research communications
and Hirshfeld surface analysis of ethyl 6′-amino-2′-(chloromethyl)-5′-cyano-2-oxo-1,2-dihydrospiro[indoline-3,4′-pyran]-3′-carboxylate
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad Sci Republ Tadzhikistan, Kh Yu Yusufbekov Pamir Biol Inst, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
The molecular conformation of the title compound, C17H14ClN3O4, is stabilized by an intramolecular C—H⋯O contact, forming an S(6) ring motif. In the crystal, the molecules are connected by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with R22(8) and R22(14) ring motifs and as ribbons formed by intermolecular C—H⋯N hydrogen bonds. There are weak van der Waals interactions between the ribbons. The most important contributions to the surface contacts are from H⋯H (34.9%), O⋯H/H⋯O (19.2%), C⋯H/H⋯C (11.9%), Cl⋯H/H⋯Cl (10.7%) and N⋯H/H⋯N (10.4%) interactions, as concluded from a Hirshfeld surface analysis.
Keywords: crystal structure; spirooxindole; dimers; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2091350
1. Chemical context
Being the most significant tools in organic synthesis, carbon–carbon and carbon–heteroatom coupling reactions are important for the construction of fine chemicals such as pharmaceuticals, fragrances, antioxidants, etc. (Yadigarov et al., 2009; Khalilov et al., 2018a,b; Zubkov et al., 2018). These methods have found widespread application in the design of diverse heterocyclic ring systems, as well as spiro-heterocyclic compounds (Gurbanov et al., 2018; Maharramov et al., 2019; Mahmoudi et al., 2019; Mamedov et al., 2019; Yin et al., 2020). The spirooxindole moiety is a key bioactive fragment of various natural products (Fig. 1), series of derivatives already being used in medicinal practice (Zhou et al., 2020).
In this work, in the framework of our ongoing structural studies (Akkurt et al., 2018; Naghiyev et al., 2020, 2021), we report the and Hirshfeld surface analysis of the title compound, ethyl 6′-amino-2′-(chloromethyl)-5′-cyano-2-oxo-1,2-dihydrospiro[indoline-3,4′-pyran]-3′-carboxylate.
2. Structural commentary
In the title compound (Fig. 2), the 2,3-dihydro-1H-indole ring system (N1/C1/C4/C12–C17) is nearly planar [maximum deviation = 0.039 (1) Å for C1], while the 4H-pyran ring (O1/C2–C6) adopts a flattened-boat conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.1091 (13) Å, θ = 77.0 (6) ° and φ = 139.6 (7) °]. The planes of the 2,3-dihydro-1H-indole ring system and the 4H-pyran ring are approximately perpendicular to each other, subtending a dihedral angle of 84.52 (5)°. The C5—C6—C11—Cl1, C6—C5—C8—O2, C6—C5—C8—O3, C5—C8—O3—C9 and C8—O3—C9—C10 torsion angles are −103.28 (13), −29.78 (18), 150.69 (11), 178.03 (10) and −169.29 (12)°, respectively. An intramolecular C11—H11B⋯O2 contact stabilizes the molecular conformation of the title compound (Fig. 2, Table 1), generating an S(6) ring motif (Bernstein et al., 1995).
3. Supramolecular features
In the crystal, the molecules are joined by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with (8) and (14) ring motifs and by intermolecular C—H⋯N hydrogen bonds as ribbons (Table 1; Figs. 3 and 4). Between the ribbons are only weak van der Waals contacts (Table 2). There are no C—H⋯π or π–π interactions in the crystal structure.
|
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed to investigate the intermolecular interactions (Tables 1 and 2) quantitatively and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface plotted over dnorm in the range −0.6053 to 1.4079 a.u. is shown in Fig. 5. The red spots on the Hirshfeld surface represent N—H⋯O contacts. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 6. The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).
Fig. 7 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: the H⋯H (34.9%; Fig. 7b) interactions are the major factor in the crystal packing with O⋯H/H⋯O (19.2%; Fig. 7c), C⋯H/H⋯C (11.9%; Fig. 7d), Cl⋯H/H⋯Cl (10.7%; Fig. 7e) and N⋯H/H⋯N (10.4%; Fig. 7f) interactions representing the next highest contributions. Other weak interactions (contribution percentages) are O⋯N/N⋯O (2.3%), O⋯C/C⋯O (2.1%), N⋯C/C⋯N (2.1%), Cl⋯N/N⋯Cl (1.7%), Cl⋯O/O⋯Cl (1.4%), C⋯C (1.0%), N⋯N (0.7%), O⋯O (0.6%), Cl⋯C/C⋯Cl (0.6%) and Cl⋯Cl (0.3%).
5. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) using 2-amino-6-(chloromethyl)-4H-pyran-3-carbonitrile as the main skeleton revealed the presence of three structures, ethyl 6-amino-2-(chloromethyl)-5-cyano-4-(o-tolyl)-4H-pyran-3-carboxylate (CSD refcode HIRNUS; Athimoolam et al., 2007), 2-amino-6-chloromethyl-3-cyano-5-ethoxycarbonyl-4-(2-furyl)-4H-pyran (JEGWEX; Lokaj et al., 1990) and ethyl 6′-amino-2′-(chloromethyl)-5′-cyano-2-oxo-1,2-dihydrospiro[indole-3,4′-pyran]-3′-carboxylate (WIMBEC; Magerramov et al., 2018).
In the crystal of HIRNUS, the six-membered pyran ring adopts a near-boat conformation. The viz. R22(12) and C(8). Combination of these primary motifs leads to a secondary (20) ring motif.
features two intramolecular C—H⋯O interactions and the crystal packing is stabilized by intermolecular N—H⋯O hydrogen bonds. These lead to two primary motifs,In the crystal of JEGWEX, a potential precursor for fluoroquinoline synthesis, the pyran ring is nearly planar, with the most outlying atoms displaced from the best-plane fit through all non-H atoms by 0.163 (2) and 0.118 (2) Å. The molecules are arranged in layers oriented parallel to the (011) plane. In addition, the molecules are linked by a weak C—H⋯O hydrogen bond, which gives rise to chains with base vector [111].
In WIMBEC, the pyran ring exhibits a near-boat conformation with puckering parameters QT = 0.085 (7) Å, θ = 84 (5)° and φ = 154 (5)°. In the crystal, molecules are linked as dimers by pairs of N—H⋯O hydrogen bonds, forming ribbons along the b-axis direction. These ribbons are connected by weak van der Waals interactions, stabilizing the molecular packing.
6. Synthesis and crystallization
The title compound was synthesized using previously reported procedures (Luo et al., 2015; Magerramov et al., 2018), and colourless needles were obtained upon recrystallization from methanol solution.
7. details
Crystal data, data collection and structure . The H atoms of the NH and NH2 groups were located in a difference map, and their positional parameters were allowed to freely refine [N1—H1 = 0.853 (17), N2—H2A = 0.843 (19) and N2—H2B = 0.889 (18) Å], but their isotropic displacement parameters were constrained to take a value of 1.2Ueq(N). All H atoms bound to C atoms were positioned geometrically and refined as riding with C—H = 0.95 (aromatic), 0.99 (methylene) and 0.98 Å (methyl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. Four reflections, 0 0 1, 0 1 0, 1 0 0 and 1 2 0, affected by the incident beam-stop and owing to poor agreement between observed and calculated intensities, and five outliers, 3, 3 1 1, 1 4, 9 and 4 2, were omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2091350
