research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(E)-[4-(4-Hy­dr­oxy­phen­yl)butan-2-yl­­idene]amino}-3-phenyl­thio­urea: crystal structure, Hirshfeld surface analysis and computational study

crossmark logo

aDepartment of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 50932 Setapak, Kuala Lumpur, Malaysia, bResearch Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia, and dDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 June 2021; accepted 25 June 2021; online 13 July 2021)

The title thio­urea derivative, C17H19N3OS, adopts a U-shaped conformation with the dihedral angle between the terminal aromatic rings being 73.64 (5)°. The major twist in the mol­ecule occurs about the ethane bond with the Ci—Ce—Ce—Cb torsion angle being −78.12 (18)°; i = imine, e = ethane and b = benzene. The configuration about the imine bond is E, the N-bound H atoms lie on opposite sides of the mol­ecule and an intra­molecular amine-N—H⋯N(imine) hydrogen bond is evident. In the mol­ecular packing, hydroxyl-O—H⋯S(thione) and amine-N—H⋯O hydrogen bonding feature within a linear, supra­molecular chain. The chains are connected into a layer in the ab plane by a combination of methyl­ene-C—H⋯S(thione), methyl­ene-C—H⋯O(hydrox­yl), methyl-C—H⋯π(phen­yl) and phenyl-C—H⋯π(hy­droxy­benzene) inter­actions. The layers stack without directional inter­actions between them. The analysis of the calculated Hirshfeld surface highlights the presence of weak methyl-C—H⋯O(hydrox­yl) and H⋯H inter­actions in the inter-layer region. Computational chemistry indicates that dispersion energy is the major contributor to the overall stabilization of the mol­ecular packing.

1. Chemical context

Raspberry ketone, also known as 4-(4-hy­droxy­phen­yl)-2-butanone (C10H12O2), is a natural phenolic compound found in raspberries, kiwi fruit, brewed coffee, yew and orchid flowers (Lee, 2016[Lee, J. (2016). NFS J. 2, 15-8.]). This ketone is the primary compound responsible for the fruity aroma and has long been used commercially as a fragrance and flavouring agent for cosmetics, perfume, food and beverages. The pharmaceutical attributes exhibited by this ketone include anti-androgenic activity in human breast cancer cells, de-pigmentation, anti-inflammatory activity and cardioprotective action in rats (Dziduch et al., 2020[Dziduch, K., Kołodziej, P., Paneth, A., Bogucka-Kocka, A. & Wujec, M. (2020). Molecules, 25, 2770.]; Yuan et al., 2020[Yuan, B., Zhao, D., Kshatriya, D., Bello, N. T., Simon, J. E. & Wu, Q. (2020). J. Chromatogr. B, 1149, 122146.]). In this work, raspberry ketone was condensed with 4-phenyl-3-thio­semicarbazide to form the title thio­urea derivative, C17H19N3OS, hereafter designated as (I)[link]. Such compounds are of much inter­est due to their attractive and widespread pharmacological activities including anti-bacterial, anti-fungal, anti-tubercular, anti-convulsant, anti-tumour, anti-oxidant, anti-malarial and anti-helmintic properties (Dincel & Guzeldemirci, 2020[Dincel, E. D. & Guzeldemirci, N. U. (2020). Med-Science, 9, 305-313.]). In a continuation of on-going studies on related derivatives and complexes (Tan, Ho et al. 2020[Tan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439-1441.]; Tan, Kwong et al. 2020a[Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503-1505.],b[Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539-1541.]), herein the synthesis, structure determination, Hirshfeld surface analysis and computational chemistry of (I)[link] are reported.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises an almost planar central chromophore with the r.m.s. deviation for the C1, N1–N3 and S1 atoms being 0.0039 Å; the maximum deviation from the least-squares plane is 0.0054 (12) Å for the C1 atom. The pendant C2 and C8 atoms lie 0.065 (3) and 0.072 (2) Å out of and to the same side of the central plane. While the N1-bound phenyl ring is approximately co-planar with the central residue, forming a dihedral angle of 7.94 (8)°, the terminal 4-hy­droxy­benzene ring is not, forming a dihedral angle of 67.00 (4)°; the dihedral angle between the rings is 73.64 (5)°. This conformation arises as there is a twist about the ethane bond, i.e. the C8—C10—C11—C12 torsion angle is −78.12 (18)°. Globally, both aromatic residues lie to the same side of the mol­ecule so that it has a U-shaped conformation.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The C1—S1 bond length is 1.6910 (15) Å, the C1—N1 bond [1.340 (2) Å] is marginally shorter than the C1—N2 [1.356 (2) Å] bond, the formally C8—N3 double bond is 1.284 (2) Å and N2—N3 is 1.3857 (18) Å. These values, coupled with the observed planarity in this region of the mol­ecule, is suggestive of some delocalization of π-electron density over this residue. The configuration about the C8=N3 imine bond is E. The N-bound H atoms lie to opposite sides of the mol­ecule, a conformation that allows for the formation of an intra­molecular amine-N—H⋯N(imine) hydrogen bond, Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C2–C7) and (C12–C17) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.88 (2) 2.10 (2) 2.6214 (19) 117 (1)
O1—H1O⋯S1i 0.84 (1) 2.34 (2) 3.1489 (13) 162 (2)
N2—H2N⋯O1ii 0.87 (2) 2.31 (2) 3.1219 (19) 155 (2)
C11—H11A⋯S1iii 0.99 2.84 3.7936 (17) 163
C11—H11B⋯O1iv 0.99 2.58 3.438 (2) 145
C9—H9ACg1iii 0.98 2.90 3.6862 (19) 138
C4—H4⋯Cg2v 0.95 2.90 3.6939 (19) 142
C6—H6⋯Cg2vi 0.98 2.84 3.601 (2) 138
Symmetry codes: (i) [x-1, y+1, z]; (ii) [x+1, y-1, z]; (iii) [-x+2, -y+1, -z+1]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z+1]; (vi) [-x+1, -y+2, -z+1].

3. Supra­molecular features

In the crystal, hydrogen bonding leads to the formation of a linear, supra­molecular chain parallel to [[\overline{4}]73]. These chains arise because the hydroxyl-O—H atom forms a hydrogen bond to the thione-S1 atom and the hydroxyl-O1 atom simultaneously accepts a N—H⋯O hydrogen bond from the amine-N2—H atom, Fig. 2[link](a). They are connected into a supra­molecular layer parallel to the c axis via methyl­ene-C—H⋯S(thione) and methyl­ene-C—H⋯O(hydrox­yl) inter­actions as well as methyl-C—H⋯π(phen­yl) and phenyl-C—H⋯π(hy­droxy­benzene) contacts, Table 1[link] and Fig. 2[link](b). The layers thus formed are two mol­ecules thick and stack along the c-axis direction without directional inter­actions between them, Fig. 2[link](c). Finally, as indicated in Fig. 2[link](b) and (c), the supra­molecular connectivity brings two sulfur atoms into close proximity, with an S1⋯S1i separation of 3.3534 (6) Å, cf. the sum of the van der Waals radii of 3.60 Å (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]); symmetry operation (i): 2 − x, −y, 1 − z.

[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) the supra­molecular chain sustained by hy­droxy-O—H⋯S(thione) and amine-N—H⋯O(hydrox­yl) hydrogen bonding shown as orange and blue dashed lines, respectively (non-participating H atoms omitted), (b) the supra­molecular layer whereby the chains of (a) are connected by methyl­ene-C—H⋯O(hy­droxy) (pink dashed lines), methyl­ene-C—H⋯O(thione) (green) and C—H⋯π (purple) inter­actions (non-participating H atoms omitted) and (c) a view of the unit-cell contents shown in projection down the a axis highlighting the stacking of layers.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis comprising the calculation of the dnorm surface (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]), electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]), using the wave function at the HF/STO-3G level of theory, and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated to further elucidate the inter­actions in the crystal of (I)[link], in particular within the inter-layer region. This study was carried out using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) following literature procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 3[link](a), i.e. near the amine-H2N and thione-S1 atoms, correspond to the amine-N2—H2N⋯O1(hydrox­yl), hydroxyl-O1—H1O⋯S1(thione) hydrogen bonds and the thione-S1⋯S1(thione) short contact; these and other short contacts calculated using Crystal Explorer 17 are collated in Table 2[link]. These hydrogen bonds are also reflected in the Hirshfeld surface mapped over the electrostatic potential shown in Fig. 3[link](b), where the positive electrostatic potential (blue) and negative electrostatic potential (red) regions are observed around the amine-H2N and thione-S1 atoms, respectively. The faint red spots appearing near the thione-S1, hydroxyl-O1 and methyl­ene-H11A and H11B atoms (Fig. 4[link]) correspond to methyl­ene-C—H⋯S(thione) and methyl­ene-C—H⋯O1(hydrox­yl) inter­actions, with separations ∼0.2 Å shorter than the sum of their respective van der Waals radii, Table 2[link]. The methyl-C9—H9Aπ(C2–C7; Cg1) and phenyl-C6—H6⋯π(C12–C17; Cg2) inter­actions are shown as faint red spots on the dnorm surface in Fig. 5[link](a) and as two distinctive orange `potholes' on the shape-index-mapped over Hirshfeld surface in Fig. 5[link](b). It is noted that the phenyl-C4—H4⋯π(C12–C17, Cg2) inter­action, Table 1[link], was not manifested on the dnorm-mapped Hirshfeld surface. However, this inter­action clearly shows up as an orange `pothole' on the shape-index-mapped Hirshfeld surface in Fig. 6[link].

Table 2
A summary of short inter­atomic contacts (Å) for (I)a

Contact Distance Symmetry operation
O1—H1O⋯S1b 2.20 x − 1, y + 1, z
N2—H2N⋯O1b 2.19 x + 1, y − 1, z
S1⋯S1 3.35 x + 2, −y + 1, −z + 1
C11—H11A⋯S1 2.75 x + 2, −y + 1, −z + 1
C11—H11B⋯O1 2.50 x + 1, y, z
C9—H9ACg(C2–C7) 2.90 x + 2, −y + 1, −z + 1
C6—H6⋯Cg(C12–C17) 2.84 x + 1, −y + 2, −z + 1
C4—H4⋯Cg(C12–C17) 2.90 x + 1, −y + 1, −z + 1
H1O⋯H2N 2.05 x − 1, y + 1, z
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) with the X—H bond lengths adjusted to their neutron values. (b) This contact corresponds to a conventional hydrogen bond.
[Figure 3]
Figure 3
Views of the Hirshfeld surface for (I)[link] mapped over (a) dnorm in the range −0.490 to +1.188 arbitrary units and (b) the calculated electrostatic potential in the range of −0.072 to +0.133 atomic units.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped for (I)[link] over (a) dnorm in the range −0.490 to +1.188 arbitrary units.
[Figure 5]
Figure 5
Views of the Hirshfeld surface mapped for (I)[link] over (a) dnorm in the range −0.490 to +1.188 arbitrary units and (b) the shape-index property, each highlighting the methyl-C9—H9Aπ(C2–C7; Cg1) and phenyl-C6—H6⋯π(C12–C17; Cg2) inter­actions.
[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped for (I)[link] over the shape-index property highlighting phenyl-C4—H4⋯π(C12–C17; Cg2) inter­action.

The overall two-dimensional fingerprint plot computed for (I)[link] is shown in Fig. 7[link](a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯O/O⋯H contacts are illustrated in Fig. 7[link](b)–(e), respectively. The percentage contributions to the Hirshfeld surface of (I)[link] from the different inter­atomic contacts are summarized in Table 3[link]. The H⋯H contacts are the most prominent of all contacts and contribute 49.6% to the entire surface. The H⋯H contact manifested as a duckbill peak tipped at de = di ∼2.1 Å, Fig. 7[link](b), corresponds to the intra-layer H1O⋯H2N contact listed in Table 2[link]. The H⋯C/C⋯H contacts contribute 22.6% to the Hirshfeld surface, Fig. 7[link](c), reflecting the significant C—H⋯π inter­actions evinced in the packing analysis, Table 1[link]. Consistent with the O—H⋯S and N—H⋯O hydrogen bonds occurring in the crystal, H⋯S/S⋯H and H⋯O/O⋯H contacts contribute 10.5 and 6.4%, respectively, to the overall Hirshfeld surface. These two contacts appear as two sharp spikes in the fingerprint plots at de = di ≃ 2.2 Å in Fig. 7[link](d) and (e), respectively. The contributions from the other six inter­atomic contacts summarized in Table 3[link] have a reduced influence on the calculated Hirshfeld surface of (I)[link], as each contributes less than 3.0%.

Table 3
The percentage contributions from inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 49.6
H⋯C/C⋯H 22.6
H⋯S/S⋯H 10.5
H⋯O/O⋯H 6.4
C⋯C 2.9
N⋯C/C⋯N 2.9
H⋯N/N⋯H 2.8
N⋯N 1.0
S⋯S 0.8
S⋯C/C⋯S 0.5
[Figure 7]
Figure 7
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H and (e) H⋯O/O⋯H contacts.

5. Computational chemistry

The energy frameworks were calculated for (I)[link] by summing the four energy components – the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energy components (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The individual energy components as well as the total energy for the identified inter­molecular inter­actions are summarized in Table 4[link]. As the intra-layer region is mainly consolidated by C—H⋯π and C—H⋯S/O inter­actions, the Edis component makes the major contribution to the inter­action energies. The most significant stabilization energies are found in the intra-layer region, as outlined in Supra­molecular Features. The S1⋯S1 short contact is dominated by the Eele (−8.9 kJ mol−1) and Erep (12.2 kJ mol−1) terms and having a total energy of 11.7 kJ mol−1 is non-attractive.

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
Intra-layer region            
C11—H11A⋯S1iii +            
C9—H9ACg(C2—C7)v 5.43 −38.9 −11.6 −84.9 76.0 −76.7
C4—H4⋯Cg(C12—C17)vi 5.30 −26.8 −7.3 −95.7 66.8 −75.8
O1—H1O⋯S1i +            
N2—H2N⋯O1ii 10.02 −64.6 −14.9 −21.3 84.4 −45.7
C6—H6⋯Cg(C12—C17)vii 7.12 −5.8 −2.1 −44.2 30.4 −27.4
C11—H11B⋯O1iv 8.06 −2.2 −1.0 −9.9 6.5 −7.7
C6⋯H1Oviii 11.11 −0.3 −0.4 −3.5 0.0 −3.6
S1⋯S1ix 11.56 8.9 −1.8 −4.4 12.2 11.7
Inter-layer region            
C9—H9B⋯O1x +            
H10A⋯H16x 8.90 −11.2 −2.7 −28.8 13.3 −30.7
H10A⋯H10Bxi +            
H10B⋯H17xi 10.63 0.8 −1.8 −24.9 17.1 −11.6
H4⋯H17xii +            
H5⋯H16xii 12.23 −4.0 −0.5 −11.1 6.6 −10.2
H9C⋯H9Cxiii 10.35 −2.8 −1.4 −9.5 7.3 −7.8
H5⋯H9Bxiv 13.13 1.5 −0.3 −3.9 1.2 −1.4
Symmetry codes: (i) x − 1, y + 1, z; (ii) x + 1, y − 1, z; (iii) −x + 2, −y + 1, −z + 1; (iv) x + 1, y, z; (v) −x + 2, −y + 1, −z + 1; (vi) −x + 1, −y + 1, −z + 1; (vii) −x + 1, −y + 2, −z + 1; (viii) −x, −y + 2, −z + 1; (ix) −x + 2, −y, −z + 1; (x) −x + 1, −y + 2, −z; (xi) −x + 2, −y + 2, −z; (xii) x, y − 1, z + 1; (xiii) −x + 2, −y, −z + 1; (xiv) x − 1, y, z + 1.

The stabilization energies in the inter-layer region are dominated by the Edis component. The greatest stabilization energy in the inter-layer region arises from methyl-C9—H9B⋯O1(hydrox­yl) [2.87 Å; −x + 1, −y + 2, −z] and methyl­ene-H10⋯H16(hy­droxy­benzene) inter­actions [2.59 Å; −x + 1, −y + 2, −z], which sum to −30.7 kJ mol−1. Generally, the long-range H⋯H contacts are the major inter­actions stabilizing the mol­ecules within the inter-layer region.

Views of the energy framework diagrams down the a axis direction are shown in Fig. 8[link] and serve to emphasize the contribution of dispersion forces to the overall mol­ecular packing. The total Eele of all pairwise inter­actions sum to −145.4 kJ mol−1, while the Edis totals −342.1 kJ mol−1.

[Figure 8]
Figure 8
Perspective views of the energy frameworks calculated for (I)[link] showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the a axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 55 with a cut-off value of 5 kJ mol−1.

6. Database survey

In the crystallographic literature, there are two precedents for mol­ecules related to (I)[link] in which the imine bond is connected to an aromatic residue via an ethane link. Each of these is a N-methyl species, i.e. MeN(H)C(=S)N(H)N=C(Me)CH2CH2Ar, one with Ar = phenyl (Tan, Kwong et al., 2020a[Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503-1505.]) and the other with Ar = 4-meth­oxy­benzene (Tan et al., 2012[Tan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461-o1462.]). In the former, the mol­ecule has a distinctive U-shaped conformation with a twist about the CH2—CH2 bond [the Ci—Cm—Cm—Cp (i = imine, m = methyl­ene, p = phen­yl) torsion angle = −62.76 (16)°], a conformation stabilized, at least in part, by an intra­molecular amine-N—H⋯π(phen­yl) inter­action. By contrast, in the species with Ar = 4-meth­oxy­benzene, the mol­ecule is close to planar as indicated by the Ci—Cm—Cm—Cp torsion angles of 177.51 (12) and −175.80 (12)°, respectively, for the two independent molecules comprising the asymmetric unit. Thus, to a first approximation, the conformation observed in (I)[link] matches that seen in the species with Ar = phenyl, even though no intra­molecular N—H⋯π(hy­droxy­benzene) inter­action was noted in (I)[link].

7. Synthesis and crystallization

4-Phenyl-3-thio­semicarbazide (10 mmol) dissolved in hot absolute ethanol (50 ml) was combined with 4-(4-hy­droxy­phen­yl)-2-butanone (10 mmol), dissolved in hot absolute ethanol (50 ml) with a few drops of concentrated hydro­chloric acid added as catalyst. The mixture was heated (348 K) and stirred for about 30 min. The mixture was allowed to cool to room temperature while stirring. The white precipitate was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature in mixed solvents of dimethyformamide and aceto­nitrile (1:2 v/v) by slow evaporation. 1H NMR (500 MHz, CDCl3, referenced to TMS): δ 9.14 (s, 1H), 8.59 (s, 1H), 7.59 (d, 2H), 7.37 (t, 2H), 7.22 (t, 1H), 7.03 (d, 2H), 6.76 (d, 2H), 5.46 (s, 1H), 2.83 (t, 2H), 2.61 (t, 2H), 1.90 (s, 3H). 13C NMR (500 MHz, CDCl3, referenced to solvent, 77.16 ppm): δ 176.22, 154.16, 152.02, 137.93, 132.72, 129.39, 128.84, 126.16, 124.39, 115.57, 40.38, 31.58, 16.19.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound and N-bound H atoms were located in a difference-Fourier map but were refined with O—H = 0.84±0.01 and N—H = 0.88±0.01 Å distance restraints, respectively, and with Uiso(H) set to 1.5Ueq(O) and 1.2Ueq(N).

Table 5
Experimental details

Crystal data
Chemical formula C17H19N3OS
Mr 313.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0605 (6), 9.5635 (6), 11.4397 (6)
α, β, γ (°) 70.578 (5), 82.671 (5), 68.723 (6)
V3) 774.95 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.89
Crystal size (mm) 0.35 × 0.21 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.52, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 15291, 2982, 2712
Rint 0.032
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections 2982
No. of parameters 209
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.21
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-{(E)-[4-(4-Hydroxyphenyl)butan-2-ylidene]amino}-3-phenylthiourea top
Crystal data top
C17H19N3OSZ = 2
Mr = 313.41F(000) = 332
Triclinic, P1Dx = 1.343 Mg m3
a = 8.0605 (6) ÅCu Kα radiation, λ = 1.5418 Å
b = 9.5635 (6) ÅCell parameters from 7107 reflections
c = 11.4397 (6) Åθ = 4–72°
α = 70.578 (5)°µ = 1.89 mm1
β = 82.671 (5)°T = 100 K
γ = 68.723 (6)°Plate, colourless
V = 774.95 (9) Å30.35 × 0.21 × 0.04 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
2712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 71.9°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
h = 99
Tmin = 0.52, Tmax = 0.93k = 1111
15291 measured reflectionsl = 1313
2982 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2814P]
where P = (Fo2 + 2Fc2)/3
2982 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93080 (5)0.19624 (4)0.46989 (4)0.02796 (15)
O10.12066 (15)1.17646 (14)0.21473 (11)0.0292 (3)
H1O0.082 (3)1.159 (3)0.2882 (11)0.044*
N10.77812 (17)0.49550 (15)0.48469 (12)0.0233 (3)
H1N0.774 (2)0.5919 (13)0.4427 (16)0.028*
N20.95702 (17)0.46117 (15)0.31940 (12)0.0237 (3)
H2N1.024 (2)0.3997 (19)0.2772 (15)0.028*
N30.92493 (17)0.62221 (15)0.27822 (12)0.0235 (3)
C10.8821 (2)0.39389 (18)0.42601 (14)0.0223 (3)
C20.6701 (2)0.47628 (18)0.59294 (14)0.0219 (3)
C30.6397 (2)0.33626 (18)0.66028 (15)0.0247 (3)
H30.6957000.2437950.6361700.030*
C40.5271 (2)0.33353 (19)0.76263 (15)0.0254 (3)
H40.5066010.2382030.8084070.030*
C50.4437 (2)0.4669 (2)0.79964 (15)0.0268 (4)
H50.3669700.4632570.8700390.032*
C60.4742 (2)0.6063 (2)0.73207 (16)0.0300 (4)
H60.4178420.6987030.7562020.036*
C70.5864 (2)0.61034 (19)0.62989 (15)0.0271 (4)
H70.6065830.7058600.5842980.033*
C80.9943 (2)0.67483 (18)0.17277 (15)0.0241 (3)
C91.1028 (2)0.5771 (2)0.09267 (16)0.0323 (4)
H9A1.2245840.5223960.1242350.048*
H9B1.1049850.6457040.0074330.048*
H9C1.0495510.4992500.0940120.048*
C100.9738 (2)0.84652 (19)0.12493 (15)0.0265 (4)
H10A0.9091320.8930890.0454470.032*
H10B1.0942420.8540180.1063610.032*
C110.8784 (2)0.94844 (19)0.20771 (15)0.0269 (4)
H11A0.9224350.8894810.2933620.032*
H11B0.9117041.0444990.1798240.032*
C120.6776 (2)0.99862 (17)0.21054 (15)0.0234 (3)
C130.5843 (2)0.97100 (18)0.32206 (15)0.0254 (3)
H130.6489320.9125610.3969990.030*
C140.3991 (2)1.02660 (18)0.32684 (15)0.0260 (3)
H140.3385501.0053710.4040550.031*
C150.3032 (2)1.11362 (18)0.21756 (15)0.0247 (3)
C160.3935 (2)1.14113 (18)0.10509 (15)0.0257 (3)
H160.3288031.1988940.0301210.031*
C170.5781 (2)1.08424 (18)0.10229 (15)0.0253 (3)
H170.6383111.1039910.0248120.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (2)0.0182 (2)0.0289 (2)0.00720 (17)0.00688 (16)0.00644 (16)
O10.0263 (6)0.0318 (6)0.0311 (6)0.0113 (5)0.0057 (5)0.0126 (5)
N10.0245 (7)0.0172 (6)0.0265 (7)0.0084 (5)0.0031 (5)0.0044 (5)
N20.0239 (7)0.0194 (6)0.0260 (7)0.0073 (5)0.0050 (5)0.0067 (5)
N30.0212 (6)0.0201 (6)0.0280 (7)0.0085 (5)0.0002 (5)0.0044 (5)
C10.0192 (7)0.0218 (8)0.0252 (8)0.0069 (6)0.0010 (6)0.0064 (6)
C20.0190 (7)0.0232 (8)0.0231 (7)0.0072 (6)0.0002 (6)0.0067 (6)
C30.0243 (8)0.0222 (8)0.0287 (8)0.0088 (6)0.0013 (6)0.0086 (6)
C40.0253 (8)0.0247 (8)0.0260 (8)0.0116 (7)0.0008 (6)0.0046 (6)
C50.0256 (8)0.0302 (8)0.0245 (8)0.0105 (7)0.0045 (6)0.0090 (7)
C60.0338 (9)0.0255 (8)0.0311 (9)0.0089 (7)0.0041 (7)0.0124 (7)
C70.0326 (9)0.0213 (8)0.0273 (8)0.0106 (7)0.0028 (7)0.0069 (6)
C80.0177 (7)0.0250 (8)0.0266 (8)0.0068 (6)0.0010 (6)0.0045 (6)
C90.0331 (9)0.0321 (9)0.0275 (9)0.0096 (7)0.0034 (7)0.0073 (7)
C100.0222 (8)0.0257 (8)0.0284 (8)0.0110 (6)0.0025 (6)0.0021 (7)
C110.0291 (9)0.0238 (8)0.0291 (8)0.0140 (7)0.0023 (7)0.0037 (6)
C120.0287 (8)0.0174 (7)0.0270 (8)0.0116 (6)0.0008 (6)0.0069 (6)
C130.0342 (9)0.0193 (7)0.0238 (8)0.0115 (6)0.0017 (6)0.0051 (6)
C140.0352 (9)0.0218 (8)0.0250 (8)0.0143 (7)0.0076 (7)0.0100 (6)
C150.0270 (8)0.0205 (7)0.0307 (8)0.0114 (6)0.0045 (6)0.0113 (6)
C160.0294 (8)0.0239 (8)0.0243 (8)0.0096 (7)0.0002 (6)0.0076 (6)
C170.0295 (8)0.0240 (8)0.0240 (8)0.0120 (6)0.0038 (6)0.0078 (6)
Geometric parameters (Å, º) top
S1—C11.6910 (15)C8—C91.500 (2)
O1—C151.373 (2)C8—C101.501 (2)
O1—H1O0.842 (10)C9—H9A0.9800
N1—C11.340 (2)C9—H9B0.9800
N1—C21.419 (2)C9—H9C0.9800
N1—H1N0.877 (9)C10—C111.524 (2)
N2—C11.356 (2)C10—H10A0.9900
N2—N31.3857 (18)C10—H10B0.9900
N2—H2N0.874 (9)C11—C121.512 (2)
N3—C81.284 (2)C11—H11A0.9900
C2—C71.392 (2)C11—H11B0.9900
C2—C31.397 (2)C12—C131.392 (2)
C3—C41.386 (2)C12—C171.396 (2)
C3—H30.9500C13—C141.392 (2)
C4—C51.387 (2)C13—H130.9500
C4—H40.9500C14—C151.393 (2)
C5—C61.392 (2)C14—H140.9500
C5—H50.9500C15—C161.389 (2)
C6—C71.382 (2)C16—C171.387 (2)
C6—H60.9500C16—H160.9500
C7—H70.9500C17—H170.9500
C15—O1—H1O108.4 (15)H9A—C9—H9B109.5
C1—N1—C2132.42 (13)C8—C9—H9C109.5
C1—N1—H1N110.3 (13)H9A—C9—H9C109.5
C2—N1—H1N117.2 (13)H9B—C9—H9C109.5
C1—N2—N3120.90 (13)C8—C10—C11117.78 (14)
C1—N2—H2N117.6 (13)C8—C10—H10A107.9
N3—N2—H2N121.4 (13)C11—C10—H10A107.9
C8—N3—N2115.76 (14)C8—C10—H10B107.9
N1—C1—N2114.40 (13)C11—C10—H10B107.9
N1—C1—S1128.00 (12)H10A—C10—H10B107.2
N2—C1—S1117.60 (12)C12—C11—C10115.73 (13)
C7—C2—C3119.28 (15)C12—C11—H11A108.3
C7—C2—N1115.94 (13)C10—C11—H11A108.3
C3—C2—N1124.75 (15)C12—C11—H11B108.3
C4—C3—C2119.36 (15)C10—C11—H11B108.3
C4—C3—H3120.3H11A—C11—H11B107.4
C2—C3—H3120.3C13—C12—C17117.43 (15)
C3—C4—C5121.43 (14)C13—C12—C11121.19 (14)
C3—C4—H4119.3C17—C12—C11121.22 (14)
C5—C4—H4119.3C14—C13—C12121.84 (15)
C4—C5—C6119.00 (15)C14—C13—H13119.1
C4—C5—H5120.5C12—C13—H13119.1
C6—C5—H5120.5C13—C14—C15119.51 (15)
C7—C6—C5120.06 (16)C13—C14—H14120.2
C7—C6—H6120.0C15—C14—H14120.2
C5—C6—H6120.0O1—C15—C16117.28 (14)
C6—C7—C2120.87 (15)O1—C15—C14123.09 (15)
C6—C7—H7119.6C16—C15—C14119.62 (15)
C2—C7—H7119.6C17—C16—C15119.96 (15)
N3—C8—C9125.38 (14)C17—C16—H16120.0
N3—C8—C10118.97 (15)C15—C16—H16120.0
C9—C8—C10115.60 (14)C16—C17—C12121.62 (15)
C8—C9—H9A109.5C16—C17—H17119.2
C8—C9—H9B109.5C12—C17—H17119.2
C1—N2—N3—C8176.20 (13)N2—N3—C8—C10176.77 (12)
C2—N1—C1—N2176.34 (14)N3—C8—C10—C112.8 (2)
C2—N1—C1—S14.5 (2)C9—C8—C10—C11174.92 (13)
N3—N2—C1—N10.0 (2)C8—C10—C11—C1278.12 (18)
N3—N2—C1—S1179.27 (11)C10—C11—C12—C13126.58 (16)
C1—N1—C2—C7176.90 (15)C10—C11—C12—C1758.04 (19)
C1—N1—C2—C35.1 (3)C17—C12—C13—C140.3 (2)
C7—C2—C3—C40.1 (2)C11—C12—C13—C14175.22 (14)
N1—C2—C3—C4178.09 (14)C12—C13—C14—C150.6 (2)
C2—C3—C4—C50.1 (2)C13—C14—C15—O1178.06 (14)
C3—C4—C5—C60.1 (2)C13—C14—C15—C161.3 (2)
C4—C5—C6—C70.1 (2)O1—C15—C16—C17178.31 (13)
C5—C6—C7—C20.0 (3)C14—C15—C16—C171.0 (2)
C3—C2—C7—C60.1 (2)C15—C16—C17—C120.1 (2)
N1—C2—C7—C6178.22 (14)C13—C12—C17—C160.5 (2)
N2—N3—C8—C90.7 (2)C11—C12—C17—C16175.00 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C2–C7) and (C12–C17) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.88 (2)2.10 (2)2.6214 (19)117 (1)
O1—H1O···S1i0.84 (1)2.34 (2)3.1489 (13)162 (2)
N2—H2N···O1ii0.87 (2)2.31 (2)3.1219 (19)155 (2)
C11—H11A···S1iii0.992.843.7936 (17)163
C11—H11B···O1iv0.992.583.438 (2)145
C9—H9A···Cg1iii0.982.903.6862 (19)138
C4—H4···Cg2v0.952.903.6939 (19)142
C6—H6···Cg2vi0.982.843.601 (2)138
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceSymmetry operation
O1—H1O···S1b2.20x - 1, y + 1, z
N2—H2N···O1b2.19x + 1, y - 1, z
S1···S13.35-x + 2, -y + 1, -z + 1
C11—H11A···S12.75-x + 2, -y + 1, -z + 1
C11—H11B···O12.50x + 1, y, z
C9—H9A···Cg(C2–C7)2.90-x + 2, -y + 1, -z + 1
C6—H6···Cg(C12–C17)2.84-x + 1, -y + 2, -z + 1
C4—H4···Cg(C12–C17)2.90-x + 1, -y + 1, -z + 1
H1O···H2N2.05x - 1, y +1 , z
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values. (b) This contact corresponds to a conventional hydrogen bond.
The percentage contributions from interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H49.6
H···C/C···H22.6
H···S/S···H10.5
H···O/O···H6.4
C···C2.9
N···C/C···N2.9
H···N/N···H2.8
N···N1.0
S···S0.8
S···C/C···S0.5
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
Intra-layer region
C11—H11A···S1iii +
C9—H9A···Cg(C2-C7)v5.43-38.9-11.6-84.976.0-76.7
C4—H4···Cg(C12-C17)vi5.30-26.8-7.3-95.766.8-75.8
O1—H1O···S1i +
N2—H2N···O1ii10.02-64.6-14.9-21.384.4-45.7
C6—H6···Cg(C12-C17)vii7.12-5.8-2.1-44.230.4-27.4
C11—H11B···O1iv8.06-2.2-1.0-9.96.5-7.7
C6···H1Oviii11.11-0.3-0.4-3.50.0-3.6
S1···S1ix11.568.9-1.8-4.412.211.7
Inter-layer region
C9—H9B···O1x +
H10A···H16x8.90-11.2-2.7-28.813.3-30.7
H10A···H10Bxi +
H10B···H17xi10.630.8-1.8-24.917.1-11.6
H4···H17xii +
H5···H16xii12.23-4.0-0.5-11.16.6-10.2
H9C···H9Cxiii10.35-2.8-1.4-9.57.3-7.8
H5···H9Bxiv13.131.5-0.3-3.91.2-1.4
Symmetry codes: (i) x - 1, y + 1, z; (ii) x + 1, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x + 1, y, z; (v) -x + 2, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 2, -z + 1; (viii) -x, -y + 2, -z + 1; (ix) -x + 2, -y, -z + 1; (x) -x + 1, -y + 2, -z; (xi) -x + 2, -y + 2, -z; (xii) x, y - 1, z + 1; (xiii) -x + 2, -y, -z + 1; (xiv) x - 1, y, z + 1.
 

Footnotes

Additional correspondence author, email: kacrouse@gmail.com.

Acknowledgements

The intensity data were collected by M. I. M. Tahir, Universiti Putra Malaysia.

Funding information

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. GRTIN-IRG-01–2021).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDincel, E. D. & Guzeldemirci, N. U. (2020). Med-Science, 9, 305–313.  Google Scholar
First citationDziduch, K., Kołodziej, P., Paneth, A., Bogucka-Kocka, A. & Wujec, M. (2020). Molecules, 25, 2770.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, J. (2016). NFS J. 2, 15–8.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439–1441.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503–1505.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539–1541.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, M.-Y., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1461–o1462.  CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, B., Zhao, D., Kshatriya, D., Bello, N. T., Simon, J. E. & Wu, Q. (2020). J. Chromatogr. B, 1149, 122146.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds