research communications
Z)-N,N-dimethyl-2-(pentafluorophenyl)-2-(2-phenylhydrazin-1-ylidene)acetamide
and Hirshfeld surface analysis of (2aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, dAzerbaijan State University of Economics (UNEC), M. Mukhtarov str.194, Baku, Azerbaijan, and eUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F⋯H/H⋯F (41.1%), H⋯H (21.8%), C⋯H/H⋯C (9.7%) C⋯C (7.1%) and O⋯H/H⋯O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.
Keywords: crystal structure; fluorine; hydrogen bonds; π–π stacking interactions; SQUEEZE; Hirshfeld surface analysis.
CCDC reference: 1878189
1. Chemical context
Arylhydrazones containing a (Ph,R)C=N—NHR grouping possess controllable E/Z isomerization around the C=N double bond, which makes them good candidates for the construction of functional materials (Ma et al., 2021). Control of the supramolecular chemistry of hydrazone ligands and the corresponding complexes may afford multi-dimensional synthons or metallo-organic tectons (Kopylovich et al., 2011; Gurbanov et al., 2020a). The functionalization of arylhydrazone ligands with groups such as –SO3H, –COOH, –F, –Cl, etc., can improve the catalytic or biological activity of the corresponding coordination compounds (e.g., Shikhaliyev et al., 2019; Gurbanov et al., 2020b). As part of our ongoing work in this area, we have synthesized the title fluorinated arylhydrazone compound, C16H12F5N3O, and determined its and analysed its Hirshfeld surface.
2. Structural commentary
The title molecule (Fig. 1) crystallizes in the monoclinic C2/c with Z = 8 and has an E conformation with an azomethine N2=C7 double bond length of 1.2880 (16) Å. The backbone of the molecule is non-planar with a dihedral angle of 31.84 (8)° between the C1–C6 pentaflourobenzene and C11–C16 benzene rings and the acetamide group lies almost perpendicular. The C5—C6—C7—N2, C6—C7—N2—N3, C7—N2—N3—C11, N2—N3—C11—C16 and C6—C7—C8—N1 torsion angles are −28.19 (17), 174.02 (10), −176.33 (11), 5.90 (18) and 122.80 (12)°, respectively.
3. Supramolecular features
In the crystal, the molecules are linked by pairwise N—H⋯O hydrogen bonds (Table 1), generating dimers featuring an R22(12) loop with crystallographic twofold symmetry. The dimers are linked by C—H⋯O hydrogen bonds and aromatic π–π stacking interactions [Cg1⋯Cg1b = 3.7137 (10) Å, slippage = 1.158 Å, Cg1⋯Cg2b = 3.7015 (9) Å, slippage = 1.407 Å, and Cg1⋯Cg2a = 3.7016 (9) Å, slippage = 1.148 Å; where Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively; symmetry codes: (a) 1 − x, y, − z; (b) 1 − x, 1 − y, 1 − z]. Together, these generate a three-dimensional network (Fig. 2).
4. Hirshfeld surface analysis
Crystal Explorer 17.5 was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Turner et al., 2017). The three-dimensional Hirshfeld surface mapped over dnorm in the range −0.52 to 2.23 a.u. is shown in Fig. 3: the H9C⋯F1, H16⋯F2, F3⋯H10C, H3N⋯O1, N3—H3N⋯O1 and C14—H14⋯O1 interactions, which play a key role in the molecular packing, can be correlated with the bright-red patches near F1, F2, F3 and O1 and hydrogen atoms H3N and H14, which highlight their functions as donors and/or acceptors. This may be compared to the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) depicted in the supporting information corresponding to positive electrostatic potential (hydrogen-bond donors) in blue and negative electrostatic potential is indicated in red (hydrogen-bond acceptors).
The overall two-dimensional fingerprint map for the title compound is shown in Fig. 4a. The percentage contributions to the Hirshfeld surfaces from various interatomic contacts (Table 2) are F⋯H/H⋯F (41.1%; Fig. 4b), H⋯H (21.8%; Fig. 4c), C⋯H/H⋯C (9.7%; Fig. 4d) C⋯C (7.1%; Fig. 4e) and O⋯H/H⋯O (7.1%; Fig. 4f). Other contact types including N⋯H/H⋯N, N⋯C/C⋯N and N⋯N contacts account for less than 5.4% of the Hirshfeld surface mapping and presumably have minimal directional impact on the packing.
|
5. Database survey
The five related compounds in the Cambridge Structural Database (CSD Version 5.42, update 1, Feb 2021; Groom et al., 2016) with a (1E)-1-benzylidene-2-phenylhydrazine skeleton are (E)-3-chloro-N′-(2-fluorobenzylidene)thiophene-2-carbohydrazide (refcode SOJQAL: Sultan et al., 2014), N′-[1-(2-fluorophenyl)ethylidene]isonicotinohydrazide (HIXRAJ: Sreeja et al., 2014a), (1E,2E)-bis[(thiophen-2-yl)methylidene]hydrazine (MIHROK03: Geiger et al., 2013), N′-[1-(2-fluorophenyl)ethylidene]nicotinohydrazide (ZISSAX: Sreeja et al., 2014b) and 4-[1-(4-chlorophenyl)-3-oxobutylamino]benzoic acid (TINWIX: Narayana et al., 2007).
The hydrazide derivative SOJQAL adopts an E conformation with an azomethine N=C double bond length of 1.272 (2) Å. The molecular skeleton is approximately planar, the terminal five- and six-membered rings forming a dihedral angle of 5.47 (9)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into zigzag chains propagating in [100].
The molecule of HIXRAJ adopts an E conformation with respect to the azomethine bond. The pyridyl and fluorobenzene rings make dihedral angles of 38.58 (6) and 41.61 (5)° respectively with the central C(=O)N2CC unit, resulting in a non-planar molecule. The intermolecular interactions comprise two classical N—H⋯O and N—H⋯N hydrogen bonds and four non-classical C—H⋯O and C—H⋯F hydrogen bonds. These interactions are augmented by a weak π–π interaction between the benzene and pyridyl rings of neighbouring molecules, with a centroid–centroid distance of 3.9226 (10) Å. This leads to a three-dimensional supramolecular assembly in the crystal.
The π interactions join the two symmetry-independent molecules into interlinked chains parallel to [011].
of MIHROK03 comprises two independent half-molecules, each residing on a centre of symmetry. The two molecules are essentially planar. In the crystal, weak C—H⋯The molecule of ZISSAX adopts an E conformation with respect to the azomethine double bond whereas the N and methyl C atoms are in a Z conformation with respect to the same bond. The ketonic O and azomethine N atoms are cis to each other. The non-planar molecule [the dihedral angle between the benzene rings is 7.44 (11)°] exists in an amido form with a C=O bond length of 1.221 (2) Å. In the crystal, a bifurcated N—H⋯(O,N) hydrogen bond is formed between the amide H atom and the keto O and imine N atoms of an adjacent molecule, leading to the formation of chains propagating along the b-axis direction.
In TINWIX, the aromatic rings are almost perpendicular, making a dihedral angle of 89.26 (5)°. The carboxyl group is coplanar with the aromatic ring to which it is attached [dihedral angle = 1.70 (17)°]. The packing involves inversion-symmetric dimers bridged via hydrogen bonding of the carboxyl groups. In addition, there is an N—H⋯O hydrogen bond between the amino group and the carbonyl O atom.
6. Synthesis and crystallization
A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-[(perfluorophenyl)methylene]-2-phenylhydrazine (286 mg, 1.00 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.50 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Colourless prisms of the title compound suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution (69%); m.p. 405 K. Analysis calculated for C16H12F5N3O: C 53.79, H 3.39, N 11.76; found: C 53.73, H 3.36, N 11.71%. 1H NMR (300MHz, CDCl3) δ 3.04 (6H, NMe2), 6.50–7.33 (5H, Ar). 13C NMR (75MHz, CDCl3) δ 33.58, 108.97, 116.87, 120.75, 124.11, 124.76, 140.95, 146.33, 149.87, 150.91, 155.21. ESI–MS: m/z: 358.24 [M + H]+.
7. Refinement
Crystal data, data collection and structure . The H atom of the NH group was found from a difference-Fourier map and refined freely. All H atoms bonded to C atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq (C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final The solvent formula mass and unit-cell characteristics were not taken into account during The cavity of volume ca 255.0 Å3 (ca 7.6% of the unit-cell volume) contains approximately three electrons.
details are summarized in Table 3Supporting information
CCDC reference: 1878189
https://doi.org/10.1107/S2056989021007349/hb7979sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007349/hb7979Isup2.hkl
Electrostatic potential map. DOI: https://doi.org/10.1107/S2056989021007349/hb7979sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007349/hb7979Isup4.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H12F5N3O | F(000) = 1456 |
Mr = 357.29 | Dx = 1.407 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.0048 (6) Å | Cell parameters from 9937 reflections |
b = 11.5216 (4) Å | θ = 3.0–30.5° |
c = 17.2227 (6) Å | µ = 0.13 mm−1 |
β = 116.526 (1)° | T = 296 K |
V = 3374.2 (2) Å3 | Prism, colourless |
Z = 8 | 0.86 × 0.76 × 0.32 mm |
Bruker APEXII CCD diffractometer | 3075 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.0°, θmin = 3.0° |
Tmin = 0.666, Tmax = 0.746 | h = −24→24 |
20072 measured reflections | k = −14→14 |
3619 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.066P)2 + 1.0984P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3619 reflections | Δρmax = 0.27 e Å−3 |
232 parameters | Δρmin = −0.16 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.57129 (9) | 0.67608 (14) | 0.56090 (9) | 0.0560 (4) | |
C2 | 0.62879 (10) | 0.6234 (2) | 0.54530 (11) | 0.0709 (5) | |
C3 | 0.64867 (9) | 0.5107 (2) | 0.57013 (12) | 0.0741 (6) | |
C4 | 0.61080 (9) | 0.45216 (16) | 0.60894 (11) | 0.0675 (5) | |
C5 | 0.55429 (8) | 0.50569 (13) | 0.62548 (9) | 0.0526 (3) | |
C6 | 0.53295 (7) | 0.62075 (12) | 0.60236 (8) | 0.0441 (3) | |
C7 | 0.47580 (7) | 0.68280 (11) | 0.62380 (7) | 0.0396 (3) | |
C8 | 0.49138 (7) | 0.81069 (11) | 0.64576 (8) | 0.0405 (3) | |
C9 | 0.44817 (14) | 1.00857 (16) | 0.61948 (15) | 0.0898 (6) | |
H9A | 0.503442 | 1.022817 | 0.652886 | 0.135* | |
H9B | 0.420993 | 1.030799 | 0.652629 | 0.135* | |
H9C | 0.428581 | 1.053157 | 0.566896 | 0.135* | |
C10 | 0.36406 (10) | 0.85441 (17) | 0.52042 (11) | 0.0755 (5) | |
H10A | 0.363739 | 0.772275 | 0.510888 | 0.113* | |
H10B | 0.363100 | 0.895011 | 0.471289 | 0.113* | |
H10C | 0.318605 | 0.875319 | 0.527986 | 0.113* | |
C11 | 0.31918 (7) | 0.60410 (11) | 0.67138 (7) | 0.0409 (3) | |
C12 | 0.27412 (8) | 0.65818 (13) | 0.70541 (9) | 0.0505 (3) | |
H12 | 0.281692 | 0.736455 | 0.720011 | 0.061* | |
C13 | 0.21793 (9) | 0.59576 (16) | 0.71764 (11) | 0.0635 (4) | |
H13 | 0.187876 | 0.632183 | 0.740795 | 0.076* | |
C14 | 0.20605 (9) | 0.48080 (17) | 0.69601 (11) | 0.0698 (5) | |
H14 | 0.167784 | 0.439171 | 0.703856 | 0.084* | |
C15 | 0.25111 (10) | 0.42742 (15) | 0.66262 (11) | 0.0678 (4) | |
H15 | 0.243095 | 0.349161 | 0.648076 | 0.081* | |
C16 | 0.30814 (9) | 0.48750 (13) | 0.65015 (9) | 0.0530 (3) | |
H16 | 0.338580 | 0.450219 | 0.627863 | 0.064* | |
N1 | 0.43528 (7) | 0.88584 (11) | 0.59834 (8) | 0.0539 (3) | |
N2 | 0.42258 (6) | 0.62135 (9) | 0.63136 (6) | 0.0417 (3) | |
N3 | 0.37406 (6) | 0.67219 (10) | 0.65833 (7) | 0.0450 (3) | |
O1 | 0.55445 (5) | 0.84009 (8) | 0.70599 (6) | 0.0477 (2) | |
F1 | 0.55220 (7) | 0.78590 (9) | 0.53338 (7) | 0.0777 (3) | |
F2 | 0.66439 (8) | 0.68233 (13) | 0.50601 (9) | 0.1088 (5) | |
F3 | 0.70507 (6) | 0.45858 (14) | 0.55668 (9) | 0.1114 (5) | |
F4 | 0.62894 (7) | 0.34098 (10) | 0.63199 (9) | 0.0994 (4) | |
F5 | 0.52239 (6) | 0.44377 (8) | 0.66683 (7) | 0.0724 (3) | |
H3N | 0.3875 (9) | 0.7382 (12) | 0.6861 (10) | 0.054 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0493 (8) | 0.0732 (10) | 0.0498 (7) | −0.0048 (7) | 0.0261 (6) | −0.0096 (7) |
C2 | 0.0543 (9) | 0.1071 (15) | 0.0627 (9) | −0.0149 (9) | 0.0364 (8) | −0.0285 (9) |
C3 | 0.0426 (8) | 0.1094 (15) | 0.0668 (10) | 0.0056 (9) | 0.0212 (7) | −0.0389 (10) |
C4 | 0.0506 (8) | 0.0744 (11) | 0.0600 (9) | 0.0171 (7) | 0.0089 (7) | −0.0206 (8) |
C5 | 0.0418 (7) | 0.0594 (8) | 0.0477 (7) | 0.0051 (6) | 0.0121 (6) | −0.0074 (6) |
C6 | 0.0334 (6) | 0.0566 (7) | 0.0379 (6) | 0.0006 (5) | 0.0120 (5) | −0.0064 (5) |
C7 | 0.0327 (6) | 0.0469 (7) | 0.0363 (6) | 0.0012 (5) | 0.0127 (4) | 0.0019 (5) |
C8 | 0.0371 (6) | 0.0464 (7) | 0.0414 (6) | 0.0012 (5) | 0.0205 (5) | 0.0072 (5) |
C9 | 0.1062 (16) | 0.0507 (9) | 0.0990 (15) | 0.0159 (10) | 0.0337 (12) | 0.0198 (9) |
C10 | 0.0611 (10) | 0.0881 (12) | 0.0561 (9) | 0.0207 (9) | 0.0070 (7) | 0.0169 (8) |
C11 | 0.0315 (6) | 0.0488 (7) | 0.0371 (6) | −0.0040 (5) | 0.0106 (5) | 0.0028 (5) |
C12 | 0.0396 (6) | 0.0577 (8) | 0.0542 (7) | 0.0002 (6) | 0.0211 (6) | 0.0032 (6) |
C13 | 0.0446 (7) | 0.0856 (11) | 0.0660 (9) | 0.0030 (7) | 0.0299 (7) | 0.0159 (8) |
C14 | 0.0475 (8) | 0.0849 (12) | 0.0746 (10) | −0.0139 (8) | 0.0250 (7) | 0.0232 (9) |
C15 | 0.0670 (10) | 0.0552 (9) | 0.0730 (10) | −0.0188 (7) | 0.0239 (8) | 0.0062 (7) |
C16 | 0.0527 (8) | 0.0511 (8) | 0.0533 (7) | −0.0072 (6) | 0.0220 (6) | −0.0016 (6) |
N1 | 0.0531 (7) | 0.0507 (7) | 0.0530 (7) | 0.0100 (5) | 0.0193 (5) | 0.0129 (5) |
N2 | 0.0340 (5) | 0.0477 (6) | 0.0415 (5) | −0.0013 (4) | 0.0152 (4) | −0.0029 (4) |
N3 | 0.0406 (6) | 0.0448 (6) | 0.0540 (6) | −0.0072 (4) | 0.0250 (5) | −0.0087 (5) |
O1 | 0.0402 (5) | 0.0487 (5) | 0.0521 (5) | −0.0068 (4) | 0.0186 (4) | 0.0037 (4) |
F1 | 0.0964 (8) | 0.0791 (7) | 0.0827 (7) | −0.0027 (6) | 0.0624 (6) | 0.0109 (5) |
F2 | 0.1025 (9) | 0.1503 (12) | 0.1183 (10) | −0.0331 (8) | 0.0893 (8) | −0.0381 (9) |
F3 | 0.0624 (7) | 0.1649 (13) | 0.1112 (9) | 0.0196 (7) | 0.0426 (6) | −0.0552 (9) |
F4 | 0.0920 (8) | 0.0804 (8) | 0.1078 (9) | 0.0392 (6) | 0.0285 (7) | −0.0140 (6) |
F5 | 0.0759 (6) | 0.0556 (5) | 0.0884 (7) | 0.0128 (4) | 0.0389 (5) | 0.0134 (5) |
C1—F1 | 1.3430 (19) | C9—H9C | 0.9600 |
C1—C2 | 1.377 (2) | C10—N1 | 1.463 (2) |
C1—C6 | 1.383 (2) | C10—H10A | 0.9600 |
C2—F2 | 1.336 (2) | C10—H10B | 0.9600 |
C2—C3 | 1.367 (3) | C10—H10C | 0.9600 |
C3—F3 | 1.3359 (18) | C11—C12 | 1.3832 (19) |
C3—C4 | 1.360 (3) | C11—C16 | 1.3835 (19) |
C4—F4 | 1.340 (2) | C11—N3 | 1.4011 (16) |
C4—C5 | 1.374 (2) | C12—C13 | 1.380 (2) |
C5—F5 | 1.3301 (18) | C12—H12 | 0.9300 |
C5—C6 | 1.392 (2) | C13—C14 | 1.367 (3) |
C6—C7 | 1.4783 (17) | C13—H13 | 0.9300 |
C7—N2 | 1.2880 (16) | C14—C15 | 1.372 (3) |
C7—C8 | 1.5172 (18) | C14—H14 | 0.9300 |
C8—O1 | 1.2317 (15) | C15—C16 | 1.381 (2) |
C8—N1 | 1.3325 (16) | C15—H15 | 0.9300 |
C9—N1 | 1.453 (2) | C16—H16 | 0.9300 |
C9—H9A | 0.9600 | N2—N3 | 1.3385 (14) |
C9—H9B | 0.9600 | N3—H3N | 0.873 (13) |
F1—C1—C2 | 117.32 (15) | N1—C10—H10B | 109.5 |
F1—C1—C6 | 119.67 (13) | H10A—C10—H10B | 109.5 |
C2—C1—C6 | 123.01 (17) | N1—C10—H10C | 109.5 |
F2—C2—C3 | 120.62 (16) | H10A—C10—H10C | 109.5 |
F2—C2—C1 | 120.0 (2) | H10B—C10—H10C | 109.5 |
C3—C2—C1 | 119.34 (17) | C12—C11—C16 | 119.99 (12) |
F3—C3—C4 | 120.3 (2) | C12—C11—N3 | 117.50 (12) |
F3—C3—C2 | 120.2 (2) | C16—C11—N3 | 122.50 (12) |
C4—C3—C2 | 119.47 (14) | C13—C12—C11 | 119.85 (14) |
F4—C4—C3 | 119.80 (16) | C13—C12—H12 | 120.1 |
F4—C4—C5 | 119.29 (18) | C11—C12—H12 | 120.1 |
C3—C4—C5 | 120.90 (17) | C14—C13—C12 | 120.56 (16) |
F5—C5—C4 | 117.09 (14) | C14—C13—H13 | 119.7 |
F5—C5—C6 | 121.33 (12) | C12—C13—H13 | 119.7 |
C4—C5—C6 | 121.55 (15) | C13—C14—C15 | 119.37 (14) |
C1—C6—C5 | 115.69 (13) | C13—C14—H14 | 120.3 |
C1—C6—C7 | 121.43 (13) | C15—C14—H14 | 120.3 |
C5—C6—C7 | 122.82 (12) | C14—C15—C16 | 121.37 (16) |
N2—C7—C6 | 117.21 (12) | C14—C15—H15 | 119.3 |
N2—C7—C8 | 125.67 (11) | C16—C15—H15 | 119.3 |
C6—C7—C8 | 116.65 (10) | C15—C16—C11 | 118.85 (15) |
O1—C8—N1 | 123.28 (12) | C15—C16—H16 | 120.6 |
O1—C8—C7 | 119.03 (11) | C11—C16—H16 | 120.6 |
N1—C8—C7 | 117.68 (11) | C8—N1—C9 | 118.65 (14) |
N1—C9—H9A | 109.5 | C8—N1—C10 | 124.09 (13) |
N1—C9—H9B | 109.5 | C9—N1—C10 | 116.99 (14) |
H9A—C9—H9B | 109.5 | C7—N2—N3 | 119.24 (11) |
N1—C9—H9C | 109.5 | N2—N3—C11 | 119.22 (11) |
H9A—C9—H9C | 109.5 | N2—N3—H3N | 119.5 (10) |
H9B—C9—H9C | 109.5 | C11—N3—H3N | 117.2 (11) |
N1—C10—H10A | 109.5 | ||
F1—C1—C2—F2 | 1.5 (2) | C5—C6—C7—N2 | −28.19 (17) |
C6—C1—C2—F2 | −179.03 (14) | C1—C6—C7—C8 | −32.65 (16) |
F1—C1—C2—C3 | −178.29 (14) | C5—C6—C7—C8 | 144.48 (12) |
C6—C1—C2—C3 | 1.2 (2) | N2—C7—C8—O1 | 114.61 (14) |
F2—C2—C3—F3 | 1.2 (2) | C6—C7—C8—O1 | −57.36 (15) |
C1—C2—C3—F3 | −179.06 (14) | N2—C7—C8—N1 | −65.23 (16) |
F2—C2—C3—C4 | −179.10 (15) | C6—C7—C8—N1 | 122.80 (12) |
C1—C2—C3—C4 | 0.7 (2) | C16—C11—C12—C13 | −0.4 (2) |
F3—C3—C4—F4 | −1.5 (2) | N3—C11—C12—C13 | 178.48 (12) |
C2—C3—C4—F4 | 178.76 (14) | C11—C12—C13—C14 | −0.3 (2) |
F3—C3—C4—C5 | 178.08 (13) | C12—C13—C14—C15 | 0.6 (2) |
C2—C3—C4—C5 | −1.7 (2) | C13—C14—C15—C16 | −0.2 (3) |
F4—C4—C5—F5 | 2.3 (2) | C14—C15—C16—C11 | −0.5 (2) |
C3—C4—C5—F5 | −177.31 (13) | C12—C11—C16—C15 | 0.7 (2) |
F4—C4—C5—C6 | −179.60 (13) | N3—C11—C16—C15 | −178.03 (13) |
C3—C4—C5—C6 | 0.8 (2) | O1—C8—N1—C9 | −1.2 (2) |
F1—C1—C6—C5 | 177.51 (12) | C7—C8—N1—C9 | 178.61 (14) |
C2—C1—C6—C5 | −2.0 (2) | O1—C8—N1—C10 | 172.55 (14) |
F1—C1—C6—C7 | −5.2 (2) | C7—C8—N1—C10 | −7.6 (2) |
C2—C1—C6—C7 | 175.37 (13) | C6—C7—N2—N3 | 174.02 (10) |
F5—C5—C6—C1 | 179.00 (12) | C8—C7—N2—N3 | 2.09 (18) |
C4—C5—C6—C1 | 0.95 (19) | C7—N2—N3—C11 | −176.33 (11) |
F5—C5—C6—C7 | 1.72 (19) | C12—C11—N3—N2 | 175.29 (11) |
C4—C5—C6—C7 | −176.33 (12) | C16—C11—N3—N2 | −5.90 (18) |
C1—C6—C7—N2 | 154.68 (12) |
Cg2 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O1i | 0.87 (1) | 2.05 (2) | 2.8658 (15) | 154 (1) |
C9—H9A···O1 | 0.96 | 2.33 | 2.717 (2) | 103 |
C10—H10A···N2 | 0.96 | 2.55 | 3.194 (2) | 124 |
C14—H14···O1ii | 0.93 | 2.45 | 3.377 (2) | 172 |
C10—H10B···Cg2iii | 0.96 | 2.77 | 3.4685 (19) | 130 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x−1/2, y−1/2, z; (iii) −x+1/2, −y+3/2, −z+1. |
Contact | Percentage contribution |
F···H/H···F | 41.1 |
H···H | 21.8 |
C···H/H···C | 9.7 |
C···C | 7.1 |
O···H/H···O | 7.1 |
F···F | 5.4 |
F···C/C···F | 4.1 |
F···N/N···F | 1.5 |
N···C/C···N | 1.1 |
O···O | 0.3 |
N···N | 0.2 |
O···C/C···O | O.2 |
N···H/H···N | 0.1 |
Acknowledgements
The author's contributions are as follows: Conceptualization, NQS, MA and SM; synthesis and characterization, NQS, UFA and AAN; X-ray analysis, ZA and MA; writing (original draft), ZA, MA and SM; writing (review and editing of the manuscript), ZA, MA and SM; funding acquisition, NQS, UFA and AAN; supervision, MA and SM.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geiger, D. K., Geiger, H. C. & Szczesniak, L. M. (2013). Acta Cryst. E69, o916. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Narayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4420–o4421. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sreeja, P. B., Sithambaresan, M., Aiswarya, N. & Kurup, M. R. P. (2014a). Acta Cryst. E70, o532–o533. CSD CrossRef IUCr Journals Google Scholar
Sreeja, P. B., Sithambaresan, M., Aiswarya, N. & Kurup, M. R. P. (2014b). Acta Cryst. E70, o115. CSD CrossRef IUCr Journals Google Scholar
Sultan, S., Taha, M., Shah, S. A. A., Yamin, B. M. & Zaki, H. M. (2014). Acta Cryst. E70, o751. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.