research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two copper(I)–6,6′-di­methyl-2,2′-bi­pyridyl (dmbpy) compounds, [Cu(dmbpy)2]2[MF6xH2O (M = Zr, Hf; x = 1.134, 0.671)

crossmark logo

aNorthwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
*Correspondence e-mail: krp@northwestern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 June 2021; accepted 13 July 2021; online 20 July 2021)

The syntheses and crystal structures of two bimetallic mol­ecular compounds, namely, bis[bis­(6,6′-dimethyl-2,2′-bi­pyridine)­copper(I)] hexa­fluorido­zir­con­ate(IV) 1.134-hydrate, [Cu(dmbpy)2]2[ZrF6]·1.134H2O (dmbpy = 6,6′-di­methyl-2,2′-bipyri­dyl, C12H12N2), (I), and bis[bis­(6,6′-dimethyl-2,2′-bi­pyr­idine)­copper(I)] hexa­fluorido­hafnate(IV) 0.671-hydrate, [Cu(dmbpy)2]2[HfF6]·0.671H2O, (II), are reported. Apart from a slight site occupany difference for the water mol­ecule of crystallization, compounds (I) and (II) are isostructural, featuring isolated tetra­hedral cations of copper(I) ions coordinated by two dmbpy ligands and centrosymmetric, octa­hedral anions of fluorinated early transition metals. The tetra­hedral environments of the copper complexes are distorted owing to the steric effects of the dmbpy ligands. The extended structures are built up through Coulombic inter­actions between cations and anions and ππ stacking inter­actions between heterochiral Δ- and Λ-[Cu(dmbpy)2]+ complexes. A comparison between the title compounds and other [Cu(dmbpy)2]+ compounds with monovalent and bivalent anions reveals a significant influence of the cation-to-anion ratio on the resulting crystal packing architectures, providing insights for future crystal design of distorted tetra­hedral copper compounds.

1. Chemical context

Copper(I) complexes with distorted tetra­hedral environments have been studied as catalytic active sites in electron-transfer reactions and are found in a number of proteins that contain copper (Vallee & Williams, 1968[Vallee, B. L. & Williams, R. (1968). PNAS USA 59, 498-505.]; Colman et al., 1978[Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M. & Venkatappa, M. P. (1978). Nature, 272, 319-324.]; Adman et al., 1978[Adman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). J. Mol. Biol. 123, 35-47.]). The realization of significantly distorted tetra­hedral geometry requires sufficient steric hindrance between the ligands. The methyl groups of the 6,6′-dimethyl-2,2′-bipyridyl (C12H12N2; dmbpy) ligand create a large steric hindrance upon coordination, and, consequently, a common strategy to form distorted tetra­hedral complexes is to use dmbpy or its derivatives as ligands (McKenzie et al., 1971[McKenzie, E. D. (1971). Coord. Chem. Rev. 6, 187-216.]; Burke et al., 1980[Burke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211-1214.]). Previously, compounds with distorted tetra­hedral [Cu(dmbpy)2]+ cations have been reported, namely [Cu(dmbpy)2]X (X = [BF4], [ClO4], [PF­6]), [Cu(dmbpy)2][C16H9O8]·H2O (C16H9O8 = 2′,3,3′-tri­carb­oxy­biphenyl-2-carboxyl­ate) and [Cu(dmbpy)2]X2 (X = [BF4], [ClO4]). (Burke et al., 1980[Burke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211-1214.]; Cui et al., 2005[Cui, G. H., Li, J. R., Gao, D. & Ng, S. W. (2005). Acta Cryst. E61, m72-m73.]; Itoh et al., 2005[Itoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). Dalton Trans. pp. 1066-1078.]; Mei et al., 2011[Mei, C., Wang, J. & Shan, W. (2011). Jiegou Huaxue, 30, 1194.]; Bozic-Weber et al., 2012[Bozic-Weber, B., Chaurin, V., Constable, E. C., Housecroft, C. E., Meuwly, M., Neuburger, M., Rudd, J. A., Schönhofer, E. & Siegfried, L. (2012). Dalton Trans. 41, 14157-14169.]; Li et al., 2017[Li, J., Yang, X., Yu, Z., Gurzadyan, G. G., Cheng, M., Zhang, F., Cong, J., Wang, W., Wang, H., Li, X., Kloo, L., Wang, M. & Sun, L. (2017). RSC Adv. 7, 4611-4615.]) Here, we report two structures with [MF6]2− (M = Zr, Hf), which are the first known distorted tetra­hedral copper compounds with bivalent anions.

[Scheme 1]

2. Structural commentary

Compound (I)[link] has the formula [Cu(dmbpy)2]2[ZrF6]·1.134H2O and crystallizes in the triclinic space group P[\overline{1}] (Fig. 1[link]). The structure of compound (I)[link] features isolated tetra­hedral [Cu(dmbpy)2]+ cations and octa­hedral ZrF62− anions (Zr site symmetry [\overline{1}]). The coordination geometry of Cu1 and its donor N atoms deviates from an ideal tetra­hedron, as demonstrated by the 83.33 (10)° angle between the least squares planes containing Cu1 and each ligand (Table 1[link]). To qu­antify the deviation from Td symmetry in [Cu(dmbpy)2]+ cations, the τ4' parameter is employed and it gives a value of 0.66 for compound (I)[link] (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]). The distorted tetra­hedral geometry of [Cu(dmbpy)2]+ in compound (I)[link] is consistent with other reported compounds containing [Cu(dmbpy)2]+ cations (Burke et al., 1980[Burke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211-1214.]; Cui et al., 2005[Cui, G. H., Li, J. R., Gao, D. & Ng, S. W. (2005). Acta Cryst. E61, m72-m73.]; Mei et al., 2011[Mei, C., Wang, J. & Shan, W. (2011). Jiegou Huaxue, 30, 1194.]; Bozic-Weber et al., 2012[Bozic-Weber, B., Chaurin, V., Constable, E. C., Housecroft, C. E., Meuwly, M., Neuburger, M., Rudd, J. A., Schönhofer, E. & Siegfried, L. (2012). Dalton Trans. 41, 14157-14169.]). Moreover, the dmbpy ligands in (I)[link] are non-planar and are slightly twisted on the 2,2′ carbon bond to give a dihedral angle of 8.68 (10)° between the N1/C1–C5 and N2/C6–C10 rings and 7.44 (11)° between the N3/C13–C17 and N4/C18–C22 rings. The distorted tetra­hedral environment and non-planar ligand geometry give the [Cu(dmbpy)2]+ cations a C2 symmetry, and enanti­omeric Δ- and Λ-[Cu(dmbpy)2]+ pairs are related across inversion centers. The octa­hedral coordination environment of Zr1 is slightly distorted, with Zr1—F bond lengths ranging from 1.9955 (13) to 2.0183 (12) Å (Table 1[link]). The minor distortion of the ZrF62− anion may arise due to hydrogen-bonding inter­actions between water mol­ecules of crystallization and fluorine atoms on the trans position of the ZrF62− anions [see O1—H1B⋯F2 (Table 2[link])].

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Cu1—N1 2.0208 (16) Zr1—F1 2.0113 (15)
Cu1—N2 2.0348 (17) Zr1—F2 2.0183 (12)
Cu1—N3 2.0123 (17) Zr1—F3 1.9955 (13)
Cu1—N4 2.0616 (18)    
       
N1—Cu1—N2 81.40 (7) N3—Cu1—N1 136.29 (7)
N1—Cu1—N4 116.24 (7) N3—Cu1—N2 126.16 (7)
N2—Cu1—N4 120.45 (7) N3—Cu1—N4 81.05 (7)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯F2 0.87 1.47 2.337 (4) 177
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids. Symmetry code: (i) −x, 2 − y, 2 − z.

Compound (II)[link] has the formula [Cu(dmbpy)2]2[HfF6]·0.671H2O and crystallizes in the triclinic space group P[\overline{1}] (Fig. 2[link]). Compound (II)[link] is isostructural to compound (I)[link], therefore, the [Cu(dmbpy)2]+ cations also have C2 symmetry, with the angle between the least squares planes containing Cu1 and each ligand being 84.14 (8)° (Table 3[link]) and the τ4' parameter being 0.66, and the dmbpy ligands are slightly twisted on the 2,2′ carbon bond to give an angle of 9.69 (7)° between the N1/C1–C5 and N2/C6–C10 rings and 7.97 (8)° between the N3/C13–C17 and N4/C18–C22 rings. Moreover, the octa­hedral coordination environment of Hf1 is also slightly distorted, with Hf1—F bond lengths ranging from 1.9945 (10) to 2.0111 (11) Å. Like in compound (I)[link], hydrogen-bonding inter­actions are present between the water mol­ecule of crystallization and fluorine atoms on the trans position of HfF62− anions, but the geometry of the hydrogen bond is slightly different from that in compound (I)[link] [see O1—H1B⋯F2 (Table 4[link])].

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Cu1—N1 2.0229 (12) Hf1—F1 2.0111 (11)
Cu1—N2 2.0414 (12) Hf1—F2 2.0033 (9)
Cu1—N3 2.0121 (12) Hf1—F3 1.9945 (10)
Cu1—N4 2.0659 (13)    
       
N1—Cu1—N2 81.22 (5) N3—Cu1—N1 136.20 (5)
N1—Cu1—N4 116.52 (5) N3—Cu1—N2 126.39 (5)
N2—Cu1—N4 120.35 (5) N3—Cu1—N4 80.94 (5)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯F2 0.87 1.50 2.328 (4) 156
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] showing 50% displacement ellipsoids. Symmetry code: (i) (i) −x, 2 − y, 2 − z.

3. Supra­molecular features

In the extended structures of compounds (I)[link] and (II)[link], the [Cu(dmbpy)2]+ cations and octa­hedral MF62− anions are closely packed via Coulombic inter­actions (Fig. 3[link]). The Δ/Λ-[Cu(dmbpy)2]+ cations stack into racemic pairs along the c-axis direction via a heterochiral face-to-face ππ inter­action between the N1/C1–C5 and N2/C6–C10 rings with an inter­planar angle of 0°, inter­planar distances of 3.347 and 3.355 Å, and centroid–centroid distances (dpy–py) of 3.6967 (12) and 3.7016 (8) Å, for compounds (I)[link] and (II)[link], respectively (Tables 5[link] and 6[link]). Next, Δ/Λ-[Cu(dmbpy)2]+ pairs pack into racemic chains along the c-axis direction with heterochiral parallel displaced ππ inter­actions between the N3/C13–C17 and N4/C18–C22 rings with an inter­planar angle of 0°, inter­planar distances of 3.708 and 3.678 Å, and centroid–centroid distances (dpy–py) of 5.3726 (13) and 5.3777 (11) Å, for compounds (I)[link] and (II)[link], respectively. The MF62− anions with hydrogen-bonded water mol­ecules are inter­laced between the racemic chains to form the extended three-dimensional structure. Compared to other mol­ecular compounds with MF62− anions in an extended and complicated hydrogen network (Gautier et al., 2012[Gautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267-6271.]; Nisbet et al., 2020[Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555-7566.], 2021[Nisbet, M. L., Wang, Y. & Poeppelmeier, K. R. (2021). Cryst. Growth Des. 21, 552-562.]), the MF62− anions in (I)[link] and (II)[link] experience less distortion because the hydrogen-bonding contacts are less extensive and only occur along the same axis due to the site symmetry of hydrogen-bonding inter­actions (Kunz & Brown, 1995[Kunz, M. & Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.]; Halasyamani, 2004[Halasyamani, P. S. (2004). Chem. Mater. 16, 3586-3592.]).

Table 5
Aromatic ππ stacking inter­actions (Å, °) in (I)

Description type dpy–py inter­planar angle inter­planar distance
Heterochiral face-to-face 3.6967 (12) 0 3.347
Heterochiral parallel displaced 5.3726 (13) 0 3.708

Table 6
Aromatic ππ stacking inter­actions (Å, °) in (II)

Description type dpy–py inter­planar angle inter­planar distance
Heterochiral face-to-face 3.7016 (8) 0 3.355
Heterochiral parallel displaced 5.3777 (11) 0 3.678
[Figure 3]
Figure 3
The packing for (I)[link] viewed (a) down [100] and (b) down [001], with the copper and zirconium coordination environments represented by yellow/orange and green polyhedra, respectively.

4. Database survey

A survey of compounds related to compounds (I)[link] and (II)[link] reported in the Cambridge Structural Database (CSD version 2020.1 from April 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) produced four other compounds based on [Cu(dmbpy)2]+ complexes: [Cu(dmbpy)2][BF­4] (CSD refcode: MPYRCU; Burke et al., 1980[Burke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211-1214.]), [Cu(dmbpy)2][PF­6] (REFSUS; Bozic-Weber et al., 2012[Bozic-Weber, B., Chaurin, V., Constable, E. C., Housecroft, C. E., Meuwly, M., Neuburger, M., Rudd, J. A., Schönhofer, E. & Siegfried, L. (2012). Dalton Trans. 41, 14157-14169.]), [Cu(dmbpy)2][ClO­4] (FAXLAS; Cui et al., 2005[Cui, G. H., Li, J. R., Gao, D. & Ng, S. W. (2005). Acta Cryst. E61, m72-m73.]), and [Cu(dmbpy)2][C16H9O8]·H2O (C16H9O8 = 2′,3,3′-tri­carb­oxy­biphenyl-2-carboxyl­ate) (ABIYER; Mei et al., 2011[Mei, C., Wang, J. & Shan, W. (2011). Jiegou Huaxue, 30, 1194.]). All these structures have distorted tetra­hedral [Cu(dmbpy)2]+ cations with C2 symmetry, with a range of the angle between the least-squares planes containing the metal ion and each ligand being from 75.06 to 86.74°. Moreover, τ4' parameters for these structures range from 0.70 to 0.74, whereas for both compound (I)[link] and (II)[link] the parameter is 0.66 (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]).

Unlike compound (I)[link] and (II)[link], which have bivalent anions MF62−, the compounds reported in the CSD are charge-balanced by monovalent anions and display two different types of packing architectures distinct from those of the title compounds: [Cu(dmbpy)2][BF­4], [Cu(dmbpy)2][PF­6], and [Cu(dmbpy)2][ClO­4] are isostructural, crystallizing in space group P21/c. Compared to compounds (I)[link] and (II)[link], the ratio of cations-to-anions is smaller in these monovalent-anion compounds. Instead of racemic chains, homochiral chains are observed with homochiral displaced ππ inter­actions between the ligands with an inter­planar angle of around 30°. No local or extended hydrogen-bond networks are observed because these structures do not contain water mol­ecules of crystallization.

