research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-nitrato-bis­­(μ-octa­ethyl pyro­phospho­ramide)­bis­­[aqua­dinitratocalcium(II)]

crossmark logo

aDepartment of Chemistry, University of Malta, Msida, MSD2080, Malta
*Correspondence e-mail: ulrich.baisch@um.edu.mt

Edited by A. M. Chippindale, University of Reading, England (Received 11 December 2020; accepted 7 July 2021; online 13 July 2021)

The title compound, di-μ-nitrato-κ3O,O′:O;O:O,O′-bis­(μ-octa­ethyl pyro­phos­pho­ramide-κ2O:O′)bis­[aqua­bis­(nitrato-κ2O,O′)calcium(II)], [Ca2(NO3)4(C16H40N4O3P2)2(H2O)2] was obtained as a side product during the work up of the synthesis of octa­ethyl pyro­phospho­ramide and represents the first structurally characterized complex of this ligand. The compound crystallizes in the monoclinic space group P21/n and the asymmetric unit contains one pyro­phospho­ramide mol­ecule and one Ca2+ ion coordinated to two nitrate ions and one water mol­ecule. The complex exists as a dimer with a centre of inversion located between two eight-coordinate calcium(II) centres, which are bridged by two nitrate ions and two octa­ethyl pyro­phospho­ramide ligands. Each Ca2+ cation is also coordinated to a further nitrate anion, acting as a bidentate ligand, and a water mol­ecule. The complexes stack parallel to the a axis and are held in place by a network of inter­molecular O—H⋯O hydrogen bonds also running parallel to a.

1. Chemical context

The structures of octa­ethyl pyro­phospho­ramide, (O((Et2N)2PO)2), and its complexes have not been determined to date. Given the structural similarity of O((Et2N)2PO)2 to the more widely studied Schradan ligand, octa­methyl pyro­phospho­ramide, O((Me2N)2PO)2 (Goehring & Niedenzu, 1956[Goehring, M. & Niedenzu, K. (1956). Angew. Chem. 68, 704.]), it might be expected that the complexes of these two ligands would have related structures. Schradan is known to complex with divalent transition metals and magnesium to form simple chelation complexes of formulae [M(O((Me2N)2PO)2)3][ClO4] (where M = Mg2+, Cu2+ and Co2+), in which the metal(II) centre is octa­hedrally coordinated to three pyrophosphate chelate rings (Joesten et al., 1970[Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151-161.]) and [Cu(O((Me2N)2PO)2)2(ClO4)2], in which the CuII atom is coordinated to two pyrophosphate chelate rings and two perchlorate oxygen atoms in an octa­hedral geometry (Hussain et al., 1970[Hussain, M. S., Joesten, M. D. & Lenhert, P. G. (1970). Inorg. Chem. 9, 162-168.]). Schradan has also been reported as a bridging ligand in two dimeric Eu3+ complexes (Chan et al., 2020[Chan, E. J., Harrowfield, J. M., Skelton, B. W., Sobolev, A. N. & White, A. H. (2020). Aust. J. Chem. 73, 455.]). Here we report what we believe to be the first example of a metal-coordinated octa­ethyl pyro­phospho­ramide complex, which is dimeric and has the formula [Ca(O((Et2N)2PO)2(NO3)2(H2O)]2.

2. Structural commentary

The asymmetric unit contains one pyro­phospho­ramide mol­ecule together with one Ca2+ ion coordinated to two nitrates and one water mol­ecule. None of the atoms lie on special positions. The content of one asymmetric unit makes up one half of the actual dimeric calcium complex, which has a centre of inversion midway between the two calcium atoms, bringing Z to 2.

[Scheme 1]

In the title complex (Fig. 1[link]), the di-N-substituted pyro­phospho­ramide mol­ecule acts as a bridging ligand, rather than a bidentate chelating ligand, unlike in the previously characterized transition-metal and alkaline-earth metal complexes of the Schradan ligand, O((Me2N)2PO)2 (Joesten et al., 1970[Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151-161.]; Hussain et al., 1970[Hussain, M. S., Joesten, M. D. & Lenhert, P. G. (1970). Inorg. Chem. 9, 162-168.]).

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link]. Displacement ellipsoids of all non-hydrogen atoms are drawn at the 70% probability level. Dashed bonds highlight the eight-coordination around the Ca2+ cations. [Symmetry code: (i) −x + 1, −y + 1, −z + 1].

The coordination number of the Ca2+ cation in the title compound is eight, which is typical for Ca2+ complexes. There are two Ca—O(P=O) bond lengths per O((Et2N)2PO)2 ligand, Ca1—O1 and Ca1—O3i with 2.3054 (13) and 2.3324 (13) Å, respectively; (Table 1[link]), both of which are rather longer than the average lengths for analogous bonds found in simple phospho­ramide complexes of Ca2+ (see Database Survey below). The corresponding P=O bond lengths in the O((Et2N)2PO)2 ligand, P1—O1 and P2—O3, are 1.4752 (13) and 1.4722 (13) Å, respectively (Table 1[link]) and are comparable to values reported in other complexes where the ligands are also coordinated via the P=O moiety.

Table 1
Selected bond lengths (Å)

Ca1—O3i 2.3324 (13) P2—O3 1.4722 (13)
Ca1—O1 2.3054 (13) P1—O1 1.4752 (13)
Symmetry code: (i) [-x+1, -y+1, -z+1].

3. Supra­molecular features

The complexes pack to form chains running along the a-axis direction, where neighbouring complexes are bound by inter­molecular hydrogen bonding of the type H—O⋯O—N, as shown in Fig. 2[link], involving the aqua ligand and the non-bridging nitrate anion, namely O90—H90A⋯O20 (Table 2[link]). The aqua ligand also forms a hydrogen-bonding motif with the bridging nitrate anion, namely O90—H90B⋯O12 (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O90—H90A⋯O20ii 0.87 2.21 2.915 (2) 138
O90—H90B⋯O10 0.87 2.58 2.9568 (19) 108
O90—H90B⋯O12 0.87 2.11 2.913 (2) 153
C1—H1B⋯O1 0.99 2.40 2.929 (2) 113
C7—H7A⋯O2 0.99 2.39 2.920 (2) 113
C9—H9B⋯O3 0.99 2.45 2.967 (2) 112
Symmetry code: (ii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
Inter­molecular and intra­molecular N—O⋯H—O hydrogen bonding (red broken-off bonds) that create the packing chains along the a-axis direction, viewed along the c axis. Dashed black bonds highlight the eight-coordination around the Ca2+ cations.

4. Database survey

All searches were carried out using the Cambridge Structural Database (CSD Version 5.41, last update May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for the structure of octa­ethyl pyro­phospho­ramide and its complexes returned no hits. A search for the structure of octa­methyl pyro­phospho­ramide (Schradan) and its complexes returned six hits in which the ligand was found to chelate with the metal cations. Of these, four were octa­hedral metal complexes of this ligand with magnesium: [Mg(O((Me2N)2PO)2)3][ClO4] (MEPOMG; Joesten et al., 1970[Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151-161.]), cobalt: [Co(O((Me2N)2PO)2)3][ClO4] (MEPOCO; Joesten et al., 1970[Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151-161.]) and copper: [Cu(O((Me2N)2PO)2)3][ClO4] (MPAMCU10; Joesten et al., 1970[Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151-161.]) and [Cu(O((Me2N)2PO)2)2(ClO4)2] (OMPOCU; Hussain et al., 1970[Hussain, M. S., Joesten, M. D. & Lenhert, P. G. (1970). Inorg. Chem. 9, 162-168.]), and two were eight-coordinate metal complexes with actinides: [U(O((Me2N)2PO)2)2(NCS)4] (BOXXUH) and [Th(O((Me2N)2PO)2)2Cl4] (BOXYAO) (Kepert et al., 1983[Kepert, D. L., Patrick, J. M. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 559-566.]). Two further hits were found in which the Schradan ligand formed a bridge between two seven-coordinate Eu3+ ions in the complexes [(dmp-O,O′)3Eu((O((Me2N)2PO)2)Eu(O,O′-dmp)3] (dmp = [HC(C(tBu)·CO)2]) (KUXTOP, KUXVIL; Chan et al., 2020[Chan, E. J., Harrowfield, J. M., Skelton, B. W., Sobolev, A. N. & White, A. H. (2020). Aust. J. Chem. 73, 455.]).

A similar search for other di-N-substituted pyro­phospho­ramide complexes returned no hits, whilst a search for mono-N-substituted pyro­phospho­ramide complexes returned one hit, namely the octa­hedral complex, [Mn(O((tBuNH)2PO)2)2(DMF)2][Cl]2·2H2O (PEWRAM), in which the pyro­phospho­ramide ligand was found to chelate to a mangan­ese(II) cation (Tarahhomi et al., 2013[Tarahhomi, A., Pourayoubi, M., Fejfarová, K. & Dušek, M. (2013). Acta Cryst. C69, 225-228.]).

Although no pyro­phospho­ramide complexes of calcium were found, a search for di-λ5σ4-phospho­rane species containing the fragment O=P—X—P=O—Ca yielded 17 hits. The complex tris­(μ2-tetra­phenyl­imidophosphinato-O,O,O′)aqua­(tetra­phenyl­imidophosphinato-O,O′)dicalcium (VAYQUI; Morales-Juárez et al., 2005[Morales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M., García-Montalvo, V. & Toscano, R. A. (2005). Main Group Chem. 4, 23-31.]) was the only species found to contain the O=P—X—P=O—Ca fragment bridging two Ca2+ cations that did not form part of a cluster or polymer. However in this case, both calcium centres have a coordination number of six, with distorted octa­hedral geometries, and bridging is achieved via one μ-oxygen atom per [N(Ph2PO)2] ligand. This is, however, unlike the bridging behaviour observed in the title complex.

5. Synthesis and crystallization

The title compound was obtained as a minor component on purification of octa­ethyl pyro­phospho­ramide through column chromatography. The synthesis of octa­ethyl pyro­phospho­ramide was undertaken using standard Schlenk line techniques. All solvents were dried over 4 Å mol­ecular sieves. An excess amount of di­ethyl­amine (used as purchased), namely 7.6 ml (0.073 mol), was dissolved in 10 ml of chloro­form. The solution was cooled to 195 K and 1 ml (0.007 mol) of pyro­phosphoryl chloride (purified by short-path distillation) was added dropwise using a glass syringe with constant stirring. After the addition was complete, the cooling bath was removed and the mixture allowed to react at room temperature overnight with continuous stirring. Approximately 15 ml of n-pentane was then added to yield a deep-red-coloured suspension and this was left overnight to allow precipitation. The suspension was filtered using a series of cannula filtrations to remove the di­ethyl­ammonium chloride by-product. Volatile products were removed under vacuum at 323 K. This yielded the crude octa­ethyl pyro­phospho­ramide as a viscous red liquid. This was subsequently purified by column chromatography using a dilute nitric-acid-activated Kieselgel 60 as the stationary phase and di­chloro­methane/aceto­nitrile as eluents. Octa­ethyl pyro­phospho­ramide was collected in aceto­nitrile as a dark-pink viscous liquid after removal of volatiles under vacuum at room temperature.

On storage of the liquid octa­ethyl pyro­phospho­ramide product over a number of weeks, single crystals of the title compound formed serendipitously. Introduction of Ca2+ and NO3 ions most likely arose from either the use of dilute nitric acid in the activation process of the silica gel used for column chromatography or from impurities present in the mol­ecular sieve. Both the Kieselgel 60 and the mol­ecular sieve were not used as received from the supplier, but were reused following washing/cleaning partly with nitric acid. The Ca2+ ions may have been introduced from previous use and remained inside the column or drying material.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (O—H = 0.87, C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Ca2(NO3)4(C16H40N4O3P2)2(H2O)2]
Mr 1161.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.6249 (7), 15.5774 (12), 17.0925 (10)
β (°) 96.707 (5)
V3) 2809.6 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.50
Crystal size (mm) 0.21 × 0.07 × 0.06
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Integration (X-RED32; Stoe & Cie, 2020[Stoe & Cie. (2020). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]),
Tmin, Tmax 0.587, 0.827
No. of measured, independent and observed [I > 2σ(I)] reflections 4816, 4816, 4280
Rint 0.104
(sin θ/λ)max−1) 0.591
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.06
No. of reflections 4816
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.51
Computer programs: X-AREA Recipe and Integrate and X-RED (Stoe & Cie, 2020[Stoe & Cie. (2020). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2020); cell refinement: X-AREA Recipe (Stoe & Cie, 2020); data reduction: X-AREA Integrate (Stoe & Cie, 2020), X-RED (Stoe & Cie, 2020); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-nitrato-κ3O,O':O;O:O,O'-bis(µ-octaethyl pyrophosphoramide-κ2O:O')bis[aquabis(nitrato-κ2O,O')calcium(II)] top
Crystal data top
[Ca2(NO3)4(C16H40N4O3P2)2(H2O)2]F(000) = 1240
Mr = 1161.15Dx = 1.373 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
a = 10.6249 (7) ÅCell parameters from 18894 reflections
b = 15.5774 (12) Åθ = 2.2–50.0°
c = 17.0925 (10) ŵ = 3.50 mm1
β = 96.707 (5)°T = 150 K
V = 2809.6 (3) Å3Block, clear colourless
Z = 20.21 × 0.07 × 0.06 mm
Data collection top
Stoe Stadivari
diffractometer
4816 independent reflections
Radiation source: Genix-Cu4280 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.104
Detector resolution: 5.81 pixels mm-1θmax = 65.7°, θmin = 3.9°
rotation method, ω scansh = 129
Absorption correction: integration
(X-RED32; Stoe & Cie, 2020),
k = 1817
Tmin = 0.587, Tmax = 0.827l = 2015
4816 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0894P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4816 reflectionsΔρmax = 0.57 e Å3
325 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.68362 (3)0.54553 (2)0.47940 (2)0.01850 (13)
P20.45347 (4)0.26727 (3)0.43162 (3)0.01774 (14)
P10.62937 (4)0.35998 (3)0.33838 (3)0.01807 (14)
O30.38108 (12)0.34680 (8)0.43931 (8)0.0219 (3)
O100.55306 (12)0.45527 (8)0.56079 (8)0.0239 (3)
O20.56085 (12)0.27924 (8)0.37352 (7)0.0197 (3)
O10.66242 (13)0.42666 (9)0.39857 (8)0.0248 (3)
O900.83004 (13)0.48374 (10)0.57766 (9)0.0330 (3)
H90A0.8887250.4564320.5565130.049*
H90B0.7935350.4438610.6024030.049*
O110.44513 (13)0.38712 (9)0.64024 (8)0.0294 (3)
O120.64962 (14)0.39723 (11)0.66660 (9)0.0413 (4)
O200.90314 (14)0.55869 (10)0.42435 (10)0.0376 (4)
O210.80964 (15)0.67526 (10)0.45115 (11)0.0437 (4)
N100.55055 (15)0.41293 (10)0.62398 (9)0.0237 (4)
N20.53139 (15)0.38796 (10)0.26229 (10)0.0237 (4)
N30.36202 (14)0.19088 (10)0.39291 (10)0.0227 (4)
O220.99372 (15)0.68139 (11)0.40806 (12)0.0477 (5)
N10.75741 (15)0.32132 (11)0.30813 (10)0.0242 (4)
N200.90434 (15)0.63966 (11)0.42762 (11)0.0293 (4)
N40.53719 (15)0.22829 (10)0.50962 (10)0.0237 (4)
C110.4177 (2)0.10937 (12)0.37085 (12)0.0273 (4)
H11A0.3674880.0614590.3892430.033*
H11B0.5047560.1048240.3984230.033*
C30.7476 (2)0.25653 (14)0.24476 (12)0.0279 (4)
H3A0.8123910.2692050.2091970.033*
H3B0.6633910.2618440.2135870.033*
C10.88159 (19)0.33081 (15)0.35595 (13)0.0309 (5)
H1A0.9112680.2737250.3757880.037*
H1B0.8717330.3676250.4020550.037*
C70.41259 (18)0.34500 (13)0.23158 (12)0.0260 (4)
H7A0.4031160.2920830.2624310.031*
H7B0.4174090.3279390.1762210.031*
C130.6738 (2)0.24323 (14)0.53053 (13)0.0311 (5)
H13A0.6906160.2521030.5881580.037*
H13B0.6977670.2966060.5045320.037*
C50.5696 (2)0.46275 (14)0.21772 (13)0.0333 (5)
H5A0.6478870.4874290.2460180.040*
H5B0.5024600.5069880.2164190.040*
C90.22450 (18)0.20147 (14)0.37095 (14)0.0309 (5)
H9A0.2032360.1866270.3146430.037*
H9B0.2015010.2623770.3777740.037*
C150.4636 (2)0.19640 (13)0.57244 (13)0.0305 (5)
H15A0.3739540.2138730.5596050.037*
H15B0.4962780.2241660.6228400.037*
C120.4233 (2)0.09937 (15)0.28312 (14)0.0391 (5)
H12A0.3375900.1038200.2551940.059*
H12B0.4591720.0431470.2726560.059*
H12C0.4767250.1446960.2647890.059*
C40.7648 (2)0.16493 (14)0.27330 (14)0.0370 (5)
H4A0.7482210.1256430.2284940.056*
H4B0.7054100.1529150.3116990.056*
H4C0.8518280.1568530.2981930.056*
C160.4690 (2)0.10042 (14)0.58328 (14)0.0381 (5)
H16A0.4304040.0723270.5350440.057*
H16B0.4225350.0843000.6273350.057*
H16C0.5575390.0822050.5945210.057*
C80.2968 (2)0.40106 (18)0.23508 (16)0.0452 (6)
H8A0.3049850.4533030.2041370.068*
H8B0.2896880.4165770.2899550.068*
H8C0.2207800.3695420.2134050.068*
C140.7567 (2)0.17060 (17)0.50733 (15)0.0421 (6)
H14A0.7429980.1625860.4501020.063*
H14B0.7348290.1176080.5335360.063*
H14C0.8459060.1846280.5233490.063*
C100.1470 (2)0.14537 (17)0.42031 (18)0.0491 (7)
H10A0.0568940.1505050.4006620.074*
H10B0.1605710.1640800.4753930.074*
H10C0.1735860.0854080.4166650.074*
C20.9788 (2)0.3693 (2)0.31029 (19)0.0584 (8)
H2A0.9961620.3298160.2682100.088*
H2B1.0569830.3794900.3454730.088*
H2C0.9471150.4238350.2871750.088*
C60.5930 (3)0.44255 (18)0.13388 (15)0.0484 (7)
H6A0.5148210.4208150.1044700.073*
H6B0.6596250.3989510.1344110.073*
H6C0.6198380.4948320.1085600.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0150 (2)0.0179 (2)0.0220 (2)0.00120 (13)0.00005 (15)0.00325 (14)
P20.0174 (2)0.0155 (2)0.0201 (3)0.00135 (17)0.00129 (18)0.00050 (17)
P10.0152 (2)0.0185 (2)0.0203 (3)0.00014 (17)0.00136 (18)0.00302 (17)
O30.0221 (7)0.0179 (6)0.0259 (7)0.0036 (5)0.0036 (5)0.0010 (5)
O100.0207 (7)0.0263 (7)0.0240 (7)0.0012 (5)0.0004 (5)0.0040 (6)
O20.0189 (6)0.0183 (6)0.0223 (7)0.0015 (5)0.0039 (5)0.0021 (5)
O10.0248 (7)0.0230 (7)0.0265 (7)0.0019 (5)0.0019 (6)0.0075 (6)
O900.0198 (7)0.0419 (9)0.0362 (8)0.0058 (6)0.0012 (6)0.0058 (7)
O110.0276 (8)0.0311 (8)0.0299 (8)0.0009 (6)0.0047 (6)0.0036 (6)
O120.0275 (8)0.0603 (11)0.0330 (8)0.0050 (7)0.0095 (7)0.0104 (8)
O200.0310 (8)0.0274 (8)0.0563 (10)0.0044 (6)0.0126 (7)0.0017 (7)
O210.0286 (8)0.0315 (8)0.0752 (12)0.0014 (7)0.0237 (8)0.0035 (8)
N100.0212 (8)0.0255 (8)0.0233 (8)0.0021 (7)0.0017 (7)0.0021 (7)
N20.0221 (8)0.0219 (8)0.0262 (9)0.0028 (6)0.0008 (7)0.0029 (7)
N30.0184 (8)0.0170 (8)0.0322 (9)0.0005 (6)0.0009 (7)0.0020 (6)
O220.0269 (8)0.0472 (10)0.0717 (13)0.0090 (7)0.0167 (8)0.0101 (9)
N10.0166 (8)0.0296 (9)0.0262 (8)0.0005 (6)0.0023 (6)0.0074 (7)
N200.0186 (8)0.0334 (10)0.0356 (10)0.0012 (7)0.0021 (7)0.0036 (8)
N40.0250 (9)0.0236 (8)0.0220 (8)0.0029 (7)0.0008 (7)0.0028 (6)
C110.0276 (10)0.0171 (9)0.0359 (11)0.0023 (8)0.0017 (9)0.0040 (8)
C30.0256 (10)0.0331 (11)0.0258 (10)0.0010 (8)0.0069 (8)0.0087 (8)
C10.0182 (10)0.0375 (12)0.0362 (11)0.0003 (8)0.0003 (8)0.0053 (9)
C70.0193 (9)0.0318 (11)0.0255 (10)0.0024 (8)0.0032 (8)0.0005 (8)
C130.0286 (11)0.0357 (12)0.0261 (10)0.0011 (9)0.0085 (8)0.0020 (9)
C50.0388 (12)0.0275 (11)0.0322 (12)0.0067 (9)0.0019 (9)0.0066 (9)
C90.0207 (10)0.0276 (11)0.0428 (12)0.0002 (8)0.0034 (9)0.0020 (9)
C150.0394 (12)0.0272 (11)0.0257 (10)0.0070 (9)0.0071 (9)0.0058 (8)
C120.0423 (13)0.0349 (12)0.0383 (13)0.0086 (10)0.0034 (10)0.0133 (10)
C40.0397 (13)0.0318 (12)0.0391 (13)0.0106 (10)0.0025 (10)0.0097 (10)
C160.0471 (14)0.0286 (12)0.0392 (13)0.0002 (10)0.0071 (10)0.0075 (10)
C80.0253 (11)0.0602 (17)0.0486 (15)0.0117 (11)0.0026 (10)0.0055 (12)
C140.0294 (12)0.0568 (15)0.0392 (13)0.0101 (11)0.0007 (10)0.0013 (11)
C100.0263 (12)0.0461 (15)0.076 (2)0.0087 (11)0.0096 (12)0.0008 (13)
C20.0279 (13)0.081 (2)0.0661 (19)0.0202 (14)0.0037 (12)0.0075 (16)
C60.0620 (17)0.0476 (15)0.0385 (14)0.0005 (13)0.0184 (12)0.0105 (11)
Geometric parameters (Å, º) top
Ca1—Ca1i4.2866 (7)C1—H1B0.9900
Ca1—O3i2.3324 (13)C1—C21.491 (3)
Ca1—O102.5075 (13)C7—H7A0.9900
Ca1—O10i2.5283 (14)C7—H7B0.9900
Ca1—O12.3054 (13)C7—C81.516 (3)
Ca1—O902.3574 (14)C13—H13A0.9900
Ca1—O11i2.5495 (15)C13—H13B0.9900
Ca1—O202.6230 (15)C13—C141.515 (3)
Ca1—O212.5022 (16)C5—H5A0.9900
Ca1—N10i2.9503 (16)C5—H5B0.9900
Ca1—N202.9863 (17)C5—C61.516 (3)
P2—O31.4722 (13)C9—H9A0.9900
P2—O21.6084 (13)C9—H9B0.9900
P2—N31.6272 (16)C9—C101.522 (3)
P2—N41.6312 (16)C15—H15A0.9900
P1—O21.6046 (13)C15—H15B0.9900
P1—O11.4752 (13)C15—C161.507 (3)
P1—N21.6276 (16)C12—H12A0.9800
P1—N11.6264 (16)C12—H12B0.9800
O10—N101.268 (2)C12—H12C0.9800
O90—H90A0.8678C4—H4A0.9800
O90—H90B0.8681C4—H4B0.9800
O11—N101.251 (2)C4—H4C0.9800
O12—N101.233 (2)C16—H16A0.9800
O20—N201.263 (2)C16—H16B0.9800
O21—N201.255 (2)C16—H16C0.9800
N2—C71.470 (2)C8—H8A0.9800
N2—C51.475 (2)C8—H8B0.9800
N3—C111.469 (2)C8—H8C0.9800
N3—C91.475 (2)C14—H14A0.9800
O22—N201.229 (2)C14—H14B0.9800
N1—C31.475 (3)C14—H14C0.9800
N1—C11.476 (2)C10—H10A0.9800
N4—C131.472 (3)C10—H10B0.9800
N4—C151.486 (3)C10—H10C0.9800
C11—H11A0.9900C2—H2A0.9800
C11—H11B0.9900C2—H2B0.9800
C11—C121.516 (3)C2—H2C0.9800
C3—H3A0.9900C6—H6A0.9800
C3—H3B0.9900C6—H6B0.9800
C3—C41.512 (3)C6—H6C0.9800
C1—H1A0.9900
O3i—Ca1—O10i79.18 (5)C1—N1—P1120.90 (13)
O3i—Ca1—O1081.49 (5)O20—N20—Ca161.21 (10)
O3i—Ca1—O9094.88 (5)O21—N20—Ca155.63 (10)
O3i—Ca1—H90A110.2O21—N20—O20116.82 (17)
O3i—Ca1—H90B94.9O22—N20—Ca1177.28 (15)
O3i—Ca1—O11i90.80 (5)O22—N20—O20121.36 (18)
O3i—Ca1—O20119.59 (5)O22—N20—O21121.82 (18)
O3i—Ca1—O2174.68 (5)C13—N4—P2124.58 (14)
O3i—Ca1—N10i84.98 (5)C13—N4—C15117.69 (17)
O3i—Ca1—N2096.88 (5)C15—N4—P2115.62 (14)
O10—Ca1—O10i63.31 (5)N3—C11—H11A108.8
O10i—Ca1—H90A145.6N3—C11—H11B108.8
O10—Ca1—H90A84.9N3—C11—C12113.97 (17)
O10i—Ca1—H90B121.3H11A—C11—H11B107.7
O10—Ca1—H90B58.1C12—C11—H11A108.8
O10—Ca1—O11i113.32 (5)C12—C11—H11B108.8
O10i—Ca1—O11i50.25 (4)N1—C3—H3A108.7
O10—Ca1—O20144.65 (5)N1—C3—H3B108.7
O10i—Ca1—O20143.21 (5)N1—C3—C4114.41 (17)
O10—Ca1—N10i88.44 (5)H3A—C3—H3B107.6
O10i—Ca1—N10i25.30 (4)C4—C3—H3A108.7
O10i—Ca1—N20135.44 (5)C4—C3—H3B108.7
O10—Ca1—N20160.78 (5)N1—C1—H1A109.1
O1—Ca1—Ca1i78.79 (4)N1—C1—H1B109.1
O1—Ca1—O3i156.87 (5)N1—C1—C2112.29 (19)
O1—Ca1—O1081.98 (5)H1A—C1—H1B107.9
O1—Ca1—O10i78.98 (5)C2—C1—H1A109.1
O1—Ca1—O9096.27 (5)C2—C1—H1B109.1
O1—Ca1—H90A84.2N2—C7—H7A109.0
O1—Ca1—H90B89.9N2—C7—H7B109.0
O1—Ca1—O11i81.03 (5)N2—C7—C8113.01 (18)
O1—Ca1—O2082.91 (5)H7A—C7—H7B107.8
O1—Ca1—O21123.37 (5)C8—C7—H7A109.0
O1—Ca1—N10i78.50 (5)C8—C7—H7B109.0
O1—Ca1—N20104.00 (5)N4—C13—H13A108.8
O90—Ca1—O10i138.09 (5)N4—C13—H13B108.8
O90—Ca1—O1074.79 (5)N4—C13—C14113.91 (18)
O90—Ca1—H90A17.0H13A—C13—H13B107.7
O90—Ca1—H90B17.1C14—C13—H13A108.8
O90—Ca1—O11i170.78 (5)C14—C13—H13B108.8
O90—Ca1—O2075.35 (5)N2—C5—H5A108.7
O90—Ca1—O2198.27 (6)N2—C5—H5B108.7
O90—Ca1—N10i163.03 (5)N2—C5—C6114.20 (18)
O90—Ca1—N2086.32 (5)H5A—C5—H5B107.6
H90A—Ca1—H90B28.4C6—C5—H5A108.7
O11i—Ca1—H90A154.5C6—C5—H5B108.7
O11i—Ca1—H90B168.6N3—C9—H9A109.2
O11i—Ca1—O2095.53 (5)N3—C9—H9B109.2
O11i—Ca1—N10i24.97 (4)N3—C9—C10112.26 (18)
O11i—Ca1—N2085.79 (5)H9A—C9—H9B107.9
O20—Ca1—H90A61.9C10—C9—H9A109.2
O20—Ca1—H90B90.2C10—C9—H9B109.2
O20—Ca1—N10i119.41 (5)N4—C15—H15A108.8
O20—Ca1—N2024.95 (5)N4—C15—H15B108.8
O21—Ca1—O10154.57 (5)N4—C15—C16113.88 (18)
O21—Ca1—O10i119.29 (5)H15A—C15—H15B107.7
O21—Ca1—H90A95.0C16—C15—H15A108.8
O21—Ca1—H90B114.8C16—C15—H15B108.8
O21—Ca1—O11i76.23 (6)C11—C12—H12A109.5
O21—Ca1—O2049.41 (5)C11—C12—H12B109.5
O21—Ca1—N10i98.06 (5)C11—C12—H12C109.5
O21—Ca1—N2024.46 (5)H12A—C12—H12B109.5
N10i—Ca1—Ca1i56.69 (3)H12A—C12—H12C109.5
N10i—Ca1—H90A162.2H12B—C12—H12C109.5
N10i—Ca1—H90B146.0C3—C4—H4A109.5
N10i—Ca1—N20110.57 (5)C3—C4—H4B109.5
N20—Ca1—Ca1i166.55 (4)C3—C4—H4C109.5
N20—Ca1—H90A77.7H4A—C4—H4B109.5
N20—Ca1—H90B103.2H4A—C4—H4C109.5
O3—P2—O2111.91 (7)H4B—C4—H4C109.5
O3—P2—N3111.00 (8)C15—C16—H16A109.5
O3—P2—N4118.75 (8)C15—C16—H16B109.5
O2—P2—N3105.47 (8)C15—C16—H16C109.5
O2—P2—N4100.92 (8)H16A—C16—H16B109.5
N3—P2—N4107.63 (8)H16A—C16—H16C109.5
O2—P1—N2103.48 (8)H16B—C16—H16C109.5
O2—P1—N1105.17 (8)C7—C8—H8A109.5
O1—P1—O2111.86 (7)C7—C8—H8B109.5
O1—P1—N2116.53 (8)C7—C8—H8C109.5
O1—P1—N1110.04 (8)H8A—C8—H8B109.5
N1—P1—N2109.01 (9)H8A—C8—H8C109.5
P2—O3—Ca1i148.41 (8)H8B—C8—H8C109.5
Ca1—O10—Ca1i116.69 (5)C13—C14—H14A109.5
N10—O10—Ca1146.30 (11)C13—C14—H14B109.5
N10—O10—Ca1i96.30 (10)C13—C14—H14C109.5
P1—O2—P2135.03 (8)H14A—C14—H14B109.5
P1—O1—Ca1169.13 (9)H14A—C14—H14C109.5
Ca1—O90—H90A110.5H14B—C14—H14C109.5
Ca1—O90—H90B110.1C9—C10—H10A109.5
H90A—O90—H90B103.6C9—C10—H10B109.5
N10—O11—Ca1i95.74 (10)C9—C10—H10C109.5
N20—O20—Ca193.84 (11)H10A—C10—H10B109.5
N20—O21—Ca199.91 (12)H10A—C10—H10C109.5
O10—N10—Ca1i58.41 (9)H10B—C10—H10C109.5
O11—N10—Ca1i59.30 (9)C1—C2—H2A109.5
O11—N10—O10117.68 (15)C1—C2—H2B109.5
O12—N10—Ca1i178.56 (14)C1—C2—H2C109.5
O12—N10—O10120.34 (16)H2A—C2—H2B109.5
O12—N10—O11121.98 (17)H2A—C2—H2C109.5
C7—N2—P1127.28 (13)H2B—C2—H2C109.5
C7—N2—C5116.85 (16)C5—C6—H6A109.5
C5—N2—P1115.81 (14)C5—C6—H6B109.5
C11—N3—P2119.81 (13)C5—C6—H6C109.5
C11—N3—C9116.65 (16)H6A—C6—H6B109.5
C9—N3—P2123.26 (13)H6A—C6—H6C109.5
C3—N1—P1119.79 (13)H6B—C6—H6C109.5
C3—N1—C1117.19 (16)
Ca1—O10—N10—Ca1i168.5 (2)O2—P1—N1—C362.43 (17)
Ca1—O10—N10—O11170.36 (14)O2—P1—N1—C1100.59 (17)
Ca1i—O10—N10—O111.87 (17)O1—P1—O2—P242.43 (14)
Ca1i—O10—N10—O12179.19 (16)O1—P1—N2—C7126.48 (16)
Ca1—O10—N10—O1210.7 (3)O1—P1—N2—C556.20 (17)
Ca1i—O11—N10—O101.85 (16)O1—P1—N1—C3176.94 (15)
Ca1i—O11—N10—O12179.22 (16)O1—P1—N1—C120.05 (19)
Ca1—O20—N20—O211.6 (2)N2—P1—O2—P283.81 (13)
Ca1—O20—N20—O22178.98 (18)N2—P1—O1—Ca19.9 (5)
Ca1—O21—N20—O201.7 (2)N2—P1—N1—C347.99 (18)
Ca1—O21—N20—O22178.88 (17)N2—P1—N1—C1149.00 (16)
P2—N3—C11—C12103.49 (19)N3—P2—O3—Ca1i122.02 (15)
P2—N3—C9—C10114.7 (2)N3—P2—O2—P1138.22 (12)
P2—N4—C13—C1498.6 (2)N3—P2—N4—C13136.32 (16)
P2—N4—C15—C16111.65 (19)N3—P2—N4—C1560.64 (16)
P1—N2—C7—C8117.00 (19)N1—P1—O2—P2161.86 (12)
P1—N2—C5—C6116.1 (2)N1—P1—O1—Ca1134.7 (4)
P1—N1—C3—C498.4 (2)N1—P1—N2—C7108.26 (17)
P1—N1—C1—C2127.1 (2)N1—P1—N2—C569.05 (16)
O3—P2—O2—P117.41 (15)N4—P2—O3—Ca1i3.46 (19)
O3—P2—N3—C11172.32 (14)N4—P2—O2—P1109.86 (12)
O3—P2—N3—C91.41 (19)N4—P2—N3—C1156.19 (17)
O3—P2—N4—C1396.59 (17)N4—P2—N3—C9130.08 (16)
O3—P2—N4—C1566.46 (16)C11—N3—C9—C1071.4 (2)
O2—P2—O3—Ca1i120.44 (15)C3—N1—C1—C269.5 (3)
O2—P2—N3—C1150.92 (16)C1—N1—C3—C465.2 (2)
O2—P2—N3—C9122.81 (16)C7—N2—C5—C661.5 (3)
O2—P2—N4—C1326.05 (17)C13—N4—C15—C1684.1 (2)
O2—P2—N4—C15170.90 (13)C5—N2—C7—C865.7 (2)
O2—P1—O1—Ca1108.8 (5)C9—N3—C11—C1270.6 (2)
O2—P1—N2—C73.28 (18)C15—N4—C13—C1498.7 (2)
O2—P1—N2—C5179.41 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H90A···O20ii0.872.212.915 (2)138
O90—H90B···O100.872.582.9568 (19)108
O90—H90B···O120.872.112.913 (2)153
C1—H1B···O10.992.402.929 (2)113
C7—H7A···O20.992.392.920 (2)113
C9—H9B···O30.992.452.967 (2)112
Symmetry code: (ii) x+2, y+1, z+1.
Selected bond lengths (Å) top
BondLength (Å)BondLength (Å)
Ca1—O32.3324 (13)P2—O31.4722 (13)
Ca1—O12.3054 (13)P1—O11.4752 (13)

Acknowledgements

The research work disclosed in this publication was partially funded by the Endeavour Scholarship Scheme (Malta). Scholarships are part-financed by the European Union – European Social Fund (ESF) – Operational Programme II – Cohesion Policy 2014–2020 `Investing in human capital to create more opportunities and promote the well being of society'. The authors would also like to acknowledge the project: Setting up of transdisciplinary research and knowledge exchange (TRAKE) complex at the University of Malta (ERDF.01.124), which is being co-financed through the European Union through the European Regional Development Fund 2014–2020.

Funding information

Funding for this research was provided by: Endeavour Schol­arship Scheme (scholarship No. 256/2015/164).

References

First citationChan, E. J., Harrowfield, J. M., Skelton, B. W., Sobolev, A. N. & White, A. H. (2020). Aust. J. Chem. 73, 455.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoehring, M. & Niedenzu, K. (1956). Angew. Chem. 68, 704.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, M. S., Joesten, M. D. & Lenhert, P. G. (1970). Inorg. Chem. 9, 162–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationJoesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151–161.  CSD CrossRef CAS Web of Science Google Scholar
First citationKepert, D. L., Patrick, J. M. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 559–566.  CSD CrossRef Web of Science Google Scholar
First citationMorales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M., García-Montalvo, V. & Toscano, R. A. (2005). Main Group Chem. 4, 23–31.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (2020). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTarahhomi, A., Pourayoubi, M., Fejfarová, K. & Dušek, M. (2013). Acta Cryst. C69, 225–228.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds