research communications
μ-bromido-bis(μ-tetrahydrothiophene)dicopper(I)]
of the two-dimensional coordination polymer poly[di-aInstitut UTINAM UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France, and bICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, lydie.viau@univ-fcomte.fr, marek.kubicki@u-bourgogne.fr
The polymeric title compound, [Cu2Br2(C4H8S)2]n, CP1, represents an example of a two-dimensional coordination polymer resulting from reaction of CuBr with tetrahydrothiophene (THT) in MeCN solution. The two-dimensional layers consist of two different types of rhomboid-shaped dinuclear Cu(μ2-Br)2Cu secondary building units (SBUs); one with a quite loose Cu⋯Cu separation of 3.3348 (10) Å and a second one with a much closer intermetallic contact of 2.9044 (9) Å. These SBUs are interconnected through bridging THT ligands, in which the S atom acts as a four-electron donor bridging each Cu(μ2-Br)2Cu unit in a μ2-bonding mode. In the crystal, the layers are linked by very weak C—H⋯·Br hydrogen bonds with H⋯Br distances of 2.95 Å, thus giving rise to a three-dimensional supramolecular network.
Keywords: crystal structure; two-dimensional coordination polymer; Cu2Br2 rhomboids; tetrahydrothiophene; C—H⋯Br hydrogen bonding..
CCDC reference: 2091214
1. Chemical context
The five-membered heterocyclic ligand tetrahydrothiophene (THT) is known to form a great variety of molecular complexes and coordination polymers (CPs) with various transition metals. In addition, numerous structurally characterized examples coordinated by terminal or bridging THT ligands have been documented for the soft coinage metal ions CuI, AgI and AuI (Usón et al., 1984; Noren & Oskarsson, 1985; Mälger et al., 1992; Ahrland et al., 1993; López-De-Luzuriaga et al., 1997; Ahrens & Jones, 2000). The research group of Pike has shown that depending on the reaction conditions, the treatment of CuI with THT affords dinuclear [(THT)2Cu(μ2-I)2Cu(THT)2], or the tetranuclear closed cubane-type cluster [(Cu4(μ3-I)4(THT)4] or [(CuI)10(THT)7(MeCN)]n (Henline et al., 2014). The latter contains the mixed motif [(Cu4I4(THT)](μ2-THT)2(Cu2I2)(μ2-THT)2[Cu4I4(THT)] held together side-by-side by two μ2-THT assembling ligands to form a 1D ladder structure. Furthermore, the two-dimensional CP [(CuI)3(THT)3·MeCN]n featuring a sheet structure in which Cu3(THT) rings are linked in trigonal directions by rhomboid Cu2I2 dimers is literature-known (Henline et al., 2014). The luminescent product [(CuI)4(THT)2]n consisting of Cu4I4 cubane units knit into a 3D network by μ2-THT ligands was also described previously (Noren & Oskarsson, 1987; Henline et al., 2014). A series of solvent-dependent 2D polymers results from treatment of [Cu(CO)Cl]n with THT in THF, CH2Cl2 and DMF, exhibiting the composition [(CuCl)(THT)]n (THF), [(CuCl)(THT)]n (CH2Cl2), and [(CuCl)3(THT)2]n (DMF), respectively. The materials obtained in THF and CH2Cl2 are polymorphs (Solari et al., 1996). A mono-dimensional ribbon [(CuCl)2(THT)3]n is generated by reaction of CuCl in neat THT (Mälger et al., 1992). Even mixed-valence CuI/CuII compounds such as polymeric penta-μ-chloro-tris-μ-tetrahydrothiophene-tetracopper(I,II) have been observed (Ainscough et al., 1985). Mälger and co-workers also showed that the treatment of CuBr in neat THT leads to the formation of a very labile rhomboid-based 1D polymer of the type [(CuBr)2(THT)3]n isostructural with its [(CuCl)2(THT)3]n analogue (Mälger et al., 1992) (CSD JUDKOI).
In the context of our research interest in the assembly of molecular cluster compounds and coordination polymers by complexation of dialkyl R–S–R or dithiolane- and dithiane-based thiaheterocycles with CuX salts (Knorr et al., 2010, 2015; Lapprand et al., 2013; Raghuvanshi et al., 2017, 2019; Schlachter et al., 2018; Knauer et al., 2020), we have also investigated the complexation of CuBr by THT in acetonitrile as solvent (see Fig. 5) and present here the respective which differs both in composition and dimensionality (two-dimensional vs mono-dimensional) from the CP [(CuBr)2(THT)3]n reported by Mälger. Note that this colourless material crystallizes easily in the form of large well-shaped crystals that are stable in a THT-saturated environment, but decomposes rapidly by dissociation of volatile THT upon exposure to air.
2. Structural commentary
The CP1 of composition [(CuBr)2(THT)2]n is built of Cu(μ2-Br)2Cu rhomboids as SBUs and tetrahydrothiophene ligands. The contains two independent planar Cu2Br2 units placed over the symmetry centres at ½, 0, 0 (Cu1Br1)2 and 1, 0, ½ (Cu2Br2)2. They are connected through the sulfur atoms of thiophene ligands acting, like in all bridging monothioethers, as four-electron donors (Fig. 1). The bridging S1 atoms develop the chains of alternating (Cu1Br1)2 and (Cu2Br2)2 SBUs parallel to one diagonal [01] direction of the a0c face of the (labelled on Fig. 2 from Cu2h to Cu2i), whereas the S2 atoms develop the analogous chains labelled from Cu2e to Cu2f parallel to the second diagonal [101] direction of this face. The thus formed 2D layers lie over the (010) planes (Fig. 2). This is the essential difference from the 1D polymer [(CuBr)2(THT)3]n described by Mälger (Mälger et al., 1992) in which only one THT molecule acts as a bridging ligand, developing a chain in one direction, whereas the two other THT molecules are terminal. The outstanding feature of the structure of CP1 consists of largely different (0.43 Å) Cu⋯Cu distances in (Cu1Br1)2 and (Cu2Br2)2 units [3.3348 (10) Å vs 2.9044 (9) Å], albeit in similar chemical surroundings. Contrary to these metal-to-metal separations, the Cu—Br and Cu—S bond lengths are similar in both rhomboids. In the 1D polymer of Mälger, the Cu⋯Cu distance of 2.7784 (7) Å is significantly shorter than in CP1. Note that the presence of two independent Cu2Br2 SBUs has been also reported for the structure of Cu2Br2(1,4-oxathiane)2 but the difference between the Cu⋯Cu distances therein is equal only to 0.12 Å [2.740 (3) Å vs 2.865 (4) Å; Barnes & Paton, 1982; CSD BOGTIA]. This difference is still smaller in two other CPs with different Cu2Br2 SBUs: [{Cu(μ2-Br)2Cu}{μ-PhS(CH2)3SPh}2]n [dCu⋯Cu = 2.794 (1) and 2.776 (1) Å; Knorr et al., 2012; CSD ZEHREL] and in [{Cu(μ2-Br)2Cu}{μ-p-MeC6H4SCH2C≡CCH2SC6H4Me-p]n [dCu⋯Cu = 2.9306 (14) and 2.9662 (14) Å; Bonnot et al., 2015; CSD QUPXOQ]. These observations indicate a high flexibility of the Cu2Br2 units. It is worth noting that the Cu⋯Cu distances in coordination polymers containing dibromodicopper units and bridging monothioethers have been observed in the range from 2.740 (3) Å in Cu2Br2(1,4-oxathiane)2 (Barnes & Paton, 1982) to 3.074 (1) Å at 115 K in [(Cu2Br2)(Cu4Br4)(SMeEt)6]n (Knorr et al., 2010). Thus, the Cu1⋯ Cu1 distance of 3.3348 (10) Å in CP1 is the longest one observed in Cu2Br2 CPs with bridging monothioethers. The coordination polyhedra of the Cu1 and Cu2 atoms are best described as distorted tetrahedral. Even though the values of four-coordinate geometry τ4 indexes of Yang (Yang et al., 2007) of 0.88 support a trigonal–pyramidal geometry (theoretical values are equal to 0.85 for C3v and 1.0 for Td symmetries), the tetrahedral character THCDA parameters of Höpfl (0.66 for Cu1 and 0.60 for Cu2) are closer to the tetrahedral (THC = 1.0) than pyramidal (THC = 0) geometries (Höpfl, 1999). Moreover, the sums of all six bond angles around Cu1 (656.7°) and Cu2 (656.1°) are very close to the value expected for Td symmetry (657°) and far from that of 630° in an ideal trigonal–pyramidal geometry.
of3. Supramolecular features
The layers are built through dative Cu—S coordination bonds. There are also weak non-covalent CH⋯HC [d(H1A⋯H8AA) = 2.36 Å] van der Waals contacts and C—H⋯Br [d(Br2⋯H4B) = 2.90 Å; d(Br2⋯H5B) = 2.89 Å] hydrogen bonds within the layers (Fig. 3 and Table 1). More interestingly, the interlayer connectivity for formation of a supramolecular 3D structure is apparently limited only to very weak C—H⋯Br hydrogen bonds (Fig. 4). The Br2⋯H7AA distance of 2.95 Å is shorter by only 0.10 Å than the sum of the van der Waals radii (Bondi, 1964). It is noteworthy that only bromine Br2 participates in hydrogen-bonding contacts and not the bromine atom Br1. In the Cu1Br1 rhomboids, the Br⋯ Br distance is short, the Cu⋯Cu distance is long and there are no Br⋯H bonds, while in the Cu2Br2 rhomboids the opposite is observed with long Br⋯Br and short Cu⋯Cu distances and the presence of Br2⋯H interactions. However, we don't believe that the presence or absence of weak hydrogen bonding alone may explain the large difference in the Cu⋯Cu distances.
4. Database survey
The rich structural diversity of THT-ligated molecular and polymeric copper(I) halide compounds was already laid out extensively in the Chemical context section above. Further examples found in a database survey using CONQUEST (Bruno et al., 2002) comprise, for example, the three-dimensional MOF [tris(μ2-cyano)-tris(μ2-THT)tricopper(I)]n (CSD ITEZOX), which was isolated upon treatment of CuCN with THT (Dembo et al., 2010). An example of a cationic dinuclear bipyridine-bridged complex is (μ-4,4′-bipyridine)bis(THT)tetrakis(triphenylphosphine)di-copperbis(tetrafluoroborate) (CSD MOJWOZ; Royzman et al., 2014). A structurally characterized molecular organometallic aryl complex [2,6-bis(2,4,6-triisopropylphenyl)phenyl](THT)copper(I) (CSD DOPMUR) is another relevant contribution in this context (Groysman & Holm, 2009). There is also the interesting case of the tetranuclear compound cyclo[tetrakis(μ2-mesitylidene)bis(THT-copper)dicopper(I)] featuring bridging and terminal bound THT ligands (Meyer et al., 1989). For selected examples of molecular thioether-ligated complexes incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu(μ2-Br)2Cu}{1-oxa-4,7-dithiacyclononane}2] [Lucas et al., 1997; CSD NONWOC, dCu⋯Cu = 2.852 (2) Å]; [{Cu(μ2-Br)2Cu}{phenyl propargyl sulfide}4] [Kokoli et al., 2013; CSD VEQXUM, dCu⋯Cu = 3.0062 (7) Å]. For selected examples of mono-dimensional thioether-assembled CPs incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu(μ2-Br)2Cu}{μ-PhSCH2SPh}2]n [Knorr et al., 2014; CSD FOWZIC, dCu⋯Cu = 2.9192 (8) Å]; [{Cu(μ2-Br)2Cu}{μ-PhS(CH2)3SPh}2]n [Knorr et al., 2012; CSD ZEHREL, dCu⋯Cu = 2.794 (1) and 2.776 (1) Å]; [Cu(μ2-Br)2Cu{μ-p-EtSCH2C6H4C6H4CH2SEt-p}2]n [Toyota et al., 1996; CSD ZARYUM01, dCu⋯Cu = 2.918 (11) Å]; [Cu(μ2-Br)2Cu{μ-O2S2-macrocycle)2]n [Park et al., 2012; CSD GAXHIY, dCu⋯Cu = 2.927 (1) Å].
For selected examples of two-dimensional thioether-assembled CPs incorporating dinuclear Cu(μ2-Br)2Cu SBUs, see: [{Cu2(μ2-Br)2}(tetrathiaphthalazinophane)2]n [Chen et al., 1993; CSD HANGUY, dCu⋯Cu = 3.06 (8) Å]; [{Cu(μ2-Br)2Cu}(μ2-2-isobutyl-1,3-dithiane)2]n [Raghuvanshi et al., 2019; CSD JIZQOB, dCu⋯Cu = 2.9057 (8) Å]; [{Cu(μ2-Br)2Cu}{μ-PhCH2S(CH2)6SCH2Ph}2]n [Schlachter et al., 2020; CSD IHIBUZ, dCu⋯Cu = 2.953 (3) Å]; [{Cu(μ2-Br)2Cu}{μ-PhCH2S(CH2)7SCH2Ph}2]n [Schlachter et al., 2020; CSD IHICOU, dCu⋯Cu = 2.7081 (4) Å]; [{Cu(μ2-Br)2Cu}(μ-1,2,4,5-tetramethylmercaptobenzene)]n [Suenaga et al., 1997; CSD WIQMIS, dCu⋯Cu = 3.1073 (12) Å]. An evaluation of these examples emphasizes that the Cu⋯Cu separations within the dinuclear Cu(μ2-Br)2Cu SBUs are quite variable.
5. Synthesis and crystallization
To a solution of CuBr (1.43 g, 10.0 mmol) in MeCN (12 mL) was added neat THT (1.058 g, 12.0 mmol) via syringe. The solution turned brownish-red and a colourless microcrystalline material commenced to precipitate. The suspension was stirred at 293 K for 2 h, then heated 2 min to reflux until all product dissolved. While slowly warming to ambient temperature, colourless crystals formed progressively (Fig. 5). Filtering off the product after 1 d and storing the mother liquor in a refrigerator afforded a second crop of CP1. Overall yield (1.80 g, 78% yield). Calculated for C8H16Br2Cu2S2: C, 20.74 H, 3.48; S, 13.84. Found: C, 20.35; H, 3.28, S, 13.41%.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions and treated with a riding model. C—H distances were set to 0.99 Å with Uiso(H) = 1.2Ueq(C). C7 in one of the THT ligands as well as the riding methylene hydrogen atoms on C6, C7 and C8 are disordered over two locations. Their occupancy factors refined to 0.77 (1) and 0.23 (1). The disorder was modelled using a SADI constraint for the affected C—C distances.
details are summarized in Table 2Supporting information
CCDC reference: 2091214
https://doi.org/10.1107/S2056989021006460/yz2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006460/yz2008Isup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Burla et al., 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2Br2(C4H8S)2] | Z = 2 |
Mr = 463.23 | F(000) = 448 |
Triclinic, P1 | Dx = 2.364 Mg m−3 |
a = 6.8076 (3) Å | Mo Kα1 radiation, λ = 0.71073 Å |
b = 9.7078 (4) Å | Cell parameters from 2662 reflections |
c = 10.1579 (4) Å | θ = 1.0–27.5° |
α = 75.804 (2)° | µ = 9.69 mm−1 |
β = 89.845 (2)° | T = 115 K |
γ = 89.594 (2)° | Prism, clear light colourless |
V = 650.79 (5) Å3 | 0.25 × 0.15 × 0.1 mm |
Nonius Kappa APEXII diffractometer | 2954 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 2743 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 9 pixels mm-1 | θmax = 27.6°, θmin = 3.0° |
φ and ω scans' | h = −8→8 |
Absorption correction: multi-scan (Blessing, 1995) | k = −12→12 |
Tmin = 0.024, Tmax = 0.072 | l = −12→13 |
5297 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0333P)2 + 2.0511P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2954 reflections | Δρmax = 0.82 e Å−3 |
132 parameters | Δρmin = −0.91 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.66540 (5) | 0.15468 (4) | −0.03837 (3) | 0.01461 (10) | |
Br2 | 0.83088 (5) | 0.17939 (4) | 0.45014 (4) | 0.01506 (10) | |
Cu1 | 0.51313 (7) | −0.00292 (5) | 0.16455 (5) | 0.01505 (11) | |
Cu2 | 0.82082 (6) | −0.08288 (5) | 0.51958 (4) | 0.01385 (11) | |
S1 | 0.31065 (12) | 0.13645 (9) | 0.26538 (8) | 0.01195 (17) | |
S2 | 0.70032 (12) | −0.14665 (9) | 0.33197 (9) | 0.01222 (17) | |
C1 | 0.4015 (6) | 0.3198 (4) | 0.2177 (4) | 0.0192 (8) | |
H1A | 0.375096 | 0.368406 | 0.290963 | 0.023* | |
H1B | 0.544740 | 0.320766 | 0.200413 | 0.023* | |
C2 | 0.2910 (6) | 0.3928 (4) | 0.0890 (4) | 0.0206 (8) | |
H2A | 0.354608 | 0.371724 | 0.008315 | 0.025* | |
H2B | 0.289017 | 0.496987 | 0.077765 | 0.025* | |
C3 | 0.0821 (6) | 0.3339 (4) | 0.1059 (4) | 0.0226 (8) | |
H3A | 0.010384 | 0.370283 | 0.175423 | 0.027* | |
H3B | 0.009678 | 0.363357 | 0.018959 | 0.027* | |
C4 | 0.0989 (6) | 0.1729 (4) | 0.1496 (4) | 0.0163 (7) | |
H4A | 0.121252 | 0.132901 | 0.069998 | 0.020* | |
H4B | −0.022152 | 0.131202 | 0.196654 | 0.020* | |
C5 | 0.9163 (6) | −0.2030 (4) | 0.2504 (4) | 0.0179 (7) | |
H5A | 0.902627 | −0.175035 | 0.150356 | 0.022* | |
H5B | 1.036738 | −0.159227 | 0.275978 | 0.022* | |
C6 | 0.9258 (7) | −0.3639 (5) | 0.3012 (5) | 0.0325 (10) | |
H6AA | 1.003988 | −0.405261 | 0.237893 | 0.039* | 0.771 (13) |
H6AB | 0.988725 | −0.390717 | 0.391775 | 0.039* | 0.771 (13) |
H6BC | 0.911154 | −0.407662 | 0.223452 | 0.039* | 0.229 (13) |
H6BD | 1.055839 | −0.392163 | 0.342976 | 0.039* | 0.229 (13) |
C7A | 0.7197 (8) | −0.4183 (6) | 0.3098 (6) | 0.0265 (16) | 0.771 (13) |
H7AA | 0.716201 | −0.518002 | 0.364131 | 0.032* | 0.771 (13) |
H7AB | 0.669637 | −0.415264 | 0.217672 | 0.032* | 0.771 (13) |
C7B | 0.7690 (16) | −0.4178 (16) | 0.4028 (15) | 0.016 (5)* | 0.229 (13) |
H7BA | 0.732673 | −0.515246 | 0.398840 | 0.019* | 0.229 (13) |
H7BB | 0.819357 | −0.422099 | 0.495122 | 0.019* | 0.229 (13) |
C8 | 0.5925 (6) | −0.3246 (4) | 0.3767 (4) | 0.0188 (8) | |
H8AA | 0.591371 | −0.362462 | 0.476472 | 0.023* | 0.771 (13) |
H8AB | 0.455767 | −0.321214 | 0.343042 | 0.023* | 0.771 (13) |
H8BC | 0.508814 | −0.337978 | 0.458646 | 0.023* | 0.229 (13) |
H8BD | 0.513653 | −0.342444 | 0.300886 | 0.023* | 0.229 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01355 (17) | 0.01735 (19) | 0.01357 (17) | −0.00288 (13) | 0.00077 (13) | −0.00496 (14) |
Br2 | 0.01333 (17) | 0.01052 (18) | 0.02045 (19) | 0.00292 (13) | −0.00208 (13) | −0.00219 (14) |
Cu1 | 0.0167 (2) | 0.0148 (2) | 0.0137 (2) | 0.00320 (17) | −0.00176 (16) | −0.00354 (17) |
Cu2 | 0.0162 (2) | 0.0132 (2) | 0.0120 (2) | 0.00180 (17) | −0.00123 (16) | −0.00298 (17) |
S1 | 0.0142 (4) | 0.0100 (4) | 0.0108 (4) | 0.0027 (3) | −0.0016 (3) | −0.0010 (3) |
S2 | 0.0140 (4) | 0.0111 (4) | 0.0119 (4) | 0.0016 (3) | −0.0012 (3) | −0.0037 (3) |
C1 | 0.0254 (19) | 0.0107 (18) | 0.0198 (18) | −0.0041 (15) | −0.0019 (15) | −0.0003 (14) |
C2 | 0.0212 (19) | 0.0146 (19) | 0.0218 (19) | 0.0013 (15) | −0.0009 (15) | 0.0036 (15) |
C3 | 0.0189 (18) | 0.018 (2) | 0.027 (2) | 0.0055 (15) | −0.0040 (16) | 0.0000 (16) |
C4 | 0.0198 (17) | 0.0151 (18) | 0.0138 (16) | 0.0055 (14) | −0.0060 (14) | −0.0030 (14) |
C5 | 0.0190 (18) | 0.0183 (19) | 0.0159 (17) | 0.0070 (14) | 0.0055 (14) | −0.0033 (14) |
C6 | 0.038 (3) | 0.021 (2) | 0.041 (3) | 0.0089 (19) | 0.007 (2) | −0.012 (2) |
C7A | 0.036 (3) | 0.018 (3) | 0.028 (3) | −0.002 (2) | −0.010 (2) | −0.009 (2) |
C8 | 0.0243 (19) | 0.0141 (19) | 0.0171 (17) | −0.0067 (15) | −0.0020 (15) | −0.0018 (14) |
Br1—Cu1 | 2.4755 (6) | C3—C4 | 1.520 (5) |
Br1—Cu1i | 2.5000 (6) | C4—H4A | 0.9900 |
Br2—Cu2ii | 2.5349 (6) | C4—H4B | 0.9900 |
Br2—Cu2 | 2.4711 (6) | C5—H5A | 0.9900 |
Cu1—Cu1i | 3.3348 (10) | C5—H5B | 0.9900 |
Cu1—S1 | 2.3292 (9) | C5—C6 | 1.522 (6) |
Cu1—S2 | 2.2991 (10) | C6—H6AA | 0.9900 |
Cu2—Cu2ii | 2.9044 (9) | C6—H6AB | 0.9900 |
Cu2—S1iii | 2.2982 (9) | C6—H6BC | 0.9900 |
Cu2—S2 | 2.2983 (9) | C6—H6BD | 0.9900 |
S1—C1 | 1.837 (4) | C6—C7A | 1.497 (7) |
S1—C4 | 1.840 (4) | C6—C7B | 1.488 (12) |
S2—C5 | 1.831 (4) | C7A—H7AA | 0.9900 |
S2—C8 | 1.833 (4) | C7A—H7AB | 0.9900 |
C1—H1A | 0.9900 | C7A—C8 | 1.526 (6) |
C1—H1B | 0.9900 | C7B—H7BA | 0.9900 |
C1—C2 | 1.523 (5) | C7B—H7BB | 0.9900 |
C2—H2A | 0.9900 | C7B—C8 | 1.484 (12) |
C2—H2B | 0.9900 | C8—H8AA | 0.9900 |
C2—C3 | 1.530 (5) | C8—H8AB | 0.9900 |
C3—H3A | 0.9900 | C8—H8BC | 0.9900 |
C3—H3B | 0.9900 | C8—H8BD | 0.9900 |
Cu1—Br1—Cu1i | 84.167 (19) | S1—C4—H4A | 110.7 |
Cu2—Br2—Cu2ii | 70.916 (19) | S1—C4—H4B | 110.7 |
Br1—Cu1—Br1i | 95.832 (19) | C3—C4—S1 | 105.3 (3) |
S1—Cu1—Br1 | 107.82 (3) | C3—C4—H4A | 110.7 |
S1—Cu1—Br1i | 114.58 (3) | C3—C4—H4B | 110.7 |
S2—Cu1—Br1 | 121.51 (3) | H4A—C4—H4B | 108.8 |
S2—Cu1—Br1i | 108.88 (3) | S2—C5—H5A | 110.6 |
S2—Cu1—S1 | 108.12 (3) | S2—C5—H5B | 110.6 |
Br2—Cu2—Br2ii | 109.084 (19) | H5A—C5—H5B | 108.7 |
Br2ii—Cu2—Cu2ii | 53.516 (16) | C6—C5—S2 | 105.7 (3) |
Br2—Cu2—Cu2ii | 55.568 (17) | C6—C5—H5A | 110.6 |
S1iii—Cu2—Br2 | 105.18 (3) | C6—C5—H5B | 110.6 |
S1iii—Cu2—Br2ii | 104.86 (3) | C5—C6—H6AA | 110.2 |
S1iii—Cu2—Cu2ii | 116.52 (3) | C5—C6—H6AB | 110.2 |
S2—Cu2—Br2 | 104.11 (3) | C5—C6—H6BC | 109.3 |
S2—Cu2—Br2ii | 105.71 (3) | C5—C6—H6BD | 109.3 |
S2—Cu2—Cu2ii | 116.35 (3) | H6AA—C6—H6AB | 108.5 |
S2—Cu2—S1iii | 127.13 (4) | H6BC—C6—H6BD | 108.0 |
Cu2iii—S1—Cu1 | 128.70 (4) | C7A—C6—C5 | 107.7 (4) |
C1—S1—Cu1 | 108.21 (14) | C7A—C6—H6AA | 110.2 |
C1—S1—Cu2iii | 111.26 (13) | C7A—C6—H6AB | 110.2 |
C1—S1—C4 | 94.46 (18) | C7B—C6—C5 | 111.5 (6) |
C4—S1—Cu1 | 102.71 (12) | C7B—C6—H6BC | 109.3 |
C4—S1—Cu2iii | 105.46 (13) | C7B—C6—H6BD | 109.3 |
Cu2—S2—Cu1 | 125.08 (4) | C6—C7A—H7AA | 110.0 |
C5—S2—Cu1 | 107.52 (13) | C6—C7A—H7AB | 110.0 |
C5—S2—Cu2 | 104.92 (13) | C6—C7A—C8 | 108.3 (4) |
C5—S2—C8 | 93.98 (19) | H7AA—C7A—H7AB | 108.4 |
C8—S2—Cu1 | 108.84 (13) | C8—C7A—H7AA | 110.0 |
C8—S2—Cu2 | 111.74 (13) | C8—C7A—H7AB | 110.0 |
S1—C1—H1A | 110.6 | C6—C7B—H7BA | 109.4 |
S1—C1—H1B | 110.6 | C6—C7B—H7BB | 109.4 |
H1A—C1—H1B | 108.7 | H7BA—C7B—H7BB | 108.0 |
C2—C1—S1 | 105.9 (3) | C8—C7B—C6 | 111.0 (9) |
C2—C1—H1A | 110.6 | C8—C7B—H7BA | 109.4 |
C2—C1—H1B | 110.6 | C8—C7B—H7BB | 109.4 |
C1—C2—H2A | 110.5 | S2—C8—H8AA | 110.4 |
C1—C2—H2B | 110.5 | S2—C8—H8AB | 110.4 |
C1—C2—C3 | 106.3 (3) | S2—C8—H8BC | 111.3 |
H2A—C2—H2B | 108.7 | S2—C8—H8BD | 111.3 |
C3—C2—H2A | 110.5 | C7A—C8—S2 | 106.8 (3) |
C3—C2—H2B | 110.5 | C7A—C8—H8AA | 110.4 |
C2—C3—H3A | 110.3 | C7A—C8—H8AB | 110.4 |
C2—C3—H3B | 110.3 | C7B—C8—S2 | 102.3 (6) |
H3A—C3—H3B | 108.5 | C7B—C8—H8BC | 111.3 |
C4—C3—C2 | 107.3 (3) | C7B—C8—H8BD | 111.3 |
C4—C3—H3A | 110.3 | H8AA—C8—H8AB | 108.6 |
C4—C3—H3B | 110.3 | H8BC—C8—H8BD | 109.2 |
Cu1—S1—C1—C2 | 91.5 (3) | S2—C5—C6—C7B | −3.4 (8) |
Cu1—S1—C4—C3 | −123.6 (2) | C1—S1—C4—C3 | −13.8 (3) |
Cu1—S2—C5—C6 | −128.8 (3) | C1—C2—C3—C4 | −49.3 (4) |
Cu1—S2—C8—C7A | 103.2 (3) | C2—C3—C4—S1 | 37.6 (4) |
Cu1—S2—C8—C7B | 143.3 (6) | C4—S1—C1—C2 | −13.4 (3) |
Cu2iii—S1—C1—C2 | −121.9 (2) | C5—S2—C8—C7A | −6.8 (3) |
Cu2iii—S1—C4—C3 | 99.7 (3) | C5—S2—C8—C7B | 33.3 (6) |
Cu2—S2—C5—C6 | 96.1 (3) | C5—C6—C7A—C8 | −45.0 (5) |
Cu2—S2—C8—C7A | −114.6 (3) | C5—C6—C7B—C8 | 30.0 (12) |
Cu2—S2—C8—C7B | −74.5 (6) | C6—C7A—C8—S2 | 30.3 (5) |
S1—C1—C2—C3 | 37.0 (4) | C6—C7B—C8—S2 | −40.9 (11) |
S2—C5—C6—C7A | 38.3 (4) | C8—S2—C5—C6 | −17.7 (3) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···Br2iv | 0.99 | 2.90 | 3.566 (4) | 125 |
C5—H5B···Br2ii | 0.99 | 2.89 | 3.556 (4) | 126 |
C7A—H7AA···Br2v | 0.99 | 2.95 | 3.885 (6) | 157 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iv) x−1, y, z; (v) x, y−1, z. |
Funding information
The authors thank the CNRS for financial support.
References
Ahrens, B. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 803–813. CrossRef CAS Google Scholar
Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281–289. CSD CrossRef CAS Web of Science Google Scholar
Ainscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151–158. CSD CrossRef Web of Science Google Scholar
Barnes, J. C. & Paton, J. D. (1982). Acta Cryst. B38, 3091–3093. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494. Web of Science CSD CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, L., Thompson, L. K., Tandon, S. & Bridson, J. N. (1993). Inorg. Chem. 32, 4063–4068. CSD CrossRef CAS Google Scholar
Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102–114. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groysman, S. & Holm, R. H. (2009). Inorg. Chem. 48, 621–627. CSD CrossRef PubMed CAS Google Scholar
Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449–1458. Web of Science CSD CrossRef CAS Google Scholar
Höpfl, H. (1999). J. Organomet. Chem. 581, 129–149. Google Scholar
Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41. Web of Science CSD CrossRef IUCr Journals Google Scholar
Knorr, M., Bonnot, A., Lapprand, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y. & Harvey, P. D. (2015). Inorg. Chem. 54, 4076–4093. Web of Science CSD CrossRef CAS PubMed Google Scholar
Knorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). Inorg. Chem. 51, 9917–9934. CSD CrossRef CAS PubMed Google Scholar
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387. Web of Science CSD CrossRef CAS Google Scholar
Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834–5844. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17–22. Web of Science CSD CrossRef CAS Google Scholar
Lapprand, A., Bonnot, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Fortin, D. & Harvey, P. D. (2013). Chem. Commun. 49, 8848–8850. CSD CrossRef CAS Google Scholar
López-De-Luzuriaga, J.-M., Schier, A. & Schmidbaur, H. (1997). Chem. Ber. Recl, 130, 647–650. Google Scholar
Lucas, C. R., Liang, W., Miller, D. O. & Bridson, J. N. (1997). Inorg. Chem. 36, 4508–4513. CSD CrossRef PubMed CAS Web of Science Google Scholar
Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276–1280. Google Scholar
Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067–1079. CSD CrossRef CAS Web of Science Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Norén, B. & Oskarsson, A. (1985). Acta Chem. Scand. 39a, 701–709. Google Scholar
Norén, B. & Oskarsson, A. (1987). Acta Chem. Scand. 41a, 12–17. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Park, I.-H., Kim, H. J. & Lee, S. S. (2012). CrystEngComm, 14, 4589–4995. CSD CrossRef CAS Google Scholar
Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513. Web of Science CSD CrossRef CAS Google Scholar
Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775. Web of Science CSD CrossRef CAS PubMed Google Scholar
Royzman, D. E., Noviello, A. M., Henline, K. M., Pike, R. D., Killarney, J. P., Patterson, H. H., Crawford, C. & Assefa, Z. (2014). J. Inorg. Organomet. Polym. 24, 66–77. CSD CrossRef CAS Google Scholar
Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708. CSD CrossRef CAS PubMed Google Scholar
Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553–566. CSD CrossRef CAS Google Scholar
Suenaga, Y., Maekawa, M., Kuroda-Sowa, T., Munakata, M., Morimoto, H., Hiyama, N. & Kitagawa, S. (1997). Anal. Sci. 13, 1047–1049. CrossRef CAS Google Scholar
Toyota, S., Matsuda, Y., Nagaoka, S., Oki, M. & Akashi, H. (1996). Bull. Chem. Soc. Jpn, 69, 3115–3121. CSD CrossRef CAS Google Scholar
Usón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285–292. Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.