research communications
and Hirshfeld surface analysis of dimethyl 5-[2-(2,4,6-trioxo-1,3-diazinan-5-ylidene)hydrazin-1-yl]benzene-1,3-dicarboxylate 0.224-hydrate
aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, dDepartment of Ecology and Soil Sciences, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the crystal, the whole molecule of the title compound, C14H12N4O7·0.224H2O, is nearly planar with a maximum deviation from the least-squares plane of 0.352 (1) Å. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, molecules are linked by centrosymmetric pairs of N—H⋯O hydrogen bonds, forming ribbons along the c-axis direction. These ribbons connected by van der Waals contacts, forming sheets parallel to the ac plane. There are also intermolecular van der Waals contacts and and C—H⋯π interactions between the sheets. A Hirshfeld surface analysis indicates that the most prevalent interactions are O⋯H/H⋯O (41.2%), H⋯H (19.2%), C⋯H/H⋯C (12.2%) and C⋯O/ O⋯C (8.4%).
CCDC reference: 2091530
1. Chemical context
Arylhydrazones, besides their biological significance (Viswanathan et al., 2019), can also be used as precursors in the synthesis of coordination compounds (Gurbanov et al., 2017, 2018a,b; Ma et al., 2017a,b) and as building blocks in the construction of supramolecular structures owing to their hydrogen-bond donor and acceptor capabilities (Mahmoudi et al., 2016, 2017a,b,c, 2018a,b; 2019). All the reported hydrazone ligands are stabilized in the hydrazone form by intramolecular resonance-assisted hydrogen bonding (RAHB) between the hydrazone =N—NH— fragment and the carbonyl group, giving a six-membered ring (Gurbanov et al., 2020a; Kopylovich et al., 2011a,b; Mizar et al., 2012). The use of multifunctional ligands in coordination chemistry is a common way to increase the water solubility of metal complexes, which is important for catalytic applications in aqueous medium (Ma et al., 2020, 2021; Mahmudov et al., 2013; Sutradhar et al., 2015, 2016). Moreover, non-covalent interactions such as hydrogen, halogen and chalcogen bonds as well as π-interactions or their cooperation are able to contribute to synthesis and catalysis and improve the properties of materials (Gurbanov et al., 2020b; Karmakar et al., 2017; Khalilov et al., 2018a,b; Mac Leod et al., 2012; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this area, we have prepared a new hydrazone ligand, dimethyl 5-{2-[2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene] hydrazineyl}isophthalate, which provides the centres for coordination and intermolecular non-covalent interactions.
2. Structural commentary
The ) is nearly planar with the largest deviation from the least-squares plane being 0.352 (1) Å for the methylcarboxylate atom O6. The 1,3-diazinane ring makes a dihedral angle of 9.96 (5)° with the benzene ring. The planar molecular conformation is stabilized by an intramolecular N—H⋯O contact (Table 1), generating an S(6) ring motif (Bernstein et al., 1995).
of the title structure contains one title molecule and a water molecule, which partially occupies a small cavity with an occupancy factor of 0.224 (5). The title molecule (Fig. 13. Supramolecular features
In the crystal, the molecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction (Table 1). These ribbons are connected by van der Waals interactions, forming sheets parallel to the ac plane. There are also other van der Waals contacts and C—H⋯π interactions between the sheets (Table 2), consolidating the crystal packing (Figs. 2–4).
|
4. Hirshfeld surface analysis
The Hirshfeld surface for the title molecule was performed and its associated two-dimensional fingerprint plots were prepared using Crystal Explorer 17 (Turner et al., 2017) to further investigate the intermolecular interactions in the title structure. The oxygen atom of the water molecule with partial occupancy was not taken into account. The Hirshfeld surface mapped over dnorm with corresponding colours representing intermolecular interactions is shown in Fig. 5. The red spots on the surface correspond to the N—H⋯O and C—H⋯O interactions (Tables 1 and 2). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2009) is shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 7. O⋯H/H.·O contacts make the largest contribution (41.2%; Fig. 7b) to the Hirshfeld surface. The other large contributions to the Hirshfeld surface are from H⋯H (19.2%; Fig. 7c), C⋯H/H⋯C (12.2%; Fig. 7d) and C⋯O/O⋯C (8.4%; Fig. 7e) interactions. All contributions to the Hirshfeld surface are listed in Table 3. These interactions play a crucial role in the overall cohesion of the crystal packing.
|
5. Database survey
A search of Cambridge Crystallographic Database (CSD, version 5.40, update of September 2019; Groom et al., 2016) was undertaken for structures containing the 5-(2-methylhydrazinylidene)-1,3-diazinane moiety. The first three structures are free bases are: 2-{2-[(1H-imidazol-5-yl)methylidene]-1-methylhydrazinyl}pyridine (QUGVEW; Bocian et al., 2020), 2-{2-[(1H-imidazol-2-yl)methylidene]-1-methylhydrazinyl}-1H-benzimidazole monohydrate (QUGVIA; Bocian et al., 2020) and 2-{1-methyl-2-[(1-methyl-1H-imidazol-2-yl)methylidene]hydrazinyl}-1H-benzimidazole hydrate unknown solvate (QUGVOG; Bocian et al., 2020). The other two are triflate salts are: 5-{[2-(1H-benzimidazol-2-yl)-2-methylhydrazinylidene]methyl}-1H-imidazol-3-ium trifluoromethanesulfonate monohydrate (QUGVUM; Bocian et al., 2020) and (2-{2-[(1H-imidazol-3-ium-2-yl)methylene]-1-methylhydrazineyl}pyridin-1-ium) bis(trifluoromethanesulfonate) (QUGWAT; Bocian et al., 2020).
In the structures of QUGVEW, QUGVIA, QUGVOG, QUGVUM and QUGWAT, the most important contribution to the stabilization of the crystal packing is provided by π–π interactions, especially between cations in the structures of salts, while the characteristics of the crystal architecture are influenced by directional interactions, especially relatively strong hydrogen bonds. In one of the structures (QUGWAT), an interesting example of a non-typical F⋯O interaction was found whose length, 2.859 (2) Å, is one of the shortest ever reported.
6. Synthesis and crystallization
Diazotization: 2.09 g (10 mmol) of dimethyl 5-aminoisophthalate were dissolved in 50 mL of water, the solution was cooled on an ice bath to 273 K and 0.69 g (10 mmol) of NaNO2 were added; 2.00 mL of HCl were then added in 0.5 mL portions over 1 h. The temperature of the mixture should not exceed 278 K.
Azocoupling: NaOH (0.40 g, 10 mmol) was added to a mixture of 10 mmol (1.28 g) of barbituric acid with 25.00 mL of water. The solution was cooled on an ice bath and a suspension of 3,5-bis(methoxycarbonyl)benzenediazonium chloride, prepared according to the procedure described above, was added in two equal portions under vigorous stirring for 1 h. The formed precipitate of the title compound was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
The title compound: Yield, 68% (based on barbituric acid), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C14H12N4O7 (Mr = 348.27): C, 48.28; H, 3.47; N, 16.09; found: C, 48.25 H, 3.41; N, 16.03%. ESI–MS: m/z: 349.2 [Mr + H]+. IR (KBr): 3160, 3090 and 2846 ν(NH), 1745 and 1663 ν(C=O), 1610 ν(C=O⋯H) cm−1. 1H NMR (300.130 MHz) in DMSO-d6, internal TMS, δ (ppm): 8.20–8.36 (3H, Ar—H), 11.32 (s, 1H, N—H), 11.54 (s, 1H, N—H), 14.08 (s, 1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d6). δ: 55.6 (2OCH3), 119.54 (2Ar—H), 121.8 (Ar-H), 127.4 (2C—COOCH3), 133.25 (C=N), 142.87 (C—NHN=), 150.24 (C=O), 160.32 (C=O), 161.90 (C=O⋯H) and 166.56 (2COOCH3).
7. details
Crystal data, data collection and structure . The H atoms of the NH groups were located by difference Fourier synthesis and their coordinates were fixed. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). There is a small cavity in the crystal, which is only partially occupied by a water molecule, with an occupancy of 0.224 (5), and its hydrogen atoms could not be located.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2091530
https://doi.org/10.1107/S2056989021006563/yk2153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006563/yk2153Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021006563/yk2153Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C14H12N4O7·0.224H2O | F(000) = 1454 |
Mr = 351.86 | Dx = 1.598 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.2097 (11) Å | Cell parameters from 9840 reflections |
b = 12.6311 (6) Å | θ = 3.2–26.4° |
c = 10.4022 (5) Å | µ = 0.13 mm−1 |
β = 113.133 (2)° | T = 150 K |
V = 2925.2 (2) Å3 | Block, orange |
Z = 8 | 0.34 × 0.32 × 0.27 mm |
Bruker APEXII CCD diffractometer | Rint = 0.017 |
φ and ω scans | θmax = 26.4°, θmin = 3.2° |
34832 measured reflections | h = −30→30 |
2944 independent reflections | k = −15→15 |
2699 reflections with I > 2σ(I) | l = −13→13 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0586P)2 + 2.1077P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2944 reflections | Δρmax = 0.29 e Å−3 |
241 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.37057 (5) | 0.39423 (9) | 0.82909 (12) | 0.0190 (2) | |
C2 | 0.37833 (5) | 0.39902 (9) | 0.97648 (12) | 0.0207 (2) | |
C3 | 0.48693 (5) | 0.37742 (9) | 1.04270 (12) | 0.0208 (2) | |
C4 | 0.42279 (5) | 0.38365 (8) | 0.79361 (12) | 0.0186 (2) | |
C5 | 0.24165 (5) | 0.38344 (8) | 0.50833 (12) | 0.0192 (2) | |
C6 | 0.23130 (5) | 0.37794 (9) | 0.36716 (12) | 0.0204 (2) | |
H6 | 0.263906 | 0.380695 | 0.338172 | 0.025* | |
C7 | 0.17254 (5) | 0.36834 (9) | 0.26874 (11) | 0.0197 (2) | |
C8 | 0.12459 (5) | 0.36539 (9) | 0.31079 (12) | 0.0201 (2) | |
H8 | 0.084612 | 0.358679 | 0.243355 | 0.024* | |
C9 | 0.13569 (5) | 0.37237 (9) | 0.45277 (12) | 0.0200 (2) | |
C10 | 0.19423 (5) | 0.38111 (9) | 0.55282 (12) | 0.0203 (2) | |
H10 | 0.201704 | 0.385399 | 0.649417 | 0.024* | |
C11 | 0.15859 (5) | 0.35937 (9) | 0.11562 (12) | 0.0211 (2) | |
C12 | 0.19700 (5) | 0.35182 (11) | −0.05977 (12) | 0.0264 (3) | |
H12A | 0.177183 | 0.284238 | −0.096410 | 0.040* | |
H12B | 0.235389 | 0.355077 | −0.070599 | 0.040* | |
H12C | 0.171209 | 0.410245 | −0.111573 | 0.040* | |
C13 | 0.08236 (5) | 0.37078 (10) | 0.49220 (12) | 0.0231 (3) | |
C14 | 0.04671 (6) | 0.39831 (12) | 0.66992 (14) | 0.0307 (3) | |
H14A | 0.022390 | 0.461429 | 0.630597 | 0.046* | |
H14B | 0.062181 | 0.401216 | 0.772194 | 0.046* | |
H14C | 0.021864 | 0.334851 | 0.636695 | 0.046* | |
N1 | 0.43716 (4) | 0.38898 (8) | 1.07229 (10) | 0.0215 (2) | |
H1N | 0.445330 | 0.388946 | 1.160377 | 0.026 (4)* | |
N2 | 0.47752 (4) | 0.37483 (8) | 0.90340 (10) | 0.0209 (2) | |
H2N | 0.510968 | 0.367522 | 0.886519 | 0.032 (4)* | |
N3 | 0.31416 (4) | 0.39456 (7) | 0.73771 (10) | 0.0197 (2) | |
N4 | 0.30173 (4) | 0.38952 (8) | 0.60489 (10) | 0.0202 (2) | |
H4N | 0.329280 | 0.391432 | 0.572748 | 0.041 (5)* | |
O1 | 0.33809 (4) | 0.41106 (8) | 1.01707 (9) | 0.0285 (2) | |
O2 | 0.53768 (4) | 0.37191 (8) | 1.13392 (9) | 0.0279 (2) | |
O3 | 0.41946 (4) | 0.38163 (7) | 0.67172 (8) | 0.0229 (2) | |
O4 | 0.10827 (4) | 0.35077 (8) | 0.02776 (9) | 0.0310 (2) | |
O5 | 0.20773 (4) | 0.36060 (7) | 0.08791 (8) | 0.0250 (2) | |
O6 | 0.03258 (4) | 0.35068 (10) | 0.41153 (10) | 0.0431 (3) | |
O7 | 0.09668 (4) | 0.39450 (8) | 0.62583 (9) | 0.0292 (2) | |
OW1 | 0.3463 (2) | 0.3484 (4) | 0.3151 (6) | 0.0466 (19) | 0.224 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0158 (5) | 0.0212 (5) | 0.0187 (5) | −0.0008 (4) | 0.0054 (4) | −0.0001 (4) |
C2 | 0.0184 (5) | 0.0233 (6) | 0.0203 (6) | −0.0022 (4) | 0.0074 (5) | −0.0026 (4) |
C3 | 0.0192 (5) | 0.0237 (6) | 0.0179 (5) | 0.0009 (4) | 0.0054 (4) | −0.0003 (4) |
C4 | 0.0166 (5) | 0.0198 (5) | 0.0175 (5) | −0.0002 (4) | 0.0047 (4) | 0.0010 (4) |
C5 | 0.0157 (5) | 0.0195 (5) | 0.0193 (5) | −0.0003 (4) | 0.0034 (4) | 0.0016 (4) |
C6 | 0.0188 (5) | 0.0220 (5) | 0.0209 (6) | 0.0006 (4) | 0.0081 (4) | 0.0018 (4) |
C7 | 0.0203 (5) | 0.0198 (5) | 0.0177 (6) | 0.0005 (4) | 0.0061 (4) | 0.0010 (4) |
C8 | 0.0171 (5) | 0.0211 (5) | 0.0189 (5) | −0.0002 (4) | 0.0034 (4) | 0.0003 (4) |
C9 | 0.0173 (5) | 0.0223 (5) | 0.0193 (5) | −0.0007 (4) | 0.0061 (4) | 0.0006 (4) |
C10 | 0.0197 (5) | 0.0229 (5) | 0.0172 (5) | −0.0006 (4) | 0.0061 (4) | 0.0006 (4) |
C11 | 0.0210 (5) | 0.0222 (5) | 0.0192 (5) | 0.0008 (4) | 0.0070 (4) | 0.0011 (4) |
C12 | 0.0253 (6) | 0.0365 (7) | 0.0180 (6) | 0.0003 (5) | 0.0092 (5) | 0.0008 (5) |
C13 | 0.0185 (6) | 0.0295 (6) | 0.0192 (5) | −0.0006 (4) | 0.0053 (4) | 0.0002 (4) |
C14 | 0.0221 (6) | 0.0462 (8) | 0.0262 (6) | −0.0023 (5) | 0.0121 (5) | −0.0036 (5) |
N1 | 0.0184 (5) | 0.0310 (5) | 0.0141 (5) | −0.0001 (4) | 0.0054 (4) | −0.0023 (4) |
N2 | 0.0149 (5) | 0.0304 (5) | 0.0167 (5) | 0.0025 (4) | 0.0056 (4) | 0.0005 (4) |
N3 | 0.0174 (5) | 0.0219 (5) | 0.0181 (5) | −0.0007 (3) | 0.0053 (4) | −0.0001 (3) |
N4 | 0.0153 (5) | 0.0270 (5) | 0.0176 (5) | −0.0005 (3) | 0.0055 (4) | 0.0017 (4) |
O1 | 0.0192 (4) | 0.0439 (5) | 0.0244 (4) | −0.0026 (4) | 0.0108 (3) | −0.0066 (4) |
O2 | 0.0190 (4) | 0.0441 (5) | 0.0169 (4) | 0.0043 (4) | 0.0032 (3) | −0.0004 (3) |
O3 | 0.0178 (4) | 0.0344 (5) | 0.0161 (4) | −0.0001 (3) | 0.0062 (3) | 0.0014 (3) |
O4 | 0.0211 (4) | 0.0510 (6) | 0.0187 (4) | −0.0024 (4) | 0.0056 (3) | −0.0028 (4) |
O5 | 0.0204 (4) | 0.0370 (5) | 0.0172 (4) | 0.0008 (3) | 0.0071 (3) | 0.0015 (3) |
O6 | 0.0175 (4) | 0.0853 (8) | 0.0252 (5) | −0.0085 (5) | 0.0069 (4) | −0.0130 (5) |
O7 | 0.0190 (4) | 0.0498 (6) | 0.0193 (4) | −0.0038 (4) | 0.0080 (3) | −0.0038 (4) |
OW1 | 0.031 (3) | 0.056 (3) | 0.058 (3) | 0.001 (2) | 0.024 (2) | 0.004 (2) |
C1—N3 | 1.3223 (15) | C9—C10 | 1.3945 (16) |
C1—C4 | 1.4557 (16) | C9—C13 | 1.5006 (16) |
C1—C2 | 1.4708 (15) | C10—H10 | 0.9500 |
C2—O1 | 1.2140 (14) | C11—O4 | 1.2068 (14) |
C2—N1 | 1.3864 (14) | C11—O5 | 1.3298 (14) |
C3—O2 | 1.2242 (14) | C12—O5 | 1.4581 (14) |
C3—N1 | 1.3638 (15) | C12—H12A | 0.9800 |
C3—N2 | 1.3759 (15) | C12—H12B | 0.9800 |
C4—O3 | 1.2387 (14) | C12—H12C | 0.9800 |
C4—N2 | 1.3724 (14) | C13—O6 | 1.1944 (15) |
C5—C6 | 1.3909 (16) | C13—O7 | 1.3280 (15) |
C5—C10 | 1.3968 (16) | C14—O7 | 1.4533 (14) |
C5—N4 | 1.4080 (14) | C14—H14A | 0.9800 |
C6—C7 | 1.3936 (16) | C14—H14B | 0.9800 |
C6—H6 | 0.9500 | C14—H14C | 0.9800 |
C7—C8 | 1.3926 (16) | N1—H1N | 0.8580 |
C7—C11 | 1.4970 (15) | N2—H2N | 0.8982 |
C8—C9 | 1.3963 (16) | N3—N4 | 1.2950 (14) |
C8—H8 | 0.9500 | N4—H4N | 0.8557 |
N3—C1—C4 | 124.93 (10) | O4—C11—O5 | 124.04 (10) |
N3—C1—C2 | 114.97 (10) | O4—C11—C7 | 123.45 (10) |
C4—C1—C2 | 120.00 (10) | O5—C11—C7 | 112.50 (9) |
O1—C2—N1 | 119.97 (10) | O5—C12—H12A | 109.5 |
O1—C2—C1 | 125.19 (10) | O5—C12—H12B | 109.5 |
N1—C2—C1 | 114.84 (9) | H12A—C12—H12B | 109.5 |
O2—C3—N1 | 122.53 (10) | O5—C12—H12C | 109.5 |
O2—C3—N2 | 121.04 (10) | H12A—C12—H12C | 109.5 |
N1—C3—N2 | 116.41 (10) | H12B—C12—H12C | 109.5 |
O3—C4—N2 | 120.22 (10) | O6—C13—O7 | 124.04 (11) |
O3—C4—C1 | 123.21 (10) | O6—C13—C9 | 123.36 (11) |
N2—C4—C1 | 116.56 (10) | O7—C13—C9 | 112.60 (9) |
C6—C5—C10 | 121.20 (10) | O7—C14—H14A | 109.5 |
C6—C5—N4 | 117.59 (10) | O7—C14—H14B | 109.5 |
C10—C5—N4 | 121.20 (10) | H14A—C14—H14B | 109.5 |
C5—C6—C7 | 119.25 (10) | O7—C14—H14C | 109.5 |
C5—C6—H6 | 120.4 | H14A—C14—H14C | 109.5 |
C7—C6—H6 | 120.4 | H14B—C14—H14C | 109.5 |
C8—C7—C6 | 120.52 (10) | C3—N1—C2 | 126.63 (9) |
C8—C7—C11 | 117.69 (10) | C3—N1—H1N | 112.8 |
C6—C7—C11 | 121.79 (10) | C2—N1—H1N | 120.6 |
C7—C8—C9 | 119.52 (10) | C4—N2—C3 | 125.51 (10) |
C7—C8—H8 | 120.2 | C4—N2—H2N | 119.7 |
C9—C8—H8 | 120.2 | C3—N2—H2N | 114.8 |
C10—C9—C8 | 120.75 (11) | N4—N3—C1 | 120.55 (10) |
C10—C9—C13 | 121.89 (10) | N3—N4—C5 | 120.38 (9) |
C8—C9—C13 | 117.35 (10) | N3—N4—H4N | 121.7 |
C9—C10—C5 | 118.75 (10) | C5—N4—H4N | 117.9 |
C9—C10—H10 | 120.6 | C11—O5—C12 | 115.04 (9) |
C5—C10—H10 | 120.6 | C13—O7—C14 | 115.50 (9) |
N3—C1—C2—O1 | −5.85 (17) | C6—C7—C11—O5 | 0.66 (15) |
C4—C1—C2—O1 | 177.58 (11) | C10—C9—C13—O6 | −170.65 (13) |
N3—C1—C2—N1 | 174.41 (9) | C8—C9—C13—O6 | 9.75 (18) |
C4—C1—C2—N1 | −2.17 (15) | C10—C9—C13—O7 | 9.60 (16) |
N3—C1—C4—O3 | 5.51 (18) | C8—C9—C13—O7 | −170.00 (10) |
C2—C1—C4—O3 | −178.27 (10) | O2—C3—N1—C2 | 177.97 (11) |
N3—C1—C4—N2 | −173.94 (10) | N2—C3—N1—C2 | −0.46 (17) |
C2—C1—C4—N2 | 2.27 (15) | O1—C2—N1—C3 | −178.47 (11) |
C10—C5—C6—C7 | −0.97 (16) | C1—C2—N1—C3 | 1.29 (17) |
N4—C5—C6—C7 | 177.91 (10) | O3—C4—N2—C3 | 179.07 (11) |
C5—C6—C7—C8 | 0.67 (16) | C1—C4—N2—C3 | −1.46 (16) |
C5—C6—C7—C11 | −178.47 (10) | O2—C3—N2—C4 | −177.92 (11) |
C6—C7—C8—C9 | 0.14 (16) | N1—C3—N2—C4 | 0.53 (17) |
C11—C7—C8—C9 | 179.32 (10) | C4—C1—N3—N4 | −2.91 (17) |
C7—C8—C9—C10 | −0.68 (16) | C2—C1—N3—N4 | −179.30 (9) |
C7—C8—C9—C13 | 178.92 (10) | C1—N3—N4—C5 | 176.15 (10) |
C8—C9—C10—C5 | 0.40 (16) | C6—C5—N4—N3 | −179.84 (10) |
C13—C9—C10—C5 | −179.18 (10) | C10—C5—N4—N3 | −0.97 (16) |
C6—C5—C10—C9 | 0.43 (16) | O4—C11—O5—C12 | 0.65 (16) |
N4—C5—C10—C9 | −178.40 (10) | C7—C11—O5—C12 | 179.85 (9) |
C8—C7—C11—O4 | 0.70 (17) | O6—C13—O7—C14 | −1.96 (19) |
C6—C7—C11—O4 | 179.87 (11) | C9—C13—O7—C14 | 177.79 (10) |
C8—C7—C11—O5 | −178.51 (10) |
Cg2 is the centroid of the C5–C10 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.03 | 2.8800 (13) | 174 |
N2—H2N···O3ii | 0.90 | 2.01 | 2.8931 (15) | 168 |
N4—H4N···O3 | 0.86 | 2.02 | 2.6571 (15) | 131 |
N4—H4N···O1iii | 0.86 | 2.59 | 2.9302 (14) | 105 |
C6—H6···Ow1 | 0.95 | 2.14 | 3.061 (6) | 163 |
C12—H12B···O1iv | 0.98 | 2.39 | 3.2743 (17) | 149 |
C14—H14B···O4v | 0.98 | 2.53 | 3.4754 (16) | 163 |
C12—H12C···Cg2iii | 0.98 | 2.73 | 3.4717 (15) | 133 |
Symmetry codes: (i) −x+1, y, −z+5/2; (ii) −x+1, y, −z+3/2; (iii) x, −y+1, z−1/2; (iv) x, y, z−1; (v) x, y, z+1. |
Contact | Distance | Symmetry operation |
O1···*Ow1 | 3.129 | x, y, 1 + z |
O1···H12B | 2.39 | x, y, 1 + z |
O1···H4N | 2.59 | x, 1 - y, 1/2 + z |
H12A···O1 | 2.67 | 1/2 - x, 1/2 - y, 1 - z |
H1N···O2 | 2.03 | 1 - x, y, 5/2 - z |
O2···*Ow1 | 2.662 | 1 - x, y, 3/2 - z |
N2···O2 | 3.226 | 1 - x, 1 - y, 2 - z |
O2···H14C | 2.64 | 1/2 + x, 1/2 - y, 1/2 + z |
H2N···O3 | 2.01 | 1 - x, y, 3/2 - z |
H4N···O1 | 2.59 | x, 1 - y, - 1/2 + z |
H12B···O1 | 2.39 | x, y, - 1 + z |
H8···O6 | 2.66 | -x, y, 1/2 - z |
H14A···O6 | 2.67 | -x, 1 - y, 1 - z |
H14C···O2 | 2.64 | -1/2 + x, 1/2 - y, - 1/2 + z |
C1···*Ow1 | 3.297 | x, 1 - y, 1/2 + z |
H6···*Ow1 | 2.14 | x, y, z |
H12B···C12 | 3.10 | 1/2 - x, 1/2 - y, -z |
H14B···C14 | 2.93 | -x, y, 3/2 - z |
H12A···*Ow1 | 2.70 | 1/2 - x, 1/2 - y, -z |
*Ow1 indicates the oxygen atom of the water molecule with an occupancy of 0.224 (5). |
Contact | Percentage contribution |
O···H/H···O | 41.2 |
H···H | 19.2 |
C···H/H···C | 12.2 |
C···O/O···C | 8.4 |
O···O | 5.6 |
N···O/O···N | 4.7 |
C···N/N···C | 3.2 |
C···C | 2.8 |
N···H/H···N | 2.7 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, ZA, MA, GZM, FEH, SRH, NTS, and AB; methodology, SRH, and NTS; investigation, ZA, and GZM; writing (original draft), FEH, MA and AB; writing (review and editing of the manuscript), MA and AB; crystal-structure determination, GZM; visualization, ZA, and MA; funding acquisition, GZM, FEH, SRH, and NTS; resources, ZA, MA and AB; supervision, MA and AB.
Funding information
This work was supported by Baku State University.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367–374. CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821. CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772. CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088. Web of Science CSD CrossRef CAS Google Scholar
Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.