research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-({5-acetyl-3-cyano-6-methyl-4-[(E)-2-phenyl­ethen­yl]pyridin-2-yl}sulfan­yl)acetate

crossmark logo

aDepartment of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
*Correspondence e-mail: safiyyahalwaleedy@gmail.com, shaabankamel@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 May 2021; accepted 1 June 2021; online 25 June 2021)

In the title mol­ecule, C21H20N2O3S, the styryl and ester substituents are displaced to opposite sides of the plane of the pyridine ring. In the crystal, C—H⋯O hydrogen bonds form chains extending parallel to the a-axis direction, which pack with partial inter­calation of the styryl and ester substituents. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (43.6%), C⋯H/H⋯C (15.6%), O⋯H/H⋯O (14.9%) and N⋯H/H⋯N (11.2%) contacts.

1. Chemical context

Numerous pyridine-containing natural products and synthetic organic compounds with various biophysio- and pharmacological activities have been reported (Gibson et al., 2007[Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745-1776.]; Vidaillac et al., 2007[Vidaillac, C., Guillon, J., Arpin, C., Forfar-Bares, I., Ba, B. B., Grellet, J., Moreau, S., Caignard, D. H., Jarry, C. & Quentin, C. (2007). Antimicrob. Agents Chemother. 51, 831-838.]). These scaffolds are also of widespread inter­est in supra­molecular and coordination chemistry, as well as for materials science (Balasubramanian & Keay, 1996[Balasubramanian, M. & Keay, J. G. (1996). In Comprehensive Heterocyclic Chemistry II, edited by A. R Katritzky, C. W. Rees & E. F. V. Scriven, pp. 245-300. Oxford: Pergamon.]). The above findings promoted us to study the crystal structure of the title compound, C21H20N2O3S.

[Scheme 1]

2. Structural commentary

The styryl substituent and the ester group are displaced to opposite sides of the plane of the pyridine ring (Fig. 1[link]). The dihedral angle between the mean planes of the phenyl (C8–C13) and pyridine (N1/C1–C5) rings is 27.86 (3)°. The C1—C2—C14—C15 torsion angle of 68.1 (2)° indicates that the acetyl group is rotated well out of the plane of the pyridine ring, while the N1—C4—S1—C18 torsion angle of −5.66 (12)° shows that the link to the ester group is nearly coplanar with the pyridine ring.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, inversion dimers are formed by inter­molecular C15—H15A⋯O2 hydrogen bonds between a methyl H atom of the acetyl group and the carbonyl O atom of the ester function. These dimers are further linked by inversion-related C18—H18B⋯O1 hydrogen bonds between a methyl­ene H atom and the carbonyl O atom of the acetyl group (Table 1[link]) to form ribbons of mol­ecules extending parallel to the a-axis direction (Fig. 2[link]). The chains pack with a partial inter­calation of the styryl and ester substituents (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.98 (2) 2.56 (2) 3.375 (2) 139.9 (17)
C18—H18B⋯O1ii 0.965 (17) 2.493 (17) 3.2989 (17) 140.9 (13)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A portion of one hydrogen–bonded chain in a view along the c-axis direction. C—H⋯O hydrogen bonds are depicted by dashed lines.
[Figure 3]
Figure 3
Packing of the mol­ecules in the title compound in a view along the b-axis direction. C—H⋯O hydrogen bonds are depicted by dashed lines.

4. Hirshfeld surface analysis

To qu­antify the inter­molecular inter­actions in the title compound, a Hirshfeld surface analysis was performed and two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface mapped over dnorm in the range −0.1607 to +1.3888 arbitrary units is depicted in Fig. 4[link], where the red regions indicate apparent hydrogen bonds in this structure. The intensities of the red areas are greater for C15—H15A⋯O2 and C18—H18B⋯O1, indicating the strongest inter­actions as compared to other red spots on the Hirshfeld surface; Table 2[link] lists corresponding close inter­molecular contacts. The two-dimensional fingerprint plots (Fig. 5[link]) reveal that the largest contributions are from H⋯H (43.6%; Fig. 5[link]b), C⋯H/H⋯C (15.6%; Fig. 5[link]c), O⋯H/H⋯O (14.9%; Fig. 5[link]d) and N⋯H/H⋯N (11.2%; Fig. 5[link]e) inter­actions. Other inter­actions contributing less to the crystal packing are S⋯H/H⋯S (5.9%), C⋯C (4.4%), N⋯C/C⋯N (1.5%), S⋯O/O⋯S (1.1%), O⋯C/C⋯O (1.0%), O⋯O (0.3%), N⋯N (0.2%) and S⋯C/C⋯S (0.2%).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H20B⋯H16B 2.53 x, 1 + y, z
H18B⋯H7 2.42 1 − x, 1 − y, 1 − z
O2⋯H10 2.613 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H15A⋯O2 2.56 2 − x, 1 − y, 1 − z
N2⋯H20A 2.63 [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z
H11⋯H11 2.31 1 − x, −y, −z
H12⋯H20A 2.47 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H16A⋯H21B 2.49 [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −0.1607 to +1.3888 a.u.
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (version 5.42, update 1, Feb 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related structures with the 2-sulfanyl­pyridine-3-carbo­nitrile moiety of the title compound gave the following matches: ethyl 4-methyl-2-phenyl-6-thioxo-1,6-di­hydro-5-pyrimidine­carboxyl­ate monohydrate (DEWCIS; Cunha et al., 2007[Cunha, S., Bastos, R. M., Silva, P. O., Nobre Costa, G. A., Vencato, I., Lariucci, C., Napolitano, H. B., de Oliveira, C. M. A., Kato, L., da Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111-119.]), ethyl 4-(5-eth­oxy­carbonyl-6-methyl-2-phenyl-4-pyrimidinyldisulfan­yl)-6-meth­yl-2-phenyl-5-pyrimidine­carboxyl­ate (DEWCAK; Cunha et al., 2007[Cunha, S., Bastos, R. M., Silva, P. O., Nobre Costa, G. A., Vencato, I., Lariucci, C., Napolitano, H. B., de Oliveira, C. M. A., Kato, L., da Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111-119.]), ethyl 4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-6-meth­yl-2-phenyl­pyrimidine-5-carboxyl­ate (NILKOL; Stolarczyk et al., 2018[Stolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138-1145.]), (4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-6-methyl-2-phenyl­pyrimidin-5-yl)methanol (NILKUR; Stolarczyk et al., 2018[Stolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138-1145.]) and 4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-5,6-dimethyl-2-phenyl­pyrimidine (NILLAY; Stolarczyk et al., 2018[Stolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138-1145.]).

Compound DEWCIS crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. N—H⋯O, O—H⋯N and O—H⋯S inter­actions involving the water mol­ecules, as well as ππ stacking inter­actions between the mol­ecules along the b axis contribute to the formation of layers parallel to the bc plane. The stability of the mol­ecular packing is achieved by van der Waals inter­actions between these layers. Compound DEWCAK crystallizes in the space group P[\overline{1}] with one mol­ecule in the asymmetric unit. In the crystal structure of DEWCAK, there are no classical hydrogen bonds. The mol­ecular packing is stabilized by C—H⋯π inter­actions and ππ stacking inter­actions. Compound NILKOL crystallizes in the space group P[\overline{1}] with one mol­ecule in the asymmetric unit, whereas compounds NILKUR and NILLAY crystallize in the space group P21/c with two and one mol­ecules, respectively, in their asymmetric units. The conformation of each mol­ecule is best defined by the dihedral angles formed between the pyrimidine ring and the planes of the two aryl substituents attached at the 2- and 4-positions. The only structural difference between the three compounds is the substituent at the 5-position of the pyrimidine ring, but they present significantly different features in their hydrogen-bonding inter­actions. NILKOL displays a chain structure whereby the chains are further extended into a two-dimensional network. In NILKUR and NILLAY, the hydrogen-bonded chains have no further aggregation.

6. Synthesis and crystallization

A mixture of 5-acetyl-3-cyano-6-methyl-4-styryl­pyridine-2(1H)-thione (3.24 g, 10 mmol), ethyl chloro­acetate (1.1 ml, 10 mmol) and sodium acetate trihydrate (1.5 g, 11 mmol) in ethanol (40 ml) was heated under reflux for 30 min. The solid that formed after dilution with water (20 ml) was filtered off and recrystallized from methanol in the form of fine colourless crystals of the title compound, yield 85%; m.p. 343–344 K. Its IR spectrum showed characteristic absorption bands at 2219 cm−1 for (C≡N), at 1748 cm−1 for (C=O, non conjugated ester) and at 1724 cm−1 for (C=O, conjugated ester). The 1H NMR spectrum (400 MHz, DMSO-d6) displayed a multiplet at δ = 6.60–7.63 ppm (7H: CH=CH and Ar-Hs), a multiplet at δ = 4.16–4.37 ppm (6H: two OCH2 and SCH2), a singlet at δ = 2.52 ppm (3H, CH3 at C-6, overlapped with solvent signal) and a multiplet at δ = 1.21–1.27 ppm (6H: two CH3 of ester groups).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were refined freely, while the H atoms of the C16 methyl group were placed geometrically (C—H = 0.98 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C21H20N2O3S
Mr 380.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.7365 (4), 9.7590 (3), 18.5600 (7)
β (°) 90.066 (1)
V3) 1944.67 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.67
Crystal size (mm) 0.27 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.80, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 14722, 3912, 3520
Rint 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.04
No. of reflections 3912
No. of parameters 314
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 2-({5-acetyl-3-cyano-6-methyl-4-[(E)-2-phenylethenyl]pyridin-2-yl}sulfanyl)acetate top
Crystal data top
C21H20N2O3SF(000) = 800
Mr = 380.45Dx = 1.299 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 10.7365 (4) ÅCell parameters from 9951 reflections
b = 9.7590 (3) Åθ = 4.8–74.6°
c = 18.5600 (7) ŵ = 1.67 mm1
β = 90.066 (1)°T = 150 K
V = 1944.67 (12) Å3Column, colourless
Z = 40.27 × 0.12 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3912 independent reflections
Radiation source: INCOATEC IµS micro–focus source3520 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 4.8°
ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1112
Tmin = 0.80, Tmax = 0.92l = 2122
14722 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.7692P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3912 reflectionsΔρmax = 0.22 e Å3
314 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0041 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms attached to C16 led to an unreasonable geometry so these were included as riding contributions (C—H = 0.98 Å) with an AFIX 137 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62964 (3)0.76240 (3)0.45327 (2)0.02319 (11)
O10.65133 (9)0.07606 (9)0.47995 (6)0.0295 (2)
O20.85513 (10)0.82982 (12)0.54910 (6)0.0367 (3)
O30.73641 (9)0.93032 (11)0.63373 (5)0.0304 (2)
N10.67271 (10)0.51703 (11)0.51422 (6)0.0222 (2)
N20.58138 (13)0.65298 (13)0.27261 (7)0.0351 (3)
C10.66330 (11)0.37425 (13)0.38230 (7)0.0203 (3)
C20.69019 (12)0.30604 (13)0.44698 (7)0.0202 (3)
C30.69103 (12)0.38044 (13)0.51167 (7)0.0215 (3)
C40.65042 (12)0.58371 (13)0.45305 (7)0.0201 (3)
C50.64281 (12)0.51610 (13)0.38647 (7)0.0208 (3)
C60.64972 (13)0.30725 (14)0.31165 (7)0.0233 (3)
H60.6751 (17)0.363 (2)0.2711 (10)0.038 (5)*
C70.59846 (13)0.18469 (14)0.30086 (7)0.0239 (3)
H70.5717 (16)0.1327 (18)0.3420 (10)0.033 (4)*
C80.57238 (12)0.12114 (13)0.23083 (7)0.0222 (3)
C90.58480 (13)0.19075 (14)0.16518 (7)0.0245 (3)
H90.6136 (17)0.284 (2)0.1648 (9)0.034 (5)*
C100.55575 (13)0.12655 (16)0.10077 (8)0.0276 (3)
H100.5629 (17)0.178 (2)0.0567 (10)0.041 (5)*
C110.51380 (14)0.00811 (16)0.10078 (8)0.0295 (3)
H110.4913 (18)0.0529 (19)0.0555 (10)0.040 (5)*
C120.50215 (15)0.07840 (15)0.16501 (8)0.0312 (3)
H120.4716 (17)0.170 (2)0.1652 (10)0.037 (5)*
C130.53114 (14)0.01448 (15)0.22967 (8)0.0279 (3)
H130.5240 (17)0.0659 (18)0.2763 (10)0.036 (5)*
C140.72087 (12)0.15479 (13)0.44955 (7)0.0220 (3)
C150.84103 (15)0.10914 (17)0.41681 (10)0.0351 (3)
H15A0.907 (2)0.149 (2)0.4470 (12)0.056 (6)*
H15B0.846 (2)0.008 (2)0.4173 (12)0.058 (6)*
H14C0.8516 (19)0.147 (2)0.3658 (12)0.051 (6)*
C160.71490 (14)0.31393 (14)0.58331 (7)0.0282 (3)
H16A0.7234530.3847530.6204210.042*
H16B0.7917920.2600360.5808240.042*
H16C0.6450410.2535960.5954420.042*
C170.60967 (13)0.59215 (14)0.32293 (7)0.0245 (3)
C180.63109 (13)0.80140 (14)0.54760 (7)0.0231 (3)
H18A0.6100 (17)0.717 (2)0.5740 (10)0.037 (5)*
H18B0.5672 (16)0.8694 (18)0.5554 (9)0.027 (4)*
C190.75457 (13)0.85366 (14)0.57467 (7)0.0244 (3)
C200.84825 (15)0.98717 (19)0.66682 (9)0.0380 (4)
H20A0.904 (2)0.910 (2)0.6807 (12)0.053 (6)*
H20B0.896 (2)1.047 (2)0.6298 (12)0.056 (6)*
C210.80775 (18)1.0701 (2)0.73071 (10)0.0410 (4)
H21A0.883 (2)1.109 (2)0.7550 (13)0.065 (7)*
H21B0.762 (2)1.014 (2)0.7639 (12)0.051 (6)*
H21C0.751 (2)1.144 (2)0.7167 (11)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03027 (19)0.01732 (17)0.02199 (18)0.00121 (12)0.00303 (12)0.00091 (11)
O10.0316 (5)0.0202 (5)0.0367 (6)0.0000 (4)0.0043 (4)0.0046 (4)
O20.0248 (5)0.0464 (7)0.0389 (6)0.0060 (4)0.0025 (4)0.0121 (5)
O30.0289 (5)0.0356 (6)0.0266 (5)0.0020 (4)0.0059 (4)0.0092 (4)
N10.0257 (6)0.0202 (5)0.0208 (6)0.0021 (4)0.0033 (4)0.0004 (4)
N20.0473 (8)0.0295 (6)0.0285 (7)0.0007 (6)0.0097 (6)0.0023 (5)
C10.0199 (6)0.0200 (6)0.0209 (6)0.0030 (5)0.0009 (5)0.0009 (5)
C20.0203 (6)0.0180 (6)0.0224 (6)0.0021 (5)0.0018 (5)0.0007 (5)
C30.0224 (6)0.0201 (6)0.0220 (7)0.0025 (5)0.0032 (5)0.0008 (5)
C40.0199 (6)0.0192 (6)0.0211 (6)0.0021 (5)0.0023 (5)0.0002 (5)
C50.0223 (6)0.0203 (6)0.0199 (6)0.0022 (5)0.0033 (5)0.0012 (5)
C60.0283 (7)0.0222 (6)0.0195 (6)0.0010 (5)0.0012 (5)0.0010 (5)
C70.0281 (7)0.0245 (7)0.0193 (6)0.0024 (5)0.0000 (5)0.0010 (5)
C80.0233 (6)0.0230 (6)0.0201 (6)0.0001 (5)0.0010 (5)0.0028 (5)
C90.0271 (7)0.0233 (7)0.0232 (7)0.0021 (5)0.0012 (5)0.0003 (5)
C100.0290 (7)0.0329 (7)0.0209 (7)0.0010 (6)0.0022 (5)0.0007 (6)
C110.0337 (7)0.0323 (7)0.0226 (7)0.0009 (6)0.0057 (6)0.0064 (6)
C120.0418 (8)0.0230 (7)0.0287 (8)0.0048 (6)0.0045 (6)0.0046 (6)
C130.0368 (8)0.0240 (7)0.0228 (7)0.0035 (6)0.0018 (6)0.0006 (5)
C140.0244 (6)0.0202 (6)0.0214 (6)0.0002 (5)0.0042 (5)0.0005 (5)
C150.0311 (8)0.0294 (8)0.0448 (10)0.0052 (6)0.0068 (7)0.0029 (7)
C160.0393 (8)0.0239 (7)0.0214 (7)0.0016 (6)0.0065 (6)0.0022 (5)
C170.0293 (7)0.0211 (6)0.0231 (7)0.0022 (5)0.0044 (5)0.0016 (5)
C180.0257 (7)0.0207 (6)0.0230 (7)0.0004 (5)0.0007 (5)0.0027 (5)
C190.0277 (7)0.0223 (6)0.0231 (6)0.0038 (5)0.0038 (5)0.0008 (5)
C200.0329 (8)0.0429 (9)0.0383 (9)0.0026 (7)0.0140 (7)0.0119 (7)
C210.0458 (10)0.0446 (10)0.0324 (9)0.0011 (8)0.0100 (7)0.0095 (7)
Geometric parameters (Å, º) top
S1—C41.7581 (13)C9—H90.960 (19)
S1—C181.7918 (14)C10—C111.389 (2)
O1—C141.2112 (16)C10—H100.96 (2)
O2—C191.2026 (17)C11—C121.381 (2)
O3—C191.3417 (17)C11—H110.98 (2)
O3—C201.4578 (18)C12—C131.388 (2)
N1—C41.3301 (17)C12—H120.956 (19)
N1—C31.3482 (17)C13—H131.003 (19)
N2—C171.1473 (19)C14—C151.4946 (19)
C1—C21.4025 (18)C15—H15A0.98 (2)
C1—C51.4038 (18)C15—H15B0.99 (2)
C1—C61.4723 (18)C15—H14C1.02 (2)
C2—C31.4032 (18)C16—H16A0.9800
C2—C141.5130 (17)C16—H16B0.9800
C3—C161.5013 (18)C16—H16C0.9800
C4—C51.4032 (18)C18—C191.5061 (19)
C5—C171.4378 (18)C18—H18A0.988 (19)
C6—C71.332 (2)C18—H18B0.965 (17)
C6—H60.968 (19)C20—C211.500 (2)
C7—C81.4669 (18)C20—H20A1.00 (2)
C7—H70.961 (18)C20—H20B1.04 (2)
C8—C131.3958 (19)C21—H21A1.00 (2)
C8—C91.4016 (19)C21—H21B0.96 (2)
C9—C101.385 (2)C21—H21C0.97 (2)
C4—S1—C18102.24 (6)C12—C13—H13120.2 (10)
C19—O3—C20115.85 (11)C8—C13—H13119.0 (10)
C4—N1—C3118.68 (11)O1—C14—C15122.21 (12)
C2—C1—C5116.93 (11)O1—C14—C2119.95 (12)
C2—C1—C6124.86 (12)C15—C14—C2117.77 (12)
C5—C1—C6118.14 (11)C14—C15—H15A105.7 (13)
C1—C2—C3119.21 (12)C14—C15—H15B109.9 (13)
C1—C2—C14122.32 (11)H15A—C15—H15B110.5 (18)
C3—C2—C14118.47 (11)C14—C15—H14C111.5 (12)
N1—C3—C2122.74 (12)H15A—C15—H14C107.7 (17)
N1—C3—C16114.90 (11)H15B—C15—H14C111.2 (17)
C2—C3—C16122.34 (12)C3—C16—H16A109.5
N1—C4—C5122.14 (12)C3—C16—H16B109.5
N1—C4—S1120.40 (10)H16A—C16—H16B109.5
C5—C4—S1117.46 (10)C3—C16—H16C109.5
C4—C5—C1120.22 (12)H16A—C16—H16C109.5
C4—C5—C17119.59 (12)H16B—C16—H16C109.5
C1—C5—C17120.16 (12)N2—C17—C5178.94 (16)
C7—C6—C1124.98 (12)C19—C18—S1113.86 (10)
C7—C6—H6120.3 (11)C19—C18—H18A108.7 (11)
C1—C6—H6114.6 (11)S1—C18—H18A107.8 (11)
C6—C7—C8126.26 (13)C19—C18—H18B110.0 (10)
C6—C7—H7118.6 (11)S1—C18—H18B106.7 (10)
C8—C7—H7115.1 (11)H18A—C18—H18B109.7 (14)
C13—C8—C9118.47 (12)O2—C19—O3124.17 (13)
C13—C8—C7118.34 (12)O2—C19—C18126.38 (13)
C9—C8—C7123.18 (12)O3—C19—C18109.43 (11)
C10—C9—C8120.64 (13)O3—C20—C21107.39 (14)
C10—C9—H9119.7 (11)O3—C20—H20A108.7 (13)
C8—C9—H9119.7 (11)C21—C20—H20A112.2 (13)
C9—C10—C11120.03 (13)O3—C20—H20B110.0 (12)
C9—C10—H10118.6 (12)C21—C20—H20B111.1 (12)
C11—C10—H10121.4 (12)H20A—C20—H20B107.4 (17)
C12—C11—C10119.98 (13)C20—C21—H21A109.1 (13)
C12—C11—H11119.8 (11)C20—C21—H21B110.5 (13)
C10—C11—H11120.2 (11)H21A—C21—H21B109.7 (18)
C11—C12—C13120.18 (13)C20—C21—H21C111.6 (12)
C11—C12—H12120.1 (11)H21A—C21—H21C110.1 (18)
C13—C12—H12119.7 (11)H21B—C21—H21C105.8 (18)
C12—C13—C8120.69 (13)
C5—C1—C2—C32.15 (18)C5—C1—C6—C7140.67 (14)
C6—C1—C2—C3175.01 (12)C1—C6—C7—C8173.53 (13)
C5—C1—C2—C14176.70 (11)C6—C7—C8—C13172.91 (14)
C6—C1—C2—C146.15 (19)C6—C7—C8—C98.2 (2)
C4—N1—C3—C21.39 (19)C13—C8—C9—C100.5 (2)
C4—N1—C3—C16179.73 (12)C7—C8—C9—C10178.32 (13)
C1—C2—C3—N13.20 (19)C8—C9—C10—C110.0 (2)
C14—C2—C3—N1175.69 (12)C9—C10—C11—C120.6 (2)
C1—C2—C3—C16177.99 (12)C10—C11—C12—C130.6 (2)
C14—C2—C3—C163.12 (19)C11—C12—C13—C80.0 (2)
C3—N1—C4—C51.39 (19)C9—C8—C13—C120.5 (2)
C3—N1—C4—S1178.47 (10)C7—C8—C13—C12178.38 (14)
C18—S1—C4—N15.66 (12)C1—C2—C14—O1114.75 (15)
C18—S1—C4—C5174.48 (10)C3—C2—C14—O166.40 (17)
N1—C4—C5—C12.31 (19)C1—C2—C14—C1568.12 (17)
S1—C4—C5—C1177.55 (10)C3—C2—C14—C15110.73 (15)
N1—C4—C5—C17175.55 (12)C4—S1—C18—C1998.96 (10)
S1—C4—C5—C174.59 (17)C20—O3—C19—O20.6 (2)
C2—C1—C5—C40.44 (18)C20—O3—C19—C18179.32 (12)
C6—C1—C5—C4177.79 (12)S1—C18—C19—O226.34 (19)
C2—C1—C5—C17177.42 (12)S1—C18—C19—O3154.93 (10)
C6—C1—C5—C170.06 (18)C19—O3—C20—C21179.23 (14)
C2—C1—C6—C736.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.98 (2)2.56 (2)3.375 (2)139.9 (17)
C18—H18B···O1ii0.965 (17)2.493 (17)3.2989 (17)140.9 (13)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H20B···H16B2.53x, 1 + y, z
H18B···H72.421 - x, 1 - y, 1 - z
O2···H102.6133/2 - x, 1/2 + y, 1/2 - z
H15A···O22.562 - x, 1 - y, 1 - z
N2···H20A2.63-1/2+x, 3/2 - y, -1/2 + z
H11···H112.311 - x, -y, -z
H12···H20A2.47-1/2 + x, 1/2 - y, -1/2 + z
H16A···H21B2.493/2 - x, -1/2 + y, 3/2 - z
 

Acknowledgements

Author contributions are as follows: Conceptualization, EAB, MSA and SKM; methodology, JTM, EAB and MA; investigation, JTM, SKM, and EAB; writing (original draft), JTM, AM, SKM and EAB; writing (review and editing of the manuscript), MA and SKM; visualization, MA, SKM and JTM; funding acquisition, SAHA and SKM; resources, MA, JTM, EAB and SKM. AAA, VNK and FNN; supervision, SKM and MA.

Funding information

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBalasubramanian, M. & Keay, J. G. (1996). In Comprehensive Heterocyclic Chemistry II, edited by A. R Katritzky, C. W. Rees & E. F. V. Scriven, pp. 245–300. Oxford: Pergamon.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunha, S., Bastos, R. M., Silva, P. O., Nobre Costa, G. A., Vencato, I., Lariucci, C., Napolitano, H. B., de Oliveira, C. M. A., Kato, L., da Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111–119.  CSD CrossRef CAS Google Scholar
First citationGibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138–1145.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVidaillac, C., Guillon, J., Arpin, C., Forfar-Bares, I., Ba, B. B., Grellet, J., Moreau, S., Caignard, D. H., Jarry, C. & Quentin, C. (2007). Antimicrob. Agents Chemother. 51, 831–838.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds