research communications
E)-2-phenylethenyl]pyridin-2-yl}sulfanyl)acetate
and Hirshfeld surface analysis of ethyl 2-({5-acetyl-3-cyano-6-methyl-4-[(aDepartment of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
*Correspondence e-mail: safiyyahalwaleedy@gmail.com, shaabankamel@yahoo.com
In the title molecule, C21H20N2O3S, the styryl and ester substituents are displaced to opposite sides of the plane of the pyridine ring. In the crystal, C—H⋯O hydrogen bonds form chains extending parallel to the a-axis direction, which pack with partial intercalation of the styryl and ester substituents. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (43.6%), C⋯H/H⋯C (15.6%), O⋯H/H⋯O (14.9%) and N⋯H/H⋯N (11.2%) contacts.
Keywords: crystal structure; pyridine; styryl; ester; hydrogen bond; Hirshfeld surface analysis.
CCDC reference: 2087180
1. Chemical context
Numerous pyridine-containing natural products and synthetic organic compounds with various biophysio- and pharmacological activities have been reported (Gibson et al., 2007; Vidaillac et al., 2007). These scaffolds are also of widespread interest in supramolecular and coordination chemistry, as well as for materials science (Balasubramanian & Keay, 1996). The above findings promoted us to study the of the title compound, C21H20N2O3S.
2. Structural commentary
The styryl substituent and the ester group are displaced to opposite sides of the plane of the pyridine ring (Fig. 1). The dihedral angle between the mean planes of the phenyl (C8–C13) and pyridine (N1/C1–C5) rings is 27.86 (3)°. The C1—C2—C14—C15 torsion angle of 68.1 (2)° indicates that the acetyl group is rotated well out of the plane of the pyridine ring, while the N1—C4—S1—C18 torsion angle of −5.66 (12)° shows that the link to the ester group is nearly coplanar with the pyridine ring.
3. Supramolecular features
In the crystal, inversion dimers are formed by intermolecular C15—H15A⋯O2 hydrogen bonds between a methyl H atom of the acetyl group and the carbonyl O atom of the ester function. These dimers are further linked by inversion-related C18—H18B⋯O1 hydrogen bonds between a methylene H atom and the carbonyl O atom of the acetyl group (Table 1) to form ribbons of molecules extending parallel to the a-axis direction (Fig. 2). The chains pack with a partial intercalation of the styryl and ester substituents (Fig. 3).
4. Hirshfeld surface analysis
To quantify the intermolecular interactions in the title compound, a Hirshfeld surface analysis was performed and two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface mapped over dnorm in the range −0.1607 to +1.3888 arbitrary units is depicted in Fig. 4, where the red regions indicate apparent hydrogen bonds in this structure. The intensities of the red areas are greater for C15—H15A⋯O2 and C18—H18B⋯O1, indicating the strongest interactions as compared to other red spots on the Hirshfeld surface; Table 2 lists corresponding close intermolecular contacts. The two-dimensional fingerprint plots (Fig. 5) reveal that the largest contributions are from H⋯H (43.6%; Fig. 5b), C⋯H/H⋯C (15.6%; Fig. 5c), O⋯H/H⋯O (14.9%; Fig. 5d) and N⋯H/H⋯N (11.2%; Fig. 5e) interactions. Other interactions contributing less to the crystal packing are S⋯H/H⋯S (5.9%), C⋯C (4.4%), N⋯C/C⋯N (1.5%), S⋯O/O⋯S (1.1%), O⋯C/C⋯O (1.0%), O⋯O (0.3%), N⋯N (0.2%) and S⋯C/C⋯S (0.2%).
|
5. Database survey
A search of the Cambridge Structural Database (version 5.42, update 1, Feb 2021; Groom et al., 2016) for related structures with the 2-sulfanylpyridine-3-carbonitrile moiety of the title compound gave the following matches: ethyl 4-methyl-2-phenyl-6-thioxo-1,6-dihydro-5-pyrimidinecarboxylate monohydrate (DEWCIS; Cunha et al., 2007), ethyl 4-(5-ethoxycarbonyl-6-methyl-2-phenyl-4-pyrimidinyldisulfanyl)-6-methyl-2-phenyl-5-pyrimidinecarboxylate (DEWCAK; Cunha et al., 2007), ethyl 4-{[(4-chlorophenyl)methyl]sulfanyl}-6-methyl-2-phenylpyrimidine-5-carboxylate (NILKOL; Stolarczyk et al., 2018), (4-{[(4-chlorophenyl)methyl]sulfanyl}-6-methyl-2-phenylpyrimidin-5-yl)methanol (NILKUR; Stolarczyk et al., 2018) and 4-{[(4-chlorophenyl)methyl]sulfanyl}-5,6-dimethyl-2-phenylpyrimidine (NILLAY; Stolarczyk et al., 2018).
Compound DEWCIS crystallizes in the P21/c with one molecule in the N—H⋯O, O—H⋯N and O—H⋯S interactions involving the water molecules, as well as π–π stacking interactions between the molecules along the b axis contribute to the formation of layers parallel to the bc plane. The stability of the molecular packing is achieved by van der Waals interactions between these layers. Compound DEWCAK crystallizes in the P with one molecule in the In the of DEWCAK, there are no classical hydrogen bonds. The molecular packing is stabilized by C—H⋯π interactions and π–π stacking interactions. Compound NILKOL crystallizes in the P with one molecule in the whereas compounds NILKUR and NILLAY crystallize in the P21/c with two and one molecules, respectively, in their asymmetric units. The conformation of each molecule is best defined by the dihedral angles formed between the pyrimidine ring and the planes of the two aryl substituents attached at the 2- and 4-positions. The only structural difference between the three compounds is the substituent at the 5-position of the pyrimidine ring, but they present significantly different features in their hydrogen-bonding interactions. NILKOL displays a chain structure whereby the chains are further extended into a two-dimensional network. In NILKUR and NILLAY, the hydrogen-bonded chains have no further aggregation.
6. Synthesis and crystallization
A mixture of 5-acetyl-3-cyano-6-methyl-4-styrylpyridine-2(1H)-thione (3.24 g, 10 mmol), ethyl chloroacetate (1.1 ml, 10 mmol) and sodium acetate trihydrate (1.5 g, 11 mmol) in ethanol (40 ml) was heated under reflux for 30 min. The solid that formed after dilution with water (20 ml) was filtered off and recrystallized from methanol in the form of fine colourless crystals of the title compound, yield 85%; m.p. 343–344 K. Its IR spectrum showed characteristic absorption bands at 2219 cm−1 for (C≡N), at 1748 cm−1 for (C=O, non conjugated ester) and at 1724 cm−1 for (C=O, conjugated ester). The 1H NMR spectrum (400 MHz, DMSO-d6) displayed a multiplet at δ = 6.60–7.63 ppm (7H: CH=CH and Ar-Hs), a multiplet at δ = 4.16–4.37 ppm (6H: two OCH2 and SCH2), a singlet at δ = 2.52 ppm (3H, CH3 at C-6, overlapped with solvent signal) and a multiplet at δ = 1.21–1.27 ppm (6H: two CH3 of ester groups).
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were refined freely, while the H atoms of the C16 methyl group were placed geometrically (C—H = 0.98 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2087180
https://doi.org/10.1107/S2056989021005600/wm5610sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021005600/wm5610Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021005600/wm5610Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C21H20N2O3S | F(000) = 800 |
Mr = 380.45 | Dx = 1.299 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 10.7365 (4) Å | Cell parameters from 9951 reflections |
b = 9.7590 (3) Å | θ = 4.8–74.6° |
c = 18.5600 (7) Å | µ = 1.67 mm−1 |
β = 90.066 (1)° | T = 150 K |
V = 1944.67 (12) Å3 | Column, colourless |
Z = 4 | 0.27 × 0.12 × 0.05 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3912 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 3520 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.6°, θmin = 4.8° |
ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→12 |
Tmin = 0.80, Tmax = 0.92 | l = −21→22 |
14722 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.7692P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3912 reflections | Δρmax = 0.22 e Å−3 |
314 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0041 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms attached to C16 led to an unreasonable geometry so these were included as riding contributions (C—H = 0.98 Å) with an AFIX 137 instruction. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.62964 (3) | 0.76240 (3) | 0.45327 (2) | 0.02319 (11) | |
O1 | 0.65133 (9) | 0.07606 (9) | 0.47995 (6) | 0.0295 (2) | |
O2 | 0.85513 (10) | 0.82982 (12) | 0.54910 (6) | 0.0367 (3) | |
O3 | 0.73641 (9) | 0.93032 (11) | 0.63373 (5) | 0.0304 (2) | |
N1 | 0.67271 (10) | 0.51703 (11) | 0.51422 (6) | 0.0222 (2) | |
N2 | 0.58138 (13) | 0.65298 (13) | 0.27261 (7) | 0.0351 (3) | |
C1 | 0.66330 (11) | 0.37425 (13) | 0.38230 (7) | 0.0203 (3) | |
C2 | 0.69019 (12) | 0.30604 (13) | 0.44698 (7) | 0.0202 (3) | |
C3 | 0.69103 (12) | 0.38044 (13) | 0.51167 (7) | 0.0215 (3) | |
C4 | 0.65042 (12) | 0.58371 (13) | 0.45305 (7) | 0.0201 (3) | |
C5 | 0.64281 (12) | 0.51610 (13) | 0.38647 (7) | 0.0208 (3) | |
C6 | 0.64972 (13) | 0.30725 (14) | 0.31165 (7) | 0.0233 (3) | |
H6 | 0.6751 (17) | 0.363 (2) | 0.2711 (10) | 0.038 (5)* | |
C7 | 0.59846 (13) | 0.18469 (14) | 0.30086 (7) | 0.0239 (3) | |
H7 | 0.5717 (16) | 0.1327 (18) | 0.3420 (10) | 0.033 (4)* | |
C8 | 0.57238 (12) | 0.12114 (13) | 0.23083 (7) | 0.0222 (3) | |
C9 | 0.58480 (13) | 0.19075 (14) | 0.16518 (7) | 0.0245 (3) | |
H9 | 0.6136 (17) | 0.284 (2) | 0.1648 (9) | 0.034 (5)* | |
C10 | 0.55575 (13) | 0.12655 (16) | 0.10077 (8) | 0.0276 (3) | |
H10 | 0.5629 (17) | 0.178 (2) | 0.0567 (10) | 0.041 (5)* | |
C11 | 0.51380 (14) | −0.00811 (16) | 0.10078 (8) | 0.0295 (3) | |
H11 | 0.4913 (18) | −0.0529 (19) | 0.0555 (10) | 0.040 (5)* | |
C12 | 0.50215 (15) | −0.07840 (15) | 0.16501 (8) | 0.0312 (3) | |
H12 | 0.4716 (17) | −0.170 (2) | 0.1652 (10) | 0.037 (5)* | |
C13 | 0.53114 (14) | −0.01448 (15) | 0.22967 (8) | 0.0279 (3) | |
H13 | 0.5240 (17) | −0.0659 (18) | 0.2763 (10) | 0.036 (5)* | |
C14 | 0.72087 (12) | 0.15479 (13) | 0.44955 (7) | 0.0220 (3) | |
C15 | 0.84103 (15) | 0.10914 (17) | 0.41681 (10) | 0.0351 (3) | |
H15A | 0.907 (2) | 0.149 (2) | 0.4470 (12) | 0.056 (6)* | |
H15B | 0.846 (2) | 0.008 (2) | 0.4173 (12) | 0.058 (6)* | |
H14C | 0.8516 (19) | 0.147 (2) | 0.3658 (12) | 0.051 (6)* | |
C16 | 0.71490 (14) | 0.31393 (14) | 0.58331 (7) | 0.0282 (3) | |
H16A | 0.723453 | 0.384753 | 0.620421 | 0.042* | |
H16B | 0.791792 | 0.260036 | 0.580824 | 0.042* | |
H16C | 0.645041 | 0.253596 | 0.595442 | 0.042* | |
C17 | 0.60967 (13) | 0.59215 (14) | 0.32293 (7) | 0.0245 (3) | |
C18 | 0.63109 (13) | 0.80140 (14) | 0.54760 (7) | 0.0231 (3) | |
H18A | 0.6100 (17) | 0.717 (2) | 0.5740 (10) | 0.037 (5)* | |
H18B | 0.5672 (16) | 0.8694 (18) | 0.5554 (9) | 0.027 (4)* | |
C19 | 0.75457 (13) | 0.85366 (14) | 0.57467 (7) | 0.0244 (3) | |
C20 | 0.84825 (15) | 0.98717 (19) | 0.66682 (9) | 0.0380 (4) | |
H20A | 0.904 (2) | 0.910 (2) | 0.6807 (12) | 0.053 (6)* | |
H20B | 0.896 (2) | 1.047 (2) | 0.6298 (12) | 0.056 (6)* | |
C21 | 0.80775 (18) | 1.0701 (2) | 0.73071 (10) | 0.0410 (4) | |
H21A | 0.883 (2) | 1.109 (2) | 0.7550 (13) | 0.065 (7)* | |
H21B | 0.762 (2) | 1.014 (2) | 0.7639 (12) | 0.051 (6)* | |
H21C | 0.751 (2) | 1.144 (2) | 0.7167 (11) | 0.049 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03027 (19) | 0.01732 (17) | 0.02199 (18) | 0.00121 (12) | −0.00303 (12) | −0.00091 (11) |
O1 | 0.0316 (5) | 0.0202 (5) | 0.0367 (6) | 0.0000 (4) | 0.0043 (4) | 0.0046 (4) |
O2 | 0.0248 (5) | 0.0464 (7) | 0.0389 (6) | 0.0060 (4) | −0.0025 (4) | −0.0121 (5) |
O3 | 0.0289 (5) | 0.0356 (6) | 0.0266 (5) | 0.0020 (4) | −0.0059 (4) | −0.0092 (4) |
N1 | 0.0257 (6) | 0.0202 (5) | 0.0208 (6) | −0.0021 (4) | −0.0033 (4) | −0.0004 (4) |
N2 | 0.0473 (8) | 0.0295 (6) | 0.0285 (7) | −0.0007 (6) | −0.0097 (6) | 0.0023 (5) |
C1 | 0.0199 (6) | 0.0200 (6) | 0.0209 (6) | −0.0030 (5) | −0.0009 (5) | −0.0009 (5) |
C2 | 0.0203 (6) | 0.0180 (6) | 0.0224 (6) | −0.0021 (5) | −0.0018 (5) | 0.0007 (5) |
C3 | 0.0224 (6) | 0.0201 (6) | 0.0220 (7) | −0.0025 (5) | −0.0032 (5) | 0.0008 (5) |
C4 | 0.0199 (6) | 0.0192 (6) | 0.0211 (6) | −0.0021 (5) | −0.0023 (5) | −0.0002 (5) |
C5 | 0.0223 (6) | 0.0203 (6) | 0.0199 (6) | −0.0022 (5) | −0.0033 (5) | 0.0012 (5) |
C6 | 0.0283 (7) | 0.0222 (6) | 0.0195 (6) | −0.0010 (5) | −0.0012 (5) | −0.0010 (5) |
C7 | 0.0281 (7) | 0.0245 (7) | 0.0193 (6) | −0.0024 (5) | 0.0000 (5) | −0.0010 (5) |
C8 | 0.0233 (6) | 0.0230 (6) | 0.0201 (6) | −0.0001 (5) | −0.0010 (5) | −0.0028 (5) |
C9 | 0.0271 (7) | 0.0233 (7) | 0.0232 (7) | −0.0021 (5) | −0.0012 (5) | 0.0003 (5) |
C10 | 0.0290 (7) | 0.0329 (7) | 0.0209 (7) | 0.0010 (6) | −0.0022 (5) | 0.0007 (6) |
C11 | 0.0337 (7) | 0.0323 (7) | 0.0226 (7) | 0.0009 (6) | −0.0057 (6) | −0.0064 (6) |
C12 | 0.0418 (8) | 0.0230 (7) | 0.0287 (8) | −0.0048 (6) | −0.0045 (6) | −0.0046 (6) |
C13 | 0.0368 (8) | 0.0240 (7) | 0.0228 (7) | −0.0035 (6) | −0.0018 (6) | −0.0006 (5) |
C14 | 0.0244 (6) | 0.0202 (6) | 0.0214 (6) | −0.0002 (5) | −0.0042 (5) | −0.0005 (5) |
C15 | 0.0311 (8) | 0.0294 (8) | 0.0448 (10) | 0.0052 (6) | 0.0068 (7) | 0.0029 (7) |
C16 | 0.0393 (8) | 0.0239 (7) | 0.0214 (7) | −0.0016 (6) | −0.0065 (6) | 0.0022 (5) |
C17 | 0.0293 (7) | 0.0211 (6) | 0.0231 (7) | −0.0022 (5) | −0.0044 (5) | −0.0016 (5) |
C18 | 0.0257 (7) | 0.0207 (6) | 0.0230 (7) | 0.0004 (5) | 0.0007 (5) | −0.0027 (5) |
C19 | 0.0277 (7) | 0.0223 (6) | 0.0231 (6) | 0.0038 (5) | −0.0038 (5) | −0.0008 (5) |
C20 | 0.0329 (8) | 0.0429 (9) | 0.0383 (9) | 0.0026 (7) | −0.0140 (7) | −0.0119 (7) |
C21 | 0.0458 (10) | 0.0446 (10) | 0.0324 (9) | −0.0011 (8) | −0.0100 (7) | −0.0095 (7) |
S1—C4 | 1.7581 (13) | C9—H9 | 0.960 (19) |
S1—C18 | 1.7918 (14) | C10—C11 | 1.389 (2) |
O1—C14 | 1.2112 (16) | C10—H10 | 0.96 (2) |
O2—C19 | 1.2026 (17) | C11—C12 | 1.381 (2) |
O3—C19 | 1.3417 (17) | C11—H11 | 0.98 (2) |
O3—C20 | 1.4578 (18) | C12—C13 | 1.388 (2) |
N1—C4 | 1.3301 (17) | C12—H12 | 0.956 (19) |
N1—C3 | 1.3482 (17) | C13—H13 | 1.003 (19) |
N2—C17 | 1.1473 (19) | C14—C15 | 1.4946 (19) |
C1—C2 | 1.4025 (18) | C15—H15A | 0.98 (2) |
C1—C5 | 1.4038 (18) | C15—H15B | 0.99 (2) |
C1—C6 | 1.4723 (18) | C15—H14C | 1.02 (2) |
C2—C3 | 1.4032 (18) | C16—H16A | 0.9800 |
C2—C14 | 1.5130 (17) | C16—H16B | 0.9800 |
C3—C16 | 1.5013 (18) | C16—H16C | 0.9800 |
C4—C5 | 1.4032 (18) | C18—C19 | 1.5061 (19) |
C5—C17 | 1.4378 (18) | C18—H18A | 0.988 (19) |
C6—C7 | 1.332 (2) | C18—H18B | 0.965 (17) |
C6—H6 | 0.968 (19) | C20—C21 | 1.500 (2) |
C7—C8 | 1.4669 (18) | C20—H20A | 1.00 (2) |
C7—H7 | 0.961 (18) | C20—H20B | 1.04 (2) |
C8—C13 | 1.3958 (19) | C21—H21A | 1.00 (2) |
C8—C9 | 1.4016 (19) | C21—H21B | 0.96 (2) |
C9—C10 | 1.385 (2) | C21—H21C | 0.97 (2) |
C4—S1—C18 | 102.24 (6) | C12—C13—H13 | 120.2 (10) |
C19—O3—C20 | 115.85 (11) | C8—C13—H13 | 119.0 (10) |
C4—N1—C3 | 118.68 (11) | O1—C14—C15 | 122.21 (12) |
C2—C1—C5 | 116.93 (11) | O1—C14—C2 | 119.95 (12) |
C2—C1—C6 | 124.86 (12) | C15—C14—C2 | 117.77 (12) |
C5—C1—C6 | 118.14 (11) | C14—C15—H15A | 105.7 (13) |
C1—C2—C3 | 119.21 (12) | C14—C15—H15B | 109.9 (13) |
C1—C2—C14 | 122.32 (11) | H15A—C15—H15B | 110.5 (18) |
C3—C2—C14 | 118.47 (11) | C14—C15—H14C | 111.5 (12) |
N1—C3—C2 | 122.74 (12) | H15A—C15—H14C | 107.7 (17) |
N1—C3—C16 | 114.90 (11) | H15B—C15—H14C | 111.2 (17) |
C2—C3—C16 | 122.34 (12) | C3—C16—H16A | 109.5 |
N1—C4—C5 | 122.14 (12) | C3—C16—H16B | 109.5 |
N1—C4—S1 | 120.40 (10) | H16A—C16—H16B | 109.5 |
C5—C4—S1 | 117.46 (10) | C3—C16—H16C | 109.5 |
C4—C5—C1 | 120.22 (12) | H16A—C16—H16C | 109.5 |
C4—C5—C17 | 119.59 (12) | H16B—C16—H16C | 109.5 |
C1—C5—C17 | 120.16 (12) | N2—C17—C5 | 178.94 (16) |
C7—C6—C1 | 124.98 (12) | C19—C18—S1 | 113.86 (10) |
C7—C6—H6 | 120.3 (11) | C19—C18—H18A | 108.7 (11) |
C1—C6—H6 | 114.6 (11) | S1—C18—H18A | 107.8 (11) |
C6—C7—C8 | 126.26 (13) | C19—C18—H18B | 110.0 (10) |
C6—C7—H7 | 118.6 (11) | S1—C18—H18B | 106.7 (10) |
C8—C7—H7 | 115.1 (11) | H18A—C18—H18B | 109.7 (14) |
C13—C8—C9 | 118.47 (12) | O2—C19—O3 | 124.17 (13) |
C13—C8—C7 | 118.34 (12) | O2—C19—C18 | 126.38 (13) |
C9—C8—C7 | 123.18 (12) | O3—C19—C18 | 109.43 (11) |
C10—C9—C8 | 120.64 (13) | O3—C20—C21 | 107.39 (14) |
C10—C9—H9 | 119.7 (11) | O3—C20—H20A | 108.7 (13) |
C8—C9—H9 | 119.7 (11) | C21—C20—H20A | 112.2 (13) |
C9—C10—C11 | 120.03 (13) | O3—C20—H20B | 110.0 (12) |
C9—C10—H10 | 118.6 (12) | C21—C20—H20B | 111.1 (12) |
C11—C10—H10 | 121.4 (12) | H20A—C20—H20B | 107.4 (17) |
C12—C11—C10 | 119.98 (13) | C20—C21—H21A | 109.1 (13) |
C12—C11—H11 | 119.8 (11) | C20—C21—H21B | 110.5 (13) |
C10—C11—H11 | 120.2 (11) | H21A—C21—H21B | 109.7 (18) |
C11—C12—C13 | 120.18 (13) | C20—C21—H21C | 111.6 (12) |
C11—C12—H12 | 120.1 (11) | H21A—C21—H21C | 110.1 (18) |
C13—C12—H12 | 119.7 (11) | H21B—C21—H21C | 105.8 (18) |
C12—C13—C8 | 120.69 (13) | ||
C5—C1—C2—C3 | 2.15 (18) | C5—C1—C6—C7 | −140.67 (14) |
C6—C1—C2—C3 | −175.01 (12) | C1—C6—C7—C8 | 173.53 (13) |
C5—C1—C2—C14 | −176.70 (11) | C6—C7—C8—C13 | 172.91 (14) |
C6—C1—C2—C14 | 6.15 (19) | C6—C7—C8—C9 | −8.2 (2) |
C4—N1—C3—C2 | 1.39 (19) | C13—C8—C9—C10 | 0.5 (2) |
C4—N1—C3—C16 | −179.73 (12) | C7—C8—C9—C10 | −178.32 (13) |
C1—C2—C3—N1 | −3.20 (19) | C8—C9—C10—C11 | 0.0 (2) |
C14—C2—C3—N1 | 175.69 (12) | C9—C10—C11—C12 | −0.6 (2) |
C1—C2—C3—C16 | 177.99 (12) | C10—C11—C12—C13 | 0.6 (2) |
C14—C2—C3—C16 | −3.12 (19) | C11—C12—C13—C8 | 0.0 (2) |
C3—N1—C4—C5 | 1.39 (19) | C9—C8—C13—C12 | −0.5 (2) |
C3—N1—C4—S1 | −178.47 (10) | C7—C8—C13—C12 | 178.38 (14) |
C18—S1—C4—N1 | −5.66 (12) | C1—C2—C14—O1 | −114.75 (15) |
C18—S1—C4—C5 | 174.48 (10) | C3—C2—C14—O1 | 66.40 (17) |
N1—C4—C5—C1 | −2.31 (19) | C1—C2—C14—C15 | 68.12 (17) |
S1—C4—C5—C1 | 177.55 (10) | C3—C2—C14—C15 | −110.73 (15) |
N1—C4—C5—C17 | 175.55 (12) | C4—S1—C18—C19 | 98.96 (10) |
S1—C4—C5—C17 | −4.59 (17) | C20—O3—C19—O2 | 0.6 (2) |
C2—C1—C5—C4 | 0.44 (18) | C20—O3—C19—C18 | 179.32 (12) |
C6—C1—C5—C4 | 177.79 (12) | S1—C18—C19—O2 | −26.34 (19) |
C2—C1—C5—C17 | −177.42 (12) | S1—C18—C19—O3 | 154.93 (10) |
C6—C1—C5—C17 | −0.06 (18) | C19—O3—C20—C21 | 179.23 (14) |
C2—C1—C6—C7 | 36.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O2i | 0.98 (2) | 2.56 (2) | 3.375 (2) | 139.9 (17) |
C18—H18B···O1ii | 0.965 (17) | 2.493 (17) | 3.2989 (17) | 140.9 (13) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H20B···H16B | 2.53 | x, 1 + y, z |
H18B···H7 | 2.42 | 1 - x, 1 - y, 1 - z |
O2···H10 | 2.613 | 3/2 - x, 1/2 + y, 1/2 - z |
H15A···O2 | 2.56 | 2 - x, 1 - y, 1 - z |
N2···H20A | 2.63 | -1/2+x, 3/2 - y, -1/2 + z |
H11···H11 | 2.31 | 1 - x, -y, -z |
H12···H20A | 2.47 | -1/2 + x, 1/2 - y, -1/2 + z |
H16A···H21B | 2.49 | 3/2 - x, -1/2 + y, 3/2 - z |
Acknowledgements
Author contributions are as follows: Conceptualization, EAB, MSA and SKM; methodology, JTM, EAB and MA; investigation, JTM, SKM, and EAB; writing (original draft), JTM, AM, SKM and EAB; writing (review and editing of the manuscript), MA and SKM; visualization, MA, SKM and JTM; funding acquisition, SAHA and SKM; resources, MA, JTM, EAB and SKM. AAA, VNK and FNN; supervision, SKM and MA.
Funding information
The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Balasubramanian, M. & Keay, J. G. (1996). In Comprehensive Heterocyclic Chemistry II, edited by A. R Katritzky, C. W. Rees & E. F. V. Scriven, pp. 245–300. Oxford: Pergamon. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Cunha, S., Bastos, R. M., Silva, P. O., Nobre Costa, G. A., Vencato, I., Lariucci, C., Napolitano, H. B., de Oliveira, C. M. A., Kato, L., da Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111–119. CSD CrossRef CAS Google Scholar
Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138–1145. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vidaillac, C., Guillon, J., Arpin, C., Forfar-Bares, I., Ba, B. B., Grellet, J., Moreau, S., Caignard, D. H., Jarry, C. & Quentin, C. (2007). Antimicrob. Agents Chemother. 51, 831–838. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.