Another type of packing architecture is found in [Cu(dmbpy)2][C16H9O8]·H2O, which crystallizes in space group P[\overline{1}]. Unlike the aforementioned five compounds with [Cu(dmbpy)2]+ cations, ππ inter­actions in the compound [Cu(dmbpy)2][C16H9O8]·H2O are dominant between [Cu(dmbpy)2]+ cations and [C16H9O8] anions instead of between [Cu(dmbpy)2]+ cations. In this compound, the [Cu(dmbpy)2]+ cations and [C16H9O8] anions are packed into charge-neutral chains via Coulombic inter­actions and ππ inter­actions along c axis and inversion centers are present between the chains. Additionally, the [C16H9O8] anions and free water mol­ecules generate a three-dimensional network via O—H⋯O hydrogen bonding inter­actions, resulting in a different architecture.

5. Synthesis and crystallization

The compounds reported here were synthesized by the hydro­thermal pouch method (Harrison et al., 1993[Harrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437-2441.]). In each reaction, reagents were heat-sealed in Teflon pouches. Groups of six pouches were then placed into a 125 ml Parr autoclave with 45 ml of distilled water as backfill. The autoclave was heated at a rate of 5 K min−1 to 423 K and held at 423 K for 24 h. The autoclaves were allowed to cool to room temperature at a rate of 6 K h−1. Orangish red solid products were recovered by vacuum filtration with a moderate yield. Compound (I)[link] was synthesized in a pouch containing 0.4195 mmol of CuO, 0.4195 mmol of ZrO2, 0.835 mmol of 6,6′-dimethyl-2,2′-bipyridyl, 0.15 ml (4.14 mmol) of HF (aq) (48%), and 0.1 ml (5.5 mmol) of deionized H2O. Compound (II)[link] was synthesized in a pouch containing 0.4195 mmol of CuO, 0.4195 mmol of HfO2, 0.835 mmol of 6,6′-dimethyl-2,2′-bipyridyl, 0.05 ml (1.38 mmol) of HF (aq) (48%), and 0.2 ml (11 mmol) of deionized H2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Hydrogen-atom positions were assigned from difference map peaks with the exception of the C—H hydrogen atoms of dmbpy, which were constrained to ride at distances of 0.95 Å from the associated C atoms with Uiso(H) = 1.2Ueq(C) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). The water occupancies in both structures are refined freely. Four reflections showing very poor agreement were omitted from the final refinement for compound (I)[link].

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula [Cu(C12H12N2)2]2[ZrF6]·1.134H2O [Cu(C12H12N2)2]2[HfF6]·0.671H2O
Mr 1089.61 1168.58
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.6219 (3), 10.8064 (3), 12.9992 (4) 8.5737 (1), 10.7967 (2), 13.0183 (2)
α, β, γ (°) 103.078 (2), 104.013 (3), 98.863 (2) 103.273 (1), 103.662 (1), 98.785 (1)
V3) 1116.33 (6) 1112.07 (3)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.25 3.35
Crystal size (mm) 0.98 × 0.13 × 0.05 0.3 × 0.17 × 0.08
 
Data collection
Diffractometer Rigaku Saturn724+ (2x2 bin mode) Rigaku Saturn724+ (2x2 bin mode)
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.376, 1.000 0.433, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16573, 5673, 4588 40796, 8003, 7235
Rint 0.039 0.032
(sin θ/λ)max−1) 0.722 0.784
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.07 0.023, 0.056, 1.08
No. of reflections 5673 8003
No. of parameters 312 312
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.54 0.48, −0.73
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I) top
Crystal data top
[Cu(C12H12N2)2]2[ZrF6]·1.134H2OZ = 1
Mr = 1089.61F(000) = 555
Triclinic, P1Dx = 1.621 Mg m3
a = 8.6219 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8064 (3) ÅCell parameters from 10429 reflections
c = 12.9992 (4) Åθ = 2.2–30.6°
α = 103.078 (2)°µ = 1.25 mm1
β = 104.013 (3)°T = 100 K
γ = 98.863 (2)°Needle, clear orangish red
V = 1116.33 (6) Å30.98 × 0.13 × 0.05 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
5673 independent reflections
Radiation source: Rotating Anode, Rotating Anode4588 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 30.9°, θmin = 2.0°
profile data from ω–scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 1415
Tmin = 0.376, Tmax = 1.000l = 1618
16573 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3898P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5673 reflectionsΔρmax = 0.59 e Å3
312 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.30548 (3)0.35420 (2)0.69756 (2)0.02018 (8)
N10.4953 (2)0.36543 (16)0.82845 (13)0.0174 (3)
C10.5623 (3)0.26739 (19)0.85293 (17)0.0207 (4)
N20.3424 (2)0.54652 (16)0.77601 (14)0.0195 (3)
C20.7120 (3)0.2905 (2)0.93235 (17)0.0212 (4)
H20.7566890.2198580.9489740.025*
N30.0873 (2)0.23159 (15)0.61598 (14)0.0190 (3)
C30.7947 (3)0.4174 (2)0.98671 (17)0.0230 (4)
H30.8981280.4350221.0402440.028*
N40.3423 (2)0.29725 (16)0.54450 (14)0.0211 (4)
C40.7257 (2)0.5187 (2)0.96256 (17)0.0210 (4)
H40.7809620.6066560.9992350.025*
C50.5745 (2)0.48980 (18)0.88392 (16)0.0160 (4)
C60.4869 (2)0.59134 (18)0.85644 (16)0.0166 (4)
C70.5450 (3)0.72317 (19)0.91116 (17)0.0202 (4)
H70.6497980.7536550.9640860.024*
C80.4472 (3)0.8091 (2)0.88699 (18)0.0237 (4)
H80.4845530.8995370.9231750.028*
C90.2955 (3)0.7627 (2)0.81024 (19)0.0251 (4)
H90.2244580.8198600.7961950.030*
C100.2476 (3)0.6306 (2)0.75341 (19)0.0247 (4)
C110.4653 (3)0.1315 (2)0.7923 (2)0.0325 (5)
H11A0.3744880.1105160.8229090.049*
H11B0.5365370.0697340.8004140.049*
H11C0.4216240.1255600.7139320.049*
C120.0897 (3)0.5747 (3)0.6624 (3)0.0505 (8)
H12A0.1138030.5427570.5925010.076*
H12B0.0270940.6425110.6567160.076*
H12C0.0253580.5025690.6787930.076*
C130.0357 (3)0.20374 (19)0.65956 (18)0.0222 (4)
C140.1902 (3)0.1331 (2)0.5926 (2)0.0299 (5)
H140.2766490.1147420.6241000.036*
C150.2168 (3)0.0899 (2)0.4802 (2)0.0331 (6)
H150.3222680.0429260.4337230.040*
C160.0896 (3)0.1152 (2)0.43557 (19)0.0286 (5)
H160.1052810.0841690.3585150.034*
C170.0622 (3)0.18722 (18)0.50567 (17)0.0209 (4)
C180.2076 (3)0.2182 (2)0.46677 (17)0.0228 (4)
C190.2083 (3)0.1682 (2)0.35859 (18)0.0297 (5)
H190.1120100.1143380.3047710.036*
C200.3513 (4)0.1981 (2)0.3308 (2)0.0356 (6)
H200.3548500.1649370.2574310.043*
C210.4888 (3)0.2767 (2)0.4105 (2)0.0344 (5)
H210.5886400.2963660.3925900.041*
C220.4816 (3)0.3270 (2)0.51691 (19)0.0260 (5)
C230.0017 (3)0.2514 (2)0.78169 (19)0.0308 (5)
H23A0.1061370.2325520.8167900.046*
H23B0.0858600.2073500.8054700.046*
H23C0.0093250.3455930.8031310.046*
C240.6265 (3)0.4151 (2)0.6065 (2)0.0325 (5)
H24A0.5935950.4920330.6434690.049*
H24B0.7132900.4423180.5743990.049*
H24C0.6671810.3683940.6602210.049*
Zr10.0000001.0000001.0000000.02476 (9)
F10.09081 (18)0.99518 (14)0.87082 (13)0.0384 (3)
F20.05473 (16)0.80350 (12)0.95926 (12)0.0322 (3)
F30.22027 (15)1.00042 (12)1.09456 (13)0.0346 (3)
O10.1062 (4)0.6247 (3)0.8061 (3)0.0369 (11)0.567 (6)
H1A0.0454740.6410360.7640810.055*0.567 (6)
H1B0.0874380.6928740.8617240.055*0.567 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02111 (14)0.01747 (13)0.01614 (13)0.00081 (10)0.00092 (10)0.00225 (9)
N10.0200 (8)0.0173 (8)0.0128 (8)0.0026 (7)0.0022 (6)0.0033 (6)
C10.0253 (10)0.0205 (10)0.0184 (10)0.0078 (8)0.0073 (8)0.0065 (8)
N20.0193 (8)0.0167 (8)0.0198 (9)0.0029 (7)0.0016 (7)0.0051 (6)
C20.0232 (10)0.0255 (10)0.0205 (10)0.0114 (8)0.0095 (8)0.0100 (8)
N30.0226 (9)0.0142 (8)0.0175 (8)0.0038 (7)0.0022 (7)0.0029 (6)
C30.0168 (9)0.0325 (11)0.0204 (10)0.0052 (8)0.0036 (8)0.0109 (9)
N40.0251 (9)0.0206 (8)0.0191 (9)0.0049 (7)0.0066 (7)0.0082 (7)
C40.0180 (10)0.0206 (10)0.0203 (10)0.0007 (8)0.0023 (8)0.0039 (8)
C50.0165 (9)0.0167 (9)0.0148 (9)0.0033 (7)0.0051 (7)0.0040 (7)
C60.0169 (9)0.0174 (9)0.0160 (9)0.0031 (7)0.0058 (7)0.0048 (7)
C70.0211 (10)0.0188 (9)0.0194 (10)0.0008 (8)0.0064 (8)0.0043 (8)
C80.0334 (12)0.0168 (9)0.0224 (11)0.0039 (9)0.0123 (9)0.0048 (8)
C90.0289 (11)0.0222 (10)0.0311 (12)0.0102 (9)0.0128 (9)0.0131 (9)
C100.0223 (10)0.0231 (10)0.0293 (12)0.0045 (8)0.0037 (9)0.0125 (9)
C110.0456 (14)0.0190 (10)0.0265 (12)0.0104 (10)0.0010 (10)0.0033 (9)
C120.0333 (14)0.0281 (13)0.073 (2)0.0029 (11)0.0190 (14)0.0192 (13)
C130.0230 (10)0.0173 (9)0.0245 (11)0.0053 (8)0.0055 (8)0.0031 (8)
C140.0234 (11)0.0204 (10)0.0428 (14)0.0019 (9)0.0087 (10)0.0057 (10)
C150.0247 (12)0.0217 (11)0.0382 (14)0.0006 (9)0.0059 (10)0.0017 (10)
C160.0335 (12)0.0195 (10)0.0227 (11)0.0050 (9)0.0054 (9)0.0007 (8)
C170.0276 (11)0.0148 (9)0.0170 (10)0.0062 (8)0.0007 (8)0.0044 (7)
C180.0315 (11)0.0196 (10)0.0166 (10)0.0070 (9)0.0021 (8)0.0077 (8)
C190.0473 (14)0.0226 (11)0.0180 (11)0.0090 (10)0.0056 (10)0.0065 (9)
C200.0602 (17)0.0319 (12)0.0245 (12)0.0163 (12)0.0222 (12)0.0118 (10)
C210.0465 (15)0.0345 (13)0.0357 (14)0.0170 (11)0.0239 (12)0.0178 (11)
C220.0304 (11)0.0239 (10)0.0310 (12)0.0107 (9)0.0132 (9)0.0137 (9)
C230.0309 (12)0.0341 (12)0.0278 (12)0.0045 (10)0.0122 (10)0.0068 (10)
C240.0258 (12)0.0367 (13)0.0384 (14)0.0034 (10)0.0134 (10)0.0147 (11)
Zr10.01462 (14)0.02394 (15)0.03837 (19)0.00405 (11)0.00458 (12)0.01715 (13)
F10.0390 (8)0.0355 (8)0.0507 (9)0.0129 (6)0.0198 (7)0.0209 (7)
F20.0256 (7)0.0188 (6)0.0479 (9)0.0022 (5)0.0034 (6)0.0104 (6)
F30.0207 (6)0.0230 (6)0.0511 (9)0.0052 (5)0.0042 (6)0.0081 (6)
O10.041 (2)0.0389 (19)0.0244 (17)0.0009 (14)0.0117 (14)0.0001 (13)
Geometric parameters (Å, º) top
Cu1—N12.0208 (16)C12—H12B0.9800
Cu1—N22.0348 (17)C12—H12C0.9800
Cu1—N32.0123 (17)C13—C141.392 (3)
Cu1—N42.0616 (18)C13—C231.490 (3)
N1—C11.346 (3)C14—H140.9500
N1—C51.354 (2)C14—C151.379 (4)
C1—C21.390 (3)C15—H150.9500
C1—C111.502 (3)C15—C161.379 (4)
N2—C61.355 (2)C16—H160.9500
N2—C101.346 (3)C16—C171.392 (3)
C2—H20.9500C17—C181.481 (3)
C2—C31.380 (3)C18—C191.390 (3)
N3—C131.344 (3)C19—H190.9500
N3—C171.356 (3)C19—C201.379 (4)
C3—H30.9500C20—H200.9500
C3—C41.385 (3)C20—C211.377 (4)
N4—C181.355 (3)C21—H210.9500
N4—C221.347 (3)C21—C221.388 (3)
C4—H40.9500C22—C241.500 (3)
C4—C51.388 (3)C23—H23A0.9800
C5—C61.485 (3)C23—H23B0.9800
C6—C71.391 (3)C23—H23C0.9800
C7—H70.9500C24—H24A0.9800
C7—C81.384 (3)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C8—C91.378 (3)Zr1—F12.0113 (15)
C9—H90.9500Zr1—F1i2.0113 (15)
C9—C101.396 (3)Zr1—F2i2.0183 (12)
C10—C121.503 (3)Zr1—F22.0183 (12)
C11—H11A0.9800Zr1—F31.9955 (13)
C11—H11B0.9800Zr1—F3i1.9955 (13)
C11—H11C0.9800O1—H1A0.8699
C12—H12A0.9800O1—H1B0.8703
N1—Cu1—N281.40 (7)H12B—C12—H12C109.5
N1—Cu1—N4116.24 (7)N3—C13—C14120.9 (2)
N2—Cu1—N4120.45 (7)N3—C13—C23116.93 (18)
N3—Cu1—N1136.29 (7)C14—C13—C23122.2 (2)
N3—Cu1—N2126.16 (7)C13—C14—H14120.2
N3—Cu1—N481.05 (7)C15—C14—C13119.6 (2)
C1—N1—Cu1127.37 (14)C15—C14—H14120.2
C1—N1—C5119.06 (17)C14—C15—H15120.2
C5—N1—Cu1112.61 (13)C14—C15—C16119.7 (2)
N1—C1—C2121.76 (18)C16—C15—H15120.2
N1—C1—C11116.67 (19)C15—C16—H16120.7
C2—C1—C11121.55 (19)C15—C16—C17118.7 (2)
C6—N2—Cu1112.50 (13)C17—C16—H16120.7
C10—N2—Cu1128.32 (14)N3—C17—C16121.5 (2)
C10—N2—C6119.07 (17)N3—C17—C18115.35 (18)
C1—C2—H2120.5C16—C17—C18123.1 (2)
C3—C2—C1119.10 (19)N4—C18—C17115.47 (18)
C3—C2—H2120.5N4—C18—C19121.7 (2)
C13—N3—Cu1125.56 (14)C19—C18—C17122.8 (2)
C13—N3—C17119.66 (18)C18—C19—H19120.6
C17—N3—Cu1114.36 (14)C20—C19—C18118.8 (2)
C2—C3—H3120.3C20—C19—H19120.6
C2—C3—C4119.43 (19)C19—C20—H20120.3
C4—C3—H3120.3C21—C20—C19119.4 (2)
C18—N4—Cu1113.01 (14)C21—C20—H20120.3
C22—N4—Cu1127.62 (15)C20—C21—H21120.0
C22—N4—C18119.34 (19)C20—C21—C22119.9 (2)
C3—C4—H4120.5C22—C21—H21120.0
C3—C4—C5118.94 (18)N4—C22—C21120.8 (2)
C5—C4—H4120.5N4—C22—C24116.8 (2)
N1—C5—C4121.67 (18)C21—C22—C24122.3 (2)
N1—C5—C6115.42 (17)C13—C23—H23A109.5
C4—C5—C6122.90 (17)C13—C23—H23B109.5
N2—C6—C5115.28 (16)C13—C23—H23C109.5
N2—C6—C7121.72 (18)H23A—C23—H23B109.5
C7—C6—C5122.97 (18)H23A—C23—H23C109.5
C6—C7—H7120.6H23B—C23—H23C109.5
C8—C7—C6118.70 (19)C22—C24—H24A109.5
C8—C7—H7120.6C22—C24—H24B109.5
C7—C8—H8120.1C22—C24—H24C109.5
C9—C8—C7119.71 (19)H24A—C24—H24B109.5
C9—C8—H8120.1H24A—C24—H24C109.5
C8—C9—H9120.5H24B—C24—H24C109.5
C8—C9—C10119.0 (2)F1i—Zr1—F1180.00 (9)
C10—C9—H9120.5F1—Zr1—F2i89.69 (6)
N2—C10—C9121.56 (19)F1—Zr1—F290.31 (6)
N2—C10—C12116.3 (2)F1i—Zr1—F289.69 (6)
C9—C10—C12122.1 (2)F1i—Zr1—F2i90.31 (6)
C1—C11—H11A109.5F2—Zr1—F2i180.0
C1—C11—H11B109.5F3i—Zr1—F189.90 (6)
C1—C11—H11C109.5F3—Zr1—F1i89.90 (6)
H11A—C11—H11B109.5F3—Zr1—F190.10 (6)
H11A—C11—H11C109.5F3i—Zr1—F1i90.10 (6)
H11B—C11—H11C109.5F3i—Zr1—F2i89.43 (5)
C10—C12—H12A109.5F3—Zr1—F289.43 (5)
C10—C12—H12B109.5F3—Zr1—F2i90.57 (5)
C10—C12—H12C109.5F3i—Zr1—F290.57 (5)
H12A—C12—H12B109.5F3i—Zr1—F3180.0
H12A—C12—H12C109.5H1A—O1—H1B109.5
Cu1—N1—C1—C2166.88 (15)C5—N1—C1—C21.0 (3)
Cu1—N1—C1—C1114.7 (3)C5—N1—C1—C11177.37 (19)
Cu1—N1—C5—C4167.35 (15)C5—C6—C7—C8173.85 (19)
Cu1—N1—C5—C614.0 (2)C6—N2—C10—C90.5 (3)
Cu1—N2—C6—C59.8 (2)C6—N2—C10—C12179.4 (2)
Cu1—N2—C6—C7172.18 (15)C6—C7—C8—C90.2 (3)
Cu1—N2—C10—C9175.40 (16)C7—C8—C9—C103.8 (3)
Cu1—N2—C10—C123.4 (3)C8—C9—C10—N23.6 (3)
Cu1—N3—C13—C14170.26 (16)C8—C9—C10—C12175.2 (2)
Cu1—N3—C13—C2310.0 (3)C10—N2—C6—C5173.65 (18)
Cu1—N3—C17—C16171.70 (16)C10—N2—C6—C74.4 (3)
Cu1—N3—C17—C189.7 (2)C11—C1—C2—C3179.0 (2)
Cu1—N4—C18—C170.4 (2)C13—N3—C17—C161.3 (3)
Cu1—N4—C18—C19179.26 (16)C13—N3—C17—C18177.34 (18)
Cu1—N4—C22—C21177.41 (16)C13—C14—C15—C161.1 (4)
Cu1—N4—C22—C241.9 (3)C14—C15—C16—C171.7 (3)
N1—C1—C2—C30.7 (3)C15—C16—C17—N30.5 (3)
N1—C5—C6—N22.7 (3)C15—C16—C17—C18179.0 (2)
N1—C5—C6—C7175.24 (18)C16—C17—C18—N4175.31 (19)
C1—N1—C5—C42.3 (3)C16—C17—C18—C195.9 (3)
C1—N1—C5—C6176.43 (18)C17—N3—C13—C141.9 (3)
C1—C2—C3—C41.2 (3)C17—N3—C13—C23177.87 (19)
N2—C6—C7—C84.0 (3)C17—C18—C19—C20177.4 (2)
C2—C3—C4—C50.0 (3)C18—N4—C22—C210.7 (3)
N3—C13—C14—C150.7 (3)C18—N4—C22—C24179.95 (19)
N3—C17—C18—N46.1 (3)C18—C19—C20—C210.2 (3)
N3—C17—C18—C19172.72 (19)C19—C20—C21—C221.4 (4)
C3—C4—C5—N11.7 (3)C20—C21—C22—N41.8 (3)
C3—C4—C5—C6176.86 (19)C20—C21—C22—C24178.8 (2)
N4—C18—C19—C201.3 (3)C22—N4—C18—C17177.93 (18)
C4—C5—C6—N2178.58 (18)C22—N4—C18—C190.9 (3)
C4—C5—C6—C73.4 (3)C23—C13—C14—C15179.0 (2)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F20.871.472.337 (4)177
Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II) top
Crystal data top
[Cu(C12H12N2)2]2[HfF6]·0.671H2OZ = 1
Mr = 1168.58F(000) = 583
Triclinic, P1Dx = 1.745 Mg m3
a = 8.5737 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7967 (2) ÅCell parameters from 31642 reflections
c = 13.0183 (2) Åθ = 2.2–33.9°
α = 103.273 (1)°µ = 3.35 mm1
β = 103.662 (1)°T = 100 K
γ = 98.785 (1)°Plate, clear orangish red
V = 1112.07 (3) Å30.3 × 0.17 × 0.08 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
8003 independent reflections
Radiation source: Rotating Anode, Rotating Anode7235 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.032
Detector resolution: 28.5714 pixels mm-1θmax = 33.9°, θmin = 2.0°
profile data from ω–scansh = 1313
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 1616
Tmin = 0.433, Tmax = 1.000l = 1919
40796 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.029P)2 + 0.1688P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
8003 reflectionsΔρmax = 0.48 e Å3
312 parametersΔρmin = 0.73 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.30255 (2)0.35382 (2)0.69812 (2)0.01849 (4)
N10.49323 (15)0.36487 (11)0.82812 (9)0.0157 (2)
C10.55897 (18)0.26589 (14)0.85279 (11)0.0184 (3)
N20.33991 (15)0.54691 (12)0.77752 (10)0.0187 (2)
C20.70930 (18)0.28901 (15)0.93195 (12)0.0200 (3)
H20.7528470.2182020.9494280.024*
N30.08393 (15)0.23090 (11)0.61730 (10)0.0173 (2)
C30.79431 (18)0.41592 (16)0.98475 (12)0.0218 (3)
H30.8981380.4330931.0376540.026*
N40.33880 (17)0.29739 (13)0.54432 (11)0.0211 (2)
C40.72716 (18)0.51810 (15)0.96003 (12)0.0206 (3)
H40.7841760.6059890.9953190.025*
C50.57452 (16)0.48929 (13)0.88246 (11)0.0157 (2)
C60.48691 (17)0.59126 (13)0.85563 (11)0.0159 (2)
C70.54737 (18)0.72313 (14)0.90906 (12)0.0196 (3)
H70.6539400.7532780.9598030.024*
C80.4488 (2)0.81009 (14)0.88679 (13)0.0222 (3)
H80.4872460.9007000.9225700.027*
C90.2948 (2)0.76402 (15)0.81239 (13)0.0240 (3)
H90.2239790.8217690.7990970.029*
C100.24454 (19)0.63174 (15)0.75708 (14)0.0247 (3)
C110.4606 (2)0.13042 (15)0.79400 (14)0.0287 (3)
H11A0.3748500.1087090.8291250.043*
H11B0.5331640.0686610.7974540.043*
H11C0.4095250.1251790.7169420.043*
C120.0821 (3)0.5765 (2)0.6712 (2)0.0523 (7)
H12A0.1005420.5461890.5990230.078*
H12B0.0178810.6441340.6698710.078*
H12C0.0216710.5031240.6886610.078*
C130.03848 (19)0.20159 (14)0.66175 (13)0.0217 (3)
C140.1938 (2)0.13117 (16)0.59615 (16)0.0294 (3)
H140.2795770.1118640.6285770.035*
C150.2222 (2)0.08956 (17)0.48344 (16)0.0331 (4)
H150.3283500.0429580.4376750.040*
C160.0952 (2)0.11615 (16)0.43760 (14)0.0279 (3)
H160.1121190.0863130.3604200.034*
C170.05785 (19)0.18743 (14)0.50662 (12)0.0196 (3)
C180.2030 (2)0.21916 (14)0.46699 (12)0.0215 (3)
C190.2026 (3)0.16910 (16)0.35783 (13)0.0293 (3)
H190.1056730.1159250.3043630.035*
C200.3465 (3)0.19880 (19)0.32964 (15)0.0370 (4)
H200.3498670.1656520.2561780.044*
C210.4854 (3)0.27688 (19)0.40872 (16)0.0348 (4)
H210.5852690.2967270.3901650.042*
C220.4786 (2)0.32667 (16)0.51629 (14)0.0265 (3)
C230.0002 (2)0.24806 (18)0.78440 (14)0.0296 (3)
H23A0.1079430.2328440.8181030.044*
H23B0.0842040.2002290.8087400.044*
H23C0.0022810.3415240.8066340.044*
C240.6249 (2)0.41315 (19)0.60455 (16)0.0332 (4)
H24A0.5933800.4907050.6424760.050*
H24B0.7116240.4396910.5716190.050*
H24C0.6656840.3657530.6574140.050*
Hf10.0000001.0000001.0000000.02373 (3)
F10.09274 (14)0.99551 (11)0.87132 (10)0.0369 (2)
F20.05307 (12)0.80472 (9)0.95921 (9)0.0312 (2)
F30.22038 (12)1.00043 (10)1.09439 (10)0.0341 (2)
O10.1061 (5)0.6264 (4)0.8063 (3)0.0338 (12)0.336 (5)
H1A0.0146950.6003720.8237260.051*0.336 (5)
H1B0.0972330.7026060.8505090.051*0.336 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01904 (8)0.01683 (8)0.01581 (8)0.00282 (6)0.00052 (6)0.00350 (6)
N10.0167 (5)0.0146 (5)0.0154 (5)0.0047 (4)0.0031 (4)0.0040 (4)
C10.0211 (6)0.0187 (6)0.0178 (6)0.0077 (5)0.0063 (5)0.0067 (5)
N20.0177 (5)0.0158 (5)0.0213 (6)0.0045 (4)0.0018 (4)0.0058 (4)
C20.0208 (6)0.0249 (7)0.0215 (7)0.0115 (5)0.0098 (5)0.0119 (5)
N30.0197 (5)0.0142 (5)0.0161 (5)0.0046 (4)0.0013 (4)0.0035 (4)
C30.0148 (6)0.0293 (7)0.0227 (7)0.0063 (5)0.0039 (5)0.0105 (6)
N40.0247 (6)0.0214 (6)0.0215 (6)0.0094 (5)0.0074 (5)0.0106 (5)
C40.0159 (6)0.0207 (7)0.0214 (7)0.0025 (5)0.0015 (5)0.0032 (5)
C50.0144 (6)0.0165 (6)0.0169 (6)0.0044 (4)0.0051 (5)0.0044 (5)
C60.0159 (6)0.0154 (6)0.0180 (6)0.0043 (4)0.0063 (5)0.0054 (5)
C70.0200 (6)0.0163 (6)0.0220 (7)0.0022 (5)0.0071 (5)0.0041 (5)
C80.0320 (8)0.0141 (6)0.0246 (7)0.0061 (5)0.0142 (6)0.0061 (5)
C90.0280 (7)0.0199 (7)0.0328 (8)0.0125 (6)0.0136 (6)0.0145 (6)
C100.0219 (7)0.0203 (7)0.0332 (8)0.0067 (5)0.0037 (6)0.0125 (6)
C110.0364 (9)0.0170 (7)0.0280 (8)0.0082 (6)0.0004 (7)0.0053 (6)
C120.0307 (10)0.0317 (10)0.0783 (16)0.0056 (8)0.0207 (10)0.0220 (10)
C130.0216 (7)0.0166 (6)0.0263 (7)0.0054 (5)0.0059 (6)0.0049 (5)
C140.0206 (7)0.0206 (7)0.0439 (10)0.0028 (6)0.0077 (7)0.0053 (7)
C150.0228 (7)0.0220 (8)0.0402 (10)0.0018 (6)0.0064 (7)0.0012 (7)
C160.0306 (8)0.0215 (7)0.0219 (7)0.0053 (6)0.0062 (6)0.0012 (6)
C170.0249 (7)0.0149 (6)0.0167 (6)0.0070 (5)0.0000 (5)0.0041 (5)
C180.0308 (8)0.0182 (6)0.0162 (6)0.0092 (6)0.0036 (6)0.0071 (5)
C190.0483 (10)0.0248 (8)0.0169 (7)0.0136 (7)0.0084 (7)0.0073 (6)
C200.0652 (13)0.0345 (9)0.0250 (8)0.0232 (9)0.0248 (9)0.0139 (7)
C210.0474 (11)0.0339 (9)0.0380 (10)0.0185 (8)0.0264 (9)0.0177 (8)
C220.0308 (8)0.0270 (8)0.0318 (8)0.0131 (6)0.0155 (7)0.0162 (6)
C230.0297 (8)0.0349 (9)0.0272 (8)0.0077 (7)0.0141 (7)0.0077 (7)
C240.0258 (8)0.0366 (9)0.0427 (10)0.0071 (7)0.0154 (7)0.0154 (8)
Hf10.01372 (4)0.02043 (5)0.04096 (6)0.00568 (3)0.00576 (3)0.01683 (4)
F10.0372 (6)0.0331 (6)0.0534 (7)0.0157 (5)0.0229 (5)0.0215 (5)
F20.0218 (5)0.0179 (4)0.0518 (6)0.0039 (3)0.0038 (4)0.0125 (4)
F30.0193 (4)0.0218 (5)0.0541 (7)0.0064 (4)0.0039 (4)0.0100 (4)
O10.036 (2)0.035 (2)0.0227 (19)0.0034 (16)0.0075 (15)0.0029 (15)
Geometric parameters (Å, º) top
Cu1—N12.0229 (12)C12—H12B0.9800
Cu1—N22.0414 (12)C12—H12C0.9800
Cu1—N32.0121 (12)C13—C141.391 (2)
Cu1—N42.0659 (13)C13—C231.497 (2)
N1—C11.3487 (17)C14—H140.9500
N1—C51.3548 (18)C14—C151.382 (3)
C1—C21.393 (2)C15—H150.9500
C1—C111.497 (2)C15—C161.384 (3)
N2—C61.3558 (18)C16—H160.9500
N2—C101.3476 (19)C16—C171.392 (2)
C2—H20.9500C17—C181.479 (2)
C2—C31.381 (2)C18—C191.399 (2)
N3—C131.344 (2)C19—H190.9500
N3—C171.3607 (19)C19—C201.381 (3)
C3—H30.9500C20—H200.9500
C3—C41.386 (2)C20—C211.380 (3)
N4—C181.356 (2)C21—H210.9500
N4—C221.347 (2)C21—C221.399 (2)
C4—H40.9500C22—C241.495 (3)
C4—C51.3915 (19)C23—H23A0.9800
C5—C61.4845 (19)C23—H23B0.9800
C6—C71.389 (2)C23—H23C0.9800
C7—H70.9500C24—H24A0.9800
C7—C81.390 (2)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C8—C91.380 (2)Hf1—F1i2.0111 (11)
C9—H90.9500Hf1—F12.0111 (11)
C9—C101.392 (2)Hf1—F2i2.0033 (9)
C10—C121.500 (2)Hf1—F22.0033 (9)
C11—H11A0.9800Hf1—F3i1.9945 (10)
C11—H11B0.9800Hf1—F31.9945 (10)
C11—H11C0.9800O1—H1A0.8700
C12—H12A0.9800O1—H1B0.8699
N1—Cu1—N281.22 (5)H12B—C12—H12C109.5
N1—Cu1—N4116.52 (5)N3—C13—C14121.15 (15)
N2—Cu1—N4120.35 (5)N3—C13—C23116.98 (14)
N3—Cu1—N1136.20 (5)C14—C13—C23121.87 (15)
N3—Cu1—N2126.39 (5)C13—C14—H14120.3
N3—Cu1—N480.94 (5)C15—C14—C13119.42 (17)
C1—N1—Cu1127.24 (10)C15—C14—H14120.3
C1—N1—C5119.15 (12)C14—C15—H15120.2
C5—N1—Cu1112.66 (9)C14—C15—C16119.63 (15)
N1—C1—C2121.40 (13)C16—C15—H15120.2
N1—C1—C11116.99 (13)C15—C16—H16120.6
C2—C1—C11121.58 (13)C15—C16—C17118.80 (15)
C6—N2—Cu1112.15 (9)C17—C16—H16120.6
C10—N2—Cu1128.64 (10)N3—C17—C16121.28 (15)
C10—N2—C6119.08 (13)N3—C17—C18115.28 (13)
C1—C2—H2120.3C16—C17—C18123.44 (14)
C3—C2—C1119.31 (13)N4—C18—C17115.53 (13)
C3—C2—H2120.3N4—C18—C19121.93 (16)
C13—N3—Cu1125.50 (10)C19—C18—C17122.51 (15)
C13—N3—C17119.68 (13)C18—C19—H19120.8
C17—N3—Cu1114.43 (10)C20—C19—C18118.41 (17)
C2—C3—H3120.2C20—C19—H19120.8
C2—C3—C4119.57 (13)C19—C20—H20120.2
C4—C3—H3120.2C21—C20—C19119.67 (16)
C18—N4—Cu1113.01 (10)C21—C20—H20120.2
C22—N4—Cu1127.54 (11)C20—C21—H21120.1
C22—N4—C18119.43 (14)C20—C21—C22119.72 (18)
C3—C4—H4120.7C22—C21—H21120.1
C3—C4—C5118.63 (13)N4—C22—C21120.82 (17)
C5—C4—H4120.7N4—C22—C24117.38 (15)
N1—C5—C4121.89 (13)C21—C22—C24121.80 (16)
N1—C5—C6115.22 (12)C13—C23—H23A109.5
C4—C5—C6122.86 (13)C13—C23—H23B109.5
N2—C6—C5115.48 (12)C13—C23—H23C109.5
N2—C6—C7121.72 (13)H23A—C23—H23B109.5
C7—C6—C5122.77 (13)H23A—C23—H23C109.5
C6—C7—H7120.7H23B—C23—H23C109.5
C6—C7—C8118.65 (14)C22—C24—H24A109.5
C8—C7—H7120.7C22—C24—H24B109.5
C7—C8—H8120.2C22—C24—H24C109.5
C9—C8—C7119.60 (14)H24A—C24—H24B109.5
C9—C8—H8120.2H24A—C24—H24C109.5
C8—C9—H9120.5H24B—C24—H24C109.5
C8—C9—C10119.06 (14)F1i—Hf1—F1180.00 (7)
C10—C9—H9120.5F2i—Hf1—F189.79 (5)
N2—C10—C9121.66 (14)F2—Hf1—F190.21 (5)
N2—C10—C12116.62 (15)F2—Hf1—F1i89.79 (5)
C9—C10—C12121.71 (15)F2i—Hf1—F1i90.21 (5)
C1—C11—H11A109.5F2—Hf1—F2i180.0
C1—C11—H11B109.5F3—Hf1—F190.15 (5)
C1—C11—H11C109.5F3—Hf1—F1i89.85 (5)
H11A—C11—H11B109.5F3i—Hf1—F1i90.15 (5)
H11A—C11—H11C109.5F3i—Hf1—F189.85 (5)
H11B—C11—H11C109.5F3—Hf1—F289.27 (4)
C10—C12—H12A109.5F3i—Hf1—F2i89.26 (4)
C10—C12—H12B109.5F3i—Hf1—F290.74 (4)
C10—C12—H12C109.5F3—Hf1—F2i90.73 (4)
H12A—C12—H12B109.5F3—Hf1—F3i180.0
H12A—C12—H12C109.5H1A—O1—H1B109.5
Cu1—N1—C1—C2167.25 (11)C5—N1—C1—C20.7 (2)
Cu1—N1—C1—C1114.69 (19)C5—N1—C1—C11177.33 (13)
Cu1—N1—C5—C4167.08 (11)C5—C6—C7—C8173.20 (13)
Cu1—N1—C5—C614.67 (15)C6—N2—C10—C91.4 (2)
Cu1—N2—C6—C511.14 (15)C6—N2—C10—C12178.95 (17)
Cu1—N2—C6—C7171.02 (11)C6—C7—C8—C90.3 (2)
Cu1—N2—C10—C9173.90 (12)C7—C8—C9—C103.1 (2)
Cu1—N2—C10—C125.7 (2)C8—C9—C10—N22.6 (2)
Cu1—N3—C13—C14170.17 (12)C8—C9—C10—C12176.97 (18)
Cu1—N3—C13—C239.84 (19)C10—N2—C6—C5172.79 (13)
Cu1—N3—C17—C16171.27 (11)C10—N2—C6—C75.1 (2)
Cu1—N3—C17—C189.88 (15)C11—C1—C2—C3179.25 (14)
Cu1—N4—C18—C171.01 (15)C13—N3—C17—C162.0 (2)
Cu1—N4—C18—C19179.23 (12)C13—N3—C17—C18176.87 (12)
Cu1—N4—C22—C21177.63 (12)C13—C14—C15—C161.3 (3)
Cu1—N4—C22—C242.0 (2)C14—C15—C16—C171.6 (2)
N1—C1—C2—C31.3 (2)C15—C16—C17—N30.0 (2)
N1—C5—C6—N22.27 (18)C15—C16—C17—C18178.70 (15)
N1—C5—C6—C7175.55 (13)C16—C17—C18—N4175.36 (14)
C1—N1—C5—C42.6 (2)C16—C17—C18—C196.4 (2)
C1—N1—C5—C6175.69 (12)C17—N3—C13—C142.3 (2)
C1—C2—C3—C41.5 (2)C17—N3—C13—C23177.72 (13)
N2—C6—C7—C84.5 (2)C17—C18—C19—C20176.75 (14)
C2—C3—C4—C50.3 (2)C18—N4—C22—C210.3 (2)
N3—C13—C14—C150.6 (2)C18—N4—C22—C24179.92 (14)
N3—C17—C18—N45.82 (18)C18—C19—C20—C210.4 (3)
N3—C17—C18—C19172.39 (13)C19—C20—C21—C220.9 (3)
C3—C4—C5—N12.3 (2)C20—C21—C22—N41.3 (3)
C3—C4—C5—C6175.77 (13)C20—C21—C22—C24179.15 (16)
N4—C18—C19—C201.4 (2)C22—N4—C18—C17177.22 (13)
C4—C5—C6—N2179.49 (13)C22—N4—C18—C191.0 (2)
C4—C5—C6—C72.7 (2)C23—C13—C14—C15179.34 (16)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···F20.871.502.328 (4)156
Aromatic ππ stacking interactions (Å, °) in (I) top
Descriptiontypedpy–pyinterplanar angleinterplanar distance
Heterochiralface-to-face3.6967 (12)03.347
Heterochiralparallel displaced5.3726 (13)03.708
Aromatic ππ stacking interactions (Å, °) in (II) top
Descriptiontypedpy–pyinterplanar angleinterplanar distance
Heterochiralface-to-face3.7016 (8)03.355
Heterochiralparallel displaced5.3777 (11)03.678
Coordination geometry (Å, °) of Cu(dmbpy)2+ cations in (I) top
N—Cu—NN—CuCu—NN—Cu—N
N1—Cu1—N22.0208 (16)2.0348 (17)81.40 (7)
N1—Cu1—N32.0123 (17)136.29 (7)
N1—Cu1—N42.0616 (18)116.24 (7)
N2—Cu1—N3126.17 (7)
N2—Cu1—N4120.45 (7)
N3—Cu1—N481.05 (7)
Bond distances (Å) of ZrF62– in (I) top
Zr—FDistance (Å)
Zr—F12.0113 (15)
Zr—F22.0183 (12)
Zr—F31.9955 (13)
Hydrogen-bond geometry (Å, °) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F20.870 (3)1.4674 (14)2.337 (3)177.1 (2)
Coordination geometry (Å, °) of Cu(dmbpy)2+ cations in (II) top
N—Cu—NN—CuCu—NN—Cu—N
N1—Cu1—N22.0229 (12)2.0414 (12)81.22 (5)
N1—Cu1—N32.0121 (12)136.20 (5)
N1—Cu1—N42.0659 (13)116.52 (5)
N2—Cu1—N3126.39 (5)
N2—Cu1—N4120.35 (5)
N3—Cu1—N480.94 (5)
Bond distances (Å) of HfF62– in (II) top
Hf—FDistance (Å)
Hf—F12.0111 (11)
Hf—F22.0033 (9)
Hf—F31.9945 (10)
Hydrogen-bond geometry (Å, °) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···F20.870 (4)1.5048 (11)2.328 (4)156.4 (3)

Acknowledgements

Single-crystal X-ray diffraction data were acquired at IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the Inter­national Institute for Nanotechnology (IIN). We thank Ms Charlotte Stern for helpful discussions.

Funding information

Funding for this research was provided by: National Science Foundation (award No. DMR-1904701).

References

First citationAdman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). J. Mol. Biol. 123, 35–47.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBozic-Weber, B., Chaurin, V., Constable, E. C., Housecroft, C. E., Meuwly, M., Neuburger, M., Rudd, J. A., Schönhofer, E. & Siegfried, L. (2012). Dalton Trans. 41, 14157–14169.  CAS PubMed Google Scholar
First citationBurke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211–1214.  CSD CrossRef CAS Google Scholar
First citationColman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M. & Venkatappa, M. P. (1978). Nature, 272, 319–324.  CrossRef CAS Google Scholar
First citationCui, G. H., Li, J. R., Gao, D. & Ng, S. W. (2005). Acta Cryst. E61, m72–m73.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267–6271.  Web of Science CSD CrossRef CAS Google Scholar
First citationHalasyamani, P. S. (2004). Chem. Mater. 16, 3586–3592.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437–2441.  CrossRef ICSD CAS Web of Science Google Scholar
First citationItoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). Dalton Trans. pp. 1066–1078.  Web of Science CSD CrossRef Google Scholar
First citationKunz, M. & Brown, I. D. (1995). J. Solid State Chem. 115, 395–406.  CrossRef CAS Web of Science Google Scholar
First citationLi, J., Yang, X., Yu, Z., Gurzadyan, G. G., Cheng, M., Zhang, F., Cong, J., Wang, W., Wang, H., Li, X., Kloo, L., Wang, M. & Sun, L. (2017). RSC Adv. 7, 4611–4615.  CSD CrossRef CAS Google Scholar
First citationMcKenzie, E. D. (1971). Coord. Chem. Rev. 6, 187–216.  CrossRef CAS Web of Science Google Scholar
First citationMei, C., Wang, J. & Shan, W. (2011). Jiegou Huaxue, 30, 1194.  Google Scholar
First citationNisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555–7566.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNisbet, M. L., Wang, Y. & Poeppelmeier, K. R. (2021). Cryst. Growth Des. 21, 552–562.  CSD CrossRef CAS Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVallee, B. L. & Williams, R. (1968). PNAS USA 59, 498–505.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds