research communications
Di-μ-nitrato-bis(μ-octaethyl pyrophosphoramide)bis[aquadinitratocalcium(II)]
aDepartment of Chemistry, University of Malta, Msida, MSD2080, Malta
*Correspondence e-mail: ulrich.baisch@um.edu.mt
The title compound, di-μ-nitrato-κ3O,O′:O;O:O,O′-bis(μ-octaethyl pyrophosphoramide-κ2O:O′)bis[aquabis(nitrato-κ2O,O′)calcium(II)], [Ca2(NO3)4(C16H40N4O3P2)2(H2O)2] was obtained as a side product during the work up of the synthesis of octaethyl pyrophosphoramide and represents the first structurally characterized complex of this ligand. The compound crystallizes in the monoclinic P21/n and the contains one pyrophosphoramide molecule and one Ca2+ ion coordinated to two nitrate ions and one water molecule. The complex exists as a dimer with a centre of inversion located between two eight-coordinate calcium(II) centres, which are bridged by two nitrate ions and two octaethyl pyrophosphoramide ligands. Each Ca2+ cation is also coordinated to a further nitrate anion, acting as a bidentate ligand, and a water molecule. The complexes stack parallel to the a axis and are held in place by a network of intermolecular O—H⋯O hydrogen bonds also running parallel to a.
Keywords: pyrophosphoramide; octaethyl pyrophosphoramide; calcium(II) cation; bridging nitrate anion; Schradan ligand; crystal structure.
CCDC reference: 2094905
1. Chemical context
The structures of octaethyl pyrophosphoramide, (O((Et2N)2PO)2), and its complexes have not been determined to date. Given the structural similarity of O((Et2N)2PO)2 to the more widely studied Schradan ligand, octamethyl pyrophosphoramide, O((Me2N)2PO)2 (Goehring & Niedenzu, 1956), it might be expected that the complexes of these two ligands would have related structures. Schradan is known to complex with divalent transition metals and magnesium to form simple complexes of formulae [M(O((Me2N)2PO)2)3][ClO4] (where M = Mg2+, Cu2+ and Co2+), in which the metal(II) centre is octahedrally coordinated to three pyrophosphate chelate rings (Joesten et al., 1970) and [Cu(O((Me2N)2PO)2)2(ClO4)2], in which the CuII atom is coordinated to two pyrophosphate chelate rings and two perchlorate oxygen atoms in an octahedral geometry (Hussain et al., 1970). Schradan has also been reported as a bridging ligand in two dimeric Eu3+ complexes (Chan et al., 2020). Here we report what we believe to be the first example of a metal-coordinated octaethyl pyrophosphoramide complex, which is dimeric and has the formula [Ca(O((Et2N)2PO)2(NO3)2(H2O)]2.
2. Structural commentary
The 2+ ion coordinated to two nitrates and one water molecule. None of the atoms lie on special positions. The content of one makes up one half of the actual dimeric calcium complex, which has a centre of inversion midway between the two calcium atoms, bringing Z to 2.
contains one pyrophosphoramide molecule together with one CaIn the title complex (Fig. 1), the di-N-substituted pyrophosphoramide molecule acts as a bridging ligand, rather than a bidentate chelating ligand, unlike in the previously characterized transition-metal and alkaline-earth metal complexes of the Schradan ligand, O((Me2N)2PO)2 (Joesten et al., 1970; Hussain et al., 1970).
The 2+ cation in the title compound is eight, which is typical for Ca2+ complexes. There are two Ca—O(P=O) bond lengths per O((Et2N)2PO)2 ligand, Ca1—O1 and Ca1—O3i with 2.3054 (13) and 2.3324 (13) Å, respectively; (Table 1), both of which are rather longer than the average lengths for analogous bonds found in simple phosphoramide complexes of Ca2+ (see Database Survey below). The corresponding P=O bond lengths in the O((Et2N)2PO)2 ligand, P1—O1 and P2—O3, are 1.4752 (13) and 1.4722 (13) Å, respectively (Table 1) and are comparable to values reported in other complexes where the ligands are also coordinated via the P=O moiety.
of the Ca3. Supramolecular features
The complexes pack to form chains running along the a-axis direction, where neighbouring complexes are bound by intermolecular hydrogen bonding of the type H—O⋯O—N, as shown in Fig. 2, involving the aqua ligand and the non-bridging nitrate anion, namely O90—H90A⋯O20 (Table 2). The aqua ligand also forms a hydrogen-bonding motif with the bridging nitrate anion, namely O90—H90B⋯O12 (Table 2).
4. Database survey
All searches were carried out using the Cambridge Structural Database (CSD Version 5.41, last update May 2020; Groom et al., 2016). A search for the structure of octaethyl pyrophosphoramide and its complexes returned no hits. A search for the structure of octamethyl pyrophosphoramide (Schradan) and its complexes returned six hits in which the ligand was found to chelate with the metal cations. Of these, four were octahedral metal complexes of this ligand with magnesium: [Mg(O((Me2N)2PO)2)3][ClO4] (MEPOMG; Joesten et al., 1970), cobalt: [Co(O((Me2N)2PO)2)3][ClO4] (MEPOCO; Joesten et al., 1970) and copper: [Cu(O((Me2N)2PO)2)3][ClO4] (MPAMCU10; Joesten et al., 1970) and [Cu(O((Me2N)2PO)2)2(ClO4)2] (OMPOCU; Hussain et al., 1970), and two were eight-coordinate metal complexes with actinides: [U(O((Me2N)2PO)2)2(NCS)4] (BOXXUH) and [Th(O((Me2N)2PO)2)2Cl4] (BOXYAO) (Kepert et al., 1983). Two further hits were found in which the Schradan ligand formed a bridge between two seven-coordinate Eu3+ ions in the complexes [(dmp-O,O′)3Eu((O((Me2N)2PO)2)Eu(O,O′-dmp)3] (dmp = [HC(C(tBu)·CO)2]−) (KUXTOP, KUXVIL; Chan et al., 2020).
A similar search for other di-N-substituted pyrophosphoramide complexes returned no hits, whilst a search for mono-N-substituted pyrophosphoramide complexes returned one hit, namely the octahedral complex, [Mn(O((tBuNH)2PO)2)2(DMF)2][Cl]2·2H2O (PEWRAM), in which the pyrophosphoramide ligand was found to chelate to a manganese(II) cation (Tarahhomi et al., 2013).
Although no pyrophosphoramide complexes of calcium were found, a search for di-λ5σ4-phosphorane species containing the fragment O=P—X—P=O—Ca yielded 17 hits. The complex tris(μ2-tetraphenylimidophosphinato-O,O,O′)aqua(tetraphenylimidophosphinato-O,O′)dicalcium (VAYQUI; Morales-Juárez et al., 2005) was the only species found to contain the O=P—X—P=O—Ca fragment bridging two Ca2+ cations that did not form part of a cluster or polymer. However in this case, both calcium centres have a of six, with distorted octahedral geometries, and bridging is achieved via one μ-oxygen atom per [N(Ph2PO)2]− ligand. This is, however, unlike the bridging behaviour observed in the title complex.
5. Synthesis and crystallization
The title compound was obtained as a minor component on purification of octaethyl pyrophosphoramide through n-pentane was then added to yield a deep-red-coloured suspension and this was left overnight to allow precipitation. The suspension was filtered using a series of cannula filtrations to remove the diethylammonium chloride by-product. Volatile products were removed under vacuum at 323 K. This yielded the crude octaethyl pyrophosphoramide as a viscous red liquid. This was subsequently purified by using a dilute nitric-acid-activated Kieselgel 60 as the and dichloromethane/acetonitrile as eluents. Octaethyl pyrophosphoramide was collected in acetonitrile as a dark-pink viscous liquid after removal of volatiles under vacuum at room temperature.
The synthesis of octaethyl pyrophosphoramide was undertaken using standard Schlenk line techniques. All solvents were dried over 4 Å molecular sieves. An excess amount of diethylamine (used as purchased), namely 7.6 ml (0.073 mol), was dissolved in 10 ml of chloroform. The solution was cooled to 195 K and 1 ml (0.007 mol) of pyrophosphoryl chloride (purified by short-path distillation) was added dropwise using a glass syringe with constant stirring. After the addition was complete, the cooling bath was removed and the mixture allowed to react at room temperature overnight with continuous stirring. Approximately 15 ml ofOn storage of the liquid octaethyl pyrophosphoramide product over a number of weeks, single crystals of the title compound formed serendipitously. Introduction of Ca2+ and NO3− ions most likely arose from either the use of dilute nitric acid in the activation process of the silica gel used for or from impurities present in the molecular sieve. Both the Kieselgel 60 and the molecular sieve were not used as received from the supplier, but were reused following washing/cleaning partly with nitric acid. The Ca2+ ions may have been introduced from previous use and remained inside the column or drying material.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (O—H = 0.87, C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C-methyl).
details are summarized in Table 3Supporting information
CCDC reference: 2094905
https://doi.org/10.1107/S205698902100699X/cq2040sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100699X/cq2040Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2020); cell
X-AREA Recipe (Stoe & Cie, 2020); data reduction: X-AREA Integrate (Stoe & Cie, 2020), X-RED (Stoe & Cie, 2020); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ca2(NO3)4(C16H40N4O3P2)2(H2O)2] | F(000) = 1240 |
Mr = 1161.15 | Dx = 1.373 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54186 Å |
a = 10.6249 (7) Å | Cell parameters from 18894 reflections |
b = 15.5774 (12) Å | θ = 2.2–50.0° |
c = 17.0925 (10) Å | µ = 3.50 mm−1 |
β = 96.707 (5)° | T = 150 K |
V = 2809.6 (3) Å3 | Block, clear colourless |
Z = 2 | 0.21 × 0.07 × 0.06 mm |
Stoe Stadivari diffractometer | 4816 independent reflections |
Radiation source: Genix-Cu | 4280 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.104 |
Detector resolution: 5.81 pixels mm-1 | θmax = 65.7°, θmin = 3.9° |
rotation method, ω scans | h = −12→9 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2020), | k = −18→17 |
Tmin = 0.587, Tmax = 0.827 | l = −20→15 |
4816 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0894P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4816 reflections | Δρmax = 0.57 e Å−3 |
325 parameters | Δρmin = −0.51 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.68362 (3) | 0.54553 (2) | 0.47940 (2) | 0.01850 (13) | |
P2 | 0.45347 (4) | 0.26727 (3) | 0.43162 (3) | 0.01774 (14) | |
P1 | 0.62937 (4) | 0.35998 (3) | 0.33838 (3) | 0.01807 (14) | |
O3 | 0.38108 (12) | 0.34680 (8) | 0.43931 (8) | 0.0219 (3) | |
O10 | 0.55306 (12) | 0.45527 (8) | 0.56079 (8) | 0.0239 (3) | |
O2 | 0.56085 (12) | 0.27924 (8) | 0.37352 (7) | 0.0197 (3) | |
O1 | 0.66242 (13) | 0.42666 (9) | 0.39857 (8) | 0.0248 (3) | |
O90 | 0.83004 (13) | 0.48374 (10) | 0.57766 (9) | 0.0330 (3) | |
H90A | 0.888725 | 0.456432 | 0.556513 | 0.049* | |
H90B | 0.793535 | 0.443861 | 0.602403 | 0.049* | |
O11 | 0.44513 (13) | 0.38712 (9) | 0.64024 (8) | 0.0294 (3) | |
O12 | 0.64962 (14) | 0.39723 (11) | 0.66660 (9) | 0.0413 (4) | |
O20 | 0.90314 (14) | 0.55869 (10) | 0.42435 (10) | 0.0376 (4) | |
O21 | 0.80964 (15) | 0.67526 (10) | 0.45115 (11) | 0.0437 (4) | |
N10 | 0.55055 (15) | 0.41293 (10) | 0.62398 (9) | 0.0237 (4) | |
N2 | 0.53139 (15) | 0.38796 (10) | 0.26229 (10) | 0.0237 (4) | |
N3 | 0.36202 (14) | 0.19088 (10) | 0.39291 (10) | 0.0227 (4) | |
O22 | 0.99372 (15) | 0.68139 (11) | 0.40806 (12) | 0.0477 (5) | |
N1 | 0.75741 (15) | 0.32132 (11) | 0.30813 (10) | 0.0242 (4) | |
N20 | 0.90434 (15) | 0.63966 (11) | 0.42762 (11) | 0.0293 (4) | |
N4 | 0.53719 (15) | 0.22829 (10) | 0.50962 (10) | 0.0237 (4) | |
C11 | 0.4177 (2) | 0.10937 (12) | 0.37085 (12) | 0.0273 (4) | |
H11A | 0.367488 | 0.061459 | 0.389243 | 0.033* | |
H11B | 0.504756 | 0.104824 | 0.398423 | 0.033* | |
C3 | 0.7476 (2) | 0.25653 (14) | 0.24476 (12) | 0.0279 (4) | |
H3A | 0.812391 | 0.269205 | 0.209197 | 0.033* | |
H3B | 0.663391 | 0.261844 | 0.213587 | 0.033* | |
C1 | 0.88159 (19) | 0.33081 (15) | 0.35595 (13) | 0.0309 (5) | |
H1A | 0.911268 | 0.273725 | 0.375788 | 0.037* | |
H1B | 0.871733 | 0.367625 | 0.402055 | 0.037* | |
C7 | 0.41259 (18) | 0.34500 (13) | 0.23158 (12) | 0.0260 (4) | |
H7A | 0.403116 | 0.292083 | 0.262431 | 0.031* | |
H7B | 0.417409 | 0.327939 | 0.176221 | 0.031* | |
C13 | 0.6738 (2) | 0.24323 (14) | 0.53053 (13) | 0.0311 (5) | |
H13A | 0.690616 | 0.252103 | 0.588158 | 0.037* | |
H13B | 0.697767 | 0.296606 | 0.504532 | 0.037* | |
C5 | 0.5696 (2) | 0.46275 (14) | 0.21772 (13) | 0.0333 (5) | |
H5A | 0.647887 | 0.487429 | 0.246018 | 0.040* | |
H5B | 0.502460 | 0.506988 | 0.216419 | 0.040* | |
C9 | 0.22450 (18) | 0.20147 (14) | 0.37095 (14) | 0.0309 (5) | |
H9A | 0.203236 | 0.186627 | 0.314643 | 0.037* | |
H9B | 0.201501 | 0.262377 | 0.377774 | 0.037* | |
C15 | 0.4636 (2) | 0.19640 (13) | 0.57244 (13) | 0.0305 (5) | |
H15A | 0.373954 | 0.213873 | 0.559605 | 0.037* | |
H15B | 0.496278 | 0.224166 | 0.622840 | 0.037* | |
C12 | 0.4233 (2) | 0.09937 (15) | 0.28312 (14) | 0.0391 (5) | |
H12A | 0.337590 | 0.103820 | 0.255194 | 0.059* | |
H12B | 0.459172 | 0.043147 | 0.272656 | 0.059* | |
H12C | 0.476725 | 0.144696 | 0.264789 | 0.059* | |
C4 | 0.7648 (2) | 0.16493 (14) | 0.27330 (14) | 0.0370 (5) | |
H4A | 0.748221 | 0.125643 | 0.228494 | 0.056* | |
H4B | 0.705410 | 0.152915 | 0.311699 | 0.056* | |
H4C | 0.851828 | 0.156853 | 0.298193 | 0.056* | |
C16 | 0.4690 (2) | 0.10042 (14) | 0.58328 (14) | 0.0381 (5) | |
H16A | 0.430404 | 0.072327 | 0.535044 | 0.057* | |
H16B | 0.422535 | 0.084300 | 0.627335 | 0.057* | |
H16C | 0.557539 | 0.082205 | 0.594521 | 0.057* | |
C8 | 0.2968 (2) | 0.40106 (18) | 0.23508 (16) | 0.0452 (6) | |
H8A | 0.304985 | 0.453303 | 0.204137 | 0.068* | |
H8B | 0.289688 | 0.416577 | 0.289955 | 0.068* | |
H8C | 0.220780 | 0.369542 | 0.213405 | 0.068* | |
C14 | 0.7567 (2) | 0.17060 (17) | 0.50733 (15) | 0.0421 (6) | |
H14A | 0.742998 | 0.162586 | 0.450102 | 0.063* | |
H14B | 0.734829 | 0.117608 | 0.533536 | 0.063* | |
H14C | 0.845906 | 0.184628 | 0.523349 | 0.063* | |
C10 | 0.1470 (2) | 0.14537 (17) | 0.42031 (18) | 0.0491 (7) | |
H10A | 0.056894 | 0.150505 | 0.400662 | 0.074* | |
H10B | 0.160571 | 0.164080 | 0.475393 | 0.074* | |
H10C | 0.173586 | 0.085408 | 0.416665 | 0.074* | |
C2 | 0.9788 (2) | 0.3693 (2) | 0.31029 (19) | 0.0584 (8) | |
H2A | 0.996162 | 0.329816 | 0.268210 | 0.088* | |
H2B | 1.056983 | 0.379490 | 0.345473 | 0.088* | |
H2C | 0.947115 | 0.423835 | 0.287175 | 0.088* | |
C6 | 0.5930 (3) | 0.44255 (18) | 0.13388 (15) | 0.0484 (7) | |
H6A | 0.514821 | 0.420815 | 0.104470 | 0.073* | |
H6B | 0.659625 | 0.398951 | 0.134411 | 0.073* | |
H6C | 0.619838 | 0.494832 | 0.108560 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0150 (2) | 0.0179 (2) | 0.0220 (2) | 0.00120 (13) | −0.00005 (15) | −0.00325 (14) |
P2 | 0.0174 (2) | 0.0155 (2) | 0.0201 (3) | 0.00135 (17) | 0.00129 (18) | −0.00050 (17) |
P1 | 0.0152 (2) | 0.0185 (2) | 0.0203 (3) | −0.00014 (17) | 0.00136 (18) | −0.00302 (17) |
O3 | 0.0221 (7) | 0.0179 (6) | 0.0259 (7) | 0.0036 (5) | 0.0036 (5) | −0.0010 (5) |
O10 | 0.0207 (7) | 0.0263 (7) | 0.0240 (7) | 0.0012 (5) | −0.0004 (5) | 0.0040 (6) |
O2 | 0.0189 (6) | 0.0183 (6) | 0.0223 (7) | 0.0015 (5) | 0.0039 (5) | −0.0021 (5) |
O1 | 0.0248 (7) | 0.0230 (7) | 0.0265 (7) | −0.0019 (5) | 0.0019 (6) | −0.0075 (6) |
O90 | 0.0198 (7) | 0.0419 (9) | 0.0362 (8) | 0.0058 (6) | −0.0012 (6) | 0.0058 (7) |
O11 | 0.0276 (8) | 0.0311 (8) | 0.0299 (8) | −0.0009 (6) | 0.0047 (6) | 0.0036 (6) |
O12 | 0.0275 (8) | 0.0603 (11) | 0.0330 (8) | 0.0050 (7) | −0.0095 (7) | 0.0104 (8) |
O20 | 0.0310 (8) | 0.0274 (8) | 0.0563 (10) | 0.0044 (6) | 0.0126 (7) | 0.0017 (7) |
O21 | 0.0286 (8) | 0.0315 (8) | 0.0752 (12) | 0.0014 (7) | 0.0237 (8) | −0.0035 (8) |
N10 | 0.0212 (8) | 0.0255 (8) | 0.0233 (8) | 0.0021 (7) | −0.0017 (7) | −0.0021 (7) |
N2 | 0.0221 (8) | 0.0219 (8) | 0.0262 (9) | −0.0028 (6) | −0.0008 (7) | 0.0029 (7) |
N3 | 0.0184 (8) | 0.0170 (8) | 0.0322 (9) | 0.0005 (6) | 0.0009 (7) | −0.0020 (6) |
O22 | 0.0269 (8) | 0.0472 (10) | 0.0717 (13) | −0.0090 (7) | 0.0167 (8) | 0.0101 (9) |
N1 | 0.0166 (8) | 0.0296 (9) | 0.0262 (8) | 0.0005 (6) | 0.0023 (6) | −0.0074 (7) |
N20 | 0.0186 (8) | 0.0334 (10) | 0.0356 (10) | −0.0012 (7) | 0.0021 (7) | 0.0036 (8) |
N4 | 0.0250 (9) | 0.0236 (8) | 0.0220 (8) | 0.0029 (7) | 0.0008 (7) | 0.0028 (6) |
C11 | 0.0276 (10) | 0.0171 (9) | 0.0359 (11) | 0.0023 (8) | −0.0017 (9) | −0.0040 (8) |
C3 | 0.0256 (10) | 0.0331 (11) | 0.0258 (10) | 0.0010 (8) | 0.0069 (8) | −0.0087 (8) |
C1 | 0.0182 (10) | 0.0375 (12) | 0.0362 (11) | −0.0003 (8) | 0.0003 (8) | −0.0053 (9) |
C7 | 0.0193 (9) | 0.0318 (11) | 0.0255 (10) | −0.0024 (8) | −0.0032 (8) | −0.0005 (8) |
C13 | 0.0286 (11) | 0.0357 (12) | 0.0261 (10) | 0.0011 (9) | −0.0085 (8) | 0.0020 (9) |
C5 | 0.0388 (12) | 0.0275 (11) | 0.0322 (12) | −0.0067 (9) | −0.0019 (9) | 0.0066 (9) |
C9 | 0.0207 (10) | 0.0276 (11) | 0.0428 (12) | 0.0002 (8) | −0.0034 (9) | −0.0020 (9) |
C15 | 0.0394 (12) | 0.0272 (11) | 0.0257 (10) | 0.0070 (9) | 0.0071 (9) | 0.0058 (8) |
C12 | 0.0423 (13) | 0.0349 (12) | 0.0383 (13) | 0.0086 (10) | −0.0034 (10) | −0.0133 (10) |
C4 | 0.0397 (13) | 0.0318 (12) | 0.0391 (13) | 0.0106 (10) | 0.0025 (10) | −0.0097 (10) |
C16 | 0.0471 (14) | 0.0286 (12) | 0.0392 (13) | 0.0002 (10) | 0.0071 (10) | 0.0075 (10) |
C8 | 0.0253 (11) | 0.0602 (17) | 0.0486 (15) | 0.0117 (11) | −0.0026 (10) | 0.0055 (12) |
C14 | 0.0294 (12) | 0.0568 (15) | 0.0392 (13) | 0.0101 (11) | 0.0007 (10) | 0.0013 (11) |
C10 | 0.0263 (12) | 0.0461 (15) | 0.076 (2) | −0.0087 (11) | 0.0096 (12) | 0.0008 (13) |
C2 | 0.0279 (13) | 0.081 (2) | 0.0661 (19) | −0.0202 (14) | 0.0037 (12) | 0.0075 (16) |
C6 | 0.0620 (17) | 0.0476 (15) | 0.0385 (14) | −0.0005 (13) | 0.0184 (12) | 0.0105 (11) |
Ca1—Ca1i | 4.2866 (7) | C1—H1B | 0.9900 |
Ca1—O3i | 2.3324 (13) | C1—C2 | 1.491 (3) |
Ca1—O10 | 2.5075 (13) | C7—H7A | 0.9900 |
Ca1—O10i | 2.5283 (14) | C7—H7B | 0.9900 |
Ca1—O1 | 2.3054 (13) | C7—C8 | 1.516 (3) |
Ca1—O90 | 2.3574 (14) | C13—H13A | 0.9900 |
Ca1—O11i | 2.5495 (15) | C13—H13B | 0.9900 |
Ca1—O20 | 2.6230 (15) | C13—C14 | 1.515 (3) |
Ca1—O21 | 2.5022 (16) | C5—H5A | 0.9900 |
Ca1—N10i | 2.9503 (16) | C5—H5B | 0.9900 |
Ca1—N20 | 2.9863 (17) | C5—C6 | 1.516 (3) |
P2—O3 | 1.4722 (13) | C9—H9A | 0.9900 |
P2—O2 | 1.6084 (13) | C9—H9B | 0.9900 |
P2—N3 | 1.6272 (16) | C9—C10 | 1.522 (3) |
P2—N4 | 1.6312 (16) | C15—H15A | 0.9900 |
P1—O2 | 1.6046 (13) | C15—H15B | 0.9900 |
P1—O1 | 1.4752 (13) | C15—C16 | 1.507 (3) |
P1—N2 | 1.6276 (16) | C12—H12A | 0.9800 |
P1—N1 | 1.6264 (16) | C12—H12B | 0.9800 |
O10—N10 | 1.268 (2) | C12—H12C | 0.9800 |
O90—H90A | 0.8678 | C4—H4A | 0.9800 |
O90—H90B | 0.8681 | C4—H4B | 0.9800 |
O11—N10 | 1.251 (2) | C4—H4C | 0.9800 |
O12—N10 | 1.233 (2) | C16—H16A | 0.9800 |
O20—N20 | 1.263 (2) | C16—H16B | 0.9800 |
O21—N20 | 1.255 (2) | C16—H16C | 0.9800 |
N2—C7 | 1.470 (2) | C8—H8A | 0.9800 |
N2—C5 | 1.475 (2) | C8—H8B | 0.9800 |
N3—C11 | 1.469 (2) | C8—H8C | 0.9800 |
N3—C9 | 1.475 (2) | C14—H14A | 0.9800 |
O22—N20 | 1.229 (2) | C14—H14B | 0.9800 |
N1—C3 | 1.475 (3) | C14—H14C | 0.9800 |
N1—C1 | 1.476 (2) | C10—H10A | 0.9800 |
N4—C13 | 1.472 (3) | C10—H10B | 0.9800 |
N4—C15 | 1.486 (3) | C10—H10C | 0.9800 |
C11—H11A | 0.9900 | C2—H2A | 0.9800 |
C11—H11B | 0.9900 | C2—H2B | 0.9800 |
C11—C12 | 1.516 (3) | C2—H2C | 0.9800 |
C3—H3A | 0.9900 | C6—H6A | 0.9800 |
C3—H3B | 0.9900 | C6—H6B | 0.9800 |
C3—C4 | 1.512 (3) | C6—H6C | 0.9800 |
C1—H1A | 0.9900 | ||
O3i—Ca1—O10i | 79.18 (5) | C1—N1—P1 | 120.90 (13) |
O3i—Ca1—O10 | 81.49 (5) | O20—N20—Ca1 | 61.21 (10) |
O3i—Ca1—O90 | 94.88 (5) | O21—N20—Ca1 | 55.63 (10) |
O3i—Ca1—H90A | 110.2 | O21—N20—O20 | 116.82 (17) |
O3i—Ca1—H90B | 94.9 | O22—N20—Ca1 | 177.28 (15) |
O3i—Ca1—O11i | 90.80 (5) | O22—N20—O20 | 121.36 (18) |
O3i—Ca1—O20 | 119.59 (5) | O22—N20—O21 | 121.82 (18) |
O3i—Ca1—O21 | 74.68 (5) | C13—N4—P2 | 124.58 (14) |
O3i—Ca1—N10i | 84.98 (5) | C13—N4—C15 | 117.69 (17) |
O3i—Ca1—N20 | 96.88 (5) | C15—N4—P2 | 115.62 (14) |
O10—Ca1—O10i | 63.31 (5) | N3—C11—H11A | 108.8 |
O10i—Ca1—H90A | 145.6 | N3—C11—H11B | 108.8 |
O10—Ca1—H90A | 84.9 | N3—C11—C12 | 113.97 (17) |
O10i—Ca1—H90B | 121.3 | H11A—C11—H11B | 107.7 |
O10—Ca1—H90B | 58.1 | C12—C11—H11A | 108.8 |
O10—Ca1—O11i | 113.32 (5) | C12—C11—H11B | 108.8 |
O10i—Ca1—O11i | 50.25 (4) | N1—C3—H3A | 108.7 |
O10—Ca1—O20 | 144.65 (5) | N1—C3—H3B | 108.7 |
O10i—Ca1—O20 | 143.21 (5) | N1—C3—C4 | 114.41 (17) |
O10—Ca1—N10i | 88.44 (5) | H3A—C3—H3B | 107.6 |
O10i—Ca1—N10i | 25.30 (4) | C4—C3—H3A | 108.7 |
O10i—Ca1—N20 | 135.44 (5) | C4—C3—H3B | 108.7 |
O10—Ca1—N20 | 160.78 (5) | N1—C1—H1A | 109.1 |
O1—Ca1—Ca1i | 78.79 (4) | N1—C1—H1B | 109.1 |
O1—Ca1—O3i | 156.87 (5) | N1—C1—C2 | 112.29 (19) |
O1—Ca1—O10 | 81.98 (5) | H1A—C1—H1B | 107.9 |
O1—Ca1—O10i | 78.98 (5) | C2—C1—H1A | 109.1 |
O1—Ca1—O90 | 96.27 (5) | C2—C1—H1B | 109.1 |
O1—Ca1—H90A | 84.2 | N2—C7—H7A | 109.0 |
O1—Ca1—H90B | 89.9 | N2—C7—H7B | 109.0 |
O1—Ca1—O11i | 81.03 (5) | N2—C7—C8 | 113.01 (18) |
O1—Ca1—O20 | 82.91 (5) | H7A—C7—H7B | 107.8 |
O1—Ca1—O21 | 123.37 (5) | C8—C7—H7A | 109.0 |
O1—Ca1—N10i | 78.50 (5) | C8—C7—H7B | 109.0 |
O1—Ca1—N20 | 104.00 (5) | N4—C13—H13A | 108.8 |
O90—Ca1—O10i | 138.09 (5) | N4—C13—H13B | 108.8 |
O90—Ca1—O10 | 74.79 (5) | N4—C13—C14 | 113.91 (18) |
O90—Ca1—H90A | 17.0 | H13A—C13—H13B | 107.7 |
O90—Ca1—H90B | 17.1 | C14—C13—H13A | 108.8 |
O90—Ca1—O11i | 170.78 (5) | C14—C13—H13B | 108.8 |
O90—Ca1—O20 | 75.35 (5) | N2—C5—H5A | 108.7 |
O90—Ca1—O21 | 98.27 (6) | N2—C5—H5B | 108.7 |
O90—Ca1—N10i | 163.03 (5) | N2—C5—C6 | 114.20 (18) |
O90—Ca1—N20 | 86.32 (5) | H5A—C5—H5B | 107.6 |
H90A—Ca1—H90B | 28.4 | C6—C5—H5A | 108.7 |
O11i—Ca1—H90A | 154.5 | C6—C5—H5B | 108.7 |
O11i—Ca1—H90B | 168.6 | N3—C9—H9A | 109.2 |
O11i—Ca1—O20 | 95.53 (5) | N3—C9—H9B | 109.2 |
O11i—Ca1—N10i | 24.97 (4) | N3—C9—C10 | 112.26 (18) |
O11i—Ca1—N20 | 85.79 (5) | H9A—C9—H9B | 107.9 |
O20—Ca1—H90A | 61.9 | C10—C9—H9A | 109.2 |
O20—Ca1—H90B | 90.2 | C10—C9—H9B | 109.2 |
O20—Ca1—N10i | 119.41 (5) | N4—C15—H15A | 108.8 |
O20—Ca1—N20 | 24.95 (5) | N4—C15—H15B | 108.8 |
O21—Ca1—O10 | 154.57 (5) | N4—C15—C16 | 113.88 (18) |
O21—Ca1—O10i | 119.29 (5) | H15A—C15—H15B | 107.7 |
O21—Ca1—H90A | 95.0 | C16—C15—H15A | 108.8 |
O21—Ca1—H90B | 114.8 | C16—C15—H15B | 108.8 |
O21—Ca1—O11i | 76.23 (6) | C11—C12—H12A | 109.5 |
O21—Ca1—O20 | 49.41 (5) | C11—C12—H12B | 109.5 |
O21—Ca1—N10i | 98.06 (5) | C11—C12—H12C | 109.5 |
O21—Ca1—N20 | 24.46 (5) | H12A—C12—H12B | 109.5 |
N10i—Ca1—Ca1i | 56.69 (3) | H12A—C12—H12C | 109.5 |
N10i—Ca1—H90A | 162.2 | H12B—C12—H12C | 109.5 |
N10i—Ca1—H90B | 146.0 | C3—C4—H4A | 109.5 |
N10i—Ca1—N20 | 110.57 (5) | C3—C4—H4B | 109.5 |
N20—Ca1—Ca1i | 166.55 (4) | C3—C4—H4C | 109.5 |
N20—Ca1—H90A | 77.7 | H4A—C4—H4B | 109.5 |
N20—Ca1—H90B | 103.2 | H4A—C4—H4C | 109.5 |
O3—P2—O2 | 111.91 (7) | H4B—C4—H4C | 109.5 |
O3—P2—N3 | 111.00 (8) | C15—C16—H16A | 109.5 |
O3—P2—N4 | 118.75 (8) | C15—C16—H16B | 109.5 |
O2—P2—N3 | 105.47 (8) | C15—C16—H16C | 109.5 |
O2—P2—N4 | 100.92 (8) | H16A—C16—H16B | 109.5 |
N3—P2—N4 | 107.63 (8) | H16A—C16—H16C | 109.5 |
O2—P1—N2 | 103.48 (8) | H16B—C16—H16C | 109.5 |
O2—P1—N1 | 105.17 (8) | C7—C8—H8A | 109.5 |
O1—P1—O2 | 111.86 (7) | C7—C8—H8B | 109.5 |
O1—P1—N2 | 116.53 (8) | C7—C8—H8C | 109.5 |
O1—P1—N1 | 110.04 (8) | H8A—C8—H8B | 109.5 |
N1—P1—N2 | 109.01 (9) | H8A—C8—H8C | 109.5 |
P2—O3—Ca1i | 148.41 (8) | H8B—C8—H8C | 109.5 |
Ca1—O10—Ca1i | 116.69 (5) | C13—C14—H14A | 109.5 |
N10—O10—Ca1 | 146.30 (11) | C13—C14—H14B | 109.5 |
N10—O10—Ca1i | 96.30 (10) | C13—C14—H14C | 109.5 |
P1—O2—P2 | 135.03 (8) | H14A—C14—H14B | 109.5 |
P1—O1—Ca1 | 169.13 (9) | H14A—C14—H14C | 109.5 |
Ca1—O90—H90A | 110.5 | H14B—C14—H14C | 109.5 |
Ca1—O90—H90B | 110.1 | C9—C10—H10A | 109.5 |
H90A—O90—H90B | 103.6 | C9—C10—H10B | 109.5 |
N10—O11—Ca1i | 95.74 (10) | C9—C10—H10C | 109.5 |
N20—O20—Ca1 | 93.84 (11) | H10A—C10—H10B | 109.5 |
N20—O21—Ca1 | 99.91 (12) | H10A—C10—H10C | 109.5 |
O10—N10—Ca1i | 58.41 (9) | H10B—C10—H10C | 109.5 |
O11—N10—Ca1i | 59.30 (9) | C1—C2—H2A | 109.5 |
O11—N10—O10 | 117.68 (15) | C1—C2—H2B | 109.5 |
O12—N10—Ca1i | 178.56 (14) | C1—C2—H2C | 109.5 |
O12—N10—O10 | 120.34 (16) | H2A—C2—H2B | 109.5 |
O12—N10—O11 | 121.98 (17) | H2A—C2—H2C | 109.5 |
C7—N2—P1 | 127.28 (13) | H2B—C2—H2C | 109.5 |
C7—N2—C5 | 116.85 (16) | C5—C6—H6A | 109.5 |
C5—N2—P1 | 115.81 (14) | C5—C6—H6B | 109.5 |
C11—N3—P2 | 119.81 (13) | C5—C6—H6C | 109.5 |
C11—N3—C9 | 116.65 (16) | H6A—C6—H6B | 109.5 |
C9—N3—P2 | 123.26 (13) | H6A—C6—H6C | 109.5 |
C3—N1—P1 | 119.79 (13) | H6B—C6—H6C | 109.5 |
C3—N1—C1 | 117.19 (16) | ||
Ca1—O10—N10—Ca1i | 168.5 (2) | O2—P1—N1—C3 | 62.43 (17) |
Ca1—O10—N10—O11 | 170.36 (14) | O2—P1—N1—C1 | −100.59 (17) |
Ca1i—O10—N10—O11 | 1.87 (17) | O1—P1—O2—P2 | 42.43 (14) |
Ca1i—O10—N10—O12 | −179.19 (16) | O1—P1—N2—C7 | −126.48 (16) |
Ca1—O10—N10—O12 | −10.7 (3) | O1—P1—N2—C5 | 56.20 (17) |
Ca1i—O11—N10—O10 | −1.85 (16) | O1—P1—N1—C3 | −176.94 (15) |
Ca1i—O11—N10—O12 | 179.22 (16) | O1—P1—N1—C1 | 20.05 (19) |
Ca1—O20—N20—O21 | −1.6 (2) | N2—P1—O2—P2 | −83.81 (13) |
Ca1—O20—N20—O22 | 178.98 (18) | N2—P1—O1—Ca1 | 9.9 (5) |
Ca1—O21—N20—O20 | 1.7 (2) | N2—P1—N1—C3 | −47.99 (18) |
Ca1—O21—N20—O22 | −178.88 (17) | N2—P1—N1—C1 | 149.00 (16) |
P2—N3—C11—C12 | −103.49 (19) | N3—P2—O3—Ca1i | 122.02 (15) |
P2—N3—C9—C10 | −114.7 (2) | N3—P2—O2—P1 | 138.22 (12) |
P2—N4—C13—C14 | −98.6 (2) | N3—P2—N4—C13 | 136.32 (16) |
P2—N4—C15—C16 | 111.65 (19) | N3—P2—N4—C15 | −60.64 (16) |
P1—N2—C7—C8 | 117.00 (19) | N1—P1—O2—P2 | 161.86 (12) |
P1—N2—C5—C6 | 116.1 (2) | N1—P1—O1—Ca1 | 134.7 (4) |
P1—N1—C3—C4 | −98.4 (2) | N1—P1—N2—C7 | 108.26 (17) |
P1—N1—C1—C2 | −127.1 (2) | N1—P1—N2—C5 | −69.05 (16) |
O3—P2—O2—P1 | 17.41 (15) | N4—P2—O3—Ca1i | −3.46 (19) |
O3—P2—N3—C11 | 172.32 (14) | N4—P2—O2—P1 | −109.86 (12) |
O3—P2—N3—C9 | −1.41 (19) | N4—P2—N3—C11 | −56.19 (17) |
O3—P2—N4—C13 | −96.59 (17) | N4—P2—N3—C9 | 130.08 (16) |
O3—P2—N4—C15 | 66.46 (16) | C11—N3—C9—C10 | 71.4 (2) |
O2—P2—O3—Ca1i | −120.44 (15) | C3—N1—C1—C2 | 69.5 (3) |
O2—P2—N3—C11 | 50.92 (16) | C1—N1—C3—C4 | 65.2 (2) |
O2—P2—N3—C9 | −122.81 (16) | C7—N2—C5—C6 | −61.5 (3) |
O2—P2—N4—C13 | 26.05 (17) | C13—N4—C15—C16 | −84.1 (2) |
O2—P2—N4—C15 | −170.90 (13) | C5—N2—C7—C8 | −65.7 (2) |
O2—P1—O1—Ca1 | −108.8 (5) | C9—N3—C11—C12 | 70.6 (2) |
O2—P1—N2—C7 | −3.28 (18) | C15—N4—C13—C14 | 98.7 (2) |
O2—P1—N2—C5 | 179.41 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O90—H90A···O20ii | 0.87 | 2.21 | 2.915 (2) | 138 |
O90—H90B···O10 | 0.87 | 2.58 | 2.9568 (19) | 108 |
O90—H90B···O12 | 0.87 | 2.11 | 2.913 (2) | 153 |
C1—H1B···O1 | 0.99 | 2.40 | 2.929 (2) | 113 |
C7—H7A···O2 | 0.99 | 2.39 | 2.920 (2) | 113 |
C9—H9B···O3 | 0.99 | 2.45 | 2.967 (2) | 112 |
Symmetry code: (ii) −x+2, −y+1, −z+1. |
Bond | Length (Å) | Bond | Length (Å) |
Ca1—O3 | 2.3324 (13) | P2—O3 | 1.4722 (13) |
Ca1—O1 | 2.3054 (13) | P1—O1 | 1.4752 (13) |
Acknowledgements
The research work disclosed in this publication was partially funded by the Endeavour Scholarship Scheme (Malta). Scholarships are part-financed by the European Union – European Social Fund (ESF) – Operational Programme II – Cohesion Policy 2014–2020 `Investing in human capital to create more opportunities and promote the well being of society'. The authors would also like to acknowledge the project: Setting up of transdisciplinary research and knowledge exchange (TRAKE) complex at the University of Malta (ERDF.01.124), which is being co-financed through the European Union through the European Regional Development Fund 2014–2020.
Funding information
Funding for this research was provided by: Endeavour Scholarship Scheme (scholarship No. 256/2015/164).
References
Chan, E. J., Harrowfield, J. M., Skelton, B. W., Sobolev, A. N. & White, A. H. (2020). Aust. J. Chem. 73, 455. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goehring, M. & Niedenzu, K. (1956). Angew. Chem. 68, 704. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hussain, M. S., Joesten, M. D. & Lenhert, P. G. (1970). Inorg. Chem. 9, 162–168. CSD CrossRef CAS Web of Science Google Scholar
Joesten, M. D., Hussain, M. S. & Lenhert, P. G. (1970). Inorg. Chem. 9, 151–161. CSD CrossRef CAS Web of Science Google Scholar
Kepert, D. L., Patrick, J. M. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 559–566. CSD CrossRef Web of Science Google Scholar
Morales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M., García-Montalvo, V. & Toscano, R. A. (2005). Main Group Chem. 4, 23–31. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie. (2020). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tarahhomi, A., Pourayoubi, M., Fejfarová, K. & Dušek, M. (2013). Acta Cryst. C69, 225–228. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.