 120.67 (17) |
S5—Pd2—S2 | 173.880 (17) | C28—C23—C24 | 119.10 (18) |
Pd2—Pd3—Pd1i | 115.879 (6) | C23—C24—H24 | 119.8 |
S1i—Pd3—Pd1i | 47.884 (11) | C25—C24—C23 | 120.4 (2) |
S1i—Pd3—Pd2 | 130.174 (12) | C25—C24—H24 | 119.8 |
S4—Pd3—Pd1i | 132.157 (12) | C24—C25—H25 | 120.0 |
S4—Pd3—Pd2 | 48.373 (11) | C26—C25—C24 | 119.9 (2) |
S4—Pd3—S1i | 178.547 (16) | C26—C25—H25 | 120.0 |
S4—Pd3—S6 | 99.246 (16) | C25—C26—H26 | 119.9 |
S5—Pd3—Pd1i | 125.043 (13) | C27—C26—C25 | 120.1 (2) |
S5—Pd3—Pd2 | 48.449 (12) | C27—C26—H26 | 119.9 |
S5—Pd3—S1i | 97.903 (16) | C26—C27—H27 | 120.0 |
S5—Pd3—S4 | 80.964 (16) | C26—C27—C28 | 120.1 (2) |
S5—Pd3—S6 | 169.831 (17) | C28—C27—H27 | 120.0 |
S6—Pd3—Pd1i | 47.990 (11) | C23—C28—C27 | 120.3 (2) |
S6—Pd3—Pd2 | 124.764 (13) | C23—C28—H28 | 119.8 |
S6—Pd3—S1i | 81.707 (16) | C27—C28—H28 | 119.8 |
Pd1—S1—Pd3i | 83.862 (15) | S5—C29—H29A | 109.2 |
C1—S1—Pd1 | 109.07 (6) | S5—C29—H29B | 109.2 |
C1—S1—Pd3i | 111.18 (6) | H29A—C29—H29B | 107.9 |
Pd2—S2—Pd1 | 85.159 (15) | C30—C29—S5 | 111.89 (13) |
C8—S2—Pd1 | 103.40 (6) | C30—C29—H29A | 109.2 |
C8—S2—Pd2 | 106.26 (7) | C30—C29—H29B | 109.2 |
Pd2—S3—Pd1 | 85.797 (15) | C31—C30—C29 | 119.56 (17) |
C15—S3—Pd1 | 110.88 (7) | C31—C30—C35 | 118.78 (17) |
C15—S3—Pd2 | 111.96 (6) | C35—C30—C29 | 121.64 (17) |
Pd3—S4—Pd2 | 83.308 (15) | C30—C31—H31 | 119.8 |
C22—S4—Pd2 | 111.99 (6) | C30—C31—C32 | 120.31 (18) |
C22—S4—Pd3 | 112.72 (6) | C32—C31—H31 | 119.8 |
Pd3—S5—Pd2 | 83.321 (15) | C31—C32—H32 | 119.7 |
C29—S5—Pd2 | 103.36 (6) | C33—C32—C31 | 120.59 (19) |
C29—S5—Pd3 | 109.93 (6) | C33—C32—H32 | 119.7 |
Pd1i—S6—Pd3 | 84.020 (15) | C32—C33—H33 | 120.3 |
C36—S6—Pd1i | 108.12 (6) | C32—C33—C34 | 119.45 (18) |
C36—S6—Pd3 | 106.45 (7) | C34—C33—H33 | 120.3 |
S1—C1—H1A | 109.6 | C33—C34—H34 | 119.9 |
S1—C1—H1B | 109.6 | C33—C34—C35 | 120.10 (18) |
H1A—C1—H1B | 108.1 | C35—C34—H34 | 119.9 |
C2—C1—S1 | 110.14 (13) | C30—C35—H35 | 119.6 |
C2—C1—H1A | 109.6 | C34—C35—C30 | 120.75 (18) |
C2—C1—H1B | 109.6 | C34—C35—H35 | 119.6 |
C3—C2—C1 | 120.30 (17) | S6—C36—H36A | 109.9 |
C7—C2—C1 | 121.12 (18) | S6—C36—H36B | 109.9 |
C7—C2—C3 | 118.57 (18) | H36A—C36—H36B | 108.3 |
C2—C3—H3 | 119.7 | C37—C36—S6 | 108.93 (13) |
C4—C3—C2 | 120.7 (2) | C37—C36—H36A | 109.9 |
C4—C3—H3 | 119.7 | C37—C36—H36B | 109.9 |
C3—C4—H4 | 120.0 | C38—C37—C36 | 120.57 (18) |
C3—C4—C5 | 120.0 (2) | C42—C37—C36 | 120.61 (17) |
C5—C4—H4 | 120.0 | C42—C37—C38 | 118.81 (18) |
C4—C5—H5 | 120.1 | C37—C38—H38 | 119.8 |
C6—C5—C4 | 119.9 (2) | C37—C38—C39 | 120.4 (2) |
C6—C5—H5 | 120.1 | C39—C38—H38 | 119.8 |
C5—C6—H6 | 119.9 | C38—C39—H39 | 119.9 |
C5—C6—C7 | 120.3 (2) | C40—C39—C38 | 120.1 (2) |
C7—C6—H6 | 119.9 | C40—C39—H39 | 119.9 |
C2—C7—C6 | 120.6 (2) | C39—C40—H40 | 120.1 |
C2—C7—H7 | 119.7 | C39—C40—C41 | 119.8 (2) |
C6—C7—H7 | 119.7 | C41—C40—H40 | 120.1 |
S2—C8—H8A | 109.5 | C40—C41—H41 | 119.9 |
S2—C8—H8B | 109.5 | C40—C41—C42 | 120.2 (2) |
H8A—C8—H8B | 108.0 | C42—C41—H41 | 119.9 |
C9—C8—S2 | 110.92 (13) | C37—C42—H42 | 119.7 |
C9—C8—H8A | 109.5 | C41—C42—C37 | 120.6 (2) |
C9—C8—H8B | 109.5 | C41—C42—H42 | 119.7 |
C10—C9—C8 | 120.45 (18) | O1—C43—C44 | 120.5 (3) |
C10—C9—C14 | 119.15 (19) | O1—C43—C45ii | 120.3 (3) |
C14—C9—C8 | 120.40 (19) | C44—C43—C45ii | 119.2 (2) |
C9—C10—H10 | 120.0 | C45—C44—C43 | 120.8 (2) |
C11—C10—C9 | 120.1 (2) | C49—C44—C43 | 119.5 (2) |
C11—C10—H10 | 120.0 | C49—C44—C45 | 119.6 (2) |
C10—C11—H11 | 119.8 | C44—C45—C43ii | 120.0 (2) |
C10—C11—C12 | 120.5 (3) | C46—C45—C43ii | 120.6 (2) |
C12—C11—H11 | 119.8 | C46—C45—C44 | 119.4 (2) |
C11—C12—H12 | 120.1 | C45—C46—H46 | 119.1 |
C13—C12—C11 | 119.8 (2) | C45—C46—C47 | 121.9 (2) |
C13—C12—H12 | 120.1 | C47—C46—H46 | 119.1 |
C12—C13—H13 | 119.9 | C46—C47—H47 | 121.4 |
C12—C13—C14 | 120.2 (2) | C48—C47—C46 | 117.2 (3) |
C14—C13—H13 | 119.9 | C48—C47—H47 | 121.4 |
C9—C14—H14 | 119.9 | C47—C48—H48 | 119.2 |
C13—C14—C9 | 120.3 (2) | C47—C48—C49 | 121.6 (3) |
C13—C14—H14 | 119.9 | C49—C48—H48 | 119.2 |
S3—C15—H15A | 109.8 | C44—C49—C48 | 120.2 (2) |
S3—C15—H15B | 109.8 | C44—C49—H49 | 119.9 |
H15A—C15—H15B | 108.2 | C48—C49—H49 | 119.9 |
Pd1—S1—C1—C2 | 152.50 (12) | C17—C18—C19—C20 | −1.1 (3) |
Pd1—S2—C8—C9 | −170.66 (13) | C18—C19—C20—C21 | 1.3 (3) |
Pd1—S3—C15—C16 | 121.75 (12) | C19—C20—C21—C16 | −0.2 (3) |
Pd1i—S6—C36—C37 | 175.62 (12) | C21—C16—C17—C18 | 1.1 (3) |
Pd2—S2—C8—C9 | −81.85 (14) | C22—C23—C24—C25 | −179.93 (19) |
Pd2—S3—C15—C16 | −144.29 (11) | C22—C23—C28—C27 | 179.26 (19) |
Pd2—S4—C22—C23 | −132.34 (11) | C23—C24—C25—C26 | 0.8 (3) |
Pd2—S5—C29—C30 | −60.03 (14) | C24—C23—C28—C27 | −1.1 (3) |
Pd3i—S1—C1—C2 | −116.78 (12) | C24—C25—C26—C27 | −1.4 (4) |
Pd3—S4—C22—C23 | 135.78 (11) | C25—C26—C27—C28 | 0.7 (4) |
Pd3—S5—C29—C30 | −147.68 (12) | C26—C27—C28—C23 | 0.5 (3) |
Pd3—S6—C36—C37 | 86.64 (13) | C28—C23—C24—C25 | 0.5 (3) |
S1—C1—C2—C3 | −78.1 (2) | C29—C30—C31—C32 | 177.18 (19) |
S1—C1—C2—C7 | 102.25 (18) | C29—C30—C35—C34 | −177.65 (18) |
S2—C8—C9—C10 | 93.6 (2) | C30—C31—C32—C33 | 0.6 (3) |
S2—C8—C9—C14 | −85.6 (2) | C31—C30—C35—C34 | 0.9 (3) |
S3—C15—C16—C17 | 125.44 (16) | C31—C32—C33—C34 | 0.7 (3) |
S3—C15—C16—C21 | −54.9 (2) | C32—C33—C34—C35 | −1.2 (3) |
S4—C22—C23—C24 | −89.47 (19) | C33—C34—C35—C30 | 0.4 (3) |
S4—C22—C23—C28 | 90.15 (19) | C35—C30—C31—C32 | −1.4 (3) |
S5—C29—C30—C31 | 139.77 (16) | C36—C37—C38—C39 | −179.55 (19) |
S5—C29—C30—C35 | −41.7 (2) | C36—C37—C42—C41 | −179.97 (18) |
S6—C36—C37—C38 | 92.23 (19) | C37—C38—C39—C40 | −0.2 (3) |
S6—C36—C37—C42 | −86.4 (2) | C38—C37—C42—C41 | 1.3 (3) |
C1—C2—C3—C4 | −179.22 (18) | C38—C39—C40—C41 | 0.9 (3) |
C1—C2—C7—C6 | 179.76 (18) | C39—C40—C41—C42 | −0.4 (3) |
C2—C3—C4—C5 | −0.8 (3) | C40—C41—C42—C37 | −0.7 (3) |
C3—C2—C7—C6 | 0.1 (3) | C42—C37—C38—C39 | −0.9 (3) |
C3—C4—C5—C6 | 0.6 (3) | O1—C43—C44—C45 | 176.5 (2) |
C4—C5—C6—C7 | −0.1 (3) | O1—C43—C44—C49 | −1.6 (4) |
C5—C6—C7—C2 | −0.3 (3) | C43—C44—C45—C43ii | 0.8 (4) |
C7—C2—C3—C4 | 0.5 (3) | C43—C44—C45—C46 | −179.7 (2) |
C8—C9—C10—C11 | 179.8 (2) | C43—C44—C49—C48 | −178.4 (2) |
C8—C9—C14—C13 | −179.77 (19) | C43ii—C45—C46—C47 | 179.3 (2) |
C9—C10—C11—C12 | 0.5 (4) | C44—C45—C46—C47 | −0.1 (4) |
C10—C9—C14—C13 | 1.0 (3) | C45ii—C43—C44—C45 | −0.8 (4) |
C10—C11—C12—C13 | 0.0 (4) | C45ii—C43—C44—C49 | −178.9 (2) |
C11—C12—C13—C14 | 0.0 (4) | C45—C44—C49—C48 | 3.5 (4) |
C12—C13—C14—C9 | −0.6 (3) | C45—C46—C47—C48 | 0.0 (4) |
C14—C9—C10—C11 | −1.0 (3) | C46—C47—C48—C49 | 1.8 (4) |
C15—C16—C17—C18 | −179.22 (18) | C47—C48—C49—C44 | −3.6 (4) |
C15—C16—C21—C20 | 179.37 (18) | C49—C44—C45—C43ii | 178.9 (2) |
C16—C17—C18—C19 | −0.1 (3) | C49—C44—C45—C46 | −1.7 (3) |
C17—C16—C21—C20 | −0.9 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2. |
Footnotes
‡Current address: Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, MP, India.
Acknowledgements
The authors thank Stéphanie Boullanger for recording the IR and NMR spectra.
Funding information
We are grateful to the region of Franche-Comté for funding a postdoctoral fellowship for A. Raghuvanshi (grant No. RECH-MOB15–000017).
References
Ananikov, V. P., Orlov, N. V., Zalesskiy, S. S., Beletskaya, I. P., Khrustalev, V. N., Morokuma, K. & Musaev, D. G. (2012). J. Am. Chem. Soc. 134, 6637–6649. CSD CrossRef CAS PubMed Google Scholar
Awaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, m1586–m1587. CSD CrossRef IUCr Journals Google Scholar
Awaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964–2974. CSD CrossRef PubMed CAS Google Scholar
Binkowska, I., Ratajczak–Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54–58. Web of Science CSD CrossRef CAS Google Scholar
Blake, A. J., Holder, A. J., Roberts, Y. V. & Schröder, M. (1988). Acta Cryst. C44, 360–361. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, R., Su, W., Hong, M., Zhang, W., Lu, J. & Wong, W. (1998). Chem. Commun. pp. 2083–2084. CSD CrossRef Google Scholar
Chen, J., Pan, Y., Wang, Z. & Zhao, P. (2017). Dalton Trans. 46, 12964–12970. CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fowelin, C., Schüpbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. pp. 1013–1017. CSD CrossRef Google Scholar
Fu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308–315. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gao, X. & Chen, W. (2017). Chem. Commun. 53, 9733–9736. CrossRef CAS Google Scholar
Gopalakrishnan, R., Jacob, J. P., Moideen, S. F. T., Lalu, L. M., Unnikrishnan, P. A. & Prathapan, S. (2015). Arkivoc, 7, 316–329. CrossRef Google Scholar
Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higgins, J. D. & Suggs, J. W. (1988). Inorg. Chim. Acta, 145, 247–252. CSD CrossRef CAS Google Scholar
Hu, T.-L., Li, J.-R., Xie, Y.-B. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 648–655. CSD CrossRef CAS Google Scholar
Hu, X.-L., Wang, K., Li, X., Pan, Q.-Q. & Su, Z.-M. (2020). New J. Chem. 44, 12496–12502. CSD CrossRef CAS Google Scholar
Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41. Web of Science CSD CrossRef IUCr Journals Google Scholar
Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465. Web of Science CSD CrossRef CAS Google Scholar
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387. Web of Science CSD CrossRef CAS Google Scholar
Kunchur, N. R. (1971). Acta Cryst. B27, 2292. CrossRef IUCr Journals Google Scholar
Lee, S. G., Choi, K.-Y., Kim, Y.-J., Park, S. & Lee, S. W. (2015). Polyhedron, 85, 880–887. CSD CrossRef CAS Google Scholar
Lewis, M., Carrell, H. L., Glusker, J. P. & Sparks, R. A. (1976). Acta Cryst. B32, 2040–2044. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Madhu, S., Josimuddin, S. & Ravikanth, M. (2014). New J. Chem. 38, 3770–3776. CrossRef CAS Google Scholar
Mahmudov, K. T., Hasanov, X. I., Maharramov, A. M., Azizova, A. N., Ragimov, K. Q., Askerov, R. K., Kopylovich, M. N., Ma, Z. & Pombeiro, A. J. L. (2013). Inorg. Chem. Commun. 29, 37–39. CSD CrossRef CAS Google Scholar
Martin, H. J., Pfeiffer, C. R., Davies, S. E., Davis, A. L., Lewis, W. & Champness, N. R. (2018). ACS Omega, 3, 8769–8776. CSD CrossRef CAS PubMed Google Scholar
Mohanty, A., Singh, U. P., Butcher, R. J., Das, N. & Roy, P. (2020). CrystEngComm, 22, 4468–4477. CSD CrossRef CAS Google Scholar
Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185–189. CrossRef CAS Web of Science Google Scholar
Olah, G. A., Narang, S. C. & Salem, G. F. (1980). Synthesis, pp. 659–660. Google Scholar
Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828. Web of Science CSD CrossRef Google Scholar
Pickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409–412. CrossRef Google Scholar
Quah, H. S., Ng, L. T., Donnadieu, B., Tan, G. K. & Vittal, J. J. (2016). Inorg. Chem. 55, 10851–10854. CSD CrossRef CAS PubMed Google Scholar
Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513. Web of Science CSD CrossRef CAS Google Scholar
Raghuvanshi, A., Knauer, L., Viau, L., Knorr, M. & Strohmann, C. (2020). Acta Cryst. E76, 484–487. CSD CrossRef IUCr Journals Google Scholar
Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rao, G. K., Kumar, A., Saleem, F., Singh, M. P., Kumar, S., Kumar, B., Mukherjee, G. & Singh, A. K. (2015). Dalton Trans. 44, 6600–6612. PubMed Google Scholar
Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. M. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708. CSD CrossRef CAS PubMed Google Scholar
Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schwarze, T., Müller, H., Dosche, C., Klamroth, T., Mickler, W., Kelling, A., Löhmannsröben, H.-G., Saalfrank, P. & Holdt, H.-J. (2007). Angew. Chem. Int. Ed. 46, 1671–1674. CSD CrossRef CAS Google Scholar
Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85–91. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shichibu, Y., Yoshida, K. & Konishi, K. (2016). Inorg. Chem. 55, 9147–9149. CSD CrossRef CAS PubMed Google Scholar
Slouf, M. (2002). J. Mol. Struct. 611, 139–146. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal'kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136–141. CrossRef CAS Google Scholar
Stash, A. I., Perepelkova, T. I., Noskov, Yu. G., Buslaeva, T. M. & Romm, I. P. (2001). Russ. J. Coord. Chem. 27, 585–590. CrossRef CAS Google Scholar
Su, W., Cao, R., Hong, M., Zhou, Z., Xie, F., Liu, H. & Mak, T. C. W. (1997a). Polyhedron, 16, 2531–2535. CSD CrossRef CAS Google Scholar
Su, W., Hong, M., Cao, R. & Liu, H. (1997b). Acta Cryst. C53, 66–67. CSD CrossRef CAS IUCr Journals Google Scholar
Takemura, T., Kozawa, K., Uchida, T. & Mori, N. (1984). Chem. Lett. 13, 1839–1842. CSD CrossRef Google Scholar
Thomas, P. J., Lavanya, A., Sabareesh, V. & Kulkarni, G. U. (2001). J. Chem. Sci. 113, 611–619. CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Wang, X., Gao, W.-Y., Luan, J., Wojtas, L. & Ma, S. (2016). Chem. Commun. 52, 1971–1974. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Z., Klabunde, K. J. & Sorensen, C. M. (2007). J. Phys. Chem. C, 111, 18143–18147. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.