https://doi.org/10.1107/S2056989021006459/vm2250sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006459/vm2250Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021006459/vm2250Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C17H14ClN3O4 | Z = 2 |
Mr = 359.76 | F(000) = 372 |
Triclinic, P1 | Dx = 1.473 Mg m−3 |
a = 8.0218 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2278 (3) Å | Cell parameters from 6340 reflections |
c = 10.6714 (3) Å | θ = 2.6–32.5° |
α = 98.8503 (7)° | µ = 0.26 mm−1 |
β = 108.0048 (7)° | T = 100 K |
γ = 96.3852 (6)° | Prism, colourless |
V = 810.92 (4) Å3 | 0.25 × 0.20 × 0.15 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 4685 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 32.6°, θmin = 2.6° |
Tmin = 0.903, Tmax = 0.949 | h = −12→12 |
18865 measured reflections | k = −15→15 |
5899 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0366P)2 + 0.4187P] where P = (Fo2 + 2Fc2)/3 |
5899 reflections | (Δ/σ)max = 0.001 |
236 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.00786 (5) | 0.62296 (4) | 0.86942 (4) | 0.03426 (11) | |
O1 | 0.20564 (12) | 0.57639 (8) | 0.66693 (9) | 0.01580 (17) | |
O2 | 0.34827 (14) | 0.39501 (10) | 1.01602 (9) | 0.0221 (2) | |
O3 | 0.24269 (13) | 0.20082 (9) | 0.86649 (9) | 0.01705 (17) | |
O4 | −0.01410 (11) | 0.18103 (8) | 0.54781 (9) | 0.01560 (17) | |
N1 | 0.22730 (14) | 0.07160 (10) | 0.58525 (11) | 0.01426 (19) | |
H1 | 0.171 (2) | −0.0075 (17) | 0.5472 (17) | 0.017* | |
N2 | 0.20156 (16) | 0.58493 (11) | 0.45919 (12) | 0.0189 (2) | |
H2A | 0.198 (2) | 0.5484 (18) | 0.3819 (19) | 0.023* | |
H2B | 0.158 (2) | 0.6601 (18) | 0.4714 (18) | 0.023* | |
C1 | 0.14677 (15) | 0.18025 (11) | 0.59191 (11) | 0.0124 (2) | |
C2 | 0.23180 (15) | 0.51172 (11) | 0.55510 (12) | 0.0137 (2) | |
C3 | 0.28549 (15) | 0.38996 (11) | 0.54920 (12) | 0.0131 (2) | |
C4 | 0.29313 (15) | 0.30748 (11) | 0.65670 (11) | 0.01141 (19) | |
C5 | 0.27019 (15) | 0.39250 (11) | 0.77759 (11) | 0.01218 (19) | |
C6 | 0.23527 (15) | 0.51749 (12) | 0.77729 (12) | 0.0138 (2) | |
C7 | 0.32238 (18) | 0.33266 (13) | 0.43295 (13) | 0.0182 (2) | |
N7 | 0.3547 (2) | 0.28501 (14) | 0.33968 (13) | 0.0300 (3) | |
C8 | 0.29278 (15) | 0.33459 (12) | 0.90096 (12) | 0.0139 (2) | |
C9 | 0.2632 (2) | 0.12998 (14) | 0.97758 (14) | 0.0231 (3) | |
H9A | 0.1751 | 0.1491 | 1.0225 | 0.028* | |
H9B | 0.3840 | 0.1588 | 1.0446 | 0.028* | |
C10 | 0.2340 (3) | −0.01675 (15) | 0.91875 (16) | 0.0317 (3) | |
H10A | 0.2419 | −0.0684 | 0.9899 | 0.048* | |
H10B | 0.3251 | −0.0348 | 0.8779 | 0.048* | |
H10C | 0.1160 | −0.0431 | 0.8500 | 0.048* | |
C11 | 0.21988 (17) | 0.61386 (13) | 0.89102 (13) | 0.0187 (2) | |
H11A | 0.2843 | 0.7039 | 0.8960 | 0.022* | |
H11B | 0.2752 | 0.5848 | 0.9765 | 0.022* | |
C12 | 0.41277 (15) | 0.10561 (12) | 0.64735 (12) | 0.0137 (2) | |
C13 | 0.53735 (17) | 0.02074 (13) | 0.66518 (13) | 0.0181 (2) | |
H13 | 0.5037 | −0.0737 | 0.6349 | 0.022* | |
C14 | 0.71502 (17) | 0.08061 (14) | 0.72987 (13) | 0.0201 (2) | |
H14 | 0.8044 | 0.0255 | 0.7431 | 0.024* | |
C15 | 0.76464 (16) | 0.21894 (14) | 0.77546 (13) | 0.0188 (2) | |
H15 | 0.8866 | 0.2568 | 0.8189 | 0.023* | |
C16 | 0.63576 (16) | 0.30242 (12) | 0.75758 (12) | 0.0150 (2) | |
H16 | 0.6684 | 0.3968 | 0.7893 | 0.018* | |
C17 | 0.45955 (15) | 0.24390 (12) | 0.69254 (11) | 0.0126 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01877 (16) | 0.0398 (2) | 0.0354 (2) | 0.00475 (13) | 0.00875 (14) | −0.01772 (16) |
O1 | 0.0210 (4) | 0.0116 (4) | 0.0157 (4) | 0.0066 (3) | 0.0060 (3) | 0.0028 (3) |
O2 | 0.0293 (5) | 0.0206 (4) | 0.0140 (4) | −0.0004 (4) | 0.0064 (4) | 0.0013 (3) |
O3 | 0.0244 (4) | 0.0127 (4) | 0.0150 (4) | 0.0044 (3) | 0.0067 (3) | 0.0042 (3) |
O4 | 0.0128 (4) | 0.0121 (4) | 0.0196 (4) | 0.0027 (3) | 0.0029 (3) | 0.0014 (3) |
N1 | 0.0146 (4) | 0.0092 (4) | 0.0171 (5) | 0.0030 (3) | 0.0032 (4) | 0.0006 (3) |
N2 | 0.0264 (6) | 0.0154 (5) | 0.0196 (5) | 0.0099 (4) | 0.0099 (4) | 0.0080 (4) |
C1 | 0.0139 (5) | 0.0103 (5) | 0.0128 (5) | 0.0022 (4) | 0.0041 (4) | 0.0020 (4) |
C2 | 0.0137 (5) | 0.0124 (5) | 0.0157 (5) | 0.0032 (4) | 0.0052 (4) | 0.0033 (4) |
C3 | 0.0152 (5) | 0.0114 (5) | 0.0137 (5) | 0.0037 (4) | 0.0055 (4) | 0.0030 (4) |
C4 | 0.0125 (5) | 0.0091 (4) | 0.0129 (5) | 0.0029 (4) | 0.0044 (4) | 0.0021 (4) |
C5 | 0.0114 (5) | 0.0124 (5) | 0.0121 (5) | 0.0021 (4) | 0.0037 (4) | 0.0009 (4) |
C6 | 0.0136 (5) | 0.0130 (5) | 0.0135 (5) | 0.0029 (4) | 0.0032 (4) | 0.0010 (4) |
C7 | 0.0233 (6) | 0.0174 (5) | 0.0178 (6) | 0.0101 (5) | 0.0079 (5) | 0.0079 (4) |
N7 | 0.0461 (8) | 0.0317 (6) | 0.0223 (6) | 0.0239 (6) | 0.0170 (6) | 0.0113 (5) |
C8 | 0.0127 (5) | 0.0144 (5) | 0.0156 (5) | 0.0028 (4) | 0.0059 (4) | 0.0029 (4) |
C9 | 0.0362 (7) | 0.0196 (6) | 0.0195 (6) | 0.0091 (5) | 0.0134 (5) | 0.0097 (5) |
C10 | 0.0528 (10) | 0.0182 (6) | 0.0293 (7) | 0.0106 (6) | 0.0163 (7) | 0.0111 (6) |
C11 | 0.0182 (5) | 0.0175 (5) | 0.0169 (5) | 0.0065 (4) | 0.0029 (4) | −0.0032 (4) |
C12 | 0.0142 (5) | 0.0137 (5) | 0.0136 (5) | 0.0047 (4) | 0.0045 (4) | 0.0027 (4) |
C13 | 0.0220 (6) | 0.0171 (5) | 0.0173 (6) | 0.0106 (4) | 0.0071 (5) | 0.0035 (4) |
C14 | 0.0194 (6) | 0.0270 (6) | 0.0171 (6) | 0.0131 (5) | 0.0066 (5) | 0.0056 (5) |
C15 | 0.0130 (5) | 0.0288 (6) | 0.0157 (5) | 0.0065 (4) | 0.0049 (4) | 0.0049 (5) |
C16 | 0.0145 (5) | 0.0185 (5) | 0.0128 (5) | 0.0030 (4) | 0.0056 (4) | 0.0033 (4) |
C17 | 0.0136 (5) | 0.0144 (5) | 0.0111 (5) | 0.0041 (4) | 0.0050 (4) | 0.0027 (4) |
Cl1—C11 | 1.7842 (13) | C6—C11 | 1.4871 (17) |
O1—C2 | 1.3595 (15) | C7—N7 | 1.1550 (18) |
O1—C6 | 1.3725 (14) | C9—C10 | 1.497 (2) |
O2—C8 | 1.2063 (15) | C9—H9A | 0.9900 |
O3—C8 | 1.3417 (14) | C9—H9B | 0.9900 |
O3—C9 | 1.4586 (15) | C10—H10A | 0.9800 |
O4—C1 | 1.2308 (14) | C10—H10B | 0.9800 |
N1—C1 | 1.3495 (14) | C10—H10C | 0.9800 |
N1—C12 | 1.4064 (15) | C11—H11A | 0.9900 |
N1—H1 | 0.853 (17) | C11—H11B | 0.9900 |
N2—C2 | 1.3379 (15) | C12—C13 | 1.3837 (16) |
N2—H2A | 0.843 (19) | C12—C17 | 1.3907 (16) |
N2—H2B | 0.889 (18) | C13—C14 | 1.3966 (19) |
C1—C4 | 1.5592 (16) | C13—H13 | 0.9500 |
C2—C3 | 1.3610 (15) | C14—C15 | 1.393 (2) |
C3—C7 | 1.4183 (17) | C14—H14 | 0.9500 |
C3—C4 | 1.5156 (16) | C15—C16 | 1.3995 (17) |
C4—C5 | 1.5138 (16) | C15—H15 | 0.9500 |
C4—C17 | 1.5183 (16) | C16—C17 | 1.3840 (16) |
C5—C6 | 1.3390 (16) | C16—H16 | 0.9500 |
C5—C8 | 1.4944 (16) | ||
C2—O1—C6 | 119.01 (9) | C10—C9—H9A | 110.3 |
C8—O3—C9 | 115.95 (10) | O3—C9—H9B | 110.3 |
C1—N1—C12 | 111.77 (10) | C10—C9—H9B | 110.3 |
C1—N1—H1 | 123.4 (11) | H9A—C9—H9B | 108.6 |
C12—N1—H1 | 124.8 (11) | C9—C10—H10A | 109.5 |
C2—N2—H2A | 118.0 (12) | C9—C10—H10B | 109.5 |
C2—N2—H2B | 119.3 (11) | H10A—C10—H10B | 109.5 |
H2A—N2—H2B | 120.6 (16) | C9—C10—H10C | 109.5 |
O4—C1—N1 | 126.32 (11) | H10A—C10—H10C | 109.5 |
O4—C1—C4 | 125.13 (10) | H10B—C10—H10C | 109.5 |
N1—C1—C4 | 108.42 (9) | C6—C11—Cl1 | 110.59 (9) |
N2—C2—O1 | 110.94 (10) | C6—C11—H11A | 109.5 |
N2—C2—C3 | 127.13 (11) | Cl1—C11—H11A | 109.5 |
O1—C2—C3 | 121.91 (10) | C6—C11—H11B | 109.5 |
C2—C3—C7 | 118.87 (11) | Cl1—C11—H11B | 109.5 |
C2—C3—C4 | 122.67 (10) | H11A—C11—H11B | 108.1 |
C7—C3—C4 | 118.26 (10) | C13—C12—C17 | 122.36 (11) |
C5—C4—C3 | 109.52 (9) | C13—C12—N1 | 128.15 (11) |
C5—C4—C17 | 112.86 (9) | C17—C12—N1 | 109.49 (10) |
C3—C4—C17 | 112.55 (9) | C12—C13—C14 | 116.79 (12) |
C5—C4—C1 | 113.49 (9) | C12—C13—H13 | 121.6 |
C3—C4—C1 | 107.25 (9) | C14—C13—H13 | 121.6 |
C17—C4—C1 | 100.85 (9) | C15—C14—C13 | 121.72 (11) |
C6—C5—C8 | 120.03 (10) | C15—C14—H14 | 119.1 |
C6—C5—C4 | 121.88 (10) | C13—C14—H14 | 119.1 |
C8—C5—C4 | 118.07 (9) | C14—C15—C16 | 120.36 (12) |
C5—C6—O1 | 123.81 (11) | C14—C15—H15 | 119.8 |
C5—C6—C11 | 127.27 (11) | C16—C15—H15 | 119.8 |
O1—C6—C11 | 108.91 (10) | C17—C16—C15 | 118.24 (11) |
N7—C7—C3 | 178.80 (14) | C17—C16—H16 | 120.9 |
O2—C8—O3 | 123.11 (11) | C15—C16—H16 | 120.9 |
O2—C8—C5 | 127.00 (11) | C16—C17—C12 | 120.53 (11) |
O3—C8—C5 | 109.89 (10) | C16—C17—C4 | 130.24 (11) |
O3—C9—C10 | 106.89 (11) | C12—C17—C4 | 109.23 (10) |
O3—C9—H9A | 110.3 | ||
C12—N1—C1—O4 | −179.07 (12) | C2—O1—C6—C5 | −7.59 (17) |
C12—N1—C1—C4 | 4.71 (13) | C2—O1—C6—C11 | 173.03 (10) |
C6—O1—C2—N2 | −178.30 (10) | C9—O3—C8—O2 | −1.51 (17) |
C6—O1—C2—C3 | 0.39 (17) | C9—O3—C8—C5 | 178.03 (10) |
N2—C2—C3—C7 | 2.90 (19) | C6—C5—C8—O2 | −29.78 (18) |
O1—C2—C3—C7 | −175.56 (11) | C4—C5—C8—O2 | 148.52 (12) |
N2—C2—C3—C4 | −171.94 (12) | C6—C5—C8—O3 | 150.69 (11) |
O1—C2—C3—C4 | 9.61 (18) | C4—C5—C8—O3 | −31.00 (14) |
C2—C3—C4—C5 | −11.44 (15) | C8—O3—C9—C10 | −169.29 (12) |
C7—C3—C4—C5 | 173.69 (10) | C5—C6—C11—Cl1 | −103.28 (13) |
C2—C3—C4—C17 | −137.85 (12) | O1—C6—C11—Cl1 | 76.07 (11) |
C7—C3—C4—C17 | 47.28 (14) | C1—N1—C12—C13 | 176.98 (12) |
C2—C3—C4—C1 | 112.13 (12) | C1—N1—C12—C17 | −2.67 (14) |
C7—C3—C4—C1 | −62.74 (13) | C17—C12—C13—C14 | −0.81 (18) |
O4—C1—C4—C5 | 58.07 (15) | N1—C12—C13—C14 | 179.59 (12) |
N1—C1—C4—C5 | −125.66 (10) | C12—C13—C14—C15 | 0.58 (19) |
O4—C1—C4—C3 | −63.02 (15) | C13—C14—C15—C16 | 0.2 (2) |
N1—C1—C4—C3 | 113.24 (10) | C14—C15—C16—C17 | −0.69 (18) |
O4—C1—C4—C17 | 179.05 (11) | C15—C16—C17—C12 | 0.48 (17) |
N1—C1—C4—C17 | −4.69 (12) | C15—C16—C17—C4 | −178.77 (11) |
C3—C4—C5—C6 | 4.62 (15) | C13—C12—C17—C16 | 0.29 (18) |
C17—C4—C5—C6 | 130.85 (11) | N1—C12—C17—C16 | 179.96 (10) |
C1—C4—C5—C6 | −115.19 (12) | C13—C12—C17—C4 | 179.68 (11) |
C3—C4—C5—C8 | −173.65 (9) | N1—C12—C17—C4 | −0.65 (13) |
C17—C4—C5—C8 | −47.42 (13) | C5—C4—C17—C16 | −56.14 (16) |
C1—C4—C5—C8 | 66.54 (13) | C3—C4—C17—C16 | 68.46 (15) |
C8—C5—C6—O1 | −177.31 (10) | C1—C4—C17—C16 | −177.56 (12) |
C4—C5—C6—O1 | 4.46 (18) | C5—C4—C17—C12 | 124.55 (10) |
C8—C5—C6—C11 | 1.96 (18) | C3—C4—C17—C12 | −110.86 (11) |
C4—C5—C6—C11 | −176.28 (11) | C1—C4—C17—C12 | 3.13 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.853 (17) | 1.981 (17) | 2.8292 (14) | 173.0 (17) |
N2—H2B···O4ii | 0.887 (18) | 2.095 (18) | 2.9636 (15) | 166.0 (17) |
C11—H11B···O2 | 0.99 | 2.15 | 2.9039 (17) | 131 |
C13—H13···N7iii | 0.95 | 2.56 | 3.333 (2) | 138 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Contact | Distance | Symmetry operation |
O3···H15 | 2.88 | -1 + x, y, z |
H9A···Cl1 | 3.06 | -x, 1 - y, 2 - z |
H2B···O4 | 2.095 | -x, 1 - y, 1 - z |
H16···H11B | 2.37 | 1 - x, 1 - y, 2 - z |
H1···O4 | 1.981 | -x, -y, 1 - z |
H16···H2A | 2.49 | 1 - x, 1 - y, 1 - z |
H13···N7 | 2.56 | 1 - x, -y, 1 - z |
H10A···H11A | 2.49 | x, - 1 + y, z |
H10A···C14 | 2.93 | 1 - x, -y, 2 - z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, MMG and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, ATH, AAA and FNN; supervision, IGM and MA.;
Funding information
This work was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Luo, N.-H., Zheng, D.-G., Xie, G.-H., Yang, Y.-C. & Yang, L.-S. (2015). Huaxue Shiji, 37, 742–746. CAS Google Scholar
Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734. CSD CrossRef CAS Google Scholar
Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603–625. CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.