research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, inter­action energy, and DFT studies of cholesteryl hepta­noate

crossmark logo

aDepartment of Metallurgical and Materials Engineering, Faculty of Technology, Selçuk University, 42130 Selçuklu, Konya, Turkey, bDepartment of Chemical Engineering, Faculty of Engineering & Architecture, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: akduran@gmail.com

Edited by J. T. Mague, Tulane University, USA (Received 2 February 2021; accepted 1 June 2021; online 4 June 2021)

The title compound, C34H58O2, consists of cholesteryl and hepta­noate units, in which the six-membered rings adopt chair and twisted-boat conformations while the five-membered ring adopts an envelope conformation. In the crystal, the mol­ecules are aligned along the a-axis direction and stacked along the b-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (92.4%) and H⋯O/O⋯H (6.1%) inter­actions. van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–31 G(d) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap, and the mol­ecular electrostatic potential (MEP) of the compound was investigated.

1. Chemical context

Cholesterol is an important constituent of cell membranes with a rigid ring system and a short branched hydro­carbon tail. It modulates membrane fluidity over the range of physiological temperatures and also reduces the permeability of the plasma membrane to protons and sodium ions. In the liver, it is converted to bile, which is then stored in the gallbladder. It functions in intra­cellular transport, cell signaling and nerve conduction within the cell membrane and is an important precursor in several biochemical pathways within the cells, in the synthesis of vitamin D and steroid hormones, including the adrenal gland hormones cortisol and aldosterone as well as sex hormones progesterone, oestrogens, and testosterone, and their derivatives. Cholesteryl esters are formed between the carboxyl­ate group of a fatty acid and the hydroxyl group of cholesterol and have a lower solubility in water than cholesterol. These esters are also important in many biological mechanisms and numerous experimental investigations have been performed on cholesterol derivatives (Faiman et al., 1976[Faiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3-7.]; Goheen et al., 1977[Goheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253-262.]; Bush et al., 1980[Bush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101-111.]; Di Vizio et al., 2008[Di Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633-639.]; Ikonen, 2008[Ikonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125-138.]). Thus, due to the importance of cholesterol and its esters, we report herein the crystallization, the mol­ecular and crystal structures along with the Hirshfeld surface analysis and the inter­action energy and DFT studies of the title compound, (I)[link], whose magnetic properties were previously studied by electron paramagnetic resonance (EPR), (Sayin et al., 2013[Sayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70-73.]).

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the title compound, (I)[link], consists of cholesteryl and hepta­noate units. A puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the six-membered A (C8–C11/C13/C14), B (C10/C11/C15–C18), C (C17–C21/C23) and the five-membered D (C23–C26/C21) rings gave the parameters [QT = 0.5403 (16) Å, θ = 6.86 (18)° and φ = 327.4 (15)°, adopting a chair conformation (for A), QT = 0.4839 (15) Å, θ = 129.5 (3)° and φ = 328.2 (2)°, adopting a twisted-boat conformation (for B), QT = 0.5646 (15) Å, θ = 6.44 (14)° and φ = 245.1 (14)°, adopting a chair conformation (for C) and q2 = 0.4635 (16) Å and φ = 191.7 (2)°, adopting an envelope conformation, where atom C21 is at the flap position and 0.693 (2) Å away from best plane of the remaining atoms (for D)]. The O1—C7 [1.348 (3) Å] and O2—C7 [1.196 (3) Å] bonds in the carboxyl­ate group indicate localized single and double bonds. The O1—C7—O2 [123.8 (2)°] bond angle seems to be increased compared to that present in a free acid [122.2°].

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are aligned along the a-axis direction and stacked along the b-axis direction (Fig. 2[link]).

[Figure 2]
Figure 2
A partial packing diagram viewed down the c axis.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors. The overall two-dimensional fingerprint plot, Fig. 4[link]a, and those delineated into H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 4[link]bd, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 1[link]) contributing 92.4% to the overall crystal packing, which is reflected in Fig. 4[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.11 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Table 1[link]) have a symmetrical distribution of points (6.1% contribution, Fig. 4[link]c) with the tips at de + di = 2.66 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 1[link], Fig. 4[link]c, 1.5% contribution) has the tips at de + di = 2.89 Å.

Table 1
Selected interatomic distances (Å)

O2⋯H8 2.43 H9A⋯H15 2.26
C9⋯H12C 2.78 H9B⋯H12C 2.30
C12⋯H19A 2.63 H12A⋯H19A 2.21
C13⋯H19B 2.79 H12B⋯H17 2.30
C17⋯H22C 2.78 H12C⋯H14A 2.37
C19⋯H22C 2.74 H13A⋯H19B 2.29
C19⋯H12A 2.73 H13B⋯H18 2.27
C22⋯H19A 2.77 H16A⋯H23 2.36
C22⋯H27 2.70 H17⋯H22C 2.26
C24⋯H22B 2.68 H19A⋯H22C 2.23
C25⋯H22B 2.71 H20B⋯H28B 2.17
C25⋯H29A 2.51 H22B⋯H24B 2.34
C28⋯H20B 2.78 H25A⋯H29A 2.32
C30⋯H28A 2.79 H28A⋯H30A 2.26
C30⋯H33A 2.75 H30B⋯H33A 2.33
H3A⋯H6B 2.31    
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range of 0.0196 to 1.7047 a.u.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯O/O⋯H and (d) H⋯C/C⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H and H⋯O/O⋯H inter­actions in Fig. 5[link]ab, respectively.

[Figure 5]
Figure 5
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H and (b) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies are calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The evaluation of the energies indicates that the stabilizations in the title compound are dominated by the dispersion energy contributions.

6. DFT calculations

The optimized structure (Fig. 6[link]) of the title compound was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–31 G(d) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement (Table 2[link]). As is common in these studies, there are differences between the observed and calculated values because the former pertain to the solid state while the latter are for an isolated mol­ecule in the gas phase. The correlation graphs based on the calculations of the bond lengths and angles for comparison with the experimental results are shown in Fig. 7[link]a and b, respectively. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity and it is characterized as soft. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3[link]. The significance of η and σ is to evaluate both the reactivity and stability. The HOMO and LUMO energy levels are shown in Fig. 8[link]. The HOMO is localized in the plane extending over the whole cholesteryl hepta­noate ring, while the LUMO is localized on the oxygens and their surrounding atoms. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 6.49 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −7.05 and −0.56 eV, respectively.

Table 2
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–31G(d)
O2—C7 1.196 (3) 1.21334
O1—C7 1.348 (3) 1.35309
O1—C8 1.458 (2) 1.45445
C7—C6 1.510 (3) 1.51813
C5—C6 1.516 (3) 1.53121
C5—C4 1.530 (3) 1.53654
C4—C3 1.512 (4) 1.53569
C3—C2 1.523 (3) 1.53425
C1—C2 1.510 (4) 1.53213
C8—C14 1.513 (3) 1.52760
C8—C9 1.518 (3) 1.52497
C10—C9 1.519 (3) 1.53951
C11—C12 1.545 (3) 1.54603
C11—C18 1.558 (3) 1.56904
C17—C18 1.544 (3) 1.55696
C22—C21 1.530 (3) 1.54490
C23—C21 1.538 (3) 1.55738
C24—C23 1.527 (3) 1.55738
C24—C25 1.538 (3) 1.55293
C26—C27 1.535 (3) 1.55117
C28—C27 1.528 (3) 1.53804
C29—C27 1.539 (3) 1.54887
C29—C30 1.525 (3) 1.53709
C31—C30 1.523 (3) 1.53617
C31—C32 1.524 (3) 1.54188
C33—C32 1.509 (4) 1.53652
C34—C32 1.518 (4) 1.53610
     
C1—C2—C3 113.9 (2) 113.26388
C3—C4—C5 115.3 (2) 114.95515
C5—C6—C7 113.7 (2) 112.96691
C6—C7—O1 110.5 (2) 110.59081
C7—O1—C8 117.58 (19) 117.36016
C9—C8—C14 110.85 (19) 111.83435
C10—C11—C13 108.31 (17) 107.22354
C16—C17—C18 110.06 (17) 111.14810
C18—C19—C20 113.82 (17) 113.68808
C20—C21—C23 106.26 (17) 106.65458
C23—C24—C25 103.79 (18) 103.66681
C26—C27—C29 110.60 (18) 110.09045
C29—C30—C31 112.0 (2) 112.44335
C31—C32—C33 113.3 (2) 112.54400
C31—C32—C34 110.2 (2) 110.56977
     
C1—C2—C3—C4 −177.7 (2) 179.78287
C6—C7—O1—C8 −179.5 (2) 179.67988
C9—C10—C11—C18 −166.45 (19) 164.70017
C16—C17—C23—C24 −57.6 (3) −53.53645
C25—C26—C27—C29 56.7 (3) 58.14095
C29—C30—C31—C32 170.8 (2) 174.94079
C30—C31—C32—C33 58.8 (3) 63.49014
C30—C31—C32—C34 −176.9 (3) −172.43112

Table 3
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −40334.80
EHOMO (eV) −7.05
ELUMO (eV) −0.56
Gap, ΔE (eV) 6.49
Dipole moment, μ (Debye) −4.07
Ionization potential, I (eV) 7.05
Electron affinity, A 0.56
Electronegativity, χ 4.06
Hardness, η 2.14
Electrophilicity index, ω 3.85
Softness, σ 0.23
Fraction of electron transferred, ΔN 0.49
[Figure 6]
Figure 6
The optimized structure of the title compound, (I)[link].
[Figure 7]
Figure 7
The correlation graphs of the calculated and experimental (a) bond lengths and (b) bond angles of the title compound, (I)[link].
[Figure 8]
Figure 8
The LUMO and HOMO energies of the title compound, (I)[link].

The mol­ecular electrical potential surfaces or electrostatic potential energy maps illustrate the charge distributions of the mol­ecules in three dimensions, allowing one to visualize variably charged regions of the mol­ecule, which may be used to determine how mol­ecules inter­act with one another. Electrostatic potential maps (MEPs) are invaluable in predicting the behaviour of complex mol­ecules. The MEP of the title compound is shown in Fig. 9[link], where the negative electrostatic potential formed around O1 and O2 atoms and positive potential (green) formed around the hydrogen atoms. The MEP values of atoms O1 and O2 are −0.050 and −0.017 a.u., respectively. Thus, atoms O1 and O2 are the most appropriate ones for electrophilic attacks while H atoms are more appropriate for nucleophilic attacks.

[Figure 9]
Figure 9
The MEP plot of the title compound, (I)[link].

7. Database survey

Cholesterol and its esters take part significantly in many biological mechanisms, being important components for the manufacture of bile acids, steroid hormones and several fat-soluble vitamins. For the numerous experimental investigations, see: Faiman & Larsson, 1976[Faiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3-7.]; Goheen et al., 1977[Goheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253-262.]; Bush et al., 1980[Bush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101-111.]; Di Vizio et al., 2008[Di Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633-639.]; Ikonen, 2008[Ikonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125-138.]. For the first electron paramagnetic resonance (EPR) study of free radicals in X-ray-irradiated powdered cholesterol, hormones and vitamins, see: Rexroad & Gordy, 1959[Rexroad, H. N. & Gordy, W. (1959). Proc. Natl Acad. Sci. USA, 45, 256-269.]. For gamma-irradiated sterol groups studied at low temperatures, see: Sevilla et al., 1986[Sevilla, C. L., Becker, D. & Sevilla, M. D. (1986). J. Phys. Chem. 90, 2963-2968.]. For EPR and electron-nuclear double resonance (ENDOR) studies to elucidate the structure of free radicals formed in gamma-irradiated single crystals of selected steroids, see: Smaller & Matheson, 1958[Smaller, B. & Matheson, M. S. (1958). J. Chem. Phys. 28, 1169-1178.]; Krzyminiewski, Hafez et al., 1987[Krzyminiewski, R., Hafez, A. M., Szyczewski, A. & Pietrzak, J. (1987). J. Mol. Struct. 160, 127-133.]; Krzyminiewski et al., 1990[Krzyminiewski, R., Pietrzak, J. & Konopka, R. (1990). J. Mol. Struct. 240, 133-140.]; Szyczewski & Möbius, 1994[Szyczewski, A. & Möbius, K. (1994). J. Mol. Struct. 318, 87-93.]; Szyczewski, 1996[Szyczewski, A. (1996). Appl. Radiat. Isot. 47, 1675-1681.]; Szyczewski et al., 1998[Szyczewski, A., Endeward, B. & Möbius, K. (1998). Appl. Radiat. Isot. 49, 59-65.]; Çalişkan et al., 2004[Çalişkan, B., Aras, E., Aşik, B., Büyüm, M. & Birey, M. (2004). Radiat. Eff. Defects Solids, 159, 1-5.]; Szyczewski et al., 2005[Szyczewski, A., Pietrzak, J. & Möbius, K. (2005). Acta Phys. Pol. A, 108, 119-126.]; Sayin et al., 2011[Sayin, U., Yüksel, H. & Birey, M. (2011). Radiat. Phys. Chem. 80, 1203-1207.]. For EPR studies of cholesteryl hepta­noate, see: Sayin et al., 2013[Sayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70-73.].

8. Synthesis and crystallization

The white fine crystalline powder of cholesteryl hepta­noate (C34H58O2) was purchased from Merck, and single crystals were grown by slow evaporation of a concentrated ethyl acetate solution.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were positioned geometrically, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methyl­ene and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for methyl­ene and methine H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C34H58O2
Mr 498.80
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 12.0622 (3), 9.2715 (2), 13.8140 (4)
β (°) 92.306 (2)
V3) 1543.63 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.30 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker APEXII QUAZAR three-circle diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 15024, 6805, 6079
Rint 0.041
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.03
No. of reflections 6805
No. of parameters 331
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Absolute structure Flack xdetermined using 2417 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.3 (7)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).

Cholesteryl heptanoate top
Crystal data top
C34H58O2F(000) = 556
Mr = 498.80Dx = 1.073 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.0622 (3) ÅCell parameters from 5761 reflections
b = 9.2715 (2) Åθ = 2.2–27.3°
c = 13.8140 (4) ŵ = 0.06 mm1
β = 92.306 (2)°T = 120 K
V = 1543.63 (7) Å3Plate, colourless
Z = 20.30 × 0.22 × 0.09 mm
Data collection top
Bruker APEXII QUAZAR three-circle
diffractometer
Rint = 0.041
Detector resolution: 8.3333 pixels mm-1θmax = 27.5°, θmin = 1.5°
φ and ω scansh = 1515
15024 measured reflectionsk = 1212
6805 independent reflectionsl = 1717
6079 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1758P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.24 e Å3
6805 reflectionsΔρmin = 0.22 e Å3
331 parametersAbsolute structure: Flack xdetermined using 2417 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.3 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88629 (14)0.64631 (18)0.15841 (13)0.0314 (4)
O20.91179 (18)0.8775 (2)0.11617 (18)0.0518 (6)
C11.4569 (2)0.5375 (3)0.03304 (19)0.0381 (6)
H1A1.5046090.4968010.0798540.057*
H1B1.4315480.4625910.0086190.057*
H1C1.4971970.6082900.0049610.057*
C21.3584 (2)0.6081 (3)0.08471 (17)0.0316 (5)
H2A1.3200020.5365270.1247480.038*
H2B1.3850670.6825620.1272980.038*
C31.2763 (2)0.6752 (3)0.01697 (17)0.0330 (6)
H3A1.2516100.6017330.0273060.040*
H3B1.3137400.7497000.0212270.040*
C41.1761 (2)0.7401 (3)0.06989 (18)0.0308 (5)
H4A1.1405920.6657860.1096170.037*
H4B1.2013470.8146560.1130850.037*
C51.0894 (2)0.8056 (3)0.00503 (19)0.0304 (5)
H5A1.1249020.8772780.0369170.036*
H5B1.0332940.8542290.0453430.036*
C61.0337 (2)0.6940 (3)0.0568 (2)0.0367 (6)
H6A1.0062250.6163130.0154170.044*
H6B1.0885150.6536670.1024190.044*
C70.9385 (2)0.7534 (3)0.1125 (2)0.0335 (6)
C80.79138 (19)0.6851 (3)0.21509 (17)0.0273 (5)
H80.8042950.7792920.2457560.033*
C90.78323 (19)0.5697 (3)0.29241 (17)0.0261 (5)
H9A0.8489910.5729600.3351420.031*
H9B0.7800980.4754810.2619010.031*
C100.68089 (18)0.5910 (2)0.35138 (16)0.0220 (4)
C110.57079 (18)0.6073 (2)0.29501 (15)0.0205 (4)
C120.5379 (2)0.4598 (3)0.25045 (17)0.0267 (5)
H12A0.4753600.4719340.2060430.040*
H12B0.5188100.3944910.3010580.040*
H12C0.5992590.4212890.2165440.040*
C130.58615 (19)0.7181 (3)0.21267 (16)0.0247 (5)
H13A0.5198630.7178020.1705160.030*
H13B0.5931960.8134910.2410590.030*
C140.68645 (19)0.6904 (3)0.15136 (17)0.0278 (5)
H14A0.6769360.5996520.1170960.033*
H14B0.6923630.7666060.1037190.033*
C150.69011 (18)0.5926 (2)0.44767 (16)0.0242 (5)
H150.7608720.5838270.4763500.029*
C160.59494 (18)0.6076 (3)0.51323 (15)0.0249 (5)
H16A0.5969250.7030360.5420500.030*
H16B0.6033500.5376720.5652240.030*
C170.48277 (18)0.5853 (2)0.46075 (15)0.0205 (4)
H170.4715060.4819130.4493470.025*
C180.47990 (17)0.6643 (2)0.36225 (15)0.0195 (4)
H180.4986420.7651540.3763790.023*
C190.36285 (18)0.6654 (3)0.31454 (15)0.0241 (5)
H19A0.3445020.5685070.2926940.029*
H19B0.3626940.7272310.2579180.029*
C200.27255 (18)0.7178 (3)0.38188 (16)0.0237 (5)
H20A0.2851730.8185640.3975590.028*
H20B0.2005280.7098960.3484510.028*
C210.27233 (17)0.6294 (2)0.47595 (15)0.0199 (4)
C220.2384 (2)0.4731 (2)0.45499 (18)0.0269 (5)
H22A0.1661430.4714040.4232540.040*
H22B0.2366600.4205330.5147690.040*
H22C0.2911400.4294300.4138060.040*
C230.39003 (17)0.6415 (2)0.52227 (14)0.0196 (4)
H230.4041550.7448660.5312150.024*
C240.3794 (2)0.5788 (3)0.62369 (16)0.0272 (5)
H24A0.4362350.6173390.6681920.033*
H24B0.3852900.4745150.6227390.033*
C250.26318 (19)0.6266 (3)0.65246 (16)0.0266 (5)
H25A0.2687950.6984770.7034570.032*
H25B0.2217310.5448240.6756850.032*
C260.20397 (17)0.6915 (2)0.55966 (15)0.0210 (4)
H260.2163050.7959630.5612670.025*
C270.07807 (18)0.6667 (3)0.55763 (15)0.0251 (5)
H270.0650260.5623290.5576220.030*
C280.0200 (2)0.7293 (3)0.46669 (18)0.0342 (6)
H28A0.0589320.7245010.4728140.051*
H28B0.0404100.6747600.4110990.051*
H28C0.0419670.8280390.4590430.051*
C290.02759 (19)0.7298 (3)0.64897 (17)0.0295 (5)
H29A0.0765440.7075960.7044030.035*
H29B0.0246750.8339160.6426010.035*
C300.08842 (19)0.6749 (3)0.66924 (16)0.0274 (5)
H30A0.1396340.7053610.6172730.033*
H30B0.0877290.5703430.6703780.033*
C310.1289 (2)0.7309 (3)0.76532 (18)0.0355 (6)
H31A0.1170390.8342800.7679130.043*
H31B0.0837620.6879380.8174000.043*
C320.2505 (2)0.7007 (3)0.78366 (17)0.0302 (5)
H320.2951370.7471250.7316500.036*
C330.2788 (3)0.5422 (3)0.7824 (2)0.0433 (7)
H33A0.2620370.5019120.7206840.065*
H33B0.3564010.5301570.7931390.065*
H33C0.2360030.4936740.8326500.065*
C340.2821 (3)0.7685 (4)0.8787 (2)0.0544 (9)
H34A0.2669380.8701260.8771990.082*
H34B0.2397420.7248530.9311530.082*
H34C0.3597900.7535110.8877130.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (9)0.0269 (9)0.0393 (10)0.0008 (7)0.0154 (7)0.0006 (7)
O20.0526 (13)0.0282 (10)0.0772 (16)0.0055 (9)0.0329 (11)0.0059 (10)
C10.0320 (14)0.0523 (17)0.0305 (13)0.0027 (12)0.0073 (11)0.0017 (12)
C20.0344 (13)0.0339 (13)0.0269 (12)0.0017 (11)0.0082 (10)0.0022 (10)
C30.0293 (12)0.0445 (15)0.0253 (11)0.0018 (11)0.0048 (9)0.0024 (11)
C40.0330 (13)0.0312 (13)0.0287 (12)0.0034 (10)0.0087 (10)0.0065 (10)
C50.0315 (13)0.0260 (12)0.0339 (13)0.0021 (10)0.0053 (10)0.0026 (10)
C60.0329 (13)0.0294 (13)0.0492 (15)0.0020 (11)0.0183 (11)0.0053 (12)
C70.0314 (13)0.0293 (13)0.0406 (14)0.0007 (10)0.0104 (11)0.0020 (11)
C80.0262 (11)0.0255 (11)0.0309 (12)0.0001 (10)0.0114 (9)0.0057 (10)
C90.0222 (11)0.0281 (12)0.0281 (11)0.0011 (9)0.0028 (9)0.0035 (9)
C100.0224 (11)0.0172 (10)0.0265 (11)0.0008 (8)0.0039 (8)0.0032 (8)
C110.0219 (10)0.0204 (11)0.0195 (10)0.0006 (8)0.0029 (8)0.0028 (8)
C120.0285 (12)0.0244 (11)0.0275 (12)0.0006 (9)0.0035 (9)0.0071 (9)
C130.0279 (11)0.0252 (12)0.0215 (10)0.0042 (9)0.0057 (9)0.0004 (9)
C140.0328 (12)0.0281 (12)0.0231 (11)0.0027 (10)0.0097 (9)0.0008 (9)
C150.0196 (10)0.0251 (11)0.0279 (11)0.0010 (9)0.0007 (8)0.0013 (9)
C160.0249 (11)0.0302 (12)0.0197 (10)0.0039 (10)0.0012 (8)0.0003 (9)
C170.0223 (10)0.0193 (10)0.0201 (10)0.0020 (8)0.0031 (8)0.0001 (8)
C180.0220 (10)0.0184 (10)0.0183 (10)0.0003 (8)0.0030 (8)0.0018 (8)
C190.0237 (11)0.0301 (12)0.0185 (10)0.0015 (9)0.0020 (8)0.0010 (9)
C200.0214 (10)0.0275 (12)0.0222 (10)0.0025 (9)0.0014 (8)0.0010 (9)
C210.0201 (10)0.0202 (10)0.0196 (10)0.0004 (8)0.0018 (8)0.0010 (8)
C220.0282 (12)0.0242 (12)0.0289 (12)0.0014 (9)0.0077 (9)0.0052 (9)
C230.0218 (10)0.0189 (10)0.0182 (10)0.0024 (8)0.0021 (8)0.0001 (8)
C240.0290 (12)0.0309 (12)0.0218 (11)0.0071 (10)0.0040 (9)0.0045 (9)
C250.0296 (12)0.0307 (12)0.0198 (10)0.0046 (10)0.0046 (9)0.0023 (9)
C260.0231 (10)0.0205 (10)0.0197 (10)0.0017 (9)0.0021 (8)0.0011 (8)
C270.0236 (11)0.0284 (12)0.0237 (11)0.0004 (9)0.0054 (8)0.0043 (9)
C280.0238 (12)0.0484 (16)0.0306 (13)0.0023 (11)0.0035 (9)0.0017 (11)
C290.0250 (11)0.0375 (14)0.0265 (12)0.0007 (10)0.0060 (9)0.0080 (10)
C300.0272 (11)0.0301 (12)0.0252 (11)0.0006 (10)0.0061 (9)0.0047 (10)
C310.0302 (13)0.0496 (16)0.0273 (12)0.0016 (11)0.0078 (10)0.0125 (11)
C320.0317 (12)0.0334 (13)0.0262 (11)0.0029 (10)0.0095 (9)0.0004 (10)
C330.0514 (17)0.0420 (16)0.0376 (15)0.0039 (13)0.0157 (13)0.0029 (12)
C340.0498 (18)0.061 (2)0.0543 (19)0.0098 (15)0.0281 (15)0.0249 (16)
Geometric parameters (Å, º) top
O1—C71.348 (3)C18—C191.534 (3)
O1—C81.458 (2)C18—H180.9800
O2—C71.196 (3)C19—C201.539 (3)
C1—C21.510 (4)C19—H19A0.9700
C1—H1A0.9600C19—H19B0.9700
C1—H1B0.9600C20—C211.536 (3)
C1—H1C0.9600C20—H20A0.9700
C2—C31.523 (3)C20—H20B0.9700
C2—H2A0.9700C21—C221.530 (3)
C2—H2B0.9700C21—C231.538 (3)
C3—C41.512 (4)C21—C261.557 (3)
C3—H3A0.9700C22—H22A0.9600
C3—H3B0.9700C22—H22B0.9600
C4—C51.530 (3)C22—H22C0.9600
C4—H4A0.9700C23—C241.527 (3)
C4—H4B0.9700C23—H230.9800
C5—C61.516 (3)C24—C251.538 (3)
C5—H5A0.9700C24—H24A0.9700
C5—H5B0.9700C24—H24B0.9700
C6—C71.510 (3)C25—C261.563 (3)
C6—H6A0.9700C25—H25A0.9700
C6—H6B0.9700C25—H25B0.9700
C8—C141.513 (3)C26—C271.535 (3)
C8—C91.518 (3)C26—H260.9800
C8—H80.9800C27—C281.528 (3)
C9—C101.519 (3)C27—C291.539 (3)
C9—H9A0.9700C27—H270.9800
C9—H9B0.9700C28—H28A0.9600
C10—C151.330 (3)C28—H28B0.9600
C10—C111.520 (3)C28—H28C0.9600
C11—C121.545 (3)C29—C301.525 (3)
C11—C131.549 (3)C29—H29A0.9700
C11—C181.558 (3)C29—H29B0.9700
C12—H12A0.9600C30—C311.523 (3)
C12—H12B0.9600C30—H30A0.9700
C12—H12C0.9600C30—H30B0.9700
C13—C141.526 (3)C31—C321.524 (3)
C13—H13A0.9700C31—H31A0.9700
C13—H13B0.9700C31—H31B0.9700
C14—H14A0.9700C32—C331.509 (4)
C14—H14B0.9700C32—C341.518 (4)
C15—C161.497 (3)C32—H320.9800
C15—H150.9300C33—H33A0.9600
C16—C171.523 (3)C33—H33B0.9600
C16—H16A0.9700C33—H33C0.9600
C16—H16B0.9700C34—H34A0.9600
C17—C231.524 (3)C34—H34B0.9600
C17—C181.544 (3)C34—H34C0.9600
C17—H170.9800
O2···C143.277 (2)H4B···H9Bi2.56
O2···H5A2.83H5A···H33Cvii2.45
O2···H5B2.73H5B···H6Ai2.51
O2···H82.43H8···H13B2.56
O2···H14B2.84H9A···H152.26
O2···H4Ai2.75H9A···H28Av2.58
C20···C283.309 (2)H9B···H12C2.30
C22···C283.556 (2)H9B···H14A2.58
C3···H6B2.86H12A···H13A2.40
C6···H3A2.81H12A···H19A2.21
C7···H14B2.97H12B···H172.30
C9···H12C2.78H12C···H14A2.37
C12···H172.90H13A···H19B2.29
C12···H9B2.92H13B···H182.27
C12···H14A2.85H13B···H24Bvii2.41
C12···H19A2.63H14B···H34Bviii2.58
C13···H19B2.79H15···H28Av2.54
C14···H12C2.87H15···H30Av2.51
C15···H182.95H16A···H182.60
C15···H26ii2.98H16A···H232.36
C16···H24A2.93H16A···H22Cvii2.56
C17···H12B2.87H16B···H20Aii2.48
C17···H22C2.78H17···H22C2.26
C19···H22C2.74H18···H232.47
C19···H12A2.73H18···H24Bvii2.39
C19···H13A2.84H19A···H22C2.23
C20···H28B2.87H20A···H232.39
C21···H28B2.93H20A···H262.45
C22···H19A2.77H20A···H33Aix2.37
C22···H24B2.86H20B···H22A2.48
C22···H30Aiii2.91H20B···H28B2.17
C22···H272.70H22A···H272.41
C22···H172.82H22A···H28B2.42
C24···H16B2.88H22A···H30Aiii2.55
C24···H22B2.68H22B···H24B2.34
C25···H22B2.71H22B···H25B2.52
C25···H29A2.51H22B···H272.54
C27···H22A2.83H23···H262.37
C28···H20B2.78H25A···H29A2.32
C28···H30A2.90H25B···H272.45
C29···H25B2.91H25B···H29A2.36
C30···H28A2.79H26···H28C2.50
C30···H33A2.75H27···H30B2.46
C33···H30B2.84H27···H28Ciii2.53
H1A···H33Biv2.49H28A···H30A2.26
H1B···H3A2.55H28C···H29B2.55
H1B···H34Cii2.58H29A···H31B2.54
H1C···H3B2.59H29B···H28C2.55
H1C···H13Av2.51H29B···H31A2.48
H2A···H4A2.49H30A···H322.53
H2A···H14Bvi2.52H30B···H33A2.33
H2B···H4B2.55H31A···H34A2.42
H2B···H12Ci2.54H31B···H33C2.59
H3A···H6B2.31H31B···H34B2.52
H3A···H34Aii2.52H33B···H34C2.45
H3B···H5A2.58H33C···H34B2.54
H4A···H6A2.46
C7—O1—C8117.58 (19)C17—C18—H18106.3
C2—C1—H1A109.5C11—C18—H18106.3
C2—C1—H1B109.5C18—C19—C20113.82 (17)
H1A—C1—H1B109.5C18—C19—H19A108.8
C2—C1—H1C109.5C20—C19—H19A108.8
H1A—C1—H1C109.5C18—C19—H19B108.8
H1B—C1—H1C109.5C20—C19—H19B108.8
C1—C2—C3113.9 (2)H19A—C19—H19B107.7
C1—C2—H2A108.8C21—C20—C19111.60 (18)
C3—C2—H2A108.8C21—C20—H20A109.3
C1—C2—H2B108.8C19—C20—H20A109.3
C3—C2—H2B108.8C21—C20—H20B109.3
H2A—C2—H2B107.7C19—C20—H20B109.3
C4—C3—C2113.1 (2)H20A—C20—H20B108.0
C4—C3—H3A109.0C22—C21—C20110.77 (18)
C2—C3—H3A109.0C22—C21—C23112.56 (18)
C4—C3—H3B109.0C20—C21—C23106.26 (17)
C2—C3—H3B109.0C22—C21—C26110.19 (18)
H3A—C3—H3B107.8C20—C21—C26116.73 (18)
C3—C4—C5115.3 (2)C23—C21—C2699.87 (16)
C3—C4—H4A108.5C21—C22—H22A109.5
C5—C4—H4A108.5C21—C22—H22B109.5
C3—C4—H4B108.5H22A—C22—H22B109.5
C5—C4—H4B108.5C21—C22—H22C109.5
H4A—C4—H4B107.5H22A—C22—H22C109.5
C6—C5—C4112.9 (2)H22B—C22—H22C109.5
C6—C5—H5A109.0C17—C23—C24118.16 (18)
C4—C5—H5A109.0C17—C23—C21115.40 (17)
C6—C5—H5B109.0C24—C23—C21104.12 (17)
C4—C5—H5B109.0C17—C23—H23106.1
H5A—C5—H5B107.8C24—C23—H23106.1
C7—C6—C5113.7 (2)C21—C23—H23106.1
C7—C6—H6A108.8C23—C24—C25103.79 (18)
C5—C6—H6A108.8C23—C24—H24A111.0
C7—C6—H6B108.8C25—C24—H24A111.0
C5—C6—H6B108.8C23—C24—H24B111.0
H6A—C6—H6B107.7C25—C24—H24B111.0
O2—C7—O1123.8 (2)H24A—C24—H24B109.0
O2—C7—C6125.7 (2)C24—C25—C26106.87 (17)
O1—C7—C6110.5 (2)C24—C25—H25A110.3
O1—C8—C14110.61 (18)C26—C25—H25A110.3
O1—C8—C9106.15 (18)C24—C25—H25B110.3
C14—C8—C9110.85 (19)C26—C25—H25B110.3
O1—C8—H8109.7H25A—C25—H25B108.6
C14—C8—H8109.7C27—C26—C21118.94 (17)
C9—C8—H8109.7C27—C26—C25112.11 (18)
C8—C9—C10111.26 (19)C21—C26—C25103.22 (17)
C8—C9—H9A109.4C27—C26—H26107.3
C10—C9—H9A109.4C21—C26—H26107.3
C8—C9—H9B109.4C25—C26—H26107.3
C10—C9—H9B109.4C28—C27—C26112.24 (18)
H9A—C9—H9B108.0C28—C27—C29110.25 (19)
C15—C10—C9120.0 (2)C26—C27—C29110.60 (18)
C15—C10—C11123.19 (19)C28—C27—H27107.9
C9—C10—C11116.77 (18)C26—C27—H27107.9
C10—C11—C12108.74 (18)C29—C27—H27107.9
C10—C11—C13108.31 (17)C27—C28—H28A109.5
C12—C11—C13109.31 (18)C27—C28—H28B109.5
C10—C11—C18110.47 (17)H28A—C28—H28B109.5
C12—C11—C18111.26 (18)C27—C28—H28C109.5
C13—C11—C18108.70 (17)H28A—C28—H28C109.5
C11—C12—H12A109.5H28B—C28—H28C109.5
C11—C12—H12B109.5C30—C29—C27114.8 (2)
H12A—C12—H12B109.5C30—C29—H29A108.6
C11—C12—H12C109.5C27—C29—H29A108.6
H12A—C12—H12C109.5C30—C29—H29B108.6
H12B—C12—H12C109.5C27—C29—H29B108.6
C14—C13—C11114.64 (18)H29A—C29—H29B107.5
C14—C13—H13A108.6C31—C30—C29112.0 (2)
C11—C13—H13A108.6C31—C30—H30A109.2
C14—C13—H13B108.6C29—C30—H30A109.2
C11—C13—H13B108.6C31—C30—H30B109.2
H13A—C13—H13B107.6C29—C30—H30B109.2
C8—C14—C13110.22 (18)H30A—C30—H30B107.9
C8—C14—H14A109.6C30—C31—C32115.3 (2)
C13—C14—H14A109.6C30—C31—H31A108.5
C8—C14—H14B109.6C32—C31—H31A108.5
C13—C14—H14B109.6C30—C31—H31B108.5
H14A—C14—H14B108.1C32—C31—H31B108.5
C10—C15—C16124.8 (2)H31A—C31—H31B107.5
C10—C15—H15117.6C33—C32—C34110.4 (2)
C16—C15—H15117.6C33—C32—C31113.3 (2)
C15—C16—C17112.80 (18)C34—C32—C31110.2 (2)
C15—C16—H16A109.0C33—C32—H32107.6
C17—C16—H16A109.0C34—C32—H32107.6
C15—C16—H16B109.0C31—C32—H32107.6
C17—C16—H16B109.0C32—C33—H33A109.5
H16A—C16—H16B107.8C32—C33—H33B109.5
C16—C17—C23110.24 (17)H33A—C33—H33B109.5
C16—C17—C18110.06 (17)C32—C33—H33C109.5
C23—C17—C18109.77 (17)H33A—C33—H33C109.5
C16—C17—H17108.9H33B—C33—H33C109.5
C23—C17—H17108.9C32—C34—H34A109.5
C18—C17—H17108.9C32—C34—H34B109.5
C19—C18—C17111.67 (17)H34A—C34—H34B109.5
C19—C18—C11113.81 (17)C32—C34—H34C109.5
C17—C18—C11111.91 (17)H34A—C34—H34C109.5
C19—C18—H18106.3H34B—C34—H34C109.5
C1—C2—C3—C4177.7 (2)C12—C11—C18—C1776.1 (2)
C2—C3—C4—C5178.5 (2)C13—C11—C18—C17163.47 (18)
C3—C4—C5—C665.4 (3)C17—C18—C19—C2050.5 (2)
C4—C5—C6—C7173.1 (2)C11—C18—C19—C20178.42 (19)
C8—O1—C7—O20.5 (4)C18—C19—C20—C2155.4 (3)
C8—O1—C7—C6179.5 (2)C19—C20—C21—C2266.0 (2)
C5—C6—C7—O25.8 (4)C19—C20—C21—C2356.5 (2)
C5—C6—C7—O1174.2 (2)C19—C20—C21—C26166.82 (18)
C7—O1—C8—C1485.5 (3)C16—C17—C23—C2457.6 (3)
C7—O1—C8—C9154.2 (2)C18—C17—C23—C24179.04 (19)
O1—C8—C9—C10175.13 (18)C16—C17—C23—C21178.27 (18)
C14—C8—C9—C1055.0 (2)C18—C17—C23—C2156.9 (2)
C8—C9—C10—C15129.1 (2)C22—C21—C23—C1761.6 (2)
C8—C9—C10—C1151.9 (3)C20—C21—C23—C1759.8 (2)
C15—C10—C11—C12107.8 (2)C26—C21—C23—C17178.40 (18)
C9—C10—C11—C1271.2 (2)C22—C21—C23—C2469.6 (2)
C15—C10—C11—C13133.5 (2)C20—C21—C23—C24168.99 (18)
C9—C10—C11—C1347.5 (2)C26—C21—C23—C2447.2 (2)
C15—C10—C11—C1814.6 (3)C17—C23—C24—C25165.15 (19)
C9—C10—C11—C18166.45 (19)C21—C23—C24—C2535.6 (2)
C10—C11—C13—C1449.6 (2)C23—C24—C25—C269.7 (3)
C12—C11—C13—C1468.7 (2)C22—C21—C26—C2746.1 (3)
C18—C11—C13—C14169.67 (18)C20—C21—C26—C2781.3 (3)
O1—C8—C14—C13175.0 (2)C23—C21—C26—C27164.72 (19)
C9—C8—C14—C1357.6 (2)C22—C21—C26—C2578.7 (2)
C11—C13—C14—C856.5 (3)C20—C21—C26—C25153.80 (19)
C9—C10—C15—C16177.8 (2)C23—C21—C26—C2539.9 (2)
C11—C10—C15—C161.2 (4)C24—C25—C26—C27148.31 (19)
C10—C15—C16—C1713.7 (3)C24—C25—C26—C2119.1 (2)
C15—C16—C17—C23164.41 (19)C21—C26—C27—C2859.3 (3)
C15—C16—C17—C1843.2 (2)C25—C26—C27—C28179.7 (2)
C16—C17—C18—C19170.74 (18)C21—C26—C27—C29177.2 (2)
C23—C17—C18—C1949.2 (2)C25—C26—C27—C2956.7 (3)
C16—C17—C18—C1160.4 (2)C28—C27—C29—C3072.1 (3)
C23—C17—C18—C11178.14 (17)C26—C27—C29—C30163.2 (2)
C10—C11—C18—C19172.54 (18)C27—C29—C30—C31174.7 (2)
C12—C11—C18—C1951.7 (2)C29—C30—C31—C32170.8 (2)
C13—C11—C18—C1968.8 (2)C30—C31—C32—C3358.8 (3)
C10—C11—C18—C1744.8 (2)C30—C31—C32—C34176.9 (3)
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1; (iv) x+2, y, z1; (v) x+1, y, z; (vi) x+2, y1/2, z; (vii) x+1, y+1/2, z+1; (viii) x+1, y, z1; (ix) x, y+1/2, z+1.
Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-31G(d)
O2—C71.196 (3)1.21334
O1—C71.348 (3)1.35309
O1—C81.458 (2)1.45445
C7—C61.510 (3)1.51813
C5—C61.516 (3)1.53121
C5—C41.530 (3)1.53654
C4—C31.512 (4)1.53569
C3—C21.523 (3)1.53425
C1—C21.510 (4)1.53213
C8—C141.513 (3)1.52760
C8—C91.518 (3)1.52497
C10—C91.519 (3)1.53951
C11—C121.545 (3)1.54603
C11—C181.558 (3)1.56904
C17—C181.544 (3)1.55696
C22—C211.530 (3)1.54490
C23—C211.538 (3)1.55738
C24—C231.527 (3)1.55738
C24—C251.538 (3)1.55293
C26—C271.535 (3)1.55117
C28—C271.528 (3)1.53804
C29—C271.539 (3)1.54887
C29—C301.525 (3)1.53709
C31—C301.523 (3)1.53617
C31—C321.524 (3)1.54188
C33—C321.509 (4)1.53652
C34—C321.518 (4)1.53610
C1—C2—C3113.9 (2)113.26388
C3—C4—C5115.3 (2)114.95515
C5—C6—C7113.7 (2)112.96691
C6—C7—O1110.5 (2)110.59081
C7—O1—C8117.58 (19)117.36016
C9—C8—C14110.85 (19)111.83435
C10—C11—C13108.31 (17)107.22354
C16—C17—C18110.06 (17)111.14810
C18—C19—C20113.82 (17)113.68808
C20—C21—C23106.26 (17)106.65458
C23—C24—C25103.79 (18)103.66681
C26—C27—C29110.60 (18)110.09045
C29—C30—C31112.0 (2)112.44335
C31—C32—C33113.3 (2)112.54400
C31—C32—C34110.2 (2)110.56977
C1—C2—C3—C4-177.7 (2)179.78287
C6—C7—O1—C8-179.5 (2)179.67988
C9—C10—C11—C18-166.45 (19)164.70017
C16—C17—C23—C24-57.6 (3)-53.53645
C25—C26—C27—C2956.7 (3)58.14095
C29—C30—C31—C32170.8 (2)174.94079
C30—C31—C32—C3358.8 (3)63.49014
C30—C31—C32—C34-176.9 (3)-172.43112
Calculated energies top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy, TE (eV)-40334.80
EHOMO (eV)-7.05
ELUMO (eV)-0.56
Gap, ΔE (eV)6.49
Dipole moment, µ (Debye)-4.07
Ionisation potential, I (eV)7.05
Electron affinity, A0.56
Electronegativity, χ4.06
Hardness, η2.14
Electrophilicity index, ω3.85
Softness, σ0.23
Fraction of electron transferred, ΔN0.49
 

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101–111.  CAS Google Scholar
First citationÇalişkan, B., Aras, E., Aşik, B., Büyüm, M. & Birey, M. (2004). Radiat. Eff. Defects Solids, 159, 1–5.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDi Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633–639.  CrossRef CAS Google Scholar
First citationFaiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3–7.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGoheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253–262.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIkonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrzyminiewski, R., Hafez, A. M., Szyczewski, A. & Pietrzak, J. (1987). J. Mol. Struct. 160, 127–133.  CrossRef CAS Web of Science Google Scholar
First citationKrzyminiewski, R., Pietrzak, J. & Konopka, R. (1990). J. Mol. Struct. 240, 133–140.  CrossRef CAS Web of Science Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRexroad, H. N. & Gordy, W. (1959). Proc. Natl Acad. Sci. USA, 45, 256–269.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70–73.  CrossRef CAS Google Scholar
First citationSayin, U., Yüksel, H. & Birey, M. (2011). Radiat. Phys. Chem. 80, 1203–1207.  Web of Science CrossRef CAS Google Scholar
First citationSevilla, C. L., Becker, D. & Sevilla, M. D. (1986). J. Phys. Chem. 90, 2963–2968.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmaller, B. & Matheson, M. S. (1958). J. Chem. Phys. 28, 1169–1178.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzyczewski, A. (1996). Appl. Radiat. Isot. 47, 1675–1681.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSzyczewski, A., Endeward, B. & Möbius, K. (1998). Appl. Radiat. Isot. 49, 59–65.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSzyczewski, A. & Möbius, K. (1994). J. Mol. Struct. 318, 87–93.  CrossRef CAS Web of Science Google Scholar
First citationSzyczewski, A., Pietrzak, J. & Möbius, K. (2005). Acta Phys. Pol. A, 108, 119–126.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds