research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indoline-3,4′-pyran]-3′-carboxyl­ate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad Sci Republ Tadzhikistan, Kh Yu Yusufbekov Pamir Biol Inst, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 June 2021; accepted 21 June 2021; online 25 June 2021)

The mol­ecular conformation of the title compound, C17H14ClN3O4, is stabilized by an intra­molecular C—H⋯O contact, forming an S(6) ring motif. In the crystal, the mol­ecules are connected by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with R22(8) and R22(14) ring motifs and as ribbons formed by inter­molecular C—H⋯N hydrogen bonds. There are weak van der Waals inter­actions between the ribbons. The most important contributions to the surface contacts are from H⋯H (34.9%), O⋯H/H⋯O (19.2%), C⋯H/H⋯C (11.9%), Cl⋯H/H⋯Cl (10.7%) and N⋯H/H⋯N (10.4%) inter­actions, as concluded from a Hirshfeld surface analysis.

1. Chemical context

Being the most significant tools in organic synthesis, carbon–carbon and carbon–heteroatom coupling reactions are important for the construction of fine chemicals such as pharmaceuticals, fragrances, anti­oxidants, etc. (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). These methods have found widespread application in the design of diverse heterocyclic ring systems, as well as spiro-heterocyclic compounds (Gurbanov et al., 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Maharramov et al., 2019[Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]). The spiro­oxindole moiety is a key bioactive fragment of various natural products (Fig. 1[link]), series of derivatives already being used in medicinal practice (Zhou et al., 2020[Zhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603-625.]).

[Scheme 1]
[Figure 1]
Figure 1
Natural products containing the spiro­oxindole motif.

In this work, in the framework of our ongoing structural studies (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.], 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indoline-3,4′-pyran]-3′-carb­oxy­l­ate.

2. Structural commentary

In the title compound (Fig. 2[link]), the 2,3-di­hydro-1H-indole ring system (N1/C1/C4/C12–C17) is nearly planar [maximum deviation = 0.039 (1) Å for C1], while the 4H-pyran ring (O1/C2–C6) adopts a flattened-boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): QT = 0.1091 (13) Å, θ = 77.0 (6) ° and φ = 139.6 (7) °]. The planes of the 2,3-di­hydro-1H-indole ring system and the 4H-pyran ring are approximately perpendicular to each other, subtending a dihedral angle of 84.52 (5)°. The C5—C6—C11—Cl1, C6—C5—C8—O2, C6—C5—C8—O3, C5—C8—O3—C9 and C8—O3—C9—C10 torsion angles are −103.28 (13), −29.78 (18), 150.69 (11), 178.03 (10) and −169.29 (12)°, respectively. An intra­molecular C11—H11B⋯O2 contact stabilizes the mol­ecular conformation of the title compound (Fig. 2[link], Table 1[link]), generating an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.853 (17) 1.981 (17) 2.8292 (14) 173.0 (17)
N2—H2B⋯O4ii 0.887 (18) 2.095 (18) 2.9636 (15) 166.0 (17)
C11—H11B⋯O2 0.99 2.15 2.9039 (17) 131
C13—H13⋯N7iii 0.95 2.56 3.333 (2) 138
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are joined by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with [R_{2}^{2}](8) and [R_{2}^{2}](14) ring motifs and by inter­molecular C—H⋯N hydrogen bonds as ribbons (Table 1[link]; Figs. 3[link] and 4[link]). Between the ribbons are only weak van der Waals contacts (Table 2[link]). There are no C—H⋯π or ππ inter­actions in the crystal structure.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O3⋯H15 2.88 −1 + x, y, z
H9A⋯Cl1 3.06 x, 1 − y, 2 − z
H2B⋯O4 2.095 x, 1 − y, 1 − z
H16⋯H11B 2.37 1 − x, 1 − y, 2 − z
H1⋯O4 1.981 x, −y, 1 − z
H16⋯H2A 2.49 1 − x, 1 − y, 1 − z
H13⋯N7 2.56 1 − x, −y, 1 − z
H10A⋯H11A 2.49 x, − 1 + y, z
H10A⋯C14 2.93 1 − x, −y, 2 − z
[Figure 3]
Figure 3
A view of the inter­molecular N—H⋯O and C—H⋯N hydrogen bonds in the crystal packing of the title compound down the a axis.
[Figure 4]
Figure 4
A view of the inter­molecular N—H⋯O and C—H⋯N hydrogen bonds in the crystal packing of the title compound down the b axis.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions (Tables 1[link] and 2[link]) qu­anti­tatively and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface plotted over dnorm in the range −0.6053 to 1.4079 a.u. is shown in Fig. 5[link]. The red spots on the Hirshfeld surface represent N—H⋯O contacts. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 6[link]. The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).

[Figure 5]
Figure 5
Hirshfeld surface of the title compound mapped with dnorm in the range −0.6053 to 1.4079 a.u.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

Fig. 7[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: the H⋯H (34.9%; Fig. 7[link]b) inter­actions are the major factor in the crystal packing with O⋯H/H⋯O (19.2%; Fig. 7[link]c), C⋯H/H⋯C (11.9%; Fig. 7[link]d), Cl⋯H/H⋯Cl (10.7%; Fig. 7[link]e) and N⋯H/H⋯N (10.4%; Fig. 7[link]f) inter­actions representing the next highest contributions. Other weak inter­actions (contribution percent­ages) are O⋯N/N⋯O (2.3%), O⋯C/C⋯O (2.1%), N⋯C/C⋯N (2.1%), Cl⋯N/N⋯Cl (1.7%), Cl⋯O/O⋯Cl (1.4%), C⋯C (1.0%), N⋯N (0.7%), O⋯O (0.6%), Cl⋯C/C⋯Cl (0.6%) and Cl⋯Cl (0.3%).

[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-amino-6-(chloro­meth­yl)-4H-pyran-3-carbo­nitrile as the main skeleton revealed the presence of three structures, ethyl 6-amino-2-(chloro­meth­yl)-5-cyano-4-(o-tol­yl)-4H-pyran-3-carb­oxyl­ate (CSD refcode HIRNUS; Athimoolam et al., 2007[Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680-o4681.]), 2-amino-6-chloro­methyl-3-cyano-5-eth­oxy­carbonyl-4-(2-fur­yl)-4H-pyran (JEGWEX; Lokaj et al., 1990[Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788-791.]) and ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indole-3,4′-pyran]-3′-carboxyl­ate (WIMBEC; Magerramov et al., 2018[Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731-1734.]).

In the crystal of HIRNUS, the six-membered pyran ring adopts a near-boat conformation. The crystal structure features two intra­molecular C—H⋯O inter­actions and the crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds. These lead to two primary motifs, viz. R22(12) and C(8). Combination of these primary motifs leads to a secondary [R_{2}^{2}](20) ring motif.

In the crystal of JEGWEX, a potential precursor for fluoro­quinoline synthesis, the pyran ring is nearly planar, with the most outlying atoms displaced from the best-plane fit through all non-H atoms by 0.163 (2) and 0.118 (2) Å. The mol­ecules are arranged in layers oriented parallel to the (011) plane. In addition, the mol­ecules are linked by a weak C—H⋯O hydrogen bond, which gives rise to chains with base vector [111].

In WIMBEC, the pyran ring exhibits a near-boat conformation with puckering parameters QT = 0.085 (7) Å, θ = 84 (5)° and φ = 154 (5)°. In the crystal, mol­ecules are linked as dimers by pairs of N—H⋯O hydrogen bonds, forming ribbons along the b-axis direction. These ribbons are connected by weak van der Waals inter­actions, stabilizing the mol­ecular packing.

6. Synthesis and crystallization

The title compound was synthesized using previously reported procedures (Luo et al., 2015[Luo, N.-H., Zheng, D.-G., Xie, G.-H., Yang, Y.-C. & Yang, L.-S. (2015). Huaxue Shiji, 37, 742-746.]; Magerramov et al., 2018[Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731-1734.]), and colourless needles were obtained upon recrystallization from methanol solution.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the NH and NH2 groups were located in a difference map, and their positional parameters were allowed to freely refine [N1—H1 = 0.853 (17), N2—H2A = 0.843 (19) and N2—H2B = 0.889 (18) Å], but their isotropic displacement parameters were constrained to take a value of 1.2Ueq(N). All H atoms bound to C atoms were positioned geometrically and refined as riding with C—H = 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. Four reflections, 0 0 1, 0 1 0, 1 0 0 and 1 2 0, affected by the incident beam-stop and owing to poor agreement between observed and calculated intensities, and five outliers, [\overline{1}] [\overline{3}] 3, 3 1 1, [\overline{1}] 1 4, [\overline{1}] [\overline{6}] 9 and 4 [\overline{11}] 2, were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C17H14ClN3O4
Mr 359.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0218 (2), 10.2278 (3), 10.6714 (3)
α, β, γ (°) 98.8503 (7), 108.0048 (7), 96.3852 (6)
V3) 810.92 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.903, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 18865, 5899, 4685
Rint 0.039
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.03
No. of reflections 5899
No. of parameters 236
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.63
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Ethyl 6'-amino-2'-(chloromethyl)-5'-cyano-2-oxo-1,2-dihydrospiro[indoline-3,4'-pyran]-3'-carboxylate top
Crystal data top
C17H14ClN3O4Z = 2
Mr = 359.76F(000) = 372
Triclinic, P1Dx = 1.473 Mg m3
a = 8.0218 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2278 (3) ÅCell parameters from 6340 reflections
c = 10.6714 (3) Åθ = 2.6–32.5°
α = 98.8503 (7)°µ = 0.26 mm1
β = 108.0048 (7)°T = 100 K
γ = 96.3852 (6)°Prism, colourless
V = 810.92 (4) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4685 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.6°
Tmin = 0.903, Tmax = 0.949h = 1212
18865 measured reflectionsk = 1515
5899 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.4187P]
where P = (Fo2 + 2Fc2)/3
5899 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00786 (5)0.62296 (4)0.86942 (4)0.03426 (11)
O10.20564 (12)0.57639 (8)0.66693 (9)0.01580 (17)
O20.34827 (14)0.39501 (10)1.01602 (9)0.0221 (2)
O30.24269 (13)0.20082 (9)0.86649 (9)0.01705 (17)
O40.01410 (11)0.18103 (8)0.54781 (9)0.01560 (17)
N10.22730 (14)0.07160 (10)0.58525 (11)0.01426 (19)
H10.171 (2)0.0075 (17)0.5472 (17)0.017*
N20.20156 (16)0.58493 (11)0.45919 (12)0.0189 (2)
H2A0.198 (2)0.5484 (18)0.3819 (19)0.023*
H2B0.158 (2)0.6601 (18)0.4714 (18)0.023*
C10.14677 (15)0.18025 (11)0.59191 (11)0.0124 (2)
C20.23180 (15)0.51172 (11)0.55510 (12)0.0137 (2)
C30.28549 (15)0.38996 (11)0.54920 (12)0.0131 (2)
C40.29313 (15)0.30748 (11)0.65670 (11)0.01141 (19)
C50.27019 (15)0.39250 (11)0.77759 (11)0.01218 (19)
C60.23527 (15)0.51749 (12)0.77729 (12)0.0138 (2)
C70.32238 (18)0.33266 (13)0.43295 (13)0.0182 (2)
N70.3547 (2)0.28501 (14)0.33968 (13)0.0300 (3)
C80.29278 (15)0.33459 (12)0.90096 (12)0.0139 (2)
C90.2632 (2)0.12998 (14)0.97758 (14)0.0231 (3)
H9A0.17510.14911.02250.028*
H9B0.38400.15881.04460.028*
C100.2340 (3)0.01675 (15)0.91875 (16)0.0317 (3)
H10A0.24190.06840.98990.048*
H10B0.32510.03480.87790.048*
H10C0.11600.04310.85000.048*
C110.21988 (17)0.61386 (13)0.89102 (13)0.0187 (2)
H11A0.28430.70390.89600.022*
H11B0.27520.58480.97650.022*
C120.41277 (15)0.10561 (12)0.64735 (12)0.0137 (2)
C130.53735 (17)0.02074 (13)0.66518 (13)0.0181 (2)
H130.50370.07370.63490.022*
C140.71502 (17)0.08061 (14)0.72987 (13)0.0201 (2)
H140.80440.02550.74310.024*
C150.76464 (16)0.21894 (14)0.77546 (13)0.0188 (2)
H150.88660.25680.81890.023*
C160.63576 (16)0.30242 (12)0.75758 (12)0.0150 (2)
H160.66840.39680.78930.018*
C170.45955 (15)0.24390 (12)0.69254 (11)0.0126 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01877 (16)0.0398 (2)0.0354 (2)0.00475 (13)0.00875 (14)0.01772 (16)
O10.0210 (4)0.0116 (4)0.0157 (4)0.0066 (3)0.0060 (3)0.0028 (3)
O20.0293 (5)0.0206 (4)0.0140 (4)0.0004 (4)0.0064 (4)0.0013 (3)
O30.0244 (4)0.0127 (4)0.0150 (4)0.0044 (3)0.0067 (3)0.0042 (3)
O40.0128 (4)0.0121 (4)0.0196 (4)0.0027 (3)0.0029 (3)0.0014 (3)
N10.0146 (4)0.0092 (4)0.0171 (5)0.0030 (3)0.0032 (4)0.0006 (3)
N20.0264 (6)0.0154 (5)0.0196 (5)0.0099 (4)0.0099 (4)0.0080 (4)
C10.0139 (5)0.0103 (5)0.0128 (5)0.0022 (4)0.0041 (4)0.0020 (4)
C20.0137 (5)0.0124 (5)0.0157 (5)0.0032 (4)0.0052 (4)0.0033 (4)
C30.0152 (5)0.0114 (5)0.0137 (5)0.0037 (4)0.0055 (4)0.0030 (4)
C40.0125 (5)0.0091 (4)0.0129 (5)0.0029 (4)0.0044 (4)0.0021 (4)
C50.0114 (5)0.0124 (5)0.0121 (5)0.0021 (4)0.0037 (4)0.0009 (4)
C60.0136 (5)0.0130 (5)0.0135 (5)0.0029 (4)0.0032 (4)0.0010 (4)
C70.0233 (6)0.0174 (5)0.0178 (6)0.0101 (5)0.0079 (5)0.0079 (4)
N70.0461 (8)0.0317 (6)0.0223 (6)0.0239 (6)0.0170 (6)0.0113 (5)
C80.0127 (5)0.0144 (5)0.0156 (5)0.0028 (4)0.0059 (4)0.0029 (4)
C90.0362 (7)0.0196 (6)0.0195 (6)0.0091 (5)0.0134 (5)0.0097 (5)
C100.0528 (10)0.0182 (6)0.0293 (7)0.0106 (6)0.0163 (7)0.0111 (6)
C110.0182 (5)0.0175 (5)0.0169 (5)0.0065 (4)0.0029 (4)0.0032 (4)
C120.0142 (5)0.0137 (5)0.0136 (5)0.0047 (4)0.0045 (4)0.0027 (4)
C130.0220 (6)0.0171 (5)0.0173 (6)0.0106 (4)0.0071 (5)0.0035 (4)
C140.0194 (6)0.0270 (6)0.0171 (6)0.0131 (5)0.0066 (5)0.0056 (5)
C150.0130 (5)0.0288 (6)0.0157 (5)0.0065 (4)0.0049 (4)0.0049 (5)
C160.0145 (5)0.0185 (5)0.0128 (5)0.0030 (4)0.0056 (4)0.0033 (4)
C170.0136 (5)0.0144 (5)0.0111 (5)0.0041 (4)0.0050 (4)0.0027 (4)
Geometric parameters (Å, º) top
Cl1—C111.7842 (13)C6—C111.4871 (17)
O1—C21.3595 (15)C7—N71.1550 (18)
O1—C61.3725 (14)C9—C101.497 (2)
O2—C81.2063 (15)C9—H9A0.9900
O3—C81.3417 (14)C9—H9B0.9900
O3—C91.4586 (15)C10—H10A0.9800
O4—C11.2308 (14)C10—H10B0.9800
N1—C11.3495 (14)C10—H10C0.9800
N1—C121.4064 (15)C11—H11A0.9900
N1—H10.853 (17)C11—H11B0.9900
N2—C21.3379 (15)C12—C131.3837 (16)
N2—H2A0.843 (19)C12—C171.3907 (16)
N2—H2B0.889 (18)C13—C141.3966 (19)
C1—C41.5592 (16)C13—H130.9500
C2—C31.3610 (15)C14—C151.393 (2)
C3—C71.4183 (17)C14—H140.9500
C3—C41.5156 (16)C15—C161.3995 (17)
C4—C51.5138 (16)C15—H150.9500
C4—C171.5183 (16)C16—C171.3840 (16)
C5—C61.3390 (16)C16—H160.9500
C5—C81.4944 (16)
C2—O1—C6119.01 (9)C10—C9—H9A110.3
C8—O3—C9115.95 (10)O3—C9—H9B110.3
C1—N1—C12111.77 (10)C10—C9—H9B110.3
C1—N1—H1123.4 (11)H9A—C9—H9B108.6
C12—N1—H1124.8 (11)C9—C10—H10A109.5
C2—N2—H2A118.0 (12)C9—C10—H10B109.5
C2—N2—H2B119.3 (11)H10A—C10—H10B109.5
H2A—N2—H2B120.6 (16)C9—C10—H10C109.5
O4—C1—N1126.32 (11)H10A—C10—H10C109.5
O4—C1—C4125.13 (10)H10B—C10—H10C109.5
N1—C1—C4108.42 (9)C6—C11—Cl1110.59 (9)
N2—C2—O1110.94 (10)C6—C11—H11A109.5
N2—C2—C3127.13 (11)Cl1—C11—H11A109.5
O1—C2—C3121.91 (10)C6—C11—H11B109.5
C2—C3—C7118.87 (11)Cl1—C11—H11B109.5
C2—C3—C4122.67 (10)H11A—C11—H11B108.1
C7—C3—C4118.26 (10)C13—C12—C17122.36 (11)
C5—C4—C3109.52 (9)C13—C12—N1128.15 (11)
C5—C4—C17112.86 (9)C17—C12—N1109.49 (10)
C3—C4—C17112.55 (9)C12—C13—C14116.79 (12)
C5—C4—C1113.49 (9)C12—C13—H13121.6
C3—C4—C1107.25 (9)C14—C13—H13121.6
C17—C4—C1100.85 (9)C15—C14—C13121.72 (11)
C6—C5—C8120.03 (10)C15—C14—H14119.1
C6—C5—C4121.88 (10)C13—C14—H14119.1
C8—C5—C4118.07 (9)C14—C15—C16120.36 (12)
C5—C6—O1123.81 (11)C14—C15—H15119.8
C5—C6—C11127.27 (11)C16—C15—H15119.8
O1—C6—C11108.91 (10)C17—C16—C15118.24 (11)
N7—C7—C3178.80 (14)C17—C16—H16120.9
O2—C8—O3123.11 (11)C15—C16—H16120.9
O2—C8—C5127.00 (11)C16—C17—C12120.53 (11)
O3—C8—C5109.89 (10)C16—C17—C4130.24 (11)
O3—C9—C10106.89 (11)C12—C17—C4109.23 (10)
O3—C9—H9A110.3
C12—N1—C1—O4179.07 (12)C2—O1—C6—C57.59 (17)
C12—N1—C1—C44.71 (13)C2—O1—C6—C11173.03 (10)
C6—O1—C2—N2178.30 (10)C9—O3—C8—O21.51 (17)
C6—O1—C2—C30.39 (17)C9—O3—C8—C5178.03 (10)
N2—C2—C3—C72.90 (19)C6—C5—C8—O229.78 (18)
O1—C2—C3—C7175.56 (11)C4—C5—C8—O2148.52 (12)
N2—C2—C3—C4171.94 (12)C6—C5—C8—O3150.69 (11)
O1—C2—C3—C49.61 (18)C4—C5—C8—O331.00 (14)
C2—C3—C4—C511.44 (15)C8—O3—C9—C10169.29 (12)
C7—C3—C4—C5173.69 (10)C5—C6—C11—Cl1103.28 (13)
C2—C3—C4—C17137.85 (12)O1—C6—C11—Cl176.07 (11)
C7—C3—C4—C1747.28 (14)C1—N1—C12—C13176.98 (12)
C2—C3—C4—C1112.13 (12)C1—N1—C12—C172.67 (14)
C7—C3—C4—C162.74 (13)C17—C12—C13—C140.81 (18)
O4—C1—C4—C558.07 (15)N1—C12—C13—C14179.59 (12)
N1—C1—C4—C5125.66 (10)C12—C13—C14—C150.58 (19)
O4—C1—C4—C363.02 (15)C13—C14—C15—C160.2 (2)
N1—C1—C4—C3113.24 (10)C14—C15—C16—C170.69 (18)
O4—C1—C4—C17179.05 (11)C15—C16—C17—C120.48 (17)
N1—C1—C4—C174.69 (12)C15—C16—C17—C4178.77 (11)
C3—C4—C5—C64.62 (15)C13—C12—C17—C160.29 (18)
C17—C4—C5—C6130.85 (11)N1—C12—C17—C16179.96 (10)
C1—C4—C5—C6115.19 (12)C13—C12—C17—C4179.68 (11)
C3—C4—C5—C8173.65 (9)N1—C12—C17—C40.65 (13)
C17—C4—C5—C847.42 (13)C5—C4—C17—C1656.14 (16)
C1—C4—C5—C866.54 (13)C3—C4—C17—C1668.46 (15)
C8—C5—C6—O1177.31 (10)C1—C4—C17—C16177.56 (12)
C4—C5—C6—O14.46 (18)C5—C4—C17—C12124.55 (10)
C8—C5—C6—C111.96 (18)C3—C4—C17—C12110.86 (11)
C4—C5—C6—C11176.28 (11)C1—C4—C17—C123.13 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.853 (17)1.981 (17)2.8292 (14)173.0 (17)
N2—H2B···O4ii0.887 (18)2.095 (18)2.9636 (15)166.0 (17)
C11—H11B···O20.992.152.9039 (17)131
C13—H13···N7iii0.952.563.333 (2)138
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O3···H152.88-1 + x, y, z
H9A···Cl13.06-x, 1 - y, 2 - z
H2B···O42.095-x, 1 - y, 1 - z
H16···H11B2.371 - x, 1 - y, 2 - z
H1···O41.981-x, -y, 1 - z
H16···H2A2.491 - x, 1 - y, 1 - z
H13···N72.561 - x, -y, 1 - z
H10A···H11A2.49x, - 1 + y, z
H10A···C142.931 - x, -y, 2 - z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, MMG and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, ATH, AAA and FNN; supervision, IGM and MA.;

Funding information

This work was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLuo, N.-H., Zheng, D.-G., Xie, G.-H., Yang, Y.-C. & Yang, L.-S. (2015). Huaxue Shiji, 37, 742–746.  CAS Google Scholar
First citationMagerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734.  CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603–625.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds