research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two polymorphs of tixocortol pivalate

crossmark logo

aICMUB - UMR 6302, Université Bourgogne Franche Comte, 9 avenue Alain Savary, 21000 DIJON, France, and bM2i Salin, 36 Route Arles RD 36, 13129 Salin de Giraud, France
*Correspondence e-mail: Yoann.Rousselin@u-bourgogne.fr

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 14 December 2020; accepted 12 July 2021; online 16 July 2021)

Two polymorphs, (I) and (II), of (S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-dihy­droxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl]-2-oxoeth­yl} 2,2-di­methyl­propane­thio­ate, C26H38O5S, have been identified. They are ortho­rhom­bic, non-centrosymmetric (P212121). The structures display layers of mol­ecules conected via O—H⋯O hydrogen bonds along the b-axis direction in polymorph (I) and along the c-axis direction in polymorph (II). The structure of (II) exhibits disorder of the main mol­ecule.

1. Chemical context

Tixocortol pivalate, also named Pivalone®, is a corticosteroid with local and topical anti-inflammatory activity (Davies et al., 1981[Davies, J. E., Kellet, D. N., Staniforth, M. V., Torossian, R. & Grouhel, A. (1981). Arzneimittelforschung, 31, 453-459.]; Jezequel et al., 1979[Jezequel, J., Becuwe, B., Daniel, C. & Geraudel, O. (1979). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 28, 65-6, 68.]; Liddle et al., 1960[Liddle, G. W. (1960). J. Clin. Endocrinol. Metab. 20, 1539-1560.]; Maza­uric & Alligier, 1978[Mazauric, F. X. & Alligier, B. (1978). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 27, 721-723.]; Nugent et al., 1963[Nugent, C. A., Macdiarmid, W. D., Nelson, A. R. & Tyler, F. H. (1963). J. Clin. Endocrinol. Metab. 23, 684-693.]; Uphill, 1981[Uphill, P. F. (1981). Arzneimittelforschung, 31, 459-462.]) equal to that of hydro­cortisone. As a corticosteroid, Tixocortol pivalate is used topically to relieve contact allergies and is also frequently recommended as a screening test for class A corticosteroids (Bircher et al., 1995[Bircher, A. J., Thürlimann, W., Hunziker, T., Pasche-Koo, F., Hunziker, N., Perrenoud, D., Elsner, P. & Schultheiss, R. (1995). Dermatology, 191, 109-114.]; Burden & Beck, 1992[Burden, A. D. & Beck, M. H. (1992). Br. J. Dermatol. 127, 497-500.]; Lauerma, 1991[Lauerma, A. I. (1991). Contact Dermatitis, 24, 123-130.]; Bouley, 2013[Bouley, E. (2013). Patent EP 2853528.]). Surprisingly, the structure of tixocortol pivalate has never been determined. It was therefore of inter­est to obtain two polymorphs, (I) and (II), of the title compound prepared by total enantio-selective synthesis.

[Scheme 1]

2. Structural commentary

The presence of two polymorphs was confirmed by powder X-ray diffraction (PXRD) and the structures were determined by single crystal X-ray diffraction (SCXRD). The absolute configuration of its seven asymmetric carbons was established. Both polymorphs of the title compound consist of a (S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-dihy­droxy-10,13-dimeth­yl-3-oxo-2,6,7,8,9,11,12,14,15,16-deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl]-2-oxoeth­yl} 2,2-di­methyl­propane­thio­ate mol­ecule in the asymmetric unit (Figs. 1[link] and 2[link]). The general shape of the mol­ecule is strongly influenced by the conformation of one five-membered ring and three six-membered rings. In both polymorphs (Table 1[link]), the five-membered ring (C8–C12) adopts an envelope form, both central six-membered rings (C9/C14–C17/C10 and C16/C18–C21/C17) adopt chair conformations and the six-membered ring with the double bond (C18/C19/C23–C26) adopts a half-chair conformation (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The superposition of the mol­ecules, with the Automatic Mol­ecule Overlay feature of Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), results in an r.m.s.d. of 0.829 and a maximum deviation of 2.545 Å if no flexibility is allowed and in values of 0.336 and 0.856, respectively, if flexibility is allowed. The main difference is on the dimethyl-sulfanyl-propanone group whose position is imposed by crystal packing.

Table 1
Ring puckering parameters

Compound PL358 (I) SY20C174 (II)
C8–C12 Q2 = 0.4847 (18) Å Q2 = 0.441 (5) Å
Envelope conformation φ2 = 39.4 (2)° φ2 = 41.4 (6)°
C9/C14–C17/C10 Q = 0.5519 (17) Å | Θ = 9.45 (18) ° | φ2 = 53.2 (11)° Q = 0.556 (4) Å | Θ = 13.4 (4) ° | φ2 = 37 (2)°
Chair conformation Q2 = 0.0908 (17) Å | Q3 = 54.4444 (17) Å | φ2 = 53.2 (11)° Q2 = 0.128 (4) Å | Q3 = 0.541 (4) Å | φ2 = 37 (2)°
C16/C18–C21/C17 Q = 0.5450 (17) Å | Θ = 175.11 (18) ° | φ2 = 170 (2)° Q = 0.538 (4) Å | Θ = 173.2 (4) ° | φ2 = 196 (4)°
Chair conformation Q2 = 0.0457 (17) Å | Q3 = −0.5431 (17) Å | φ2 = 170 (2)° Q2 = 0.0065 (4) Å | Q3 = −0.534 (4) Å | φ2 = 196 (4)°
C18/C19/C23–C26 Q = 0.4724 (18) Å | Θ = 52.7 (2) ° | φ2 = 266.8 (3)° Q = 0.454 (4) Å | Θ = 55.6 (5) ° | φ2 = 281.9 (7)°
Half-chair conformation Q2 = 0.3756 (18) Å | Q3 = 0.2865 (18) Å | φ2 = 266.8 (3)° Q2 = 0.375 (4) Å | Q3 = 0.256 (4) Å | φ2 = 281.9 (7)°
[Figure 1]
Figure 1
ORTEP view of polymorph (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
ORTEP view of polymorph (II). Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disorder is omitted for clarity.

3. Supra­molecular features

The crystal packing in both structures is stabilized by one O—H⋯O hydrogen bond (Figs. 3[link] and 4[link], Tables 2[link] and 3[link]) producing layers along (010) for polymorph (I) (PL358) and along (001) for polymorph (II) (SY20C174). The geometry of these inter­actions indicates that these are strong hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °) for PL358 (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 2.07 2.9021 (17) 169
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for SY20C174 (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 1.96 2.802 (4) 175
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
View of the hydrogen bond-network in polymorph (I).
[Figure 4]
Figure 4
View of the hydrogen-bond network in polymorph (II).

4. Morphology prediction

In both polymorphs, it was observed that the same type of hydrogen bonds plays a dominant role in the formation of hydrogen-bonded networks. However, the arrangements of mol­ecules in the crystal packing of polymorphs (I) and (II) are different. The different arrangements can also be seen in the external shape and size of the crystals. The theoretical crystal habits of polymorphs (I) and (II) were predicted based on the BFDH model with Mercury (Fig. 5[link]). The morphologies of Pivalone polymorphs (I) and (II) display significant differences in their main crystal dimension.

[Figure 5]
Figure 5
View of the crystal morphology of polymorph (I) (top) and (II) (bottom).

5. Synthesis and crystallization

Tixocortol pivalate (Fig. 6[link]) has been produced as follows (Bouley, 2013[Bouley, E. (2013). Patent EP 2853528.]): in a dry inerted flask, cesium thio­pivalate (620 g, 2.48 mol) and tetra­hydro­furan (1460 mL) are stirred at room temperature. A hydro­cortisone mesylate (995 g, 2.26 mol) solution in THF (4600 mL) is added in 1 h below 293 K. After 16 h of stirring, the reaction mixture is cooled below 283 K and water (12320 mL) is added. After addition, the reaction mixture is stirred for approximately 2 h. The precipitate is filtered and washed with water (10 × 820 mL). After drying under vacuum at 323 K for one night, the product is isolated as a white powder (yield 93%, purity by HPLC 98.5%).

[Figure 6]
Figure 6
Reaction scheme for the synthesis of tixocortol pivalate.

6. Powder X-ray diffraction (PXRD)

Analyses were performed at room temperature from 2θ = 3 to 50° with an increasing step size of 0.02° and a count time of 120 s. The X-ray powder diffraction patterns were registered in transmission mode unless mentioned otherwise. The samples (few milligrams) are introduced without being crushed in 1 mm diameter glass capillaries to avoid preferential orientation. The capillaries are sealed to avoid contact with air. The analysis is performed in transmission mode by using a focusing X-ray mirror with divergence slits and anti-scatter slits (aperture 0.5°), on an Empyrean diffractometer from PANalytical Company (PANalytical, 2011[PANalytical (2011). X'Pert Data Collector and X'Pert HighScore Plus. PANalytical BV, Almelo, The Netherlands.]) equipped with a copper anti­cathode tube (wavelength λ Kα1 = 1.54060 Å/Kα2 = 1.54443 Å) and with a PIXcel 1D detector with anti-scatter slits of 7.5 mm. The calibration of the analytical instrument is checked before each analytical batch according to quality systems.

Unit-cell parameters were obtained using indexing methods included in ITO (Visser, 1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]) or DICVOL (Boultif & Louër, 2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]). Le Bail (Le Bail, 1988[Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.]) refinement was performed by using JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) with the most plausible unit cell. The cell parameters found at room temperature were compared to those found from single crystal at different temperatures (Table 4[link]). The cell parameters at low temperature and at ambient temperature found from single crystal and from powder diffraction are similar, confirming that no phase change occurs with different temperatures. The simulated PXRD patterns were calculated (Palmer, 2015[Palmer, D. C. (2015). Z. Kristallogr. Cryst. Mater. 230, 9-10.]) from SCXRD with cell parameters obtained at room temperature (Fig. 7[link]).

Table 4
Cell parameters determined from SCXRD and PXRD at different temperatures

Compound PL358 PL358 PL358 SY20C174 SY20C174 SY20C174
XRD measurement SCXRD SCXRD PXRD SCXRD SCXRD PXRD
Temperature 110 K 295 K 295 K 100 K 298 K 295 K
Space group P212121 P212121 P212121 P212121 P212121 P212121
a 6.4201 (2) 6.467 (5) 6.4775 (2) 6.0146 (2) 6.157 (9) 6.1573 (2)
b 17.6239 (7) 17.887 (12) 17.9583 (7) 19.2817 (7) 19.46 (3) 19.4684 (7)
c 20.8997 (8) 20.897 (15) 20.9335 (7) 20.9887 (7) 20.92 (3) 20.8859 (9)
Volume 2364.7 (1) 2417 (5) 2435.1 (1) 2434.1 (1) 2508 (11) 2503.7 (2)
[Figure 7]
Figure 7
PXRD patterns of polymorphs (I) and (II) and their simulated patterns from the SCXRD study at room temperature.

7. Structure solution and refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The dimethyl-sulfanyl-propanone group was found to be disordered over two positions 77 (1)%/23 (1)% in polymotph (II). The SAME (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) restraint was employed for the minor disordered part to maintain a reasonable model. All non-hydrogen atoms were refined anisotropically, except the minor disorder component. Hydrogen-atom positions were calculated geometrically and refined using the riding model. All H atoms, on carbon atoms, were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic), 0.99 Å (methyl­ene) or 1 Å (methine) with Uiso(H) = 1.2Ueq(C). H atoms on oxygen atoms were located in difference-Fourier maps. Their positional parameters were refined as an idealized OH group (AFIX 147), (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) with Uiso(H) = 1.5Ueq(O). The TWIN/BASF instruction was used to refine the Flack parameter.

Table 5
Experimental details

  PL358 (I) SY20C174 (II)
Crystal data
Chemical formula C26H38O5S C26H38O5S
Mr 462.62 462.62
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 110 100
a, b, c (Å) 6.4201 (2), 17.6239 (7), 20.8997 (8) 6.0146 (2), 19.2817 (7), 20.9887 (7)
V3) 2364.74 (15) 2434.10 (14)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.17 1.46
Crystal size (mm) 0.46 × 0.25 × 0.24 0.18 × 0.06 × 0.05
 
Data collection
Diffractometer Nonius Kappa APEXII Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.912, 0.958 0.707, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 74424, 5424, 5180 30900, 4303, 3803
Rint 0.034 0.102
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.04 0.055, 0.130, 1.07
No. of reflections 5424 4303
No. of parameters 296 329
No. of restraints 0 16
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.23 0.26, −0.39
Absolute structure Flack x determined using 2176 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x obtained from refinement
Absolute structure parameter 0.027 (13) 0.11 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) top
Crystal data top
C26H38O5SDx = 1.299 Mg m3
Mr = 462.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9539 reflections
a = 6.4201 (2) Åθ = 2.3–27.4°
b = 17.6239 (7) ŵ = 0.17 mm1
c = 20.8997 (8) ÅT = 110 K
V = 2364.74 (15) Å3Prism, clear light colourless
Z = 40.46 × 0.25 × 0.24 mm
F(000) = 1000
Data collection top
Nonius Kappa APEXII
diffractometer
5424 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1805180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 512 x 512 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scans'h = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.912, Tmax = 0.958l = 2727
74424 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6195P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
5424 reflectionsΔρmin = 0.22 e Å3
296 parametersAbsolute structure: Flack x determined using 2176 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.027 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57981 (8)0.59132 (2)0.30170 (2)0.02260 (11)
O30.6410 (2)0.35175 (7)0.23101 (6)0.0154 (2)
H30.6710370.3605700.1926090.023*
O50.2936 (2)0.10124 (7)0.40054 (6)0.0186 (3)
O20.9568 (2)0.49062 (7)0.30543 (6)0.0219 (3)
O40.6656 (3)0.25785 (7)0.46752 (6)0.0243 (3)
H40.5761700.2769120.4920650.036*
O10.4852 (3)0.52261 (8)0.40864 (7)0.0352 (4)
C100.8689 (2)0.24334 (9)0.30097 (7)0.0105 (3)
H100.7572270.2298730.2696140.013*
C160.6649 (2)0.16686 (9)0.37858 (7)0.0101 (3)
H160.5720730.1539730.3417220.012*
C240.4122 (3)0.04919 (9)0.41447 (8)0.0133 (3)
C220.7966 (3)0.09961 (10)0.48265 (8)0.0139 (3)
H22A0.9391360.1103050.4684790.021*
H22B0.7934740.0509040.5052500.021*
H22C0.7496900.1399900.5114900.021*
C70.8049 (3)0.45608 (10)0.28770 (8)0.0152 (3)
C180.6505 (2)0.09589 (9)0.42376 (7)0.0101 (3)
C170.8818 (2)0.17768 (9)0.34806 (7)0.0108 (3)
H170.9867480.1892890.3820190.013*
C230.6075 (3)0.03662 (9)0.37971 (8)0.0133 (3)
H230.6571560.0756990.3523670.016*
C260.4233 (3)0.08633 (9)0.44563 (7)0.0116 (3)
H26A0.3953720.1223000.4809950.014*
H26B0.3297920.0997030.4096910.014*
C210.9454 (3)0.10574 (9)0.31190 (8)0.0140 (3)
H21A0.8557840.1002460.2736270.017*
H21B1.0910040.1112870.2970530.017*
C200.9280 (3)0.03384 (9)0.35248 (8)0.0138 (3)
H20A0.9501630.0110750.3248670.017*
H20B1.0386710.0341770.3854580.017*
C90.8031 (3)0.31896 (9)0.33168 (7)0.0110 (3)
C111.0623 (3)0.26354 (9)0.26139 (8)0.0142 (3)
H11A1.0763840.2292980.2240880.017*
H11B1.1901470.2601050.2877160.017*
C10.4236 (3)0.65833 (11)0.41260 (8)0.0219 (4)
C190.7196 (2)0.02742 (9)0.38462 (8)0.0112 (3)
C150.5701 (3)0.24038 (9)0.40657 (8)0.0142 (3)
H150.4188930.2306530.4145220.017*
C50.4924 (3)0.58328 (10)0.38238 (9)0.0184 (3)
C140.5861 (3)0.30893 (9)0.36064 (8)0.0134 (3)
H14A0.4839710.3023540.3255840.016*
H14B0.5483910.3556460.3842640.016*
C250.3715 (3)0.00567 (9)0.46830 (8)0.0138 (3)
H25A0.4588720.0076010.5057050.017*
H25B0.2235230.0028160.4813690.017*
C80.8139 (3)0.37093 (9)0.27071 (8)0.0126 (3)
C130.9608 (3)0.34721 (9)0.38172 (8)0.0155 (3)
H13A0.9756650.3091410.4155900.023*
H13B0.9112320.3949650.4002990.023*
H13C1.0960900.3555340.3611450.023*
C121.0227 (3)0.34651 (10)0.23951 (8)0.0155 (3)
H12A1.1373740.3799800.2538520.019*
H12B1.0128230.3492570.1922950.019*
C60.5917 (3)0.49264 (10)0.28061 (9)0.0205 (4)
H6A0.4915540.4645000.3077010.025*
H6B0.5460710.4870330.2356190.025*
C40.5645 (4)0.72401 (12)0.39145 (14)0.0431 (6)
H4A0.7085340.7132750.4040170.065*
H4B0.5180210.7710700.4119560.065*
H4C0.5567930.7296600.3448590.065*
C30.2026 (4)0.67460 (16)0.38883 (13)0.0430 (6)
H3A0.2038390.6799010.3421580.065*
H3B0.1517970.7217340.4082140.065*
H3C0.1106500.6325940.4009150.065*
C20.4239 (6)0.64969 (16)0.48501 (10)0.0564 (9)
H2A0.3329830.6073920.4971550.085*
H2B0.3727560.6965840.5047130.085*
H2C0.5659770.6395110.4998140.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0352 (3)0.01312 (19)0.0195 (2)0.00396 (19)0.01024 (19)0.00171 (16)
O30.0179 (6)0.0176 (6)0.0106 (5)0.0006 (5)0.0030 (5)0.0007 (4)
O50.0195 (6)0.0148 (6)0.0216 (6)0.0049 (5)0.0009 (5)0.0018 (5)
O20.0258 (7)0.0141 (6)0.0257 (7)0.0061 (5)0.0009 (6)0.0018 (5)
O40.0479 (9)0.0151 (6)0.0100 (6)0.0015 (6)0.0044 (6)0.0025 (5)
O10.0617 (11)0.0218 (7)0.0221 (7)0.0018 (7)0.0063 (7)0.0068 (6)
C100.0096 (7)0.0121 (7)0.0099 (7)0.0001 (6)0.0002 (6)0.0007 (6)
C160.0111 (7)0.0097 (7)0.0093 (6)0.0006 (6)0.0011 (6)0.0002 (6)
C240.0172 (8)0.0099 (7)0.0128 (7)0.0012 (6)0.0020 (7)0.0024 (6)
C220.0157 (8)0.0138 (8)0.0122 (7)0.0002 (6)0.0027 (6)0.0015 (6)
C70.0225 (9)0.0147 (8)0.0082 (7)0.0000 (7)0.0026 (7)0.0028 (6)
C180.0114 (7)0.0095 (7)0.0094 (7)0.0004 (6)0.0006 (5)0.0010 (6)
C170.0107 (7)0.0106 (7)0.0111 (7)0.0006 (6)0.0007 (6)0.0006 (6)
C230.0156 (8)0.0113 (7)0.0132 (7)0.0012 (6)0.0003 (6)0.0023 (6)
C260.0128 (7)0.0108 (7)0.0111 (7)0.0001 (6)0.0012 (6)0.0009 (6)
C210.0142 (7)0.0125 (7)0.0154 (7)0.0012 (6)0.0045 (6)0.0003 (6)
C200.0127 (7)0.0111 (7)0.0177 (8)0.0018 (6)0.0032 (7)0.0018 (6)
C90.0125 (7)0.0104 (7)0.0102 (7)0.0005 (6)0.0004 (6)0.0007 (6)
C110.0128 (7)0.0149 (7)0.0149 (7)0.0006 (7)0.0030 (6)0.0006 (6)
C10.0255 (9)0.0243 (9)0.0158 (8)0.0083 (8)0.0004 (8)0.0027 (7)
C190.0124 (7)0.0119 (7)0.0092 (7)0.0028 (6)0.0014 (6)0.0004 (6)
C150.0167 (8)0.0116 (7)0.0142 (7)0.0013 (6)0.0045 (7)0.0001 (6)
C50.0209 (8)0.0195 (8)0.0146 (7)0.0021 (7)0.0015 (7)0.0016 (7)
C140.0141 (7)0.0111 (7)0.0151 (7)0.0019 (6)0.0024 (6)0.0010 (6)
C250.0154 (8)0.0140 (8)0.0119 (7)0.0013 (6)0.0028 (6)0.0000 (6)
C80.0140 (8)0.0126 (7)0.0110 (7)0.0012 (6)0.0016 (6)0.0007 (6)
C130.0195 (8)0.0138 (7)0.0133 (7)0.0007 (7)0.0046 (7)0.0013 (6)
C120.0170 (8)0.0150 (8)0.0143 (8)0.0013 (7)0.0035 (6)0.0012 (6)
C60.0276 (9)0.0137 (8)0.0203 (8)0.0030 (7)0.0007 (8)0.0039 (6)
C40.0458 (14)0.0216 (10)0.0621 (16)0.0019 (10)0.0085 (14)0.0157 (10)
C30.0298 (12)0.0568 (16)0.0424 (13)0.0196 (11)0.0046 (11)0.0140 (12)
C20.105 (3)0.0496 (15)0.0150 (9)0.0370 (18)0.0069 (13)0.0052 (9)
Geometric parameters (Å, º) top
S1—C51.7827 (18)C20—H20A0.9900
S1—C61.7957 (18)C20—H20B0.9900
O3—H30.8400C20—C191.501 (2)
O3—C81.426 (2)C9—C141.529 (2)
O5—C241.227 (2)C9—C81.571 (2)
O2—C71.208 (2)C9—C131.538 (2)
O4—H40.8400C11—H11A0.9900
O4—C151.447 (2)C11—H11B0.9900
O1—C51.203 (2)C11—C121.553 (2)
C10—H101.0000C1—C51.531 (3)
C10—C171.521 (2)C1—C41.534 (3)
C10—C91.538 (2)C1—C31.531 (3)
C10—C111.534 (2)C1—C21.521 (3)
C16—H161.0000C15—H151.0000
C16—C181.570 (2)C15—C141.546 (2)
C16—C171.543 (2)C14—H14A0.9900
C16—C151.546 (2)C14—H14B0.9900
C24—C231.466 (2)C25—H25A0.9900
C24—C251.506 (2)C25—H25B0.9900
C22—H22A0.9800C8—C121.552 (2)
C22—H22B0.9800C13—H13A0.9800
C22—H22C0.9800C13—H13B0.9800
C22—C181.549 (2)C13—H13C0.9800
C7—C81.543 (2)C12—H12A0.9900
C7—C61.520 (3)C12—H12B0.9900
C18—C261.538 (2)C6—H6A0.9900
C18—C191.524 (2)C6—H6B0.9900
C17—H171.0000C4—H4A0.9800
C17—C211.531 (2)C4—H4B0.9800
C23—H230.9500C4—H4C0.9800
C23—C191.342 (2)C3—H3A0.9800
C26—H26A0.9900C3—H3B0.9800
C26—H26B0.9900C3—H3C0.9800
C26—C251.535 (2)C2—H2A0.9800
C21—H21A0.9900C2—H2B0.9800
C21—H21B0.9900C2—H2C0.9800
C21—C201.529 (2)
C5—S1—C699.71 (9)C5—C1—C4111.30 (16)
C8—O3—H3109.5C3—C1—C5107.18 (17)
C15—O4—H4109.5C3—C1—C4108.15 (19)
C17—C10—H10106.4C2—C1—C5108.89 (16)
C17—C10—C9113.83 (13)C2—C1—C4111.2 (2)
C17—C10—C11118.79 (13)C2—C1—C3110.0 (2)
C9—C10—H10106.4C23—C19—C18123.42 (15)
C11—C10—H10106.4C23—C19—C20120.46 (15)
C11—C10—C9104.26 (13)C20—C19—C18116.09 (13)
C18—C16—H16104.3O4—C15—C16110.17 (13)
C17—C16—H16104.3O4—C15—H15107.5
C17—C16—C18113.58 (13)O4—C15—C14110.62 (13)
C17—C16—C15114.07 (13)C16—C15—H15107.5
C15—C16—H16104.3C16—C15—C14113.19 (13)
C15—C16—C18114.64 (12)C14—C15—H15107.5
O5—C24—C23121.75 (15)O1—C5—S1120.96 (15)
O5—C24—C25123.32 (16)O1—C5—C1124.65 (17)
C23—C24—C25114.93 (14)C1—C5—S1114.36 (13)
H22A—C22—H22B109.5C9—C14—C15113.34 (13)
H22A—C22—H22C109.5C9—C14—H14A108.9
H22B—C22—H22C109.5C9—C14—H14B108.9
C18—C22—H22A109.5C15—C14—H14A108.9
C18—C22—H22B109.5C15—C14—H14B108.9
C18—C22—H22C109.5H14A—C14—H14B107.7
O2—C7—C8122.04 (17)C24—C25—C26109.05 (13)
O2—C7—C6122.91 (16)C24—C25—H25A109.9
C6—C7—C8115.05 (15)C24—C25—H25B109.9
C22—C18—C16114.12 (13)C26—C25—H25A109.9
C26—C18—C16108.77 (12)C26—C25—H25B109.9
C26—C18—C22110.05 (12)H25A—C25—H25B108.3
C19—C18—C16106.91 (12)O3—C8—C7109.59 (14)
C19—C18—C22106.50 (13)O3—C8—C9107.43 (13)
C19—C18—C26110.42 (13)O3—C8—C12111.23 (13)
C10—C17—C16108.20 (12)C7—C8—C9112.25 (13)
C10—C17—H17109.9C7—C8—C12113.50 (14)
C10—C17—C21108.97 (13)C12—C8—C9102.54 (13)
C16—C17—H17109.9C9—C13—H13A109.5
C21—C17—C16110.02 (13)C9—C13—H13B109.5
C21—C17—H17109.9C9—C13—H13C109.5
C24—C23—H23118.4H13A—C13—H13B109.5
C19—C23—C24123.21 (15)H13A—C13—H13C109.5
C19—C23—H23118.4H13B—C13—H13C109.5
C18—C26—H26A108.9C11—C12—H12A110.5
C18—C26—H26B108.9C11—C12—H12B110.5
H26A—C26—H26B107.7C8—C12—C11106.20 (13)
C25—C26—C18113.48 (13)C8—C12—H12A110.5
C25—C26—H26A108.9C8—C12—H12B110.5
C25—C26—H26B108.9H12A—C12—H12B108.7
C17—C21—H21A109.0S1—C6—H6A108.5
C17—C21—H21B109.0S1—C6—H6B108.5
H21A—C21—H21B107.8C7—C6—S1115.15 (13)
C20—C21—C17113.14 (13)C7—C6—H6A108.5
C20—C21—H21A109.0C7—C6—H6B108.5
C20—C21—H21B109.0H6A—C6—H6B107.5
C21—C20—H20A109.2C1—C4—H4A109.5
C21—C20—H20B109.2C1—C4—H4B109.5
H20A—C20—H20B107.9C1—C4—H4C109.5
C19—C20—C21112.07 (14)H4A—C4—H4B109.5
C19—C20—H20A109.2H4A—C4—H4C109.5
C19—C20—H20B109.2H4B—C4—H4C109.5
C10—C9—C898.89 (12)C1—C3—H3A109.5
C10—C9—C13112.53 (13)C1—C3—H3B109.5
C14—C9—C10108.37 (13)C1—C3—H3C109.5
C14—C9—C8115.37 (13)H3A—C3—H3B109.5
C14—C9—C13111.59 (13)H3A—C3—H3C109.5
C13—C9—C8109.50 (13)H3B—C3—H3C109.5
C10—C11—H11A110.9C1—C2—H2A109.5
C10—C11—H11B110.9C1—C2—H2B109.5
C10—C11—C12104.17 (13)C1—C2—H2C109.5
H11A—C11—H11B108.9H2A—C2—H2B109.5
C12—C11—H11A110.9H2A—C2—H2C109.5
C12—C11—H11B110.9H2B—C2—H2C109.5
O3—C8—C12—C1188.38 (16)C26—C18—C19—C2310.2 (2)
O5—C24—C23—C19166.22 (16)C26—C18—C19—C20171.80 (13)
O5—C24—C25—C26136.63 (16)C21—C20—C19—C1852.86 (18)
O2—C7—C8—O3159.55 (15)C21—C20—C19—C23129.03 (16)
O2—C7—C8—C981.2 (2)C9—C10—C17—C1659.62 (17)
O2—C7—C8—C1234.5 (2)C9—C10—C17—C21179.23 (13)
O2—C7—C6—S10.9 (2)C9—C10—C11—C1231.87 (16)
O4—C15—C14—C976.44 (17)C9—C8—C12—C1126.18 (16)
C10—C17—C21—C20170.47 (13)C11—C10—C17—C16177.02 (13)
C10—C9—C14—C1552.98 (17)C11—C10—C17—C2157.42 (18)
C10—C9—C8—O372.69 (15)C11—C10—C9—C14168.13 (13)
C10—C9—C8—C7166.78 (14)C11—C10—C9—C847.53 (15)
C10—C9—C8—C1244.62 (14)C11—C10—C9—C1367.98 (16)
C10—C11—C12—C82.91 (17)C19—C18—C26—C2541.50 (17)
C16—C18—C26—C25158.52 (13)C15—C16—C18—C2271.13 (17)
C16—C18—C19—C23128.32 (16)C15—C16—C18—C2652.16 (17)
C16—C18—C19—C2053.64 (17)C15—C16—C18—C19171.40 (13)
C16—C17—C21—C2051.99 (18)C15—C16—C17—C1051.38 (17)
C16—C15—C14—C947.76 (19)C15—C16—C17—C21170.32 (13)
C24—C23—C19—C183.6 (3)C5—S1—C6—C795.53 (14)
C24—C23—C19—C20174.33 (15)C14—C9—C8—O342.61 (18)
C22—C18—C26—C2575.79 (17)C14—C9—C8—C777.93 (18)
C22—C18—C19—C23109.31 (17)C14—C9—C8—C12159.91 (14)
C22—C18—C19—C2068.74 (17)C25—C24—C23—C1914.5 (2)
C7—C8—C12—C11147.50 (14)C8—C7—C6—S1178.95 (12)
C18—C16—C17—C10174.74 (12)C8—C9—C14—C15162.72 (13)
C18—C16—C17—C2155.80 (16)C13—C9—C14—C1571.47 (17)
C18—C16—C15—O455.85 (18)C13—C9—C8—O3169.48 (13)
C18—C16—C15—C14179.71 (13)C13—C9—C8—C748.95 (18)
C18—C26—C25—C2459.02 (17)C13—C9—C8—C1273.22 (15)
C17—C10—C9—C1460.92 (16)C6—S1—C5—O19.35 (19)
C17—C10—C9—C8178.48 (13)C6—S1—C5—C1168.80 (14)
C17—C10—C9—C1362.97 (17)C6—C7—C8—O320.62 (19)
C17—C10—C11—C12159.84 (14)C6—C7—C8—C998.66 (17)
C17—C16—C18—C2262.48 (17)C6—C7—C8—C12145.63 (15)
C17—C16—C18—C26174.24 (12)C4—C1—C5—S138.1 (2)
C17—C16—C18—C1955.00 (16)C4—C1—C5—O1143.8 (2)
C17—C16—C15—O477.53 (16)C3—C1—C5—S179.96 (19)
C17—C16—C15—C1446.91 (19)C3—C1—C5—O198.1 (2)
C17—C21—C20—C1950.36 (19)C2—C1—C5—S1161.1 (2)
C23—C24—C25—C2644.08 (19)C2—C1—C5—O120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.842.072.9021 (17)169
Symmetry code: (i) x+1, y+1/2, z+1/2.
(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) top
Crystal data top
C26H38O5SDx = 1.262 Mg m3
Mr = 462.62Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 6178 reflections
a = 6.0146 (2) Åθ = 3.1–66.5°
b = 19.2817 (7) ŵ = 1.46 mm1
c = 20.9887 (7) ÅT = 100 K
V = 2434.10 (14) Å3Plate, clear light colourless
Z = 40.18 × 0.06 × 0.05 mm
F(000) = 1000
Data collection top
Bruker D8 Venture
diffractometer
4303 independent reflections
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu3803 reflections with I > 2σ(I)
QUAZAR MX multilayer optics monochromatorRint = 0.102
Detector resolution: 1024 x 1024 pixels mm-1θmax = 66.7°, θmin = 3.1°
φ and ω scans'h = 76
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.707, Tmax = 0.862l = 2425
30900 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.052P)2 + 1.3292P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.26 e Å3
4303 reflectionsΔρmin = 0.39 e Å3
329 parametersAbsolute structure: Flack x obtained from refinement
16 restraintsAbsolute structure parameter: 0.11 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.5899 (6)0.4360 (2)0.72379 (16)0.0542 (10)
O30.2156 (5)0.50617 (16)0.61339 (15)0.0390 (7)
H30.2093930.5456610.6301890.059*
O40.4523 (5)0.28363 (14)0.49153 (14)0.0367 (7)
H40.3690100.2530120.5070490.055*
O50.2955 (7)0.36601 (17)0.17678 (14)0.0487 (9)
C190.5824 (7)0.4099 (2)0.3207 (2)0.0332 (9)
C230.5075 (8)0.4126 (2)0.2605 (2)0.0384 (10)
H230.5500480.4510880.2351260.046*
C100.5508 (7)0.4744 (2)0.5179 (2)0.0324 (9)
H100.4152910.5011220.5053110.039*
C260.2974 (7)0.3182 (2)0.34159 (18)0.0312 (9)
H26A0.2700140.2758240.3669900.037*
H26B0.1675970.3492250.3471840.037*
C210.7010 (7)0.4915 (2)0.4084 (2)0.0346 (9)
H21A0.8325450.5171670.4241240.042*
H21B0.5784970.5252290.4027950.042*
C180.5052 (7)0.3548 (2)0.36772 (19)0.0288 (9)
C240.3664 (8)0.3607 (2)0.2319 (2)0.0406 (11)
C150.3269 (7)0.34602 (19)0.48133 (19)0.0296 (9)
H150.1801840.3321250.4629220.036*
C80.4270 (8)0.4760 (2)0.6258 (2)0.0386 (10)
C170.6327 (7)0.4380 (2)0.4582 (2)0.0292 (9)
H170.7630810.4080450.4689500.035*
C90.4772 (7)0.4237 (2)0.5707 (2)0.0322 (10)
C220.6971 (8)0.3019 (2)0.3744 (2)0.0345 (9)
H22A0.7517110.2891820.3319570.052*
H22B0.6429420.2603570.3963060.052*
H22C0.8183500.3226940.3990480.052*
C110.7052 (8)0.5257 (2)0.5512 (2)0.0387 (10)
H11A0.6985290.5717220.5304010.046*
H11B0.8607390.5088870.5503300.046*
C200.7564 (7)0.4589 (2)0.3438 (2)0.0378 (11)
H20A0.7757160.4963210.3119790.045*
H20B0.8994440.4337820.3473010.045*
C120.6174 (8)0.5295 (3)0.6202 (2)0.0448 (12)
H12A0.5614690.5767450.6295490.054*
H12B0.7376540.5184460.6507240.054*
C60.2076 (9)0.4088 (2)0.7138 (2)0.0441 (11)
H6AA0.1969180.3611380.6965280.053*0.770 (4)
H6AB0.0822260.4359780.6961820.053*0.770 (4)
H6BC0.1205080.3940230.6761510.053*0.230 (4)
H6BD0.1194040.4439180.7371530.053*0.230 (4)
C130.6669 (8)0.3752 (2)0.5918 (2)0.0381 (10)
H13A0.7211080.3489360.5549930.057*
H13B0.6115570.3430210.6242650.057*
H13C0.7886400.4028790.6096130.057*
C250.3151 (8)0.2983 (2)0.27161 (19)0.0373 (10)
H25A0.4339830.2632610.2661400.045*
H25B0.1731900.2774490.2572990.045*
C140.2796 (7)0.3837 (2)0.54478 (19)0.0303 (9)
H14A0.1542990.4162470.5384030.036*
H14B0.2327690.3490210.5768840.036*
C70.4242 (9)0.4410 (2)0.6919 (2)0.0421 (11)
C160.4439 (7)0.39282 (19)0.43159 (19)0.0270 (9)
H160.3269010.4269580.4188490.032*
S10.1815 (3)0.40537 (8)0.79935 (7)0.0450 (5)0.770 (4)
O10.3483 (7)0.2850 (2)0.76836 (19)0.0451 (11)0.770 (4)
C10.3521 (12)0.3028 (4)0.8813 (3)0.0361 (18)0.770 (4)
C20.6090 (12)0.3076 (8)0.8878 (8)0.039 (3)0.770 (4)
H2A0.6528360.2944480.9311110.058*0.770 (4)
H2B0.6571170.3552740.8792490.058*0.770 (4)
H2C0.6790740.2761430.8571220.058*0.770 (4)
C40.272 (2)0.2291 (5)0.8928 (5)0.058 (3)0.770 (4)
H4A0.3390000.1981350.8611010.087*0.770 (4)
H4B0.1101170.2274010.8891870.087*0.770 (4)
H4C0.3168900.2142510.9356280.087*0.770 (4)
C30.2438 (11)0.3521 (3)0.9302 (3)0.0404 (15)0.770 (4)
H3A0.2788480.3362610.9734560.061*0.770 (4)
H3B0.0822570.3521660.9241970.061*0.770 (4)
H3C0.3015850.3991540.9241320.061*0.770 (4)
C50.3022 (10)0.3230 (3)0.8119 (3)0.0332 (12)0.770 (4)
S1A0.2553 (10)0.3349 (3)0.7649 (3)0.055 (2)*0.230 (4)
O1A0.297 (2)0.4314 (7)0.8496 (6)0.042 (4)*0.230 (4)
C1A0.355 (4)0.3187 (10)0.8972 (9)0.023 (7)*0.230 (4)
C2A0.615 (5)0.309 (3)0.899 (3)0.06 (2)*0.230 (4)
H2AA0.6839930.3512390.9157260.089*0.230 (4)
H2AB0.6694270.3004620.8555570.089*0.230 (4)
H2AC0.6522590.2696230.9261750.089*0.230 (4)
C3A0.283 (5)0.3463 (15)0.9609 (11)0.056 (8)*0.230 (4)
H3AA0.3404630.3162720.9947710.084*0.230 (4)
H3AB0.1201950.3472800.9628660.084*0.230 (4)
H3AC0.3410460.3933920.9665870.084*0.230 (4)
C4A0.260 (6)0.2455 (13)0.8820 (15)0.038 (8)*0.230 (4)
H4AA0.3305740.2274620.8432960.058*0.230 (4)
H4AB0.0993490.2487960.8755310.058*0.230 (4)
H4AC0.2912410.2141940.9177140.058*0.230 (4)
C5A0.310 (3)0.3695 (9)0.8412 (8)0.041 (5)*0.230 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.057 (2)0.066 (2)0.0398 (19)0.0032 (19)0.0148 (17)0.0134 (17)
O30.0435 (18)0.0303 (16)0.0434 (18)0.0078 (14)0.0008 (14)0.0107 (13)
O40.056 (2)0.0208 (14)0.0328 (16)0.0010 (14)0.0056 (15)0.0014 (12)
O50.077 (2)0.0398 (18)0.0297 (17)0.0135 (18)0.0042 (17)0.0032 (13)
C190.034 (2)0.031 (2)0.035 (2)0.0098 (18)0.0098 (18)0.0075 (18)
C230.049 (3)0.030 (2)0.036 (2)0.009 (2)0.011 (2)0.008 (2)
C100.029 (2)0.025 (2)0.043 (2)0.0000 (17)0.0052 (19)0.0017 (19)
C260.033 (2)0.030 (2)0.031 (2)0.0031 (18)0.0027 (19)0.0025 (17)
C210.031 (2)0.026 (2)0.047 (3)0.0033 (18)0.000 (2)0.0037 (18)
C180.032 (2)0.026 (2)0.029 (2)0.0006 (17)0.0017 (17)0.0055 (17)
C240.053 (3)0.038 (2)0.031 (2)0.017 (2)0.007 (2)0.0035 (19)
C150.036 (2)0.022 (2)0.030 (2)0.0032 (18)0.0003 (18)0.0013 (16)
C80.040 (2)0.032 (2)0.044 (3)0.005 (2)0.005 (2)0.009 (2)
C170.026 (2)0.0237 (19)0.038 (2)0.0022 (16)0.0028 (17)0.0020 (17)
C90.033 (2)0.027 (2)0.037 (2)0.0015 (17)0.0020 (18)0.0033 (18)
C220.042 (2)0.028 (2)0.033 (2)0.003 (2)0.004 (2)0.0018 (17)
C110.036 (2)0.030 (2)0.050 (3)0.0019 (19)0.007 (2)0.006 (2)
C200.036 (2)0.031 (2)0.047 (3)0.0004 (18)0.008 (2)0.010 (2)
C120.046 (3)0.037 (2)0.051 (3)0.001 (2)0.007 (2)0.015 (2)
C60.058 (3)0.041 (3)0.033 (2)0.012 (2)0.002 (2)0.000 (2)
C130.043 (3)0.034 (2)0.037 (2)0.005 (2)0.006 (2)0.0056 (19)
C250.044 (2)0.036 (2)0.032 (2)0.004 (2)0.002 (2)0.0002 (18)
C140.032 (2)0.025 (2)0.034 (2)0.0018 (17)0.0041 (17)0.0008 (17)
C70.052 (3)0.038 (2)0.037 (3)0.004 (2)0.004 (2)0.016 (2)
C160.026 (2)0.0223 (19)0.033 (2)0.0016 (16)0.0008 (17)0.0049 (16)
S10.0628 (10)0.0413 (9)0.0309 (8)0.0206 (8)0.0025 (7)0.0008 (6)
O10.052 (3)0.042 (2)0.042 (2)0.007 (2)0.015 (2)0.013 (2)
C10.041 (4)0.031 (4)0.036 (4)0.008 (3)0.001 (3)0.008 (3)
C20.033 (5)0.044 (6)0.039 (5)0.005 (3)0.007 (3)0.007 (4)
C40.071 (6)0.037 (4)0.066 (6)0.001 (4)0.013 (5)0.012 (4)
C30.041 (4)0.043 (4)0.037 (4)0.006 (3)0.001 (3)0.001 (3)
C50.032 (3)0.030 (3)0.037 (3)0.001 (2)0.000 (2)0.004 (3)
Geometric parameters (Å, º) top
O2—C71.204 (6)C6—H6AA0.9900
O3—H30.8400C6—H6AB0.9900
O3—C81.422 (6)C6—H6BC0.9900
O4—H40.8400C6—H6BD0.9900
O4—C151.436 (5)C6—C71.514 (7)
O5—C241.238 (5)C6—S11.804 (4)
C19—C231.341 (6)C6—S1A1.807 (5)
C19—C181.523 (6)C13—H13A0.9800
C19—C201.491 (6)C13—H13B0.9800
C23—H230.9500C13—H13C0.9800
C23—C241.443 (7)C25—H25A0.9900
C10—H101.0000C25—H25B0.9900
C10—C171.519 (6)C14—H14A0.9900
C10—C91.542 (6)C14—H14B0.9900
C10—C111.525 (6)C16—H161.0000
C26—H26A0.9900S1—C51.767 (6)
C26—H26B0.9900O1—C51.203 (6)
C26—C181.536 (6)C1—C21.554 (9)
C26—C251.522 (5)C1—C41.519 (11)
C21—H21A0.9900C1—C31.543 (9)
C21—H21B0.9900C1—C51.538 (9)
C21—C171.524 (6)C2—H2A0.9800
C21—C201.531 (6)C2—H2B0.9800
C18—C221.547 (6)C2—H2C0.9800
C18—C161.572 (6)C4—H4A0.9800
C24—C251.495 (6)C4—H4B0.9800
C15—H151.0000C4—H4C0.9800
C15—C141.543 (6)C3—H3A0.9800
C15—C161.549 (5)C3—H3B0.9800
C8—C91.565 (6)C3—H3C0.9800
C8—C121.547 (7)S1A—C5A1.767 (16)
C8—C71.543 (7)O1A—C5A1.209 (17)
C17—H171.0000C1A—C2A1.57 (2)
C17—C161.536 (6)C1A—C3A1.50 (2)
C9—C131.540 (6)C1A—C4A1.55 (2)
C9—C141.518 (6)C1A—C5A1.553 (19)
C22—H22A0.9800C2A—H2AA0.9800
C22—H22B0.9800C2A—H2AB0.9800
C22—H22C0.9800C2A—H2AC0.9800
C11—H11A0.9900C3A—H3AA0.9800
C11—H11B0.9900C3A—H3AB0.9800
C11—C121.544 (7)C3A—H3AC0.9800
C20—H20A0.9900C4A—H4AA0.9800
C20—H20B0.9900C4A—H4AB0.9800
C12—H12A0.9900C4A—H4AC0.9800
C12—H12B0.9900
C8—O3—H3109.5C7—C6—S1113.1 (4)
C15—O4—H4109.5C7—C6—S1A111.5 (4)
C23—C19—C18122.2 (4)S1—C6—H6AA109.0
C23—C19—C20121.2 (4)S1—C6—H6AB109.0
C20—C19—C18116.4 (4)S1A—C6—H6BC109.3
C19—C23—H23117.9S1A—C6—H6BD109.3
C19—C23—C24124.3 (4)C9—C13—H13A109.5
C24—C23—H23117.9C9—C13—H13B109.5
C17—C10—H10106.5C9—C13—H13C109.5
C17—C10—C9113.1 (3)H13A—C13—H13B109.5
C17—C10—C11118.6 (4)H13A—C13—H13C109.5
C9—C10—H10106.5H13B—C13—H13C109.5
C11—C10—H10106.5C26—C25—H25A109.6
C11—C10—C9104.9 (4)C26—C25—H25B109.6
H26A—C26—H26B107.7C24—C25—C26110.4 (4)
C18—C26—H26A108.8C24—C25—H25A109.6
C18—C26—H26B108.8C24—C25—H25B109.6
C25—C26—H26A108.8H25A—C25—H25B108.1
C25—C26—H26B108.8C15—C14—H14A108.8
C25—C26—C18113.8 (4)C15—C14—H14B108.8
H21A—C21—H21B107.8C9—C14—C15113.8 (3)
C17—C21—H21A109.0C9—C14—H14A108.8
C17—C21—H21B109.0C9—C14—H14B108.8
C17—C21—C20112.8 (3)H14A—C14—H14B107.7
C20—C21—H21A109.0O2—C7—C8121.7 (5)
C20—C21—H21B109.0O2—C7—C6120.7 (5)
C19—C18—C26109.7 (3)C6—C7—C8117.5 (4)
C19—C18—C22106.9 (3)C18—C16—H16104.1
C19—C18—C16107.4 (3)C15—C16—C18114.2 (3)
C26—C18—C22109.7 (3)C15—C16—H16104.1
C26—C18—C16109.1 (3)C17—C16—C18113.6 (3)
C22—C18—C16113.9 (3)C17—C16—C15114.9 (3)
O5—C24—C23122.3 (4)C17—C16—H16104.1
O5—C24—C25121.1 (5)C5—S1—C698.4 (2)
C23—C24—C25116.6 (4)C4—C1—C2110.8 (8)
O4—C15—H15107.3C4—C1—C3109.7 (6)
O4—C15—C14111.2 (3)C4—C1—C5109.0 (7)
O4—C15—C16110.5 (3)C3—C1—C2109.0 (9)
C14—C15—H15107.3C5—C1—C2105.2 (7)
C14—C15—C16113.0 (3)C5—C1—C3113.1 (5)
C16—C15—H15107.3C1—C2—H2A109.5
O3—C8—C9107.5 (3)C1—C2—H2B109.5
O3—C8—C12112.0 (4)C1—C2—H2C109.5
O3—C8—C7109.5 (4)H2A—C2—H2B109.5
C12—C8—C9103.3 (4)H2A—C2—H2C109.5
C7—C8—C9112.7 (4)H2B—C2—H2C109.5
C7—C8—C12111.7 (4)C1—C4—H4A109.5
C10—C17—C21109.9 (3)C1—C4—H4B109.5
C10—C17—H17109.5C1—C4—H4C109.5
C10—C17—C16108.8 (3)H4A—C4—H4B109.5
C21—C17—H17109.5H4A—C4—H4C109.5
C21—C17—C16109.5 (3)H4B—C4—H4C109.5
C16—C17—H17109.5C1—C3—H3A109.5
C10—C9—C8100.3 (3)C1—C3—H3B109.5
C13—C9—C10112.3 (4)C1—C3—H3C109.5
C13—C9—C8108.7 (3)H3A—C3—H3B109.5
C14—C9—C10106.9 (3)H3A—C3—H3C109.5
C14—C9—C8116.2 (4)H3B—C3—H3C109.5
C14—C9—C13112.0 (3)O1—C5—S1121.9 (4)
C18—C22—H22A109.5O1—C5—C1121.4 (5)
C18—C22—H22B109.5C1—C5—S1116.6 (4)
C18—C22—H22C109.5C5A—S1A—C6105.7 (6)
H22A—C22—H22B109.5C3A—C1A—C2A108 (3)
H22A—C22—H22C109.5C3A—C1A—C4A113.4 (19)
H22B—C22—H22C109.5C3A—C1A—C5A113.4 (17)
C10—C11—H11A110.8C4A—C1A—C2A105 (3)
C10—C11—H11B110.8C5A—C1A—C2A105 (2)
C10—C11—C12104.6 (4)C5A—C1A—C4A110.7 (17)
H11A—C11—H11B108.9C1A—C2A—H2AA109.5
C12—C11—H11A110.8C1A—C2A—H2AB109.5
C12—C11—H11B110.8C1A—C2A—H2AC109.5
C19—C20—C21113.3 (4)H2AA—C2A—H2AB109.5
C19—C20—H20A108.9H2AA—C2A—H2AC109.5
C19—C20—H20B108.9H2AB—C2A—H2AC109.5
C21—C20—H20A108.9C1A—C3A—H3AA109.5
C21—C20—H20B108.9C1A—C3A—H3AB109.5
H20A—C20—H20B107.7C1A—C3A—H3AC109.5
C8—C12—H12A110.3H3AA—C3A—H3AB109.5
C8—C12—H12B110.3H3AA—C3A—H3AC109.5
C11—C12—C8107.0 (4)H3AB—C3A—H3AC109.5
C11—C12—H12A110.3C1A—C4A—H4AA109.5
C11—C12—H12B110.3C1A—C4A—H4AB109.5
H12A—C12—H12B108.6C1A—C4A—H4AC109.5
H6AA—C6—H6AB107.8H4AA—C4A—H4AB109.5
H6BC—C6—H6BD108.0H4AA—C4A—H4AC109.5
C7—C6—H6AA109.0H4AB—C4A—H4AC109.5
C7—C6—H6AB109.0O1A—C5A—S1A119.5 (13)
C7—C6—H6BC109.3O1A—C5A—C1A121.7 (15)
C7—C6—H6BD109.3C1A—C5A—S1A118.6 (12)
O3—C8—C9—C1078.4 (4)C11—C10—C9—C1371.3 (4)
O3—C8—C9—C13163.7 (4)C11—C10—C9—C14165.5 (3)
O3—C8—C9—C1436.2 (5)C20—C19—C23—C24169.9 (4)
O3—C8—C12—C1192.8 (4)C20—C19—C18—C26169.2 (4)
O3—C8—C7—O2150.6 (4)C20—C19—C18—C2272.0 (4)
O3—C8—C7—C633.2 (5)C20—C19—C18—C1650.7 (5)
O4—C15—C14—C977.5 (4)C20—C21—C17—C10172.5 (3)
O4—C15—C16—C1851.7 (4)C20—C21—C17—C1653.0 (5)
O4—C15—C16—C1782.2 (4)C12—C8—C9—C1040.1 (4)
O5—C24—C25—C26147.6 (4)C12—C8—C9—C1377.8 (4)
C19—C23—C24—O5177.9 (4)C12—C8—C9—C14154.8 (4)
C19—C23—C24—C254.1 (7)C12—C8—C7—O225.9 (6)
C19—C18—C16—C15170.8 (3)C12—C8—C7—C6157.8 (4)
C19—C18—C16—C1754.7 (4)C6—S1—C5—O18.4 (6)
C23—C19—C18—C2614.2 (5)C6—S1—C5—C1169.9 (5)
C23—C19—C18—C22104.7 (5)C6—S1A—C5A—O1A4 (2)
C23—C19—C18—C16132.7 (4)C6—S1A—C5A—C1A179.1 (15)
C23—C19—C20—C21133.4 (4)C13—C9—C14—C1567.5 (5)
C23—C24—C25—C2634.4 (6)C25—C26—C18—C1945.3 (5)
C10—C17—C16—C18177.5 (3)C25—C26—C18—C2271.9 (4)
C10—C17—C16—C1548.4 (4)C25—C26—C18—C16162.7 (3)
C10—C9—C14—C1555.9 (4)C14—C15—C16—C18177.0 (3)
C10—C11—C12—C84.4 (5)C14—C15—C16—C1743.2 (5)
C26—C18—C16—C1552.0 (4)C7—C8—C9—C10160.8 (4)
C26—C18—C16—C17173.5 (3)C7—C8—C9—C1342.9 (5)
C21—C17—C16—C1857.3 (4)C7—C8—C9—C1484.5 (5)
C21—C17—C16—C15168.5 (3)C7—C8—C12—C11143.9 (4)
C18—C19—C23—C246.6 (7)C7—C6—S1—C590.2 (4)
C18—C19—C20—C2149.9 (5)C7—C6—S1A—C5A81.0 (8)
C18—C26—C25—C2456.1 (5)C16—C15—C14—C947.5 (5)
C8—C9—C14—C15166.8 (3)S1—C6—C7—O230.1 (6)
C17—C10—C9—C8174.8 (3)S1—C6—C7—C8153.6 (3)
C17—C10—C9—C1359.5 (5)C2—C1—C5—S1106.9 (8)
C17—C10—C9—C1463.7 (4)C2—C1—C5—O171.4 (10)
C17—C10—C11—C12158.0 (4)C4—C1—C5—S1134.2 (6)
C17—C21—C20—C1949.7 (5)C4—C1—C5—O147.5 (9)
C9—C10—C17—C21179.7 (3)C3—C1—C5—S111.9 (7)
C9—C10—C17—C1659.8 (4)C3—C1—C5—O1169.8 (6)
C9—C10—C11—C1230.4 (4)S1A—C6—C7—O227.2 (6)
C9—C8—C12—C1122.6 (5)S1A—C6—C7—C8149.1 (4)
C9—C8—C7—O289.9 (5)C2A—C1A—C5A—S1A92 (3)
C9—C8—C7—C686.4 (5)C2A—C1A—C5A—O1A93 (3)
C22—C18—C16—C1570.9 (4)C3A—C1A—C5A—S1A149.7 (18)
C22—C18—C16—C1763.5 (4)C3A—C1A—C5A—O1A25 (3)
C11—C10—C17—C2156.7 (5)C4A—C1A—C5A—S1A21 (2)
C11—C10—C17—C16176.6 (4)C4A—C1A—C5A—O1A154 (2)
C11—C10—C9—C844.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.962.802 (4)175
Symmetry code: (i) x+1/2, y+1, z+1/2.
Ring puckering parameters top
CompoundPL358 (I)SY20C174 (II)
C8 to C12Q2 = 0.4847 (18) ÅQ2 = 0.441 (5) Å
Envelope conformationφ2 = 39.4 (2)°φ2 = 41.4 (6)°
C9 to C15Q = 0.5519 (17) Å | Θ = 9.45 (18) ° | φ2 = 53.2 (11)°Q = 0.556 (4) Å | Θ = 13.4 (4) ° | φ2 = 37 (2)°
Chair conformationQ2 = 0.0908 (17) Å | Q3 = 54.4444 (17) Å | φ2 = 53.2 (11)°Q2 = 0.128 (4) Å | Q3 = 0.541 (4) Å | φ2 = 37 (2)°
C16 to C21Q = 0.5450 (17) Å | Θ = 175.11 (18) ° | φ2 = 170 (2)°Q = 0.538 (4) Å | Θ = 173.2 (4) ° | φ2 = 196 (4)°
Chair conformationQ2 = 0.0457 (17) Å | Q3 = -0.5431 (17) Å | φ2 = 170 (2)°Q2 = 0.0065 (4) Å | Q3 = -0.534 (4) Å | φ2 = 196 (4)°
C18 to C26Q = 0.4724 (18) Å | Θ = 52.7 (2) ° | φ2 = 266.8 (3)°Q = 0.454 (4) Å | Θ = 55.6 (5) ° | φ2 = 281.9 (7)°
Half-chair conformationQ2 = 0.3756 (18) Å | Q3 = 0.2865 (18) Å | φ2 = 266.8 (3)°Q2 = 0.375 (4) Å | Q3 = 0.256 (4) Å | φ2 = 281.9 (7)°
Cell parameters determined from SCXRD and PXRD at different temperatures top
CompoundPL358PL358PL358SY20C174SY20C174SY20C174
XRD measurementSCXRDSCXRDPXRDSCXRDSCXRDPXRD
Temperature110 K295 K295 K100 K298 K295 K
Space groupP212121P212121P212121P212121P212121P212121
a6.4201 (2)6.467 (5)6.4775 (2)6.0146 (2)6.157 (9)6.1573 (2)
b17.6239 (7)17.887 (12)17.9583 (7)19.2817 (7)19.46 (3)19.4684 (7)
c20.8997 (8)20.897 (15)20.9335 (7)20.9887 (7)20.92 (3)20.8859 (9)
Volume2364.7 (1)2417 (5)2435.1 (1)2434.1 (1)2508 (11)2503.7 (2)
 

Acknowledgements

The Ministère de l'Enseignement Supérieur et de la Recherche, the Centre National de la Recherche Scientifique (CNRS) and the Conseil Régional de Bourgogne Franche-Comté are gratefully acknowledged. This work is supported by the Université de Bourgogne and the Conseil Régional de Bourgogne Franche-Comté through the Plan d'Actions Régional pour l'Innovation (PARI) and the European Union through the PO FEDER-FSE Bourgogne 2014/2020 programs. The X-ray analyses were recorded in the `Pôle Chimie Moléculaire', the technological platform for chemical analysis and molecular synthesis (https://www.wpcm.fr), which relies on the Institute of the Molecular Chemistry of the University of Burgundy (ICMUB) and SATT Sayens™, a Burgundy University private subsidiary.

References

First citationBircher, A. J., Thürlimann, W., Hunziker, T., Pasche-Koo, F., Hunziker, N., Perrenoud, D., Elsner, P. & Schultheiss, R. (1995). Dermatology, 191, 109–114.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBouley, E. (2013). Patent EP 2853528.  Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurden, A. D. & Beck, M. H. (1992). Br. J. Dermatol. 127, 497–500.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavies, J. E., Kellet, D. N., Staniforth, M. V., Torossian, R. & Grouhel, A. (1981). Arzneimittelforschung, 31, 453–459.  CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJezequel, J., Becuwe, B., Daniel, C. & Geraudel, O. (1979). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 28, 65–6, 68.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLauerma, A. I. (1991). Contact Dermatitis, 24, 123–130.  CrossRef PubMed CAS Google Scholar
First citationLe Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.  CrossRef ICSD CAS Web of Science Google Scholar
First citationLiddle, G. W. (1960). J. Clin. Endocrinol. Metab. 20, 1539–1560.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMazauric, F. X. & Alligier, B. (1978). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 27, 721–723.  PubMed CAS Google Scholar
First citationNugent, C. A., Macdiarmid, W. D., Nelson, A. R. & Tyler, F. H. (1963). J. Clin. Endocrinol. Metab. 23, 684–693.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPalmer, D. C. (2015). Z. Kristallogr. Cryst. Mater. 230, 9–10.  Web of Science CrossRef Google Scholar
First citationPANalytical (2011). X'Pert Data Collector and X'Pert HighScore Plus. PANalytical BV, Almelo, The Netherlands.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUphill, P. F. (1981). Arzneimittelforschung, 31, 459–462.  CAS PubMed Web of Science Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds