research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the two-dimensional coordination polymer poly[di-μ-bromido-bis­­(μ-tetra­hydro­thiophene)­dicopper(I)]

crossmark logo

aInstitut UTINAM UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France, and bICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, lydie.viau@univ-fcomte.fr, marek.kubicki@u-bourgogne.fr

Edited by C. Schulzke, Universität Greifswald, Germany (Received 21 May 2021; accepted 21 June 2021; online 25 June 2021)

The polymeric title compound, [Cu2Br2(C4H8S)2]n, CP1, represents an example of a two-dimensional coordination polymer resulting from reaction of CuBr with tetra­hydro­thio­phene (THT) in MeCN solution. The two-dimensional layers consist of two different types of rhomboid-shaped dinuclear Cu(μ2-Br)2Cu secondary building units (SBUs); one with a quite loose Cu⋯Cu separation of 3.3348 (10) Å and a second one with a much closer inter­metallic contact of 2.9044 (9) Å. These SBUs are inter­connected through bridging THT ligands, in which the S atom acts as a four-electron donor bridging each Cu(μ2-Br)2Cu unit in a μ2-bonding mode. In the crystal, the layers are linked by very weak C—H⋯·Br hydrogen bonds with H⋯Br distances of 2.95 Å, thus giving rise to a three-dimensional supra­molecular network.

1. Chemical context

The five-membered heterocyclic ligand tetra­hydro­thio­phene (THT) is known to form a great variety of mol­ecular complexes and coordination polymers (CPs) with various transition metals. In addition, numerous structurally characterized examples coordinated by terminal or bridging THT ligands have been documented for the soft coinage metal ions CuI, AgI and AuI (Usón et al., 1984[Usón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285-292.]; Noren & Oskarsson, 1985[Norén, B. & Oskarsson, A. (1985). Acta Chem. Scand. 39a, 701-709.]; Mälger et al., 1992[Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276-1280.]; Ahrland et al., 1993[Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281-289.]; López-De-Luzuriaga et al., 1997[López-De-Luzuriaga, J.-M., Schier, A. & Schmidbaur, H. (1997). Chem. Ber. Recl, 130, 647-650.]; Ahrens & Jones, 2000[Ahrens, B. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 803-813.]). The research group of Pike has shown that depending on the reaction conditions, the treatment of CuI with THT affords dinuclear [(THT)2Cu(μ2-I)2Cu(THT)2], or the tetra­nuclear closed cubane-type cluster [(Cu4(μ3-I)4(THT)4] or [(CuI)10(THT)7(MeCN)]n (Henline et al., 2014[Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449-1458.]). The latter contains the mixed motif [(Cu4I4(THT)](μ2-THT)2(Cu2I2)(μ2-THT)2[Cu4I4(THT)] held together side-by-side by two μ2-THT assembling ligands to form a 1D ladder structure. Furthermore, the two-dimensional CP [(CuI)3(THT)3·MeCN]n featuring a sheet structure in which Cu3(THT) rings are linked in trigonal directions by rhomboid Cu2I2 dimers is literature-known (Henline et al., 2014[Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449-1458.]). The luminescent product [(CuI)4(THT)2]n consisting of Cu4I4 cubane units knit into a 3D network by μ2-THT ligands was also described previously (Noren & Oskarsson, 1987[Norén, B. & Oskarsson, A. (1987). Acta Chem. Scand. 41a, 12-17.]; Henline et al., 2014[Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449-1458.]). A series of solvent-dependent 2D polymers results from treatment of [Cu(CO)Cl]n with THT in THF, CH2Cl2 and DMF, exhibiting the composition [(CuCl)(THT)]n (THF), [(CuCl)(THT)]n (CH2Cl2), and [(CuCl)3(THT)2]n (DMF), respectively. The materials obtained in THF and CH2Cl2 are polymorphs (Solari et al., 1996[Solari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553-566.]). A mono-dimensional ribbon [(CuCl)2(THT)3]n is generated by reaction of CuCl in neat THT (Mälger et al., 1992[Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276-1280.]). Even mixed-valence CuI/CuII compounds such as polymeric penta-μ-chloro-tris-μ-tetra­hydro­thio­phene-tetra­copper(I,II) have been observed (Ainscough et al., 1985[Ainscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151-158.]). Mälger and co-workers also showed that the treatment of CuBr in neat THT leads to the formation of a very labile rhomboid-based 1D polymer of the type [(CuBr)2(THT)3]n isostructural with its [(CuCl)2(THT)3]n analogue (Mälger et al., 1992[Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276-1280.]) (CSD JUDKOI).

[Scheme 1]

In the context of our research inter­est in the assembly of mol­ecular cluster compounds and coordination polymers by complexation of dialkyl sulfides RSR or di­thiol­ane- and di­thiane-based thia­heterocycles with CuX salts (Knorr et al., 2010[Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834-5844.], 2015[Knorr, M., Bonnot, A., Lapprand, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y. & Harvey, P. D. (2015). Inorg. Chem. 54, 4076-4093.]; Lapprand et al., 2013[Lapprand, A., Bonnot, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Fortin, D. & Harvey, P. D. (2013). Chem. Commun. 49, 8848-8850.]; Raghuvanshi et al., 2017[Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501-1513.], 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]; Schlachter et al., 2018[Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564-13576.]; Knauer et al., 2020[Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38-41.]), we have also investigated the complexation of CuBr by THT in aceto­nitrile as solvent (see Fig. 5[link]) and present here the respective crystal structure, which differs both in composition and dimensionality (two-dimensional vs mono-dimensional) from the CP [(CuBr)2(THT)3]n reported by Mälger. Note that this colourless material crystallizes easily in the form of large well-shaped crystals that are stable in a THT-saturated environment, but decomposes rapidly by dissociation of volatile THT upon exposure to air.

[Figure 5]
Figure 5
Reaction scheme for the synthesis of CP1.

2. Structural commentary

The crystal structure of CP1 of composition [(CuBr)2(THT)2]n is built of Cu(μ2-Br)2Cu rhomboids as SBUs and tetra­hydro­thio­phene ligands. The asymmetric unit contains two independent planar Cu2Br2 units placed over the symmetry centres at ½, 0, 0 (Cu1Br1)2 and 1, 0, ½ (Cu2Br2)2. They are connected through the sulfur atoms of thio­phene ligands acting, like in all bridging mono­thio­ethers, as four-electron donors (Fig. 1[link]). The bridging S1 atoms develop the chains of alternating (Cu1Br1)2 and (Cu2Br2)2 SBUs parallel to one diagonal [[\overline{1}]01] direction of the a0c face of the unit cell (labelled on Fig. 2[link] from Cu2h to Cu2i), whereas the S2 atoms develop the analogous chains labelled from Cu2e to Cu2f parallel to the second diagonal [101] direction of this face. The thus formed 2D layers lie over the (010) planes (Fig. 2[link]). This is the essential difference from the 1D polymer [(CuBr)2(THT)3]n described by Mälger (Mälger et al., 1992[Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276-1280.]) in which only one THT mol­ecule acts as a bridging ligand, developing a chain in one direction, whereas the two other THT mol­ecules are terminal. The outstanding feature of the structure of CP1 consists of largely different (0.43 Å) Cu⋯Cu distances in (Cu1Br1)2 and (Cu2Br2)2 units [3.3348 (10) Å vs 2.9044 (9) Å], albeit in similar chemical surroundings. Contrary to these metal-to-metal separations, the Cu—Br and Cu—S bond lengths are similar in both rhomboids. In the 1D polymer of Mälger, the Cu⋯Cu distance of 2.7784 (7) Å is significantly shorter than in CP1. Note that the presence of two independent Cu2Br2 SBUs has been also reported for the structure of Cu2Br2(1,4-oxa­thiane)2 but the difference between the Cu⋯Cu distances therein is equal only to 0.12 Å [2.740 (3) Å vs 2.865 (4) Å; Barnes & Paton, 1982[Barnes, J. C. & Paton, J. D. (1982). Acta Cryst. B38, 3091-3093.]; CSD BOGTIA]. This difference is still smaller in two other CPs with different Cu2Br2 SBUs: [{Cu(μ2-Br)2Cu}{μ-PhS(CH2)3SPh}2]n [dCu⋯Cu = 2.794 (1) and 2.776 (1) Å; Knorr et al., 2012[Knorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917-9934.]; CSD ZEHREL] and in [{Cu(μ2-Br)2Cu}{μ-p-MeC6H4SCH2C≡CCH2SC6H4Me-p]n [dCu⋯Cu = 2.9306 (14) and 2.9662 (14) Å; Bonnot et al., 2015[Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480-494.]; CSD QUPXOQ]. These observations indicate a high flexibility of the Cu2Br2 units. It is worth noting that the Cu⋯Cu distances in coordination polymers containing di­bromo­dicopper units and bridging mono­thio­ethers have been observed in the range from 2.740 (3) Å in Cu2Br2(1,4-oxa­thiane)2 (Barnes & Paton, 1982[Barnes, J. C. & Paton, J. D. (1982). Acta Cryst. B38, 3091-3093.]) to 3.074 (1) Å at 115 K in [(Cu2Br2)(Cu4Br4)(SMeEt)6]n (Knorr et al., 2010[Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834-5844.]). Thus, the Cu1⋯ Cu1 distance of 3.3348 (10) Å in CP1 is the longest one observed in Cu2Br2 CPs with bridging mono­thio­ethers. The coordination polyhedra of the Cu1 and Cu2 atoms are best described as distorted tetra­hedral. Even though the values of four-coord­inate geometry τ4 indexes of Yang (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of 0.88 support a trigonal–pyramidal geometry (theoretical values are equal to 0.85 for C3v and 1.0 for Td symmetries), the tetra­hedral character THCDA parameters of Höpfl (0.66 for Cu1 and 0.60 for Cu2) are closer to the tetra­hedral (THC = 1.0) than pyramidal (THC = 0) geometries (Höpfl, 1999[Höpfl, H. (1999). J. Organomet. Chem. 581, 129-149.]). Moreover, the sums of all six bond angles around Cu1 (656.7°) and Cu2 (656.1°) are very close to the value expected for Td symmetry (657°) and far from that of 630° in an ideal trigonal–pyramidal geometry.

[Figure 1]
Figure 1
A view of CP1 depicting the independent Cu2Br2 SBUs and THT ligands. Ellipsoids are shown at the 50% probability level. Only the major component of disordered atom C7 is shown. Symmetry codes: (i) −x + 2, −y, −z + 1; (ii) x + 1, y, z;) iii) −x + 1, −y, −z; (iv) −x + 1, −y, −z + 1.
[Figure 2]
Figure 2
Projection of one layer on the a0c plane in the structure of CP1. Hydrogen atoms are omitted for clarity. Only the major component of disordered C7 atom is shown. Symmetry codes: (a) − x + 1, −y, −z; (b) −x + 1, −y, −z + 1; (c) −x, −y, −z + 1; (d) x − 1, y, z; (e) x, y, z + 1; (f) −x, −y, −z; (g) x − 1, y, z + 1; (h) −x, −y, −z + 2; (i) x, y, z + 1; (j) x, y, z − 1.

3. Supra­molecular features

The layers are built through dative Cu—S coordination bonds. There are also weak non-covalent CH⋯HC [d(H1A⋯H8AA) = 2.36 Å] van der Waals contacts and C—H⋯Br [d(Br2⋯H4B) = 2.90 Å; d(Br2⋯H5B) = 2.89 Å] hydrogen bonds within the layers (Fig. 3[link] and Table 1[link]). More inter­estingly, the inter­layer connectivity for formation of a supra­molecular 3D structure is apparently limited only to very weak C—H⋯Br hydrogen bonds (Fig. 4[link]). The Br2⋯H7AA distance of 2.95 Å is shorter by only 0.10 Å than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). It is noteworthy that only bromine Br2 participates in hydrogen-bonding contacts and not the bromine atom Br1. In the Cu1Br1 rhomboids, the Br⋯ Br distance is short, the Cu⋯Cu distance is long and there are no Br⋯H bonds, while in the Cu2Br2 rhomboids the opposite is observed with long Br⋯Br and short Cu⋯Cu distances and the presence of Br2⋯H inter­actions. However, we don't believe that the presence or absence of weak hydrogen bonding alone may explain the large difference in the Cu⋯Cu distances.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯Br2iv 0.99 2.90 3.566 (4) 125
C5—H5B⋯Br2ii 0.99 2.89 3.556 (4) 126
C7A—H7AA⋯Br2v 0.99 2.95 3.885 (6) 157
Symmetry codes: (ii) [-x+2, -y, -z+1]; (iv) [x-1, y, z]; (v) [x, y-1, z].
[Figure 3]
Figure 3
Intra­layer CH⋯Br and CH⋯HC non-covalent inter­actions. Symmetry codes: (a) x − 1, y, z; (b) −x + 1, −y, −z + 1; (c) −x, −y, −z + 1; (d) x − 2, y, z; (e) −x + 2, −y, −z + 1.
[Figure 4]
Figure 4
Inter­layer CH⋯Br hydrogen bonds. Symmetry codes: (a) x, y + 1, z; (b) −x + 1, −y + 1, −z + 1; (c) −x + 1, −y, −z + 1; (d) x − 1, y, z; (e) x − 1, y + 1, z.

4. Database survey

The rich structural diversity of THT-ligated mol­ecular and polymeric copper(I) halide compounds was already laid out extensively in the Chemical context section above. Further examples found in a database survey using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) comprise, for example, the three-dimensional MOF [tris­(μ2-cyano)-tris­(μ2-THT)tricopper(I)]n (CSD ITEZOX), which was isolated upon treatment of CuCN with THT (Dembo et al., 2010[Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102-114.]). An example of a cationic dinuclear bi­pyridine-bridged complex is (μ-4,4′-bi­pyridine)­bis­(THT)tetra­kis­(tri­phenyl­phosphine)di-copperbis(tetra­fluoro­borate) (CSD MOJWOZ; Royzman et al., 2014[Royzman, D. E., Noviello, A. M., Henline, K. M., Pike, R. D., Killarney, J. P., Patterson, H. H., Crawford, C. & Assefa, Z. (2014). J. Inorg. Organomet. Polym. 24, 66-77.]). A structurally characterized mol­ecular organometallic aryl complex [2,6-bis­(2,4,6-triiso­propyl­phen­yl)phen­yl](THT)copper(I) (CSD DOPMUR) is another relevant contribution in this context (Groysman & Holm, 2009[Groysman, S. & Holm, R. H. (2009). Inorg. Chem. 48, 621-627.]). There is also the inter­esting case of the tetra­nuclear compound cyclo[tetra­kis­(μ2-mesityl­idene)bis­(THT-copper)dicopper(I)] featuring bridging aryl groups and terminal bound THT ligands (Meyer et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]). For selected examples of mol­ecular thio­ether-ligated complexes incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu(μ2-Br)2Cu}{1-oxa-4,7-di­thia­cyclo­nona­ne}2] [Lucas et al., 1997[Lucas, C. R., Liang, W., Miller, D. O. & Bridson, J. N. (1997). Inorg. Chem. 36, 4508-4513.]; CSD NONWOC, dCu⋯Cu = 2.852 (2) Å]; [{Cu(μ2-Br)2Cu}{phenyl propargyl sulfide}4] [Kokoli et al., 2013[Kokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17-22.]; CSD VEQXUM, dCu⋯Cu = 3.0062 (7) Å]. For selected examples of mono-dimensional thio­ether-assembled CPs incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu(μ2-Br)2Cu}{μ-PhSCH2SPh}2]n [Knorr et al., 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; CSD FOWZIC, dCu⋯Cu = 2.9192 (8) Å]; [{Cu(μ2-Br)2Cu}{μ-PhS(CH2)3SPh}2]n [Knorr et al., 2012[Knorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917-9934.]; CSD ZEHREL, dCu⋯Cu = 2.794 (1) and 2.776 (1) Å]; [Cu(μ2-Br)2Cu{μ-p-EtSCH2C6H4C6H4CH2SEt-p}2]n [Toyota et al., 1996[Toyota, S., Matsuda, Y., Nagaoka, S., Oki, M. & Akashi, H. (1996). Bull. Chem. Soc. Jpn, 69, 3115-3121.]; CSD ZARYUM01, dCu⋯Cu = 2.918 (11) Å]; [Cu(μ2-Br)2Cu{μ-O2S2-macrocycle)2]n [Park et al., 2012[Park, I.-H., Kim, H. J. & Lee, S. S. (2012). CrystEngComm, 14, 4589-4995.]; CSD GAXHIY, dCu⋯Cu = 2.927 (1) Å].

For selected examples of two-dimensional thio­ether-assembled CPs incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu2(μ2-Br)2}(tetra­thia­phthalazinophane)2]n [Chen et al., 1993[Chen, L., Thompson, L. K., Tandon, S. & Bridson, J. N. (1993). Inorg. Chem. 32, 4063-4068.]; CSD HANGUY, dCu⋯Cu = 3.06 (8) Å]; [{Cu(μ2-Br)2Cu}(μ2-2-isobutyl-1,3-di­thiane)2]n [Raghuvanshi et al., 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]; CSD JIZQOB, dCu⋯Cu = 2.9057 (8) Å]; [{Cu(μ2-Br)2Cu}{μ-PhCH2S(CH2)6SCH2Ph}2]n [Schlachter et al., 2020[Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686-3708.]; CSD IHIBUZ, dCu⋯Cu = 2.953 (3) Å]; [{Cu(μ2-Br)2Cu}{μ-PhCH2S(CH2)7SCH2Ph}2]n [Schlachter et al., 2020[Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686-3708.]; CSD IHICOU, dCu⋯Cu = 2.7081 (4) Å]; [{Cu(μ2-Br)2Cu}(μ-1,2,4,5-tetra­methyl­mercapto­benzene)]n [Suenaga et al., 1997[Suenaga, Y., Maekawa, M., Kuroda-Sowa, T., Munakata, M., Morimoto, H., Hiyama, N. & Kitagawa, S. (1997). Anal. Sci. 13, 1047-1049.]; CSD WIQMIS, dCu⋯Cu = 3.1073 (12) Å]. An evaluation of these examples emphasizes that the Cu⋯Cu separations within the dinuclear Cu(μ2-Br)2Cu SBUs are quite variable.

5. Synthesis and crystallization

To a solution of CuBr (1.43 g, 10.0 mmol) in MeCN (12 mL) was added neat THT (1.058 g, 12.0 mmol) via syringe. The solution turned brownish-red and a colourless microcrystalline material commenced to precipitate. The suspension was stirred at 293 K for 2 h, then heated 2 min to reflux until all product dissolved. While slowly warming to ambient temperature, colourless crystals formed progressively (Fig. 5[link]). Filtering off the product after 1 d and storing the mother liquor in a refrigerator afforded a second crop of CP1. Overall yield (1.80 g, 78% yield). Calculated for C8H16Br2Cu2S2: C, 20.74 H, 3.48; S, 13.84. Found: C, 20.35; H, 3.28, S, 13.41%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and treated with a riding model. C—H distances were set to 0.99 Å with Uiso(H) = 1.2Ueq(C). C7 in one of the THT ligands as well as the riding methyl­ene hydrogen atoms on C6, C7 and C8 are disordered over two locations. Their occupancy factors refined to 0.77 (1) and 0.23 (1). The disorder was modelled using a SADI constraint for the affected C—C distances.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Br2(C4H8S)2]
Mr 463.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 115
a, b, c (Å) 6.8076 (3), 9.7078 (4), 10.1579 (4)
α, β, γ (°) 75.804 (2), 89.845 (2), 89.594 (2)
V3) 650.79 (5)
Z 2
Radiation type Mo Kα1
μ (mm−1) 9.69
Crystal size (mm) 0.25 × 0.15 × 0.1
 
Data collection
Diffractometer Nonius Kappa APEXII
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.024, 0.072
No. of measured, independent and observed [I > 2σ(I)] reflections 5297, 2954, 2743
Rint 0.021
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.09
No. of reflections 2954
No. of parameters 132
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.91
Computer programs: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL, DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR97 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Burla et al., 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[di-µ-bromido-bis(µ-tetrahydrothiophene)dicopper(I)] top
Crystal data top
[Cu2Br2(C4H8S)2]Z = 2
Mr = 463.23F(000) = 448
Triclinic, P1Dx = 2.364 Mg m3
a = 6.8076 (3) ÅMo Kα1 radiation, λ = 0.71073 Å
b = 9.7078 (4) ÅCell parameters from 2662 reflections
c = 10.1579 (4) Åθ = 1.0–27.5°
α = 75.804 (2)°µ = 9.69 mm1
β = 89.845 (2)°T = 115 K
γ = 89.594 (2)°Prism, clear light colourless
V = 650.79 (5) Å30.25 × 0.15 × 0.1 mm
Data collection top
Nonius Kappa APEXII
diffractometer
2954 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1802743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ and ω scans'h = 88
Absorption correction: multi-scan
(Blessing, 1995)
k = 1212
Tmin = 0.024, Tmax = 0.072l = 1213
5297 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0333P)2 + 2.0511P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2954 reflectionsΔρmax = 0.82 e Å3
132 parametersΔρmin = 0.91 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.66540 (5)0.15468 (4)0.03837 (3)0.01461 (10)
Br20.83088 (5)0.17939 (4)0.45014 (4)0.01506 (10)
Cu10.51313 (7)0.00292 (5)0.16455 (5)0.01505 (11)
Cu20.82082 (6)0.08288 (5)0.51958 (4)0.01385 (11)
S10.31065 (12)0.13645 (9)0.26538 (8)0.01195 (17)
S20.70032 (12)0.14665 (9)0.33197 (9)0.01222 (17)
C10.4015 (6)0.3198 (4)0.2177 (4)0.0192 (8)
H1A0.3750960.3684060.2909630.023*
H1B0.5447400.3207660.2004130.023*
C20.2910 (6)0.3928 (4)0.0890 (4)0.0206 (8)
H2A0.3546080.3717240.0083150.025*
H2B0.2890170.4969870.0777650.025*
C30.0821 (6)0.3339 (4)0.1059 (4)0.0226 (8)
H3A0.0103840.3702830.1754230.027*
H3B0.0096780.3633570.0189590.027*
C40.0989 (6)0.1729 (4)0.1496 (4)0.0163 (7)
H4A0.1212520.1329010.0699980.020*
H4B0.0221520.1312020.1966540.020*
C50.9163 (6)0.2030 (4)0.2504 (4)0.0179 (7)
H5A0.9026270.1750350.1503560.022*
H5B1.0367380.1592270.2759780.022*
C60.9258 (7)0.3639 (5)0.3012 (5)0.0325 (10)
H6AA1.0039880.4052610.2378930.039*0.771 (13)
H6AB0.9887250.3907170.3917750.039*0.771 (13)
H6BC0.9111540.4076620.2234520.039*0.229 (13)
H6BD1.0558390.3921630.3429760.039*0.229 (13)
C7A0.7197 (8)0.4183 (6)0.3098 (6)0.0265 (16)0.771 (13)
H7AA0.7162010.5180020.3641310.032*0.771 (13)
H7AB0.6696370.4152640.2176720.032*0.771 (13)
C7B0.7690 (16)0.4178 (16)0.4028 (15)0.016 (5)*0.229 (13)
H7BA0.7326730.5152460.3988400.019*0.229 (13)
H7BB0.8193570.4220990.4951220.019*0.229 (13)
C80.5925 (6)0.3246 (4)0.3767 (4)0.0188 (8)
H8AA0.5913710.3624620.4764720.023*0.771 (13)
H8AB0.4557670.3212140.3430420.023*0.771 (13)
H8BC0.5088140.3379780.4586460.023*0.229 (13)
H8BD0.5136530.3424440.3008860.023*0.229 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01355 (17)0.01735 (19)0.01357 (17)0.00288 (13)0.00077 (13)0.00496 (14)
Br20.01333 (17)0.01052 (18)0.02045 (19)0.00292 (13)0.00208 (13)0.00219 (14)
Cu10.0167 (2)0.0148 (2)0.0137 (2)0.00320 (17)0.00176 (16)0.00354 (17)
Cu20.0162 (2)0.0132 (2)0.0120 (2)0.00180 (17)0.00123 (16)0.00298 (17)
S10.0142 (4)0.0100 (4)0.0108 (4)0.0027 (3)0.0016 (3)0.0010 (3)
S20.0140 (4)0.0111 (4)0.0119 (4)0.0016 (3)0.0012 (3)0.0037 (3)
C10.0254 (19)0.0107 (18)0.0198 (18)0.0041 (15)0.0019 (15)0.0003 (14)
C20.0212 (19)0.0146 (19)0.0218 (19)0.0013 (15)0.0009 (15)0.0036 (15)
C30.0189 (18)0.018 (2)0.027 (2)0.0055 (15)0.0040 (16)0.0000 (16)
C40.0198 (17)0.0151 (18)0.0138 (16)0.0055 (14)0.0060 (14)0.0030 (14)
C50.0190 (18)0.0183 (19)0.0159 (17)0.0070 (14)0.0055 (14)0.0033 (14)
C60.038 (3)0.021 (2)0.041 (3)0.0089 (19)0.007 (2)0.012 (2)
C7A0.036 (3)0.018 (3)0.028 (3)0.002 (2)0.010 (2)0.009 (2)
C80.0243 (19)0.0141 (19)0.0171 (17)0.0067 (15)0.0020 (15)0.0018 (14)
Geometric parameters (Å, º) top
Br1—Cu12.4755 (6)C3—C41.520 (5)
Br1—Cu1i2.5000 (6)C4—H4A0.9900
Br2—Cu2ii2.5349 (6)C4—H4B0.9900
Br2—Cu22.4711 (6)C5—H5A0.9900
Cu1—Cu1i3.3348 (10)C5—H5B0.9900
Cu1—S12.3292 (9)C5—C61.522 (6)
Cu1—S22.2991 (10)C6—H6AA0.9900
Cu2—Cu2ii2.9044 (9)C6—H6AB0.9900
Cu2—S1iii2.2982 (9)C6—H6BC0.9900
Cu2—S22.2983 (9)C6—H6BD0.9900
S1—C11.837 (4)C6—C7A1.497 (7)
S1—C41.840 (4)C6—C7B1.488 (12)
S2—C51.831 (4)C7A—H7AA0.9900
S2—C81.833 (4)C7A—H7AB0.9900
C1—H1A0.9900C7A—C81.526 (6)
C1—H1B0.9900C7B—H7BA0.9900
C1—C21.523 (5)C7B—H7BB0.9900
C2—H2A0.9900C7B—C81.484 (12)
C2—H2B0.9900C8—H8AA0.9900
C2—C31.530 (5)C8—H8AB0.9900
C3—H3A0.9900C8—H8BC0.9900
C3—H3B0.9900C8—H8BD0.9900
Cu1—Br1—Cu1i84.167 (19)S1—C4—H4A110.7
Cu2—Br2—Cu2ii70.916 (19)S1—C4—H4B110.7
Br1—Cu1—Br1i95.832 (19)C3—C4—S1105.3 (3)
S1—Cu1—Br1107.82 (3)C3—C4—H4A110.7
S1—Cu1—Br1i114.58 (3)C3—C4—H4B110.7
S2—Cu1—Br1121.51 (3)H4A—C4—H4B108.8
S2—Cu1—Br1i108.88 (3)S2—C5—H5A110.6
S2—Cu1—S1108.12 (3)S2—C5—H5B110.6
Br2—Cu2—Br2ii109.084 (19)H5A—C5—H5B108.7
Br2ii—Cu2—Cu2ii53.516 (16)C6—C5—S2105.7 (3)
Br2—Cu2—Cu2ii55.568 (17)C6—C5—H5A110.6
S1iii—Cu2—Br2105.18 (3)C6—C5—H5B110.6
S1iii—Cu2—Br2ii104.86 (3)C5—C6—H6AA110.2
S1iii—Cu2—Cu2ii116.52 (3)C5—C6—H6AB110.2
S2—Cu2—Br2104.11 (3)C5—C6—H6BC109.3
S2—Cu2—Br2ii105.71 (3)C5—C6—H6BD109.3
S2—Cu2—Cu2ii116.35 (3)H6AA—C6—H6AB108.5
S2—Cu2—S1iii127.13 (4)H6BC—C6—H6BD108.0
Cu2iii—S1—Cu1128.70 (4)C7A—C6—C5107.7 (4)
C1—S1—Cu1108.21 (14)C7A—C6—H6AA110.2
C1—S1—Cu2iii111.26 (13)C7A—C6—H6AB110.2
C1—S1—C494.46 (18)C7B—C6—C5111.5 (6)
C4—S1—Cu1102.71 (12)C7B—C6—H6BC109.3
C4—S1—Cu2iii105.46 (13)C7B—C6—H6BD109.3
Cu2—S2—Cu1125.08 (4)C6—C7A—H7AA110.0
C5—S2—Cu1107.52 (13)C6—C7A—H7AB110.0
C5—S2—Cu2104.92 (13)C6—C7A—C8108.3 (4)
C5—S2—C893.98 (19)H7AA—C7A—H7AB108.4
C8—S2—Cu1108.84 (13)C8—C7A—H7AA110.0
C8—S2—Cu2111.74 (13)C8—C7A—H7AB110.0
S1—C1—H1A110.6C6—C7B—H7BA109.4
S1—C1—H1B110.6C6—C7B—H7BB109.4
H1A—C1—H1B108.7H7BA—C7B—H7BB108.0
C2—C1—S1105.9 (3)C8—C7B—C6111.0 (9)
C2—C1—H1A110.6C8—C7B—H7BA109.4
C2—C1—H1B110.6C8—C7B—H7BB109.4
C1—C2—H2A110.5S2—C8—H8AA110.4
C1—C2—H2B110.5S2—C8—H8AB110.4
C1—C2—C3106.3 (3)S2—C8—H8BC111.3
H2A—C2—H2B108.7S2—C8—H8BD111.3
C3—C2—H2A110.5C7A—C8—S2106.8 (3)
C3—C2—H2B110.5C7A—C8—H8AA110.4
C2—C3—H3A110.3C7A—C8—H8AB110.4
C2—C3—H3B110.3C7B—C8—S2102.3 (6)
H3A—C3—H3B108.5C7B—C8—H8BC111.3
C4—C3—C2107.3 (3)C7B—C8—H8BD111.3
C4—C3—H3A110.3H8AA—C8—H8AB108.6
C4—C3—H3B110.3H8BC—C8—H8BD109.2
Cu1—S1—C1—C291.5 (3)S2—C5—C6—C7B3.4 (8)
Cu1—S1—C4—C3123.6 (2)C1—S1—C4—C313.8 (3)
Cu1—S2—C5—C6128.8 (3)C1—C2—C3—C449.3 (4)
Cu1—S2—C8—C7A103.2 (3)C2—C3—C4—S137.6 (4)
Cu1—S2—C8—C7B143.3 (6)C4—S1—C1—C213.4 (3)
Cu2iii—S1—C1—C2121.9 (2)C5—S2—C8—C7A6.8 (3)
Cu2iii—S1—C4—C399.7 (3)C5—S2—C8—C7B33.3 (6)
Cu2—S2—C5—C696.1 (3)C5—C6—C7A—C845.0 (5)
Cu2—S2—C8—C7A114.6 (3)C5—C6—C7B—C830.0 (12)
Cu2—S2—C8—C7B74.5 (6)C6—C7A—C8—S230.3 (5)
S1—C1—C2—C337.0 (4)C6—C7B—C8—S240.9 (11)
S2—C5—C6—C7A38.3 (4)C8—S2—C5—C617.7 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···Br2iv0.992.903.566 (4)125
C5—H5B···Br2ii0.992.893.556 (4)126
C7A—H7AA···Br2v0.992.953.885 (6)157
Symmetry codes: (ii) x+2, y, z+1; (iv) x1, y, z; (v) x, y1, z.
 

Funding information

The authors thank the CNRS for financial support.

References

First citationAhrens, B. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 803–813.  CrossRef CAS Google Scholar
First citationAhrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281–289.  CSD CrossRef CAS Web of Science Google Scholar
First citationAinscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151–158.  CSD CrossRef Web of Science Google Scholar
First citationBarnes, J. C. & Paton, J. D. (1982). Acta Cryst. B38, 3091–3093.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, L., Thompson, L. K., Tandon, S. & Bridson, J. N. (1993). Inorg. Chem. 32, 4063–4068.  CSD CrossRef CAS Google Scholar
First citationDembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroysman, S. & Holm, R. H. (2009). Inorg. Chem. 48, 621–627.  CSD CrossRef PubMed CAS Google Scholar
First citationHenline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449–1458.  Web of Science CSD CrossRef CAS Google Scholar
First citationHöpfl, H. (1999). J. Organomet. Chem. 581, 129–149.  Google Scholar
First citationKnauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnorr, M., Bonnot, A., Lapprand, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y. & Harvey, P. D. (2015). Inorg. Chem. 54, 4076–4093.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917–9934.  CSD CrossRef CAS PubMed Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834–5844.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationLapprand, A., Bonnot, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Fortin, D. & Harvey, P. D. (2013). Chem. Commun. 49, 8848–8850.  CSD CrossRef CAS Google Scholar
First citationLópez-De-Luzuriaga, J.-M., Schier, A. & Schmidbaur, H. (1997). Chem. Ber. Recl, 130, 647–650.  Google Scholar
First citationLucas, C. R., Liang, W., Miller, D. O. & Bridson, J. N. (1997). Inorg. Chem. 36, 4508–4513.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276–1280.  Google Scholar
First citationMeyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067–1079.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNorén, B. & Oskarsson, A. (1985). Acta Chem. Scand. 39a, 701–709.  Google Scholar
First citationNorén, B. & Oskarsson, A. (1987). Acta Chem. Scand. 41a, 12–17.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPark, I.-H., Kim, H. J. & Lee, S. S. (2012). CrystEngComm, 14, 4589–4995.  CSD CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoyzman, D. E., Noviello, A. M., Henline, K. M., Pike, R. D., Killarney, J. P., Patterson, H. H., Crawford, C. & Assefa, Z. (2014). J. Inorg. Organomet. Polym. 24, 66–77.  CSD CrossRef CAS Google Scholar
First citationSchlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708.  CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553–566.  CSD CrossRef CAS Google Scholar
First citationSuenaga, Y., Maekawa, M., Kuroda-Sowa, T., Munakata, M., Morimoto, H., Hiyama, N. & Kitagawa, S. (1997). Anal. Sci. 13, 1047–1049.  CrossRef CAS Google Scholar
First citationToyota, S., Matsuda, Y., Nagaoka, S., Oki, M. & Akashi, H. (1996). Bull. Chem. Soc. Jpn, 69, 3115–3121.  CSD CrossRef CAS Google Scholar
First citationUsón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285–292.  Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds