research communications
Hirshfeld surface analysis, interaction energy, and DFT studies of cholesteryl heptanoate
aDepartment of Metallurgical and Materials Engineering, Faculty of Technology, Selçuk University, 42130 Selçuklu, Konya, Turkey, bDepartment of Chemical Engineering, Faculty of Engineering & Architecture, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: akduran@gmail.com
The title compound, C34H58O2, consists of cholesteryl and heptanoate units, in which the six-membered rings adopt chair and twisted-boat conformations while the five-membered ring adopts an In the crystal, the molecules are aligned along the a-axis direction and stacked along the b-axis direction. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (92.4%) and H⋯O/O⋯H (6.1%) interactions. van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–31 G(d) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap, and the molecular electrostatic potential (MEP) of the compound was investigated.
Keywords: crystal structure; cholesteryl; cholesterol.
CCDC reference: 2087356
1. Chemical context
Cholesterol is an important constituent of cell membranes with a rigid ring system and a short branched hydrocarbon tail. It modulates membrane fluidity over the range of physiological temperatures and also reduces the permeability of the plasma membrane to protons and sodium ions. In the liver, it is converted to bile, which is then stored in the gallbladder. It functions in intracellular transport, cell signaling and nerve conduction within the cell membrane and is an important precursor in several biochemical pathways within the cells, in the synthesis of vitamin D and steroid hormones, including the adrenal gland hormones cortisol and aldosterone as well as sex hormones progesterone, oestrogens, and testosterone, and their derivatives. Cholesteryl et al., 1976; Goheen et al., 1977; Bush et al., 1980; Di Vizio et al., 2008; Ikonen, 2008). Thus, due to the importance of cholesterol and its we report herein the crystallization, the molecular and crystal structures along with the Hirshfeld surface analysis and the interaction energy and DFT studies of the title compound, (I), whose magnetic properties were previously studied by (EPR), (Sayin et al., 2013).
are formed between the carboxylate group of a fatty acid and the hydroxyl group of cholesterol and have a lower solubility in water than cholesterol. These are also important in many biological mechanisms and numerous experimental investigations have been performed on cholesterol derivatives (Faiman2. Structural commentary
As shown in Fig. 1, the title compound, (I), consists of cholesteryl and heptanoate units. A puckering analysis (Cremer & Pople, 1975) of the six-membered A (C8–C11/C13/C14), B (C10/C11/C15–C18), C (C17–C21/C23) and the five-membered D (C23–C26/C21) rings gave the parameters [QT = 0.5403 (16) Å, θ = 6.86 (18)° and φ = 327.4 (15)°, adopting a chair conformation (for A), QT = 0.4839 (15) Å, θ = 129.5 (3)° and φ = 328.2 (2)°, adopting a twisted-boat conformation (for B), QT = 0.5646 (15) Å, θ = 6.44 (14)° and φ = 245.1 (14)°, adopting a chair conformation (for C) and q2 = 0.4635 (16) Å and φ = 191.7 (2)°, adopting an where atom C21 is at the flap position and 0.693 (2) Å away from best plane of the remaining atoms (for D)]. The O1—C7 [1.348 (3) Å] and O2—C7 [1.196 (3) Å] bonds in the carboxylate group indicate localized single and double bonds. The O1—C7—O2 [123.8 (2)°] bond angle seems to be increased compared to that present in a free acid [122.2°].
3. Supramolecular features
In the crystal, the molecules are aligned along the a-axis direction and stacked along the b-axis direction (Fig. 2).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors. The overall two-dimensional fingerprint plot, Fig. 4a, and those delineated into H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 4b–d, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 1) contributing 92.4% to the overall crystal packing, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.11 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Table 1) have a symmetrical distribution of points (6.1% contribution, Fig. 4c) with the tips at de + di = 2.66 Å. In the absence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 1, Fig. 4c, 1.5% contribution) has the tips at de + di = 2.89 Å.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H and H⋯O/O⋯H interactions in Fig. 5a–b, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies are calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The evaluation of the energies indicates that the stabilizations in the title compound are dominated by the dispersion energy contributions.
6. DFT calculations
The optimized structure (Fig. 6) of the title compound was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–31 G(d) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 2). As is common in these studies, there are differences between the observed and calculated values because the former pertain to the solid state while the latter are for an isolated molecule in the gas phase. The correlation graphs based on the calculations of the bond lengths and angles for comparison with the experimental results are shown in Fig. 7a and b, respectively. The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity and it is characterized as soft. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge exchange collaboration inside the studied material, (χ), hardness (η), potential (μ), (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is to evaluate both the reactivity and stability. The HOMO and LUMO energy levels are shown in Fig. 8. The HOMO is localized in the plane extending over the whole cholesteryl heptanoate ring, while the LUMO is localized on the oxygens and their surrounding atoms. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is 6.49 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −7.05 and −0.56 eV, respectively.
|
|
The molecular electrical potential surfaces or electrostatic , where the negative electrostatic potential formed around O1 and O2 atoms and positive potential (green) formed around the hydrogen atoms. The MEP values of atoms O1 and O2 are −0.050 and −0.017 a.u., respectively. Thus, atoms O1 and O2 are the most appropriate ones for electrophilic attacks while H atoms are more appropriate for nucleophilic attacks.
maps illustrate the charge distributions of the molecules in three dimensions, allowing one to visualize variably charged regions of the molecule, which may be used to determine how molecules interact with one another. Electrostatic potential maps (MEPs) are invaluable in predicting the behaviour of complex molecules. The MEP of the title compound is shown in Fig. 97. Database survey
Cholesterol and its ; Goheen et al., 1977; Bush et al., 1980; Di Vizio et al., 2008; Ikonen, 2008. For the first (EPR) study of free radicals in X-ray-irradiated powdered cholesterol, hormones and vitamins, see: Rexroad & Gordy, 1959. For gamma-irradiated sterol groups studied at low temperatures, see: Sevilla et al., 1986. For EPR and electron-nuclear double resonance (ENDOR) studies to elucidate the structure of free radicals formed in gamma-irradiated single crystals of selected see: Smaller & Matheson, 1958; Krzyminiewski, Hafez et al., 1987; Krzyminiewski et al., 1990; Szyczewski & Möbius, 1994; Szyczewski, 1996; Szyczewski et al., 1998; Çalişkan et al., 2004; Szyczewski et al., 2005; Sayin et al., 2011. For EPR studies of cholesteryl heptanoate, see: Sayin et al., 2013.
take part significantly in many biological mechanisms, being important components for the manufacture of bile acids, steroid hormones and several fat-soluble vitamins. For the numerous experimental investigations, see: Faiman & Larsson, 19768. Synthesis and crystallization
The white fine crystalline powder of cholesteryl heptanoate (C34H58O2) was purchased from Merck, and single crystals were grown by slow evaporation of a concentrated ethyl acetate solution.
9. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for methylene and methine H atoms.
details are summarized in Table 4Supporting information
CCDC reference: 2087356
https://doi.org/10.1107/S2056989021005661/mw2174sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005661/mw2174Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).C34H58O2 | F(000) = 556 |
Mr = 498.80 | Dx = 1.073 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0622 (3) Å | Cell parameters from 5761 reflections |
b = 9.2715 (2) Å | θ = 2.2–27.3° |
c = 13.8140 (4) Å | µ = 0.06 mm−1 |
β = 92.306 (2)° | T = 120 K |
V = 1543.63 (7) Å3 | Plate, colourless |
Z = 2 | 0.30 × 0.22 × 0.09 mm |
Bruker APEXII QUAZAR three-circle diffractometer | Rint = 0.041 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 27.5°, θmin = 1.5° |
φ and ω scans | h = −15→15 |
15024 measured reflections | k = −12→12 |
6805 independent reflections | l = −17→17 |
6079 reflections with I > 2σ(I) |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1758P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.118 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.24 e Å−3 |
6805 reflections | Δρmin = −0.22 e Å−3 |
331 parameters | Absolute structure: Flack xdetermined using 2417 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.3 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.88629 (14) | 0.64631 (18) | 0.15841 (13) | 0.0314 (4) | |
O2 | 0.91179 (18) | 0.8775 (2) | 0.11617 (18) | 0.0518 (6) | |
C1 | 1.4569 (2) | 0.5375 (3) | −0.03304 (19) | 0.0381 (6) | |
H1A | 1.504609 | 0.496801 | −0.079854 | 0.057* | |
H1B | 1.431548 | 0.462591 | 0.008619 | 0.057* | |
H1C | 1.497197 | 0.608290 | 0.004961 | 0.057* | |
C2 | 1.3584 (2) | 0.6081 (3) | −0.08471 (17) | 0.0316 (5) | |
H2A | 1.320002 | 0.536527 | −0.124748 | 0.038* | |
H2B | 1.385067 | 0.682562 | −0.127298 | 0.038* | |
C3 | 1.2763 (2) | 0.6752 (3) | −0.01697 (17) | 0.0330 (6) | |
H3A | 1.251610 | 0.601733 | 0.027306 | 0.040* | |
H3B | 1.313740 | 0.749700 | 0.021227 | 0.040* | |
C4 | 1.1761 (2) | 0.7401 (3) | −0.06989 (18) | 0.0308 (5) | |
H4A | 1.140592 | 0.665786 | −0.109617 | 0.037* | |
H4B | 1.201347 | 0.814656 | −0.113085 | 0.037* | |
C5 | 1.0894 (2) | 0.8056 (3) | −0.00503 (19) | 0.0304 (5) | |
H5A | 1.124902 | 0.877278 | 0.036917 | 0.036* | |
H5B | 1.033294 | 0.854229 | −0.045343 | 0.036* | |
C6 | 1.0337 (2) | 0.6940 (3) | 0.0568 (2) | 0.0367 (6) | |
H6A | 1.006225 | 0.616313 | 0.015417 | 0.044* | |
H6B | 1.088515 | 0.653667 | 0.102419 | 0.044* | |
C7 | 0.9385 (2) | 0.7534 (3) | 0.1125 (2) | 0.0335 (6) | |
C8 | 0.79138 (19) | 0.6851 (3) | 0.21509 (17) | 0.0273 (5) | |
H8 | 0.804295 | 0.779292 | 0.245756 | 0.033* | |
C9 | 0.78323 (19) | 0.5697 (3) | 0.29241 (17) | 0.0261 (5) | |
H9A | 0.848991 | 0.572960 | 0.335142 | 0.031* | |
H9B | 0.780098 | 0.475481 | 0.261901 | 0.031* | |
C10 | 0.68089 (18) | 0.5910 (2) | 0.35138 (16) | 0.0220 (4) | |
C11 | 0.57079 (18) | 0.6073 (2) | 0.29501 (15) | 0.0205 (4) | |
C12 | 0.5379 (2) | 0.4598 (3) | 0.25045 (17) | 0.0267 (5) | |
H12A | 0.475360 | 0.471934 | 0.206043 | 0.040* | |
H12B | 0.518810 | 0.394491 | 0.301058 | 0.040* | |
H12C | 0.599259 | 0.421289 | 0.216544 | 0.040* | |
C13 | 0.58615 (19) | 0.7181 (3) | 0.21267 (16) | 0.0247 (5) | |
H13A | 0.519863 | 0.717802 | 0.170516 | 0.030* | |
H13B | 0.593196 | 0.813491 | 0.241059 | 0.030* | |
C14 | 0.68645 (19) | 0.6904 (3) | 0.15136 (17) | 0.0278 (5) | |
H14A | 0.676936 | 0.599652 | 0.117096 | 0.033* | |
H14B | 0.692363 | 0.766606 | 0.103719 | 0.033* | |
C15 | 0.69011 (18) | 0.5926 (2) | 0.44767 (16) | 0.0242 (5) | |
H15 | 0.760872 | 0.583827 | 0.476350 | 0.029* | |
C16 | 0.59494 (18) | 0.6076 (3) | 0.51323 (15) | 0.0249 (5) | |
H16A | 0.596925 | 0.703036 | 0.542050 | 0.030* | |
H16B | 0.603350 | 0.537672 | 0.565224 | 0.030* | |
C17 | 0.48277 (18) | 0.5853 (2) | 0.46075 (15) | 0.0205 (4) | |
H17 | 0.471506 | 0.481913 | 0.449347 | 0.025* | |
C18 | 0.47990 (17) | 0.6643 (2) | 0.36225 (15) | 0.0195 (4) | |
H18 | 0.498642 | 0.765154 | 0.376379 | 0.023* | |
C19 | 0.36285 (18) | 0.6654 (3) | 0.31454 (15) | 0.0241 (5) | |
H19A | 0.344502 | 0.568507 | 0.292694 | 0.029* | |
H19B | 0.362694 | 0.727231 | 0.257918 | 0.029* | |
C20 | 0.27255 (18) | 0.7178 (3) | 0.38188 (16) | 0.0237 (5) | |
H20A | 0.285173 | 0.818564 | 0.397559 | 0.028* | |
H20B | 0.200528 | 0.709896 | 0.348451 | 0.028* | |
C21 | 0.27233 (17) | 0.6294 (2) | 0.47595 (15) | 0.0199 (4) | |
C22 | 0.2384 (2) | 0.4731 (2) | 0.45499 (18) | 0.0269 (5) | |
H22A | 0.166143 | 0.471404 | 0.423254 | 0.040* | |
H22B | 0.236660 | 0.420533 | 0.514769 | 0.040* | |
H22C | 0.291140 | 0.429430 | 0.413806 | 0.040* | |
C23 | 0.39003 (17) | 0.6415 (2) | 0.52227 (14) | 0.0196 (4) | |
H23 | 0.404155 | 0.744866 | 0.531215 | 0.024* | |
C24 | 0.3794 (2) | 0.5788 (3) | 0.62369 (16) | 0.0272 (5) | |
H24A | 0.436235 | 0.617339 | 0.668192 | 0.033* | |
H24B | 0.385290 | 0.474515 | 0.622739 | 0.033* | |
C25 | 0.26318 (19) | 0.6266 (3) | 0.65246 (16) | 0.0266 (5) | |
H25A | 0.268795 | 0.698477 | 0.703457 | 0.032* | |
H25B | 0.221731 | 0.544824 | 0.675685 | 0.032* | |
C26 | 0.20397 (17) | 0.6915 (2) | 0.55966 (15) | 0.0210 (4) | |
H26 | 0.216305 | 0.795963 | 0.561267 | 0.025* | |
C27 | 0.07807 (18) | 0.6667 (3) | 0.55763 (15) | 0.0251 (5) | |
H27 | 0.065026 | 0.562329 | 0.557622 | 0.030* | |
C28 | 0.0200 (2) | 0.7293 (3) | 0.46669 (18) | 0.0342 (6) | |
H28A | −0.058932 | 0.724501 | 0.472814 | 0.051* | |
H28B | 0.040410 | 0.674760 | 0.411099 | 0.051* | |
H28C | 0.041967 | 0.828039 | 0.459043 | 0.051* | |
C29 | 0.02759 (19) | 0.7298 (3) | 0.64897 (17) | 0.0295 (5) | |
H29A | 0.076544 | 0.707596 | 0.704403 | 0.035* | |
H29B | 0.024675 | 0.833916 | 0.642601 | 0.035* | |
C30 | −0.08842 (19) | 0.6749 (3) | 0.66924 (16) | 0.0274 (5) | |
H30A | −0.139634 | 0.705361 | 0.617273 | 0.033* | |
H30B | −0.087729 | 0.570343 | 0.670378 | 0.033* | |
C31 | −0.1289 (2) | 0.7309 (3) | 0.76532 (18) | 0.0355 (6) | |
H31A | −0.117039 | 0.834280 | 0.767913 | 0.043* | |
H31B | −0.083762 | 0.687938 | 0.817400 | 0.043* | |
C32 | −0.2505 (2) | 0.7007 (3) | 0.78366 (17) | 0.0302 (5) | |
H32 | −0.295137 | 0.747125 | 0.731650 | 0.036* | |
C33 | −0.2788 (3) | 0.5422 (3) | 0.7824 (2) | 0.0433 (7) | |
H33A | −0.262037 | 0.501912 | 0.720684 | 0.065* | |
H33B | −0.356401 | 0.530157 | 0.793139 | 0.065* | |
H33C | −0.236003 | 0.493674 | 0.832650 | 0.065* | |
C34 | −0.2821 (3) | 0.7685 (4) | 0.8787 (2) | 0.0544 (9) | |
H34A | −0.266938 | 0.870126 | 0.877199 | 0.082* | |
H34B | −0.239742 | 0.724853 | 0.931153 | 0.082* | |
H34C | −0.359790 | 0.753511 | 0.887713 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0290 (9) | 0.0269 (9) | 0.0393 (10) | 0.0008 (7) | 0.0154 (7) | −0.0006 (7) |
O2 | 0.0526 (13) | 0.0282 (10) | 0.0772 (16) | 0.0055 (9) | 0.0329 (11) | 0.0059 (10) |
C1 | 0.0320 (14) | 0.0523 (17) | 0.0305 (13) | −0.0027 (12) | 0.0073 (11) | 0.0017 (12) |
C2 | 0.0344 (13) | 0.0339 (13) | 0.0269 (12) | −0.0017 (11) | 0.0082 (10) | 0.0022 (10) |
C3 | 0.0293 (12) | 0.0445 (15) | 0.0253 (11) | −0.0018 (11) | 0.0048 (9) | 0.0024 (11) |
C4 | 0.0330 (13) | 0.0312 (13) | 0.0287 (12) | −0.0034 (10) | 0.0087 (10) | 0.0065 (10) |
C5 | 0.0315 (13) | 0.0260 (12) | 0.0339 (13) | −0.0021 (10) | 0.0053 (10) | 0.0026 (10) |
C6 | 0.0329 (13) | 0.0294 (13) | 0.0492 (15) | 0.0020 (11) | 0.0183 (11) | 0.0053 (12) |
C7 | 0.0314 (13) | 0.0293 (13) | 0.0406 (14) | −0.0007 (10) | 0.0104 (11) | 0.0020 (11) |
C8 | 0.0262 (11) | 0.0255 (11) | 0.0309 (12) | 0.0001 (10) | 0.0114 (9) | −0.0057 (10) |
C9 | 0.0222 (11) | 0.0281 (12) | 0.0281 (11) | 0.0011 (9) | 0.0028 (9) | −0.0035 (9) |
C10 | 0.0224 (11) | 0.0172 (10) | 0.0265 (11) | 0.0008 (8) | 0.0039 (8) | −0.0032 (8) |
C11 | 0.0219 (10) | 0.0204 (11) | 0.0195 (10) | −0.0006 (8) | 0.0029 (8) | −0.0028 (8) |
C12 | 0.0285 (12) | 0.0244 (11) | 0.0275 (12) | −0.0006 (9) | 0.0035 (9) | −0.0071 (9) |
C13 | 0.0279 (11) | 0.0252 (12) | 0.0215 (10) | 0.0042 (9) | 0.0057 (9) | −0.0004 (9) |
C14 | 0.0328 (12) | 0.0281 (12) | 0.0231 (11) | 0.0027 (10) | 0.0097 (9) | −0.0008 (9) |
C15 | 0.0196 (10) | 0.0251 (11) | 0.0279 (11) | 0.0010 (9) | −0.0007 (8) | −0.0013 (9) |
C16 | 0.0249 (11) | 0.0302 (12) | 0.0197 (10) | 0.0039 (10) | 0.0012 (8) | −0.0003 (9) |
C17 | 0.0223 (10) | 0.0193 (10) | 0.0201 (10) | 0.0020 (8) | 0.0031 (8) | −0.0001 (8) |
C18 | 0.0220 (10) | 0.0184 (10) | 0.0183 (10) | 0.0003 (8) | 0.0030 (8) | −0.0018 (8) |
C19 | 0.0237 (11) | 0.0301 (12) | 0.0185 (10) | 0.0015 (9) | 0.0020 (8) | 0.0010 (9) |
C20 | 0.0214 (10) | 0.0275 (12) | 0.0222 (10) | 0.0025 (9) | 0.0014 (8) | 0.0010 (9) |
C21 | 0.0201 (10) | 0.0202 (10) | 0.0196 (10) | 0.0004 (8) | 0.0018 (8) | −0.0010 (8) |
C22 | 0.0282 (12) | 0.0242 (12) | 0.0289 (12) | −0.0014 (9) | 0.0077 (9) | −0.0052 (9) |
C23 | 0.0218 (10) | 0.0189 (10) | 0.0182 (10) | 0.0024 (8) | 0.0021 (8) | 0.0001 (8) |
C24 | 0.0290 (12) | 0.0309 (12) | 0.0218 (11) | 0.0071 (10) | 0.0040 (9) | 0.0045 (9) |
C25 | 0.0296 (12) | 0.0307 (12) | 0.0198 (10) | 0.0046 (10) | 0.0046 (9) | 0.0023 (9) |
C26 | 0.0231 (10) | 0.0205 (10) | 0.0197 (10) | 0.0017 (9) | 0.0021 (8) | −0.0011 (8) |
C27 | 0.0236 (11) | 0.0284 (12) | 0.0237 (11) | −0.0004 (9) | 0.0054 (8) | −0.0043 (9) |
C28 | 0.0238 (12) | 0.0484 (16) | 0.0306 (13) | 0.0023 (11) | 0.0035 (9) | −0.0017 (11) |
C29 | 0.0250 (11) | 0.0375 (14) | 0.0265 (12) | 0.0007 (10) | 0.0060 (9) | −0.0080 (10) |
C30 | 0.0272 (11) | 0.0301 (12) | 0.0252 (11) | 0.0006 (10) | 0.0061 (9) | −0.0047 (10) |
C31 | 0.0302 (13) | 0.0496 (16) | 0.0273 (12) | −0.0016 (11) | 0.0078 (10) | −0.0125 (11) |
C32 | 0.0317 (12) | 0.0334 (13) | 0.0262 (11) | 0.0029 (10) | 0.0095 (9) | 0.0004 (10) |
C33 | 0.0514 (17) | 0.0420 (16) | 0.0376 (15) | −0.0039 (13) | 0.0157 (13) | −0.0029 (12) |
C34 | 0.0498 (18) | 0.061 (2) | 0.0543 (19) | −0.0098 (15) | 0.0281 (15) | −0.0249 (16) |
O1—C7 | 1.348 (3) | C18—C19 | 1.534 (3) |
O1—C8 | 1.458 (2) | C18—H18 | 0.9800 |
O2—C7 | 1.196 (3) | C19—C20 | 1.539 (3) |
C1—C2 | 1.510 (4) | C19—H19A | 0.9700 |
C1—H1A | 0.9600 | C19—H19B | 0.9700 |
C1—H1B | 0.9600 | C20—C21 | 1.536 (3) |
C1—H1C | 0.9600 | C20—H20A | 0.9700 |
C2—C3 | 1.523 (3) | C20—H20B | 0.9700 |
C2—H2A | 0.9700 | C21—C22 | 1.530 (3) |
C2—H2B | 0.9700 | C21—C23 | 1.538 (3) |
C3—C4 | 1.512 (4) | C21—C26 | 1.557 (3) |
C3—H3A | 0.9700 | C22—H22A | 0.9600 |
C3—H3B | 0.9700 | C22—H22B | 0.9600 |
C4—C5 | 1.530 (3) | C22—H22C | 0.9600 |
C4—H4A | 0.9700 | C23—C24 | 1.527 (3) |
C4—H4B | 0.9700 | C23—H23 | 0.9800 |
C5—C6 | 1.516 (3) | C24—C25 | 1.538 (3) |
C5—H5A | 0.9700 | C24—H24A | 0.9700 |
C5—H5B | 0.9700 | C24—H24B | 0.9700 |
C6—C7 | 1.510 (3) | C25—C26 | 1.563 (3) |
C6—H6A | 0.9700 | C25—H25A | 0.9700 |
C6—H6B | 0.9700 | C25—H25B | 0.9700 |
C8—C14 | 1.513 (3) | C26—C27 | 1.535 (3) |
C8—C9 | 1.518 (3) | C26—H26 | 0.9800 |
C8—H8 | 0.9800 | C27—C28 | 1.528 (3) |
C9—C10 | 1.519 (3) | C27—C29 | 1.539 (3) |
C9—H9A | 0.9700 | C27—H27 | 0.9800 |
C9—H9B | 0.9700 | C28—H28A | 0.9600 |
C10—C15 | 1.330 (3) | C28—H28B | 0.9600 |
C10—C11 | 1.520 (3) | C28—H28C | 0.9600 |
C11—C12 | 1.545 (3) | C29—C30 | 1.525 (3) |
C11—C13 | 1.549 (3) | C29—H29A | 0.9700 |
C11—C18 | 1.558 (3) | C29—H29B | 0.9700 |
C12—H12A | 0.9600 | C30—C31 | 1.523 (3) |
C12—H12B | 0.9600 | C30—H30A | 0.9700 |
C12—H12C | 0.9600 | C30—H30B | 0.9700 |
C13—C14 | 1.526 (3) | C31—C32 | 1.524 (3) |
C13—H13A | 0.9700 | C31—H31A | 0.9700 |
C13—H13B | 0.9700 | C31—H31B | 0.9700 |
C14—H14A | 0.9700 | C32—C33 | 1.509 (4) |
C14—H14B | 0.9700 | C32—C34 | 1.518 (4) |
C15—C16 | 1.497 (3) | C32—H32 | 0.9800 |
C15—H15 | 0.9300 | C33—H33A | 0.9600 |
C16—C17 | 1.523 (3) | C33—H33B | 0.9600 |
C16—H16A | 0.9700 | C33—H33C | 0.9600 |
C16—H16B | 0.9700 | C34—H34A | 0.9600 |
C17—C23 | 1.524 (3) | C34—H34B | 0.9600 |
C17—C18 | 1.544 (3) | C34—H34C | 0.9600 |
C17—H17 | 0.9800 | ||
O2···C14 | 3.277 (2) | H4B···H9Bi | 2.56 |
O2···H5A | 2.83 | H5A···H33Cvii | 2.45 |
O2···H5B | 2.73 | H5B···H6Ai | 2.51 |
O2···H8 | 2.43 | H8···H13B | 2.56 |
O2···H14B | 2.84 | H9A···H15 | 2.26 |
O2···H4Ai | 2.75 | H9A···H28Av | 2.58 |
C20···C28 | 3.309 (2) | H9B···H12C | 2.30 |
C22···C28 | 3.556 (2) | H9B···H14A | 2.58 |
C3···H6B | 2.86 | H12A···H13A | 2.40 |
C6···H3A | 2.81 | H12A···H19A | 2.21 |
C7···H14B | 2.97 | H12B···H17 | 2.30 |
C9···H12C | 2.78 | H12C···H14A | 2.37 |
C12···H17 | 2.90 | H13A···H19B | 2.29 |
C12···H9B | 2.92 | H13B···H18 | 2.27 |
C12···H14A | 2.85 | H13B···H24Bvii | 2.41 |
C12···H19A | 2.63 | H14B···H34Bviii | 2.58 |
C13···H19B | 2.79 | H15···H28Av | 2.54 |
C14···H12C | 2.87 | H15···H30Av | 2.51 |
C15···H18 | 2.95 | H16A···H18 | 2.60 |
C15···H26ii | 2.98 | H16A···H23 | 2.36 |
C16···H24A | 2.93 | H16A···H22Cvii | 2.56 |
C17···H12B | 2.87 | H16B···H20Aii | 2.48 |
C17···H22C | 2.78 | H17···H22C | 2.26 |
C19···H22C | 2.74 | H18···H23 | 2.47 |
C19···H12A | 2.73 | H18···H24Bvii | 2.39 |
C19···H13A | 2.84 | H19A···H22C | 2.23 |
C20···H28B | 2.87 | H20A···H23 | 2.39 |
C21···H28B | 2.93 | H20A···H26 | 2.45 |
C22···H19A | 2.77 | H20A···H33Aix | 2.37 |
C22···H24B | 2.86 | H20B···H22A | 2.48 |
C22···H30Aiii | 2.91 | H20B···H28B | 2.17 |
C22···H27 | 2.70 | H22A···H27 | 2.41 |
C22···H17 | 2.82 | H22A···H28B | 2.42 |
C24···H16B | 2.88 | H22A···H30Aiii | 2.55 |
C24···H22B | 2.68 | H22B···H24B | 2.34 |
C25···H22B | 2.71 | H22B···H25B | 2.52 |
C25···H29A | 2.51 | H22B···H27 | 2.54 |
C27···H22A | 2.83 | H23···H26 | 2.37 |
C28···H20B | 2.78 | H25A···H29A | 2.32 |
C28···H30A | 2.90 | H25B···H27 | 2.45 |
C29···H25B | 2.91 | H25B···H29A | 2.36 |
C30···H28A | 2.79 | H26···H28C | 2.50 |
C30···H33A | 2.75 | H27···H30B | 2.46 |
C33···H30B | 2.84 | H27···H28Ciii | 2.53 |
H1A···H33Biv | 2.49 | H28A···H30A | 2.26 |
H1B···H3A | 2.55 | H28C···H29B | 2.55 |
H1B···H34Cii | 2.58 | H29A···H31B | 2.54 |
H1C···H3B | 2.59 | H29B···H28C | 2.55 |
H1C···H13Av | 2.51 | H29B···H31A | 2.48 |
H2A···H4A | 2.49 | H30A···H32 | 2.53 |
H2A···H14Bvi | 2.52 | H30B···H33A | 2.33 |
H2B···H4B | 2.55 | H31A···H34A | 2.42 |
H2B···H12Ci | 2.54 | H31B···H33C | 2.59 |
H3A···H6B | 2.31 | H31B···H34B | 2.52 |
H3A···H34Aii | 2.52 | H33B···H34C | 2.45 |
H3B···H5A | 2.58 | H33C···H34B | 2.54 |
H4A···H6A | 2.46 | ||
C7—O1—C8 | 117.58 (19) | C17—C18—H18 | 106.3 |
C2—C1—H1A | 109.5 | C11—C18—H18 | 106.3 |
C2—C1—H1B | 109.5 | C18—C19—C20 | 113.82 (17) |
H1A—C1—H1B | 109.5 | C18—C19—H19A | 108.8 |
C2—C1—H1C | 109.5 | C20—C19—H19A | 108.8 |
H1A—C1—H1C | 109.5 | C18—C19—H19B | 108.8 |
H1B—C1—H1C | 109.5 | C20—C19—H19B | 108.8 |
C1—C2—C3 | 113.9 (2) | H19A—C19—H19B | 107.7 |
C1—C2—H2A | 108.8 | C21—C20—C19 | 111.60 (18) |
C3—C2—H2A | 108.8 | C21—C20—H20A | 109.3 |
C1—C2—H2B | 108.8 | C19—C20—H20A | 109.3 |
C3—C2—H2B | 108.8 | C21—C20—H20B | 109.3 |
H2A—C2—H2B | 107.7 | C19—C20—H20B | 109.3 |
C4—C3—C2 | 113.1 (2) | H20A—C20—H20B | 108.0 |
C4—C3—H3A | 109.0 | C22—C21—C20 | 110.77 (18) |
C2—C3—H3A | 109.0 | C22—C21—C23 | 112.56 (18) |
C4—C3—H3B | 109.0 | C20—C21—C23 | 106.26 (17) |
C2—C3—H3B | 109.0 | C22—C21—C26 | 110.19 (18) |
H3A—C3—H3B | 107.8 | C20—C21—C26 | 116.73 (18) |
C3—C4—C5 | 115.3 (2) | C23—C21—C26 | 99.87 (16) |
C3—C4—H4A | 108.5 | C21—C22—H22A | 109.5 |
C5—C4—H4A | 108.5 | C21—C22—H22B | 109.5 |
C3—C4—H4B | 108.5 | H22A—C22—H22B | 109.5 |
C5—C4—H4B | 108.5 | C21—C22—H22C | 109.5 |
H4A—C4—H4B | 107.5 | H22A—C22—H22C | 109.5 |
C6—C5—C4 | 112.9 (2) | H22B—C22—H22C | 109.5 |
C6—C5—H5A | 109.0 | C17—C23—C24 | 118.16 (18) |
C4—C5—H5A | 109.0 | C17—C23—C21 | 115.40 (17) |
C6—C5—H5B | 109.0 | C24—C23—C21 | 104.12 (17) |
C4—C5—H5B | 109.0 | C17—C23—H23 | 106.1 |
H5A—C5—H5B | 107.8 | C24—C23—H23 | 106.1 |
C7—C6—C5 | 113.7 (2) | C21—C23—H23 | 106.1 |
C7—C6—H6A | 108.8 | C23—C24—C25 | 103.79 (18) |
C5—C6—H6A | 108.8 | C23—C24—H24A | 111.0 |
C7—C6—H6B | 108.8 | C25—C24—H24A | 111.0 |
C5—C6—H6B | 108.8 | C23—C24—H24B | 111.0 |
H6A—C6—H6B | 107.7 | C25—C24—H24B | 111.0 |
O2—C7—O1 | 123.8 (2) | H24A—C24—H24B | 109.0 |
O2—C7—C6 | 125.7 (2) | C24—C25—C26 | 106.87 (17) |
O1—C7—C6 | 110.5 (2) | C24—C25—H25A | 110.3 |
O1—C8—C14 | 110.61 (18) | C26—C25—H25A | 110.3 |
O1—C8—C9 | 106.15 (18) | C24—C25—H25B | 110.3 |
C14—C8—C9 | 110.85 (19) | C26—C25—H25B | 110.3 |
O1—C8—H8 | 109.7 | H25A—C25—H25B | 108.6 |
C14—C8—H8 | 109.7 | C27—C26—C21 | 118.94 (17) |
C9—C8—H8 | 109.7 | C27—C26—C25 | 112.11 (18) |
C8—C9—C10 | 111.26 (19) | C21—C26—C25 | 103.22 (17) |
C8—C9—H9A | 109.4 | C27—C26—H26 | 107.3 |
C10—C9—H9A | 109.4 | C21—C26—H26 | 107.3 |
C8—C9—H9B | 109.4 | C25—C26—H26 | 107.3 |
C10—C9—H9B | 109.4 | C28—C27—C26 | 112.24 (18) |
H9A—C9—H9B | 108.0 | C28—C27—C29 | 110.25 (19) |
C15—C10—C9 | 120.0 (2) | C26—C27—C29 | 110.60 (18) |
C15—C10—C11 | 123.19 (19) | C28—C27—H27 | 107.9 |
C9—C10—C11 | 116.77 (18) | C26—C27—H27 | 107.9 |
C10—C11—C12 | 108.74 (18) | C29—C27—H27 | 107.9 |
C10—C11—C13 | 108.31 (17) | C27—C28—H28A | 109.5 |
C12—C11—C13 | 109.31 (18) | C27—C28—H28B | 109.5 |
C10—C11—C18 | 110.47 (17) | H28A—C28—H28B | 109.5 |
C12—C11—C18 | 111.26 (18) | C27—C28—H28C | 109.5 |
C13—C11—C18 | 108.70 (17) | H28A—C28—H28C | 109.5 |
C11—C12—H12A | 109.5 | H28B—C28—H28C | 109.5 |
C11—C12—H12B | 109.5 | C30—C29—C27 | 114.8 (2) |
H12A—C12—H12B | 109.5 | C30—C29—H29A | 108.6 |
C11—C12—H12C | 109.5 | C27—C29—H29A | 108.6 |
H12A—C12—H12C | 109.5 | C30—C29—H29B | 108.6 |
H12B—C12—H12C | 109.5 | C27—C29—H29B | 108.6 |
C14—C13—C11 | 114.64 (18) | H29A—C29—H29B | 107.5 |
C14—C13—H13A | 108.6 | C31—C30—C29 | 112.0 (2) |
C11—C13—H13A | 108.6 | C31—C30—H30A | 109.2 |
C14—C13—H13B | 108.6 | C29—C30—H30A | 109.2 |
C11—C13—H13B | 108.6 | C31—C30—H30B | 109.2 |
H13A—C13—H13B | 107.6 | C29—C30—H30B | 109.2 |
C8—C14—C13 | 110.22 (18) | H30A—C30—H30B | 107.9 |
C8—C14—H14A | 109.6 | C30—C31—C32 | 115.3 (2) |
C13—C14—H14A | 109.6 | C30—C31—H31A | 108.5 |
C8—C14—H14B | 109.6 | C32—C31—H31A | 108.5 |
C13—C14—H14B | 109.6 | C30—C31—H31B | 108.5 |
H14A—C14—H14B | 108.1 | C32—C31—H31B | 108.5 |
C10—C15—C16 | 124.8 (2) | H31A—C31—H31B | 107.5 |
C10—C15—H15 | 117.6 | C33—C32—C34 | 110.4 (2) |
C16—C15—H15 | 117.6 | C33—C32—C31 | 113.3 (2) |
C15—C16—C17 | 112.80 (18) | C34—C32—C31 | 110.2 (2) |
C15—C16—H16A | 109.0 | C33—C32—H32 | 107.6 |
C17—C16—H16A | 109.0 | C34—C32—H32 | 107.6 |
C15—C16—H16B | 109.0 | C31—C32—H32 | 107.6 |
C17—C16—H16B | 109.0 | C32—C33—H33A | 109.5 |
H16A—C16—H16B | 107.8 | C32—C33—H33B | 109.5 |
C16—C17—C23 | 110.24 (17) | H33A—C33—H33B | 109.5 |
C16—C17—C18 | 110.06 (17) | C32—C33—H33C | 109.5 |
C23—C17—C18 | 109.77 (17) | H33A—C33—H33C | 109.5 |
C16—C17—H17 | 108.9 | H33B—C33—H33C | 109.5 |
C23—C17—H17 | 108.9 | C32—C34—H34A | 109.5 |
C18—C17—H17 | 108.9 | C32—C34—H34B | 109.5 |
C19—C18—C17 | 111.67 (17) | H34A—C34—H34B | 109.5 |
C19—C18—C11 | 113.81 (17) | C32—C34—H34C | 109.5 |
C17—C18—C11 | 111.91 (17) | H34A—C34—H34C | 109.5 |
C19—C18—H18 | 106.3 | H34B—C34—H34C | 109.5 |
C1—C2—C3—C4 | −177.7 (2) | C12—C11—C18—C17 | 76.1 (2) |
C2—C3—C4—C5 | 178.5 (2) | C13—C11—C18—C17 | −163.47 (18) |
C3—C4—C5—C6 | −65.4 (3) | C17—C18—C19—C20 | 50.5 (2) |
C4—C5—C6—C7 | −173.1 (2) | C11—C18—C19—C20 | 178.42 (19) |
C8—O1—C7—O2 | 0.5 (4) | C18—C19—C20—C21 | −55.4 (3) |
C8—O1—C7—C6 | −179.5 (2) | C19—C20—C21—C22 | −66.0 (2) |
C5—C6—C7—O2 | −5.8 (4) | C19—C20—C21—C23 | 56.5 (2) |
C5—C6—C7—O1 | 174.2 (2) | C19—C20—C21—C26 | 166.82 (18) |
C7—O1—C8—C14 | 85.5 (3) | C16—C17—C23—C24 | −57.6 (3) |
C7—O1—C8—C9 | −154.2 (2) | C18—C17—C23—C24 | −179.04 (19) |
O1—C8—C9—C10 | −175.13 (18) | C16—C17—C23—C21 | 178.27 (18) |
C14—C8—C9—C10 | −55.0 (2) | C18—C17—C23—C21 | 56.9 (2) |
C8—C9—C10—C15 | −129.1 (2) | C22—C21—C23—C17 | 61.6 (2) |
C8—C9—C10—C11 | 51.9 (3) | C20—C21—C23—C17 | −59.8 (2) |
C15—C10—C11—C12 | −107.8 (2) | C26—C21—C23—C17 | 178.40 (18) |
C9—C10—C11—C12 | 71.2 (2) | C22—C21—C23—C24 | −69.6 (2) |
C15—C10—C11—C13 | 133.5 (2) | C20—C21—C23—C24 | 168.99 (18) |
C9—C10—C11—C13 | −47.5 (2) | C26—C21—C23—C24 | 47.2 (2) |
C15—C10—C11—C18 | 14.6 (3) | C17—C23—C24—C25 | −165.15 (19) |
C9—C10—C11—C18 | −166.45 (19) | C21—C23—C24—C25 | −35.6 (2) |
C10—C11—C13—C14 | 49.6 (2) | C23—C24—C25—C26 | 9.7 (3) |
C12—C11—C13—C14 | −68.7 (2) | C22—C21—C26—C27 | −46.1 (3) |
C18—C11—C13—C14 | 169.67 (18) | C20—C21—C26—C27 | 81.3 (3) |
O1—C8—C14—C13 | 175.0 (2) | C23—C21—C26—C27 | −164.72 (19) |
C9—C8—C14—C13 | 57.6 (2) | C22—C21—C26—C25 | 78.7 (2) |
C11—C13—C14—C8 | −56.5 (3) | C20—C21—C26—C25 | −153.80 (19) |
C9—C10—C15—C16 | −177.8 (2) | C23—C21—C26—C25 | −39.9 (2) |
C11—C10—C15—C16 | 1.2 (4) | C24—C25—C26—C27 | 148.31 (19) |
C10—C15—C16—C17 | 13.7 (3) | C24—C25—C26—C21 | 19.1 (2) |
C15—C16—C17—C23 | −164.41 (19) | C21—C26—C27—C28 | −59.3 (3) |
C15—C16—C17—C18 | −43.2 (2) | C25—C26—C27—C28 | −179.7 (2) |
C16—C17—C18—C19 | −170.74 (18) | C21—C26—C27—C29 | 177.2 (2) |
C23—C17—C18—C19 | −49.2 (2) | C25—C26—C27—C29 | 56.7 (3) |
C16—C17—C18—C11 | 60.4 (2) | C28—C27—C29—C30 | 72.1 (3) |
C23—C17—C18—C11 | −178.14 (17) | C26—C27—C29—C30 | −163.2 (2) |
C10—C11—C18—C19 | −172.54 (18) | C27—C29—C30—C31 | 174.7 (2) |
C12—C11—C18—C19 | −51.7 (2) | C29—C30—C31—C32 | 170.8 (2) |
C13—C11—C18—C19 | 68.8 (2) | C30—C31—C32—C33 | 58.8 (3) |
C10—C11—C18—C17 | −44.8 (2) | C30—C31—C32—C34 | −176.9 (3) |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z+1; (iv) x+2, y, z−1; (v) x+1, y, z; (vi) −x+2, y−1/2, −z; (vii) −x+1, y+1/2, −z+1; (viii) x+1, y, z−1; (ix) −x, y+1/2, −z+1. |
Bonds/angles | X-ray | B3LYP/6-31G(d) |
O2—C7 | 1.196 (3) | 1.21334 |
O1—C7 | 1.348 (3) | 1.35309 |
O1—C8 | 1.458 (2) | 1.45445 |
C7—C6 | 1.510 (3) | 1.51813 |
C5—C6 | 1.516 (3) | 1.53121 |
C5—C4 | 1.530 (3) | 1.53654 |
C4—C3 | 1.512 (4) | 1.53569 |
C3—C2 | 1.523 (3) | 1.53425 |
C1—C2 | 1.510 (4) | 1.53213 |
C8—C14 | 1.513 (3) | 1.52760 |
C8—C9 | 1.518 (3) | 1.52497 |
C10—C9 | 1.519 (3) | 1.53951 |
C11—C12 | 1.545 (3) | 1.54603 |
C11—C18 | 1.558 (3) | 1.56904 |
C17—C18 | 1.544 (3) | 1.55696 |
C22—C21 | 1.530 (3) | 1.54490 |
C23—C21 | 1.538 (3) | 1.55738 |
C24—C23 | 1.527 (3) | 1.55738 |
C24—C25 | 1.538 (3) | 1.55293 |
C26—C27 | 1.535 (3) | 1.55117 |
C28—C27 | 1.528 (3) | 1.53804 |
C29—C27 | 1.539 (3) | 1.54887 |
C29—C30 | 1.525 (3) | 1.53709 |
C31—C30 | 1.523 (3) | 1.53617 |
C31—C32 | 1.524 (3) | 1.54188 |
C33—C32 | 1.509 (4) | 1.53652 |
C34—C32 | 1.518 (4) | 1.53610 |
C1—C2—C3 | 113.9 (2) | 113.26388 |
C3—C4—C5 | 115.3 (2) | 114.95515 |
C5—C6—C7 | 113.7 (2) | 112.96691 |
C6—C7—O1 | 110.5 (2) | 110.59081 |
C7—O1—C8 | 117.58 (19) | 117.36016 |
C9—C8—C14 | 110.85 (19) | 111.83435 |
C10—C11—C13 | 108.31 (17) | 107.22354 |
C16—C17—C18 | 110.06 (17) | 111.14810 |
C18—C19—C20 | 113.82 (17) | 113.68808 |
C20—C21—C23 | 106.26 (17) | 106.65458 |
C23—C24—C25 | 103.79 (18) | 103.66681 |
C26—C27—C29 | 110.60 (18) | 110.09045 |
C29—C30—C31 | 112.0 (2) | 112.44335 |
C31—C32—C33 | 113.3 (2) | 112.54400 |
C31—C32—C34 | 110.2 (2) | 110.56977 |
C1—C2—C3—C4 | -177.7 (2) | 179.78287 |
C6—C7—O1—C8 | -179.5 (2) | 179.67988 |
C9—C10—C11—C18 | -166.45 (19) | 164.70017 |
C16—C17—C23—C24 | -57.6 (3) | -53.53645 |
C25—C26—C27—C29 | 56.7 (3) | 58.14095 |
C29—C30—C31—C32 | 170.8 (2) | 174.94079 |
C30—C31—C32—C33 | 58.8 (3) | 63.49014 |
C30—C31—C32—C34 | -176.9 (3) | -172.43112 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | -40334.80 |
EHOMO (eV) | -7.05 |
ELUMO (eV) | -0.56 |
Gap, ΔE (eV) | 6.49 |
Dipole moment, µ (Debye) | -4.07 |
Ionisation potential, I (eV) | 7.05 |
Electron affinity, A | 0.56 |
Electronegativity, χ | 4.06 |
Hardness, η | 2.14 |
Electrophilicity index, ω | 3.85 |
Softness, σ | 0.23 |
Fraction of electron transferred, ΔN | 0.49 |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101–111. CAS Google Scholar
Çalişkan, B., Aras, E., Aşik, B., Büyüm, M. & Birey, M. (2004). Radiat. Eff. Defects Solids, 159, 1–5. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Di Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633–639. CrossRef CAS Google Scholar
Faiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3–7. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Goheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253–262. CrossRef CAS Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Ikonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125–138. Web of Science CrossRef PubMed CAS Google Scholar
Krzyminiewski, R., Hafez, A. M., Szyczewski, A. & Pietrzak, J. (1987). J. Mol. Struct. 160, 127–133. CrossRef CAS Web of Science Google Scholar
Krzyminiewski, R., Pietrzak, J. & Konopka, R. (1990). J. Mol. Struct. 240, 133–140. CrossRef CAS Web of Science Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rexroad, H. N. & Gordy, W. (1959). Proc. Natl Acad. Sci. USA, 45, 256–269. CrossRef PubMed CAS Web of Science Google Scholar
Sayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70–73. CrossRef CAS Google Scholar
Sayin, U., Yüksel, H. & Birey, M. (2011). Radiat. Phys. Chem. 80, 1203–1207. Web of Science CrossRef CAS Google Scholar
Sevilla, C. L., Becker, D. & Sevilla, M. D. (1986). J. Phys. Chem. 90, 2963–2968. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smaller, B. & Matheson, M. S. (1958). J. Chem. Phys. 28, 1169–1178. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Szyczewski, A. (1996). Appl. Radiat. Isot. 47, 1675–1681. CrossRef CAS PubMed Web of Science Google Scholar
Szyczewski, A., Endeward, B. & Möbius, K. (1998). Appl. Radiat. Isot. 49, 59–65. Web of Science CrossRef CAS PubMed Google Scholar
Szyczewski, A. & Möbius, K. (1994). J. Mol. Struct. 318, 87–93. CrossRef CAS Web of Science Google Scholar
Szyczewski, A., Pietrzak, J. & Möbius, K. (2005). Acta Phys. Pol. A, 108, 119–126. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.