research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl 5-[2-(2,4,6-trioxo-1,3-diazinan-5-yl­­idene)hydrazin-1-yl]benzene-1,3-di­carboxyl­ate 0.224-hydrate

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, dDepartment of Ecology and Soil Sciences, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 11 June 2021; accepted 22 June 2021; online 30 June 2021)

In the crystal, the whole mol­ecule of the title compound, C14H12N4O7·0.224H2O, is nearly planar with a maximum deviation from the least-squares plane of 0.352 (1) Å. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, mol­ecules are linked by centrosymmetric pairs of N—H⋯O hydrogen bonds, forming ribbons along the c-axis direction. These ribbons connected by van der Waals contacts, forming sheets parallel to the ac plane. There are also inter­molecular van der Waals contacts and and C—H⋯π inter­actions between the sheets. A Hirshfeld surface analysis indicates that the most prevalent inter­actions are O⋯H/H⋯O (41.2%), H⋯H (19.2%), C⋯H/H⋯C (12.2%) and C⋯O/ O⋯C (8.4%).

1. Chemical context

Aryl­hydrazones, besides their biological significance (Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]), can also be used as precursors in the synthesis of coordination compounds (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]) and as building blocks in the construction of supra­molecular structures owing to their hydrogen-bond donor and acceptor capabilities (Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.]; 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]). All the reported hydrazone ligands are stabilized in the hydrazone form by intra­molecular resonance-assisted hydrogen bonding (RAHB) between the hydrazone =N—NH— fragment and the carbonyl group, giving a six-membered ring (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175-180.],b[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248-7250.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). The use of multifunctional ligands in coordination chemistry is a common way to increase the water solubility of metal complexes, which is important for catalytic applications in aqueous medium (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Sutradhar et al., 2015[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959-3969.], 2016[Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079-8088.]). Moreover, non-covalent inter­actions such as hydrogen, halogen and chalcogen bonds as well as π-inter­actions or their cooperation are able to contribute to synthesis and catalysis and improve the properties of materials (Gurbanov et al., 2020b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Mac Leod et al., 2012[Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this area, we have prepared a new hydrazone ligand, dimethyl 5-{2-[2,4,6-trioxo­tetra­hydro­pyrimidin-5(2H)-yl­id­ene] hydrazine­yl}isophthalate, which provides the centres for coordination and inter­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title structure contains one title mol­ecule and a water mol­ecule, which partially occupies a small cavity with an occupancy factor of 0.224 (5). The title mol­ecule (Fig. 1[link]) is nearly planar with the largest deviation from the least-squares plane being 0.352 (1) Å for the methyl­carboxyl­ate atom O6. The 1,3-diazinane ring makes a dihedral angle of 9.96 (5)° with the benzene ring. The planar mol­ecular conformation is stabilized by an intra­molecular N—H⋯O contact (Table 1[link]), generating an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.03 2.8800 (13) 174
N2—H2N⋯O3ii 0.90 2.01 2.8931 (15) 168
N4—H4N⋯O3 0.86 2.02 2.6571 (15) 131
C6—H6⋯Ow1 0.95 2.14 3.061 (6) 163
C12—H12B⋯O1iii 0.98 2.39 3.2743 (17) 149
C14—H14B⋯O4iv 0.98 2.53 3.4754 (16) 163
C12—H12CCg2v 0.98 2.73 3.4717 (15) 133
Symmetry codes: (i) [-x+1, y, -z+{\script{5\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x, y, z-1]; (iv) x, y, z+1; (v) [x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction (Table 1[link]). These ribbons are connected by van der Waals inter­actions, forming sheets parallel to the ac plane. There are also other van der Waals contacts and C—H⋯π inter­actions between the sheets (Table 2[link]), consolidating the crystal packing (Figs. 2[link]–4[link][link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯*Ow1 3.129 x, y, 1 + z
O1⋯H12B 2.39 x, y, 1 + z
O1⋯H4N 2.59 x, 1 − y, [{1\over 2}] + z
H12A⋯O1 2.67 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
H1N⋯O2 2.03 1 − x, y, [{5\over 2}] − z
O2⋯*Ow1 2.662 1 − x, y, [{3\over 2}] − z
N2⋯O2 3.226 1 − x, 1 − y, 2 − z
O2⋯H14C 2.64 [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
H2N⋯O3 2.01 1 − x, y, [{3\over 2}] − z
H4N⋯O1 2.59 x, 1 − y, − [{1\over 2}] + z
H12B⋯O1 2.39 x, y, − 1 + z
H8⋯O6 2.66 x, y, [{1\over 2}] − z
H14A⋯O6 2.67 x, 1 − y, 1 − z
H14C⋯O2 2.64 [{1\over 2}] + x, [{1\over 2}] − y, − [{1\over 2}] + z
C1⋯*Ow1 3.297 x, 1 − y, [{1\over 2}] + z
H6⋯*Ow1 2.14 x, y, z
H12B⋯C12 3.10 [{1\over 2}] − x, [{1\over 2}] − y, −z
H14B⋯C14 2.93 x, y, [{3\over 2}] − z
H12A⋯*Ow1 2.70 [{1\over 2}] − x, [{1\over 2}] − y, −z
*Ow1 indicates the oxygen atom of the water mol­ecule with an occupancy of 0.224 (5).
[Figure 2]
Figure 2
A view down the a axis showing the inter­molecular contacts forming the layered structure.
[Figure 3]
Figure 3
A view of inter­molecular hydrogen bonds forming the ribbons along the c-axis direction.
[Figure 4]
Figure 4
A view of the projection on the ab plane showing the contacts between layers.

4. Hirshfeld surface analysis

The Hirshfeld surface for the title mol­ecule was performed and its associated two-dimensional fingerprint plots were prepared using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) to further investigate the inter­molecular inter­actions in the title structure. The oxygen atom of the water mol­ecule with partial occupancy was not taken into account. The Hirshfeld surface mapped over dnorm with corresponding colours representing inter­molecular inter­actions is shown in Fig. 5[link]. The red spots on the surface correspond to the N—H⋯O and C—H⋯O inter­actions (Tables 1[link] and 2[link]). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) is shown in Fig. 6[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 7[link]. O⋯H/H.·O contacts make the largest contribution (41.2%; Fig. 7[link]b) to the Hirshfeld surface. The other large contributions to the Hirshfeld surface are from H⋯H (19.2%; Fig. 7[link]c), C⋯H/H⋯C (12.2%; Fig. 7[link]d) and C⋯O/O⋯C (8.4%; Fig. 7[link]e) inter­actions. All contributions to the Hirshfeld surface are listed in Table 3[link]. These inter­actions play a crucial role in the overall cohesion of the crystal packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
O⋯H/H⋯O 41.2
H⋯H 19.2
C⋯H/H⋯C 12.2
C⋯O/O⋯C 8.4
O⋯O 5.6
N⋯O/O⋯N 4.7
C⋯N/N⋯C 3.2
C⋯C 2.8
N⋯H/H⋯N 2.7
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm, with inter­actions to neighbouring mol­ecules shown as green dashed lines.
[Figure 6]
Figure 6
The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) C⋯H/H⋯C and (e) C⋯O/O⋯C, inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of Cambridge Crystallographic Database (CSD, version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for structures containing the 5-(2-methyl­hydrazinyl­idene)-1,3-diazinane moiety. The first three structures are free bases are: 2-{2-[(1H-imidazol-5-yl)methyl­idene]-1-methyl­hydrazin­yl}pyridine (QUGVEW; Bocian et al., 2020[Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367-374.]), 2-{2-[(1H-imidazol-2-yl)methyl­idene]-1-methyl­hydrazin­yl}-1H-benzimidazole monohydrate (QUGVIA; Bocian et al., 2020[Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367-374.]) and 2-{1-methyl-2-[(1-methyl-1H-imidazol-2-yl)methyl­idene]hydrazin­yl}-1H-benzimidazole hydrate unknown solvate (QUGVOG; Bocian et al., 2020[Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367-374.]). The other two are triflate salts are: 5-{[2-(1H-benzimidazol-2-yl)-2-methyl­hydrazinyl­idene]meth­yl}-1H-imidazol-3-ium tri­fluoro­meth­ane­sulfonate monohydrate (QUGVUM; Bocian et al., 2020[Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367-374.]) and (2-{2-[(1H-imidazol-3-ium-2-yl)methyl­ene]-1-methyl­hydrazine­yl}pyridin-1-ium) bis­(tri­fluoro­methane­sulfonate) (QUGWAT; Bocian et al., 2020[Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367-374.]).

In the structures of QUGVEW, QUGVIA, QUGVOG, QUGVUM and QUGWAT, the most important contribution to the stabilization of the crystal packing is provided by ππ inter­actions, especially between cations in the structures of salts, while the characteristics of the crystal architecture are influenced by directional inter­actions, especially relatively strong hydrogen bonds. In one of the structures (QUGWAT), an inter­esting example of a non-typical F⋯O inter­action was found whose length, 2.859 (2) Å, is one of the shortest ever reported.

6. Synthesis and crystallization

Diazo­tization: 2.09 g (10 mmol) of dimethyl 5-amino­isophthalate were dissolved in 50 mL of water, the solution was cooled on an ice bath to 273 K and 0.69 g (10 mmol) of NaNO2 were added; 2.00 mL of HCl were then added in 0.5 mL portions over 1 h. The temperature of the mixture should not exceed 278 K.

Azocoupling: NaOH (0.40 g, 10 mmol) was added to a mixture of 10 mmol (1.28 g) of barbituric acid with 25.00 mL of water. The solution was cooled on an ice bath and a suspension of 3,5-bis(meth­oxy­carbon­yl)benzene­diazo­nium chloride, prepared according to the procedure described above, was added in two equal portions under vigorous stirring for 1 h. The formed precipitate of the title compound was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

The title compound: Yield, 68% (based on barbituric acid), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C14H12N4O7 (Mr = 348.27): C, 48.28; H, 3.47; N, 16.09; found: C, 48.25 H, 3.41; N, 16.03%. ESI–MS: m/z: 349.2 [Mr + H]+. IR (KBr): 3160, 3090 and 2846 ν(NH), 1745 and 1663 ν(C=O), 1610 ν(C=O⋯H) cm−1. 1H NMR (300.130 MHz) in DMSO-d6, inter­nal TMS, δ (ppm): 8.20–8.36 (3H, Ar—H), 11.32 (s, 1H, N—H), 11.54 (s, 1H, N—H), 14.08 (s, 1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d6). δ: 55.6 (2OCH3), 119.54 (2Ar—H), 121.8 (Ar-H), 127.4 (2C—COOCH3), 133.25 (C=N), 142.87 (C—NHN=), 150.24 (C=O), 160.32 (C=O), 161.90 (C=O⋯H) and 166.56 (2COOCH3).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms of the NH groups were located by difference Fourier synthesis and their coord­inates were fixed. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). There is a small cavity in the crystal, which is only partially occupied by a water mol­ecule, with an occupancy of 0.224 (5), and its hydrogen atoms could not be located.

Table 4
Experimental details

Crystal data
Chemical formula C14H12N4O7·0.224H2O
Mr 351.86
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 24.2097 (11), 12.6311 (6), 10.4022 (5)
β (°) 113.133 (2)
V3) 2925.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.34 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 34832, 2944, 2699
Rint 0.017
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.102, 1.04
No. of reflections 2944
No. of parameters 241
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Dimethyl 5-[2-(2,4,6-trioxo-1,3-diazinan-5-ylidene)hydrazin-1-yl]benzene-1,3-dicarboxylate 0.224-hydrate top
Crystal data top
C14H12N4O7·0.224H2OF(000) = 1454
Mr = 351.86Dx = 1.598 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.2097 (11) ÅCell parameters from 9840 reflections
b = 12.6311 (6) Åθ = 3.2–26.4°
c = 10.4022 (5) ŵ = 0.13 mm1
β = 113.133 (2)°T = 150 K
V = 2925.2 (2) Å3Block, orange
Z = 80.34 × 0.32 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.017
φ and ω scansθmax = 26.4°, θmin = 3.2°
34832 measured reflectionsh = 3030
2944 independent reflectionsk = 1515
2699 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0586P)2 + 2.1077P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2944 reflectionsΔρmax = 0.29 e Å3
241 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.37057 (5)0.39423 (9)0.82909 (12)0.0190 (2)
C20.37833 (5)0.39902 (9)0.97648 (12)0.0207 (2)
C30.48693 (5)0.37742 (9)1.04270 (12)0.0208 (2)
C40.42279 (5)0.38365 (8)0.79361 (12)0.0186 (2)
C50.24165 (5)0.38344 (8)0.50833 (12)0.0192 (2)
C60.23130 (5)0.37794 (9)0.36716 (12)0.0204 (2)
H60.2639060.3806950.3381720.025*
C70.17254 (5)0.36834 (9)0.26874 (11)0.0197 (2)
C80.12459 (5)0.36539 (9)0.31079 (12)0.0201 (2)
H80.0846120.3586790.2433550.024*
C90.13569 (5)0.37237 (9)0.45277 (12)0.0200 (2)
C100.19423 (5)0.38111 (9)0.55282 (12)0.0203 (2)
H100.2017040.3853990.6494170.024*
C110.15859 (5)0.35937 (9)0.11562 (12)0.0211 (2)
C120.19700 (5)0.35182 (11)0.05977 (12)0.0264 (3)
H12A0.1771830.2842380.0964100.040*
H12B0.2353890.3550770.0705990.040*
H12C0.1712090.4102450.1115730.040*
C130.08236 (5)0.37078 (10)0.49220 (12)0.0231 (3)
C140.04671 (6)0.39831 (12)0.66992 (14)0.0307 (3)
H14A0.0223900.4614290.6305970.046*
H14B0.0621810.4012160.7721940.046*
H14C0.0218640.3348510.6366950.046*
N10.43716 (4)0.38898 (8)1.07229 (10)0.0215 (2)
H1N0.4453300.3889461.1603770.026 (4)*
N20.47752 (4)0.37483 (8)0.90340 (10)0.0209 (2)
H2N0.5109680.3675220.8865190.032 (4)*
N30.31416 (4)0.39456 (7)0.73771 (10)0.0197 (2)
N40.30173 (4)0.38952 (8)0.60489 (10)0.0202 (2)
H4N0.3292800.3914320.5727480.041 (5)*
O10.33809 (4)0.41106 (8)1.01707 (9)0.0285 (2)
O20.53768 (4)0.37191 (8)1.13392 (9)0.0279 (2)
O30.41946 (4)0.38163 (7)0.67172 (8)0.0229 (2)
O40.10827 (4)0.35077 (8)0.02776 (9)0.0310 (2)
O50.20773 (4)0.36060 (7)0.08791 (8)0.0250 (2)
O60.03258 (4)0.35068 (10)0.41153 (10)0.0431 (3)
O70.09668 (4)0.39450 (8)0.62583 (9)0.0292 (2)
OW10.3463 (2)0.3484 (4)0.3151 (6)0.0466 (19)0.224 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (5)0.0212 (5)0.0187 (5)0.0008 (4)0.0054 (4)0.0001 (4)
C20.0184 (5)0.0233 (6)0.0203 (6)0.0022 (4)0.0074 (5)0.0026 (4)
C30.0192 (5)0.0237 (6)0.0179 (5)0.0009 (4)0.0054 (4)0.0003 (4)
C40.0166 (5)0.0198 (5)0.0175 (5)0.0002 (4)0.0047 (4)0.0010 (4)
C50.0157 (5)0.0195 (5)0.0193 (5)0.0003 (4)0.0034 (4)0.0016 (4)
C60.0188 (5)0.0220 (5)0.0209 (6)0.0006 (4)0.0081 (4)0.0018 (4)
C70.0203 (5)0.0198 (5)0.0177 (6)0.0005 (4)0.0061 (4)0.0010 (4)
C80.0171 (5)0.0211 (5)0.0189 (5)0.0002 (4)0.0034 (4)0.0003 (4)
C90.0173 (5)0.0223 (5)0.0193 (5)0.0007 (4)0.0061 (4)0.0006 (4)
C100.0197 (5)0.0229 (5)0.0172 (5)0.0006 (4)0.0061 (4)0.0006 (4)
C110.0210 (5)0.0222 (5)0.0192 (5)0.0008 (4)0.0070 (4)0.0011 (4)
C120.0253 (6)0.0365 (7)0.0180 (6)0.0003 (5)0.0092 (5)0.0008 (5)
C130.0185 (6)0.0295 (6)0.0192 (5)0.0006 (4)0.0053 (4)0.0002 (4)
C140.0221 (6)0.0462 (8)0.0262 (6)0.0023 (5)0.0121 (5)0.0036 (5)
N10.0184 (5)0.0310 (5)0.0141 (5)0.0001 (4)0.0054 (4)0.0023 (4)
N20.0149 (5)0.0304 (5)0.0167 (5)0.0025 (4)0.0056 (4)0.0005 (4)
N30.0174 (5)0.0219 (5)0.0181 (5)0.0007 (3)0.0053 (4)0.0001 (3)
N40.0153 (5)0.0270 (5)0.0176 (5)0.0005 (3)0.0055 (4)0.0017 (4)
O10.0192 (4)0.0439 (5)0.0244 (4)0.0026 (4)0.0108 (3)0.0066 (4)
O20.0190 (4)0.0441 (5)0.0169 (4)0.0043 (4)0.0032 (3)0.0004 (3)
O30.0178 (4)0.0344 (5)0.0161 (4)0.0001 (3)0.0062 (3)0.0014 (3)
O40.0211 (4)0.0510 (6)0.0187 (4)0.0024 (4)0.0056 (3)0.0028 (4)
O50.0204 (4)0.0370 (5)0.0172 (4)0.0008 (3)0.0071 (3)0.0015 (3)
O60.0175 (4)0.0853 (8)0.0252 (5)0.0085 (5)0.0069 (4)0.0130 (5)
O70.0190 (4)0.0498 (6)0.0193 (4)0.0038 (4)0.0080 (3)0.0038 (4)
OW10.031 (3)0.056 (3)0.058 (3)0.001 (2)0.024 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—N31.3223 (15)C9—C101.3945 (16)
C1—C41.4557 (16)C9—C131.5006 (16)
C1—C21.4708 (15)C10—H100.9500
C2—O11.2140 (14)C11—O41.2068 (14)
C2—N11.3864 (14)C11—O51.3298 (14)
C3—O21.2242 (14)C12—O51.4581 (14)
C3—N11.3638 (15)C12—H12A0.9800
C3—N21.3759 (15)C12—H12B0.9800
C4—O31.2387 (14)C12—H12C0.9800
C4—N21.3724 (14)C13—O61.1944 (15)
C5—C61.3909 (16)C13—O71.3280 (15)
C5—C101.3968 (16)C14—O71.4533 (14)
C5—N41.4080 (14)C14—H14A0.9800
C6—C71.3936 (16)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.3926 (16)N1—H1N0.8580
C7—C111.4970 (15)N2—H2N0.8982
C8—C91.3963 (16)N3—N41.2950 (14)
C8—H80.9500N4—H4N0.8557
N3—C1—C4124.93 (10)O4—C11—O5124.04 (10)
N3—C1—C2114.97 (10)O4—C11—C7123.45 (10)
C4—C1—C2120.00 (10)O5—C11—C7112.50 (9)
O1—C2—N1119.97 (10)O5—C12—H12A109.5
O1—C2—C1125.19 (10)O5—C12—H12B109.5
N1—C2—C1114.84 (9)H12A—C12—H12B109.5
O2—C3—N1122.53 (10)O5—C12—H12C109.5
O2—C3—N2121.04 (10)H12A—C12—H12C109.5
N1—C3—N2116.41 (10)H12B—C12—H12C109.5
O3—C4—N2120.22 (10)O6—C13—O7124.04 (11)
O3—C4—C1123.21 (10)O6—C13—C9123.36 (11)
N2—C4—C1116.56 (10)O7—C13—C9112.60 (9)
C6—C5—C10121.20 (10)O7—C14—H14A109.5
C6—C5—N4117.59 (10)O7—C14—H14B109.5
C10—C5—N4121.20 (10)H14A—C14—H14B109.5
C5—C6—C7119.25 (10)O7—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
C7—C6—H6120.4H14B—C14—H14C109.5
C8—C7—C6120.52 (10)C3—N1—C2126.63 (9)
C8—C7—C11117.69 (10)C3—N1—H1N112.8
C6—C7—C11121.79 (10)C2—N1—H1N120.6
C7—C8—C9119.52 (10)C4—N2—C3125.51 (10)
C7—C8—H8120.2C4—N2—H2N119.7
C9—C8—H8120.2C3—N2—H2N114.8
C10—C9—C8120.75 (11)N4—N3—C1120.55 (10)
C10—C9—C13121.89 (10)N3—N4—C5120.38 (9)
C8—C9—C13117.35 (10)N3—N4—H4N121.7
C9—C10—C5118.75 (10)C5—N4—H4N117.9
C9—C10—H10120.6C11—O5—C12115.04 (9)
C5—C10—H10120.6C13—O7—C14115.50 (9)
N3—C1—C2—O15.85 (17)C6—C7—C11—O50.66 (15)
C4—C1—C2—O1177.58 (11)C10—C9—C13—O6170.65 (13)
N3—C1—C2—N1174.41 (9)C8—C9—C13—O69.75 (18)
C4—C1—C2—N12.17 (15)C10—C9—C13—O79.60 (16)
N3—C1—C4—O35.51 (18)C8—C9—C13—O7170.00 (10)
C2—C1—C4—O3178.27 (10)O2—C3—N1—C2177.97 (11)
N3—C1—C4—N2173.94 (10)N2—C3—N1—C20.46 (17)
C2—C1—C4—N22.27 (15)O1—C2—N1—C3178.47 (11)
C10—C5—C6—C70.97 (16)C1—C2—N1—C31.29 (17)
N4—C5—C6—C7177.91 (10)O3—C4—N2—C3179.07 (11)
C5—C6—C7—C80.67 (16)C1—C4—N2—C31.46 (16)
C5—C6—C7—C11178.47 (10)O2—C3—N2—C4177.92 (11)
C6—C7—C8—C90.14 (16)N1—C3—N2—C40.53 (17)
C11—C7—C8—C9179.32 (10)C4—C1—N3—N42.91 (17)
C7—C8—C9—C100.68 (16)C2—C1—N3—N4179.30 (9)
C7—C8—C9—C13178.92 (10)C1—N3—N4—C5176.15 (10)
C8—C9—C10—C50.40 (16)C6—C5—N4—N3179.84 (10)
C13—C9—C10—C5179.18 (10)C10—C5—N4—N30.97 (16)
C6—C5—C10—C90.43 (16)O4—C11—O5—C120.65 (16)
N4—C5—C10—C9178.40 (10)C7—C11—O5—C12179.85 (9)
C8—C7—C11—O40.70 (17)O6—C13—O7—C141.96 (19)
C6—C7—C11—O4179.87 (11)C9—C13—O7—C14177.79 (10)
C8—C7—C11—O5178.51 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.8800 (13)174
N2—H2N···O3ii0.902.012.8931 (15)168
N4—H4N···O30.862.022.6571 (15)131
N4—H4N···O1iii0.862.592.9302 (14)105
C6—H6···Ow10.952.143.061 (6)163
C12—H12B···O1iv0.982.393.2743 (17)149
C14—H14B···O4v0.982.533.4754 (16)163
C12—H12C···Cg2iii0.982.733.4717 (15)133
Symmetry codes: (i) x+1, y, z+5/2; (ii) x+1, y, z+3/2; (iii) x, y+1, z1/2; (iv) x, y, z1; (v) x, y, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···*Ow13.129x, y, 1 + z
O1···H12B2.39x, y, 1 + z
O1···H4N2.59x, 1 - y, 1/2 + z
H12A···O12.671/2 - x, 1/2 - y, 1 - z
H1N···O22.031 - x, y, 5/2 - z
O2···*Ow12.6621 - x, y, 3/2 - z
N2···O23.2261 - x, 1 - y, 2 - z
O2···H14C2.641/2 + x, 1/2 - y, 1/2 + z
H2N···O32.011 - x, y, 3/2 - z
H4N···O12.59x, 1 - y, - 1/2 + z
H12B···O12.39x, y, - 1 + z
H8···O62.66-x, y, 1/2 - z
H14A···O62.67-x, 1 - y, 1 - z
H14C···O22.64-1/2 + x, 1/2 - y, - 1/2 + z
C1···*Ow13.297x, 1 - y, 1/2 + z
H6···*Ow12.14x, y, z
H12B···C123.101/2 - x, 1/2 - y, -z
H14B···C142.93-x, y, 3/2 - z
H12A···*Ow12.701/2 - x, 1/2 - y, -z
*Ow1 indicates the oxygen atom of the water molecule with an occupancy of 0.224 (5).
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
O···H/H···O41.2
H···H19.2
C···H/H···C12.2
C···O/O···C8.4
O···O5.6
N···O/O···N4.7
C···N/N···C3.2
C···C2.8
N···H/H···N2.7
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, ZA, MA, GZM, FEH, SRH, NTS, and AB; methodology, SRH, and NTS; investigation, ZA, and GZM; writing (original draft), FEH, MA and AB; writing (review and editing of the manuscript), MA and AB; crystal-structure determination, GZM; visualization, ZA, and MA; funding acquisition, GZM, FEH, SRH, and NTS; resources, ZA, MA and AB; supervision, MA and AB.

Funding information

This work was supported by Baku State University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367–374.  CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.  CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds