research communications
and Hirshfeld surface analysis of a pyrrolo-thiazine complex
aDepartment of Physics, Thiagarajar College, Madurai - 625 009, India, bDepartment of Physics, M.G.R College, Hosur - 635130, India, and cSchool of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India
*Correspondence e-mail: vasan692000@yahoo.co.in
In the title compound, diethyl 2,2-dioxo-4-(thiophen-2-yl)-1-[(thiophen-2-yl)methyl]-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate, C22H28NO6S3, the pyrrolo ring is in an while the thiazine ring adopts a near chair conformation. The dihedral angles between the thiazine ring and the methylthienyl, thienyl and pyrrolo rings are 64.0 (2), 87.92 (7) and 5.6 (2)°, respectively. In the crystal, the molecules are linked by weak C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed to investigate the intermolecular interactions. Disorder of the methylthienyl group with site occupancies of 0. 792 (3) and 0.208 (3) is observed
Keywords: crystal structure; pyrrolo derivatives; thiazine; hydrogen bonding; Hirshfeld surface analysis; two-dimensional fingerprint plots.
CCDC reference: 2092264
1. Chemical context
etc. The assimilation of heteroatoms within a carbon ring system can be used to explore different avenues for biologically active heterocycles, which have increasing importance in pharmacological activities. The crystal structures of sulfur-containing heterocycles and their supramolecular features are of significant interest in the development of anti-cancer drugs. The role of the sulfur atom in biological system, viz. regulation translation via the sulfuration of is noteworthy. Majority of the anti-cancer drugs in the pharma industry are built with heterocycles as primary structural components.
play a vital role in modern drug discovery and are used to generate novel frameworks with potential bioactivity. They are prevalent in nature and play a vital role in the metabolism of all living things, being utilized at almost every stage of the many biochemical processes necessary to sustain life. Heterocycles actively participate in various intermolecular interactions, metal coordination bonds, hydrophobic forcesThiazine derivatives are the most important source of biologically active et al., 2011; Adly, 2012), anti-histaminic (Arya et al., 2012), antibacterial and antifungal (Tandon et al., 2006; Zia-ur-Rehman et al., 2009; Ganorkar et al., 2013), antagonistic (Galanski et al., 2006), antioxidant (Smith, 1951), analgesic and anti-inflammatory, (Chia et al., 2008; Tozkoparan et al., 2002) anti-tuberculosis (Koketsu et al., 2002), antitumor (Wang et al., 2012)), antimycobacterial (Indumathi et al., 2009) and antihelminthic and insecticidal (Smith, 1942) activity and act as potassium channel-opening agents (Erker et al., 2000), nitric oxide synthase inhibitors (Tung-Mei et al., 2005), smooth muscle relaxants (Schreder et al., 2000), urokinase inhibitors (Tanaka et al., 1998) and as as myocardial calcium channel modulators (Budriesi et al., 2002). Besides, thiazine derivatives are effective corrosion inhibitors for carbon steel in acidic media. They thus represent an interesting class of heterocyclic compound worthy of further exploration.
They exhibit antimicrobial and anti-diabetic (FaidallahPyrrolo derivatives have pharmacological activities such as anti-inflammatory, cytotoxicity against a variety of marine and human tumour models (Dannhardt et al., 2000; Evans et al., 2003) and are used in the treatment of hyperlipidemia (Holub et al.,2004). One of the trisubstituted pyrrole, porphobilinogen, serves as a biosynthetic precursor to many natural products including heme, the red pigment in haemoglobin (Cox et al., 2008). In view of these observations and in a continuation of our work (Sribala et al., 2018) on novel heterocycles of pharmaceutical importance, the of the sulfur-containing heterocycle, diethyl 2,2-dioxo-4-(thiophen-2-yl)-1-[(thiophen-2-yl)methyl]-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate is described herein. Hydrogen-bonding interactions in the title compound were substantiated with the aid of Hirshfeld surface analysis.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the triclinic system with a centrosymmetric P. The thienylmethyl group shows an unexpected geometry, suggesting a ring-flip disorder where two sets of atomic sites with disorder components are related by an approximate 180° rotation about the exocyclic C—C bond. A of the five-membered pyrrolo ring (N1/C2/C3/C4/C5) [puckering parameters Q(2) = 0.386 (3) Å and φ(2) = 0.6 (6)°] indicates an on the nitrogen atom (N1). The six-membered thiazine ring adopts a near chair conformation with puckering parameters Q = 0.607 (2) Å, θ = 171.65 (19)° and φ = 306.1 (14)°. The dihedral angle between the planes of the thiazine (S1/C1/C2/N1/C6/C7; r.m.s. deviation = 0.2475 Å) and methylthienyl rings (S3/C19/C20/C21/C22) is 64.0 (2)°. The thiazine ring subtends a dihedral angle of 87.92 (7)° with the thienyl ring (S2/C11/C12/C13/C14). The dihedral angle between the planes of the thiazine and pyrrolo rings is 5.6 (2)°, which is slightly lower than that reported in diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate and diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate, hereafter referred to as compounds (I) and (II) [6.68 (10) and 8.06 (11)°; Sribala et al., 2018). The terminal methyl carbon atom C10 deviates from the plane involving carboxyl group (C7/C8/O3/O4/C9) by 1.431 (3) Å [1.371 (3) and 1.409 (3) Å in compounds (I) and (II), respectively]. Similarly the major component of the disordered methyl carbon atom C17 deviates from the plane (C1/C15/O5/O6/C16) by 1.123 (12) Å. The dihedral angle between the two carboxyl planes is 55.74 (7)°, significantly different from the values obtained in (I) [12.73 (10)°] and (II) [12.07 (10)°]. The difference in value is probably due to the disorder of this atom.
3. Supramolecular features
In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming a two-dimensional network (Table 1, Fig. 2). A rare trifurcated hydrogen-bond formation is observed involving donor atoms C2, C5 and C6 with oxygen O1 as acceptor (Fig. 3). The C10—H10B⋯O2i interaction leads to the formation of an R22(16) graph-set motif while C2—H2⋯O1 generates an R22(10) motif (Fig. 4). Thus the thiazine ring plays a dominant role in the structural cohesion via weak C—H⋯O hydrogen bonds. A parallel displaced π–π stacking interaction is observed with Cg2⋯Cg2(−x, 1 − y, 1 − z) = 4.668 (3) Å and a slippage of 2.794 Å, where Cg2 is the centroid of the thienyl ring (C19/C20/C21/C22/S3).
4. Hirshfeld surface analysis
Hirshfeld surface analysis is a tool to encapsulate and visualize the intermolecular interactions of a crystal on a three-dimensional surface. The molecular interactions on the isosurface are determined using the parameters di and de (representing the distances from a given point on the surface to the nearest atom inside and outside the surface, respectively), which in turn add-on to provide the normalized contact distance, dnorm. The Hirshfeld surfaces (Spackman et al., 2009) together with decomposed fingerprint plots (McKinnon et al., 2007; Tan et al., 2019) for the title compound were generated using Crystal Explorer 17.5 (Turner et al., 2017).
The Hirshfeld surfaces mapped over dnorm together with decomposed fingerprint plots are presented in Fig. 5. The deep-red circular depressions represent intermolecular short O⋯H contacts. The pale-red spots near the thienyl rings confirm the presence of C—H⋯O interactions, which stabilize the structure. The combined O⋯H/H⋯O interactions appear as large symmetrically sharp spikes at the bottom of the plot and occupy 18.9% of the total available surface. Nearly 67.2% of the total surface is captured by H⋯H short contacts resulting from the interaction of methyl and methylene hydrogens and appear as scattered points in the plot. Symmetrical wing-like projections appearing on the interior side of the top of the plot result from C⋯H/H⋯C, interactions which represent 8.9% of the surface area. The S⋯H and H⋯S interactions (4.1%) appear as external sharp wings in the fingerprint plot. The least contribution comes from S⋯O contacts, accounting for only 0.8% of the Hirshfeld surface.
5. Database survey
A search in the Cambridge Structural Database (CSD Version 5.39, update of November 2017; Groom et al., 2016) for the presence of pyrrolo ring organic structures having 3D coordinates with no disorder, no ions and no other errors, with R factors less than 0.05 yielded 175 structures. When the search was further restricted to fused pyrrolo-thiazine ring structures, the number of hits reduced to five, viz. EXIYAM (Chitradevi et al., 2011), IDOGIT (Chitradevi et al., 2013), NEVCUN (Indumathi et al., 2007), VOKHAG (Gao, et al., 2005) and SINSAM (Sribala, et al., 2018) while a search for pyrrolo-thiazine ring combined with the other substituents in skeleton of the title compound, gave zero hits.
6. Synthesis and crystallization
A mixture of ethyl 2-[(2-ethoxy-2-oxoethyl)sulfonyl]acetate (1.6 mmol), thiophene-2-carboxaldehyde (3.2 mmol) and pyrrolidine (1.6 mmol) was dissolved in ethanol (10 mL), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash v/v) as (Indumathi et al., 2007).
on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:57. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were fixed using geometric HFIX constraints. H atoms were positioned geometrically (N—H = 0.98 Å, C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-methyl).
details are summarized in Table 2The title compound crystallized with disorder in the terminal carbon atom attached to one of the ethyl group in dicarboxylate side chain. During R value reduced to 0.0587, a few residual peaks with significant electron density (1.17 e Å−3) appeared, indicating disorder in the carbon atom attached to one of the ethyl groups in the dicarboxylate side chain. Hence the the terminal carbon atom C17 was split over two positions with site occupancies of 0.792 (3) and 0.208 (3) The hydrogen atoms attached to C16 are also disordered and were split using suitable HFIX constraints. All atoms in the thienyl ring (S3/C19/C20/C21/C22) were subject to rigid-bond restraints using DELU and SIMU instructions. The ring carbon atom C19 shares the same atomic site in both disorder components and was refined using EXYZ and EADP constraints. The R value thus reduced to 0.0439 with maximum/minimum values of residual electron densities of 0.32 and 0.56 e Å−3.
although theSupporting information
CCDC reference: 2092264
https://doi.org/10.1107/S2056989021006642/jy2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006642/jy2008Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021006642/jy2008Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C22H28NO6S3 | Z = 2 |
Mr = 498.66 | F(000) = 526 |
Triclinic, P1 | Dx = 1.405 Mg m−3 Dm = 1.40 Mg m−3 Dm measured by floatation method |
a = 10.6886 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4878 (5) Å | Cell parameters from 6274 reflections |
c = 11.8389 (6) Å | θ = 4.8–60.3° |
α = 76.007 (1)° | µ = 0.35 mm−1 |
β = 65.584 (1)° | T = 293 K |
γ = 63.213 (1)° | Needle, colorless |
V = 1178.87 (10) Å3 | 0.30 × 0.20 × 0.10 mm |
Bruker SMART APEXII CCD diffractometer | 3774 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
φ and ω scans | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −12→12 |
Tmin = 0.864, Tmax = 1.0 | k = −13→13 |
21855 measured reflections | l = −14→14 |
4375 independent reflections |
Refinement on F2 | 90 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0758P)2 + 0.5387P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4375 reflections | Δρmax = 0.33 e Å−3 |
337 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.10643 (6) | 0.88526 (5) | 0.27014 (5) | 0.04061 (16) | |
S2 | 0.55456 (8) | 0.97081 (7) | 0.15698 (7) | 0.0688 (2) | |
O1 | −0.03173 (17) | 0.95752 (15) | 0.36171 (15) | 0.0531 (4) | |
O2 | 0.1034 (2) | 0.85385 (16) | 0.16209 (15) | 0.0573 (4) | |
O3 | 0.0632 (2) | 1.20507 (16) | 0.24368 (18) | 0.0654 (5) | |
O4 | 0.12980 (18) | 1.11430 (16) | 0.06971 (14) | 0.0547 (4) | |
O5 | 0.3767 (2) | 0.52543 (17) | 0.2873 (2) | 0.0774 (6) | |
O6 | 0.4110 (2) | 0.69543 (16) | 0.16392 (17) | 0.0670 (5) | |
N1 | 0.34311 (19) | 0.84775 (17) | 0.37670 (16) | 0.0428 (4) | |
H1 | 0.426635 | 0.794818 | 0.309267 | 0.051* | |
C1 | 0.1999 (2) | 0.73789 (19) | 0.35204 (19) | 0.0416 (5) | |
C2 | 0.2399 (2) | 0.7824 (2) | 0.44176 (19) | 0.0451 (5) | |
H2 | 0.147318 | 0.843315 | 0.497164 | 0.054* | |
C3 | 0.3188 (3) | 0.6708 (3) | 0.5215 (3) | 0.0665 (7) | |
H3A | 0.246738 | 0.656734 | 0.600762 | 0.080* | |
H3B | 0.375080 | 0.590302 | 0.479278 | 0.080* | |
C4 | 0.4206 (4) | 0.7140 (4) | 0.5397 (4) | 0.0880 (10) | |
H4A | 0.523656 | 0.652716 | 0.506363 | 0.106* | |
H4B | 0.395321 | 0.719435 | 0.627467 | 0.106* | |
C5 | 0.3999 (3) | 0.8470 (3) | 0.4713 (2) | 0.0569 (6) | |
H5A | 0.328281 | 0.916183 | 0.527048 | 0.068* | |
H5B | 0.494141 | 0.857580 | 0.432665 | 0.068* | |
C6 | 0.2742 (2) | 0.97962 (19) | 0.32476 (19) | 0.0406 (4) | |
H6 | 0.187469 | 1.031597 | 0.391222 | 0.049* | |
C7 | 0.2225 (2) | 0.97657 (19) | 0.22255 (19) | 0.0402 (4) | |
H7 | 0.311127 | 0.937410 | 0.150506 | 0.048* | |
C8 | 0.1292 (2) | 1.1133 (2) | 0.1820 (2) | 0.0447 (5) | |
C9 | 0.0305 (3) | 1.2326 (3) | 0.0223 (3) | 0.0683 (7) | |
H9A | 0.061777 | 1.230870 | −0.066911 | 0.082* | |
H9B | 0.037761 | 1.307949 | 0.038203 | 0.082* | |
C10 | −0.1250 (4) | 1.2455 (4) | 0.0806 (4) | 0.0922 (11) | |
H10A | −0.187600 | 1.324389 | 0.047480 | 0.138* | |
H10B | −0.132705 | 1.171788 | 0.063818 | 0.138* | |
H10C | −0.156697 | 1.248790 | 0.168828 | 0.138* | |
C11 | 0.3842 (2) | 1.0435 (2) | 0.2691 (2) | 0.0462 (5) | |
C12 | 0.3678 (3) | 1.1617 (2) | 0.2960 (2) | 0.0542 (6) | |
H12 | 0.283730 | 1.216203 | 0.354333 | 0.065* | |
C13 | 0.4974 (4) | 1.1879 (3) | 0.2220 (3) | 0.0715 (8) | |
H13 | 0.506915 | 1.262846 | 0.227014 | 0.086* | |
C14 | 0.6042 (3) | 1.0954 (3) | 0.1447 (3) | 0.0721 (8) | |
H14 | 0.695061 | 1.098978 | 0.090502 | 0.087* | |
C15 | 0.3384 (3) | 0.6402 (2) | 0.2639 (2) | 0.0481 (5) | |
C16 | 0.5467 (4) | 0.6097 (3) | 0.0760 (3) | 0.0857 (10) | |
H16 | 0.549343 | 0.549916 | 0.033476 | 0.103* | 0.792 (3) |
H16A | 0.524753 | 0.599733 | 0.008051 | 0.103* | 0.208 (3) |
H16B | 0.584819 | 0.524079 | 0.117016 | 0.103* | 0.208 (3) |
C18 | 0.0856 (3) | 0.6761 (2) | 0.4312 (2) | 0.0494 (5) | |
H18A | 0.136028 | 0.596702 | 0.474240 | 0.059* | 0.792 (3) |
H18B | 0.007236 | 0.735721 | 0.494289 | 0.059* | 0.792 (3) |
H18C | 0.136028 | 0.596702 | 0.474240 | 0.059* | 0.208 (3) |
H18D | 0.007236 | 0.735721 | 0.494289 | 0.059* | 0.208 (3) |
S3_1 | 0.09583 (14) | 0.50348 (10) | 0.29130 (11) | 0.0652 (4) | 0.792 (3) |
C19_1 | 0.0117 (2) | 0.64238 (18) | 0.3678 (2) | 0.0478 (5) | 0.792 (3) |
C20_1 | −0.1310 (6) | 0.7043 (5) | 0.3731 (7) | 0.0594 (11) | 0.792 (3) |
H20A_1 | −0.148183 | 0.794177 | 0.341102 | 0.071* | 0.792 (3) |
H20B_1 | −0.195416 | 0.705916 | 0.459804 | 0.071* | 0.792 (3) |
C21_1 | −0.0643 (5) | 0.5378 (4) | 0.2636 (5) | 0.0613 (9) | 0.792 (3) |
H21_1 | −0.071925 | 0.483193 | 0.222378 | 0.074* | 0.792 (3) |
C22_1 | −0.1757 (5) | 0.6500 (4) | 0.3070 (5) | 0.0627 (9) | 0.792 (3) |
H22_1 | −0.267612 | 0.686988 | 0.296132 | 0.075* | 0.792 (3) |
S3_2 | −0.1644 (4) | 0.7422 (5) | 0.3683 (7) | 0.0605 (12) | 0.208 (3) |
C19_2 | 0.0117 (2) | 0.64238 (18) | 0.3678 (2) | 0.0478 (5) | 0.208 (3) |
C20_2 | 0.0676 (16) | 0.5264 (9) | 0.3213 (15) | 0.052 (2) | 0.208 (3) |
H20_2 | 0.156587 | 0.459071 | 0.325815 | 0.062* | 0.208 (3) |
C21_2 | −0.1504 (17) | 0.6172 (13) | 0.301 (2) | 0.059 (2) | 0.208 (3) |
H21_2 | −0.233728 | 0.621400 | 0.289946 | 0.070* | 0.208 (3) |
C22_2 | −0.0206 (14) | 0.5147 (15) | 0.2644 (17) | 0.055 (2) | 0.208 (3) |
H22_2 | 0.006362 | 0.450567 | 0.213808 | 0.066* | 0.208 (3) |
C17_2 | 0.6689 (10) | 0.6277 (11) | 0.0637 (12) | 0.203 (6) | 0.792 (3) |
H17A_2 | 0.756213 | 0.568897 | 0.005954 | 0.305* | 0.792 (3) |
H17B_2 | 0.680508 | 0.610621 | 0.142986 | 0.305* | 0.792 (3) |
H17C_2 | 0.656401 | 0.716174 | 0.033258 | 0.305* | 0.792 (3) |
C17A_2 | 0.661 (2) | 0.6669 (18) | 0.0269 (11) | 0.046 (3) | 0.208 (3) |
H17D_2 | 0.625474 | 0.749063 | −0.018241 | 0.069* | 0.208 (3) |
H17E_2 | 0.752574 | 0.608189 | −0.027517 | 0.069* | 0.208 (3) |
H17F_2 | 0.678945 | 0.680424 | 0.094874 | 0.069* | 0.208 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0442 (3) | 0.0366 (3) | 0.0397 (3) | −0.0151 (2) | −0.0150 (2) | −0.0017 (2) |
S2 | 0.0537 (4) | 0.0648 (4) | 0.0817 (5) | −0.0287 (3) | −0.0006 (3) | −0.0267 (4) |
O1 | 0.0404 (8) | 0.0470 (9) | 0.0600 (10) | −0.0110 (7) | −0.0119 (7) | −0.0071 (7) |
O2 | 0.0814 (12) | 0.0579 (10) | 0.0484 (9) | −0.0373 (9) | −0.0312 (8) | 0.0044 (7) |
O3 | 0.0795 (12) | 0.0375 (9) | 0.0799 (12) | −0.0058 (8) | −0.0436 (10) | −0.0121 (8) |
O4 | 0.0567 (10) | 0.0523 (9) | 0.0416 (8) | −0.0156 (8) | −0.0162 (7) | 0.0049 (7) |
O5 | 0.0702 (12) | 0.0372 (9) | 0.0896 (14) | −0.0071 (8) | −0.0115 (10) | −0.0044 (9) |
O6 | 0.0648 (11) | 0.0441 (9) | 0.0575 (10) | −0.0150 (8) | 0.0104 (8) | −0.0171 (8) |
N1 | 0.0400 (9) | 0.0393 (9) | 0.0426 (9) | −0.0097 (7) | −0.0133 (7) | −0.0065 (7) |
C1 | 0.0447 (11) | 0.0363 (10) | 0.0380 (10) | −0.0139 (9) | −0.0125 (9) | −0.0009 (8) |
C2 | 0.0479 (12) | 0.0436 (11) | 0.0382 (10) | −0.0153 (9) | −0.0141 (9) | −0.0009 (8) |
C3 | 0.0843 (19) | 0.0615 (16) | 0.0626 (16) | −0.0293 (14) | −0.0432 (15) | 0.0135 (12) |
C4 | 0.091 (2) | 0.098 (2) | 0.095 (2) | −0.049 (2) | −0.062 (2) | 0.0368 (19) |
C5 | 0.0508 (13) | 0.0620 (15) | 0.0588 (14) | −0.0145 (11) | −0.0276 (11) | −0.0061 (11) |
C6 | 0.0382 (10) | 0.0364 (10) | 0.0403 (10) | −0.0095 (8) | −0.0099 (8) | −0.0087 (8) |
C7 | 0.0413 (10) | 0.0343 (10) | 0.0388 (10) | −0.0127 (8) | −0.0101 (8) | −0.0043 (8) |
C8 | 0.0446 (11) | 0.0389 (11) | 0.0500 (12) | −0.0172 (9) | −0.0174 (9) | 0.0005 (9) |
C9 | 0.0739 (18) | 0.0593 (15) | 0.0632 (16) | −0.0208 (13) | −0.0333 (14) | 0.0151 (12) |
C10 | 0.0672 (19) | 0.116 (3) | 0.096 (2) | −0.0219 (19) | −0.0418 (18) | −0.017 (2) |
C11 | 0.0476 (12) | 0.0426 (11) | 0.0474 (12) | −0.0156 (9) | −0.0152 (10) | −0.0088 (9) |
C12 | 0.0610 (14) | 0.0459 (12) | 0.0575 (14) | −0.0215 (11) | −0.0209 (11) | −0.0061 (10) |
C13 | 0.096 (2) | 0.0687 (17) | 0.0725 (18) | −0.0496 (17) | −0.0292 (16) | −0.0091 (14) |
C14 | 0.0703 (17) | 0.085 (2) | 0.0742 (18) | −0.0492 (16) | −0.0134 (14) | −0.0111 (15) |
C15 | 0.0485 (12) | 0.0390 (11) | 0.0502 (12) | −0.0131 (9) | −0.0140 (10) | −0.0070 (9) |
C16 | 0.0689 (19) | 0.0710 (19) | 0.085 (2) | −0.0228 (15) | 0.0167 (16) | −0.0416 (16) |
C18 | 0.0558 (13) | 0.0470 (12) | 0.0408 (11) | −0.0238 (10) | −0.0114 (10) | 0.0017 (9) |
S3_1 | 0.0748 (7) | 0.0432 (5) | 0.0734 (8) | −0.0199 (5) | −0.0213 (6) | −0.0125 (4) |
C19_1 | 0.0562 (12) | 0.0403 (10) | 0.0427 (10) | −0.0240 (9) | −0.0108 (9) | 0.0021 (8) |
C20_1 | 0.064 (2) | 0.050 (2) | 0.057 (2) | −0.0153 (16) | −0.0229 (19) | −0.0030 (19) |
C21_1 | 0.070 (2) | 0.055 (2) | 0.0648 (18) | −0.0298 (17) | −0.0234 (18) | −0.0042 (15) |
C22_1 | 0.066 (2) | 0.061 (2) | 0.0605 (19) | −0.0267 (16) | −0.0214 (17) | −0.0009 (18) |
S3_2 | 0.059 (2) | 0.059 (3) | 0.069 (2) | −0.0261 (17) | −0.0281 (19) | 0.002 (2) |
C19_2 | 0.0562 (12) | 0.0403 (10) | 0.0427 (10) | −0.0240 (9) | −0.0108 (9) | 0.0021 (8) |
C20_2 | 0.057 (3) | 0.048 (3) | 0.051 (4) | −0.031 (3) | −0.012 (3) | 0.002 (3) |
C21_2 | 0.062 (4) | 0.055 (4) | 0.065 (4) | −0.030 (3) | −0.023 (3) | 0.003 (3) |
C22_2 | 0.061 (4) | 0.051 (4) | 0.059 (4) | −0.032 (3) | −0.019 (4) | 0.002 (3) |
C17_2 | 0.066 (4) | 0.215 (11) | 0.328 (15) | −0.037 (6) | 0.012 (7) | −0.201 (11) |
C17A_2 | 0.043 (7) | 0.058 (7) | 0.018 (4) | −0.021 (6) | 0.012 (4) | −0.009 (5) |
S1—O2 | 1.4270 (17) | C11—C12 | 1.387 (3) |
S1—O1 | 1.4324 (16) | C12—C13 | 1.422 (4) |
S1—C7 | 1.808 (2) | C12—H12 | 0.9300 |
S1—C1 | 1.813 (2) | C13—C14 | 1.335 (4) |
S2—C14 | 1.694 (3) | C13—H13 | 0.9300 |
S2—C11 | 1.715 (2) | C14—H14 | 0.9300 |
O3—C8 | 1.191 (3) | C16—C17_2 | 1.356 (10) |
O4—C8 | 1.324 (3) | C16—C17A_2 | 1.489 (19) |
O4—C9 | 1.453 (3) | C16—H16 | 0.9300 |
O5—C15 | 1.189 (3) | C16—H16A | 0.9700 |
O6—C15 | 1.314 (3) | C16—H16B | 0.9700 |
O6—C16 | 1.455 (3) | C18—C19_2 | 1.499 (3) |
N1—C6 | 1.461 (3) | C18—C19_1 | 1.499 (3) |
N1—C2 | 1.463 (3) | C18—H18A | 0.9700 |
N1—C5 | 1.475 (3) | C18—H18B | 0.9700 |
N1—H1 | 0.9800 | C18—H18C | 0.9700 |
C1—C15 | 1.527 (3) | C18—H18D | 0.9700 |
C1—C18 | 1.546 (3) | S3_1—C19_1 | 1.705 (2) |
C1—C2 | 1.551 (3) | S3_1—C21_1 | 1.728 (4) |
C2—C3 | 1.531 (3) | C19_1—C20_1 | 1.341 (6) |
C2—H2 | 0.9800 | C20_1—C22_1 | 1.430 (7) |
C3—C4 | 1.486 (4) | C20_1—H20A_1 | 0.9700 |
C3—H3A | 0.9700 | C20_1—H20B_1 | 0.9700 |
C3—H3B | 0.9700 | C21_1—C22_1 | 1.332 (5) |
C4—C5 | 1.512 (4) | C21_1—H21_1 | 0.9300 |
C4—H4A | 0.9700 | C22_1—H22_1 | 0.9300 |
C4—H4B | 0.9700 | S3_2—C19_2 | 1.704 (2) |
C5—H5A | 0.9700 | S3_2—C21_2 | 1.728 (4) |
C5—H5B | 0.9700 | C19_2—C20_2 | 1.341 (6) |
C6—C11 | 1.503 (3) | C20_2—C22_2 | 1.430 (7) |
C6—C7 | 1.537 (3) | C20_2—H20_2 | 0.9300 |
C6—H6 | 0.9800 | C21_2—C22_2 | 1.332 (5) |
C7—C8 | 1.521 (3) | C21_2—H21_2 | 0.9300 |
C7—H7 | 0.9800 | C22_2—H22_2 | 0.9300 |
C9—C10 | 1.463 (4) | C17_2—H17A_2 | 0.9600 |
C9—H9A | 0.9700 | C17_2—H17B_2 | 0.9600 |
C9—H9B | 0.9700 | C17_2—H17C_2 | 0.9600 |
C10—H10A | 0.9600 | C17A_2—H17D_2 | 0.9600 |
C10—H10B | 0.9600 | C17A_2—H17E_2 | 0.9600 |
C10—H10C | 0.9600 | C17A_2—H17F_2 | 0.9600 |
O2—S1—O1 | 119.13 (11) | C11—C12—C13 | 110.5 (2) |
O2—S1—C7 | 109.00 (10) | C11—C12—H12 | 124.7 |
O1—S1—C7 | 106.71 (10) | C13—C12—H12 | 124.7 |
O2—S1—C1 | 110.41 (10) | C14—C13—C12 | 114.2 (2) |
O1—S1—C1 | 106.16 (10) | C14—C13—H13 | 122.9 |
C7—S1—C1 | 104.40 (10) | C12—C13—H13 | 122.9 |
C14—S2—C11 | 92.13 (13) | C13—C14—S2 | 112.0 (2) |
C8—O4—C9 | 117.8 (2) | C13—C14—H14 | 124.0 |
C15—O6—C16 | 117.5 (2) | S2—C14—H14 | 124.0 |
C6—N1—C2 | 113.82 (16) | O5—C15—O6 | 124.4 (2) |
C6—N1—C5 | 112.22 (17) | O5—C15—C1 | 121.9 (2) |
C2—N1—C5 | 104.09 (17) | O6—C15—C1 | 113.64 (18) |
C6—N1—H1 | 108.8 | C17_2—C16—O6 | 111.8 (4) |
C2—N1—H1 | 108.8 | O6—C16—C17A_2 | 109.3 (7) |
C5—N1—H1 | 108.8 | C17_2—C16—H16 | 124.1 |
C15—C1—C18 | 110.35 (17) | O6—C16—H16 | 124.1 |
C15—C1—C2 | 111.72 (18) | O6—C16—H16A | 109.8 |
C18—C1—C2 | 108.07 (17) | C17A_2—C16—H16A | 109.8 |
C15—C1—S1 | 112.48 (14) | O6—C16—H16B | 109.8 |
C18—C1—S1 | 107.65 (15) | C17A_2—C16—H16B | 109.8 |
C2—C1—S1 | 106.34 (14) | H16A—C16—H16B | 108.3 |
N1—C2—C3 | 103.90 (19) | C19_2—C18—C1 | 118.81 (18) |
N1—C2—C1 | 112.87 (16) | C19_1—C18—C1 | 118.81 (18) |
C3—C2—C1 | 114.40 (19) | C19_1—C18—H18A | 107.6 |
N1—C2—H2 | 108.5 | C1—C18—H18A | 107.6 |
C3—C2—H2 | 108.5 | C19_1—C18—H18B | 107.6 |
C1—C2—H2 | 108.5 | C1—C18—H18B | 107.6 |
C4—C3—C2 | 105.1 (2) | H18A—C18—H18B | 107.0 |
C4—C3—H3A | 110.7 | C19_2—C18—H18C | 107.6 |
C2—C3—H3A | 110.7 | C1—C18—H18C | 107.6 |
C4—C3—H3B | 110.7 | C19_2—C18—H18D | 107.6 |
C2—C3—H3B | 110.7 | C1—C18—H18D | 107.6 |
H3A—C3—H3B | 108.8 | H18C—C18—H18D | 107.0 |
C3—C4—C5 | 106.6 (2) | C19_1—S3_1—C21_1 | 91.52 (18) |
C3—C4—H4A | 110.4 | C20_1—C19_1—C18 | 127.1 (3) |
C5—C4—H4A | 110.4 | C20_1—C19_1—S3_1 | 109.6 (3) |
C3—C4—H4B | 110.4 | C18—C19_1—S3_1 | 122.94 (17) |
C5—C4—H4B | 110.4 | C19_1—C20_1—C22_1 | 116.2 (5) |
H4A—C4—H4B | 108.6 | C19_1—C20_1—H20A_1 | 108.2 |
N1—C5—C4 | 103.6 (2) | C22_1—C20_1—H20A_1 | 108.2 |
N1—C5—H5A | 111.0 | C19_1—C20_1—H20B_1 | 108.2 |
C4—C5—H5A | 111.0 | C22_1—C20_1—H20B_1 | 108.2 |
N1—C5—H5B | 111.0 | H20A_1—C20_1—H20B_1 | 107.4 |
C4—C5—H5B | 111.0 | C22_1—C21_1—S3_1 | 113.4 (4) |
H5A—C5—H5B | 109.0 | C22_1—C21_1—H21_1 | 123.3 |
N1—C6—C11 | 110.30 (17) | S3_1—C21_1—H21_1 | 123.3 |
N1—C6—C7 | 110.96 (16) | C21_1—C22_1—C20_1 | 109.0 (5) |
C11—C6—C7 | 108.32 (17) | C21_1—C22_1—H22_1 | 125.5 |
N1—C6—H6 | 109.1 | C20_1—C22_1—H22_1 | 125.5 |
C11—C6—H6 | 109.1 | C19_2—S3_2—C21_2 | 85.3 (6) |
C7—C6—H6 | 109.1 | C20_2—C19_2—C18 | 123.6 (7) |
C8—C7—C6 | 111.47 (16) | C20_2—C19_2—S3_2 | 114.4 (6) |
C8—C7—S1 | 105.56 (14) | C18—C19_2—S3_2 | 121.4 (3) |
C6—C7—S1 | 113.68 (14) | C19_2—C20_2—C22_2 | 114.6 (11) |
C8—C7—H7 | 108.7 | C19_2—C20_2—H20_2 | 122.7 |
C6—C7—H7 | 108.7 | C22_2—C20_2—H20_2 | 122.7 |
S1—C7—H7 | 108.7 | C22_2—C21_2—S3_2 | 120.2 (12) |
O3—C8—O4 | 125.3 (2) | C22_2—C21_2—H21_2 | 119.9 |
O3—C8—C7 | 124.6 (2) | S3_2—C21_2—H21_2 | 119.9 |
O4—C8—C7 | 110.05 (18) | C21_2—C22_2—C20_2 | 103.9 (13) |
O4—C9—C10 | 111.5 (2) | C21_2—C22_2—H22_2 | 128.1 |
O4—C9—H9A | 109.3 | C20_2—C22_2—H22_2 | 128.1 |
C10—C9—H9A | 109.3 | C16—C17_2—H17A_2 | 109.5 |
O4—C9—H9B | 109.3 | C16—C17_2—H17B_2 | 109.5 |
C10—C9—H9B | 109.3 | H17A_2—C17_2—H17B_2 | 109.5 |
H9A—C9—H9B | 108.0 | C16—C17_2—H17C_2 | 109.5 |
C9—C10—H10A | 109.5 | H17A_2—C17_2—H17C_2 | 109.5 |
C9—C10—H10B | 109.5 | H17B_2—C17_2—H17C_2 | 109.5 |
H10A—C10—H10B | 109.5 | C16—C17A_2—H17D_2 | 109.5 |
C9—C10—H10C | 109.5 | C16—C17A_2—H17E_2 | 109.5 |
H10A—C10—H10C | 109.5 | H17D_2—C17A_2—H17E_2 | 109.5 |
H10B—C10—H10C | 109.5 | C16—C17A_2—H17F_2 | 109.5 |
C12—C11—C6 | 128.0 (2) | H17D_2—C17A_2—H17F_2 | 109.5 |
C12—C11—S2 | 111.20 (18) | H17E_2—C17A_2—H17F_2 | 109.5 |
C6—C11—S2 | 120.78 (15) | ||
O2—S1—C1—C15 | 40.84 (18) | N1—C6—C11—C12 | −124.6 (2) |
O1—S1—C1—C15 | 171.28 (15) | C7—C6—C11—C12 | 113.8 (3) |
C7—S1—C1—C15 | −76.17 (17) | N1—C6—C11—S2 | 55.8 (2) |
O2—S1—C1—C18 | −80.94 (16) | C7—C6—C11—S2 | −65.8 (2) |
O1—S1—C1—C18 | 49.50 (17) | C14—S2—C11—C12 | −0.3 (2) |
C7—S1—C1—C18 | 162.05 (14) | C14—S2—C11—C6 | 179.4 (2) |
O2—S1—C1—C2 | 163.44 (14) | C6—C11—C12—C13 | −179.5 (2) |
O1—S1—C1—C2 | −66.12 (16) | S2—C11—C12—C13 | 0.2 (3) |
C7—S1—C1—C2 | 46.43 (16) | C11—C12—C13—C14 | −0.1 (4) |
C6—N1—C2—C3 | −162.13 (19) | C12—C13—C14—S2 | −0.1 (4) |
C5—N1—C2—C3 | −39.6 (2) | C11—S2—C14—C13 | 0.2 (3) |
C6—N1—C2—C1 | 73.4 (2) | C16—O6—C15—O5 | 0.4 (4) |
C5—N1—C2—C1 | −164.14 (18) | C16—O6—C15—C1 | 178.5 (2) |
C15—C1—C2—N1 | 60.9 (2) | C18—C1—C15—O5 | −27.1 (3) |
C18—C1—C2—N1 | −177.54 (17) | C2—C1—C15—O5 | 93.1 (3) |
S1—C1—C2—N1 | −62.20 (19) | S1—C1—C15—O5 | −147.4 (2) |
C15—C1—C2—C3 | −57.7 (3) | C18—C1—C15—O6 | 154.7 (2) |
C18—C1—C2—C3 | 63.9 (2) | C2—C1—C15—O6 | −85.0 (2) |
S1—C1—C2—C3 | 179.27 (18) | S1—C1—C15—O6 | 34.5 (3) |
N1—C2—C3—C4 | 24.3 (3) | C15—O6—C16—C17_2 | −118.1 (7) |
C1—C2—C3—C4 | 147.8 (2) | C15—O6—C16—C17A_2 | −141.0 (7) |
C2—C3—C4—C5 | −0.2 (4) | C15—C1—C18—C19_2 | −66.3 (2) |
C6—N1—C5—C4 | 163.0 (2) | C2—C1—C18—C19_2 | 171.31 (19) |
C2—N1—C5—C4 | 39.5 (3) | S1—C1—C18—C19_2 | 56.8 (2) |
C3—C4—C5—N1 | −23.8 (3) | C15—C1—C18—C19_1 | −66.3 (2) |
C2—N1—C6—C11 | 175.34 (17) | C2—C1—C18—C19_1 | 171.31 (19) |
C5—N1—C6—C11 | 57.4 (2) | S1—C1—C18—C19_1 | 56.8 (2) |
C2—N1—C6—C7 | −64.6 (2) | C1—C18—C19_1—C20_1 | −107.6 (4) |
C5—N1—C6—C7 | 177.47 (18) | C1—C18—C19_1—S3_1 | 80.6 (2) |
N1—C6—C7—C8 | 171.04 (16) | C21_1—S3_1—C19_1—C20_1 | 2.3 (4) |
C11—C6—C7—C8 | −67.7 (2) | C21_1—S3_1—C19_1—C18 | 175.3 (3) |
N1—C6—C7—S1 | 51.9 (2) | C18—C19_1—C20_1—C22_1 | −178.0 (4) |
C11—C6—C7—S1 | 173.09 (13) | S3_1—C19_1—C20_1—C22_1 | −5.4 (7) |
O2—S1—C7—C8 | 75.37 (16) | C19_1—S3_1—C21_1—C22_1 | 1.4 (4) |
O1—S1—C7—C8 | −54.49 (16) | S3_1—C21_1—C22_1—C20_1 | −4.4 (7) |
C1—S1—C7—C8 | −166.65 (14) | C19_1—C20_1—C22_1—C21_1 | 6.4 (8) |
O2—S1—C7—C6 | −162.15 (14) | C1—C18—C19_2—C20_2 | 89.6 (9) |
O1—S1—C7—C6 | 67.99 (16) | C1—C18—C19_2—S3_2 | −99.5 (3) |
C1—S1—C7—C6 | −44.17 (16) | C21_2—S3_2—C19_2—C20_2 | −0.9 (13) |
C9—O4—C8—O3 | −6.6 (3) | C21_2—S3_2—C19_2—C18 | −172.5 (8) |
C9—O4—C8—C7 | 172.04 (19) | C18—C19_2—C20_2—C22_2 | −179.9 (11) |
C6—C7—C8—O3 | −22.8 (3) | S3_2—C19_2—C20_2—C22_2 | 8.6 (17) |
S1—C7—C8—O3 | 101.0 (2) | C19_2—S3_2—C21_2—C22_2 | −8.0 (19) |
C6—C7—C8—O4 | 158.49 (17) | S3_2—C21_2—C22_2—C20_2 | 13 (2) |
S1—C7—C8—O4 | −77.62 (19) | C19_2—C20_2—C22_2—C21_2 | −13 (2) |
C8—O4—C9—C10 | −75.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O2i | 0.96 | 2.63 | 3.227 (4) | 120 |
C2—H2···O1ii | 0.98 | 2.67 | 3.519 (3) | 145 |
C5—H5A···O1ii | 0.97 | 2.69 | 3.491 (3) | 141 |
C6—H6···O1ii | 0.98 | 2.70 | 3.560 (3) | 146 |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x, −y+2, −z+1. |
Acknowledgements
The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the Management of Thiagarajar College, Madurai, for financial support in establishing the Cambridge Structural Database in the Department of Physics.
References
Adly, O. M. I. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 483–490. Web of Science CrossRef CAS PubMed Google Scholar
Arya, K., Rawat, D. S., Dandia, A. & Sasai, H. (2012). J. Fluor. Chem. 137, 117–122. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS., Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Budriesi, R., Cosimelli, B., Ioan, P., Lanza, C. Z., Spinelli, D. & Chiarini, A. (2002). J. Med. Chem. 45, 3475–3481. Web of Science CrossRef PubMed CAS Google Scholar
Chia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). Bioorg. Med. Chem. 16, 9432–9442. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706–o707. CSD CrossRef IUCr Journals Google Scholar
Cox, M. M. & Nelson, D. L. (2008). Lehninger Principles of Biochemistry, Vol. 5. New York: W. Freeman. Google Scholar
Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499–510. Web of Science CrossRef PubMed CAS Google Scholar
Erker, T., Schreder, M. E. & Studenik, C. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 58–62. CrossRef CAS Google Scholar
Evans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181–190. Web of Science CrossRef CAS Google Scholar
Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131–137. Web of Science CrossRef CAS Google Scholar
Galanski, M. E., Erker, T., Handler, N., Lemmens-Gruber, R., Kamyar, M. & Studenik, C. R. (2006). Bioorg. Med. Chem. 14, 826–836. Web of Science CrossRef PubMed CAS Google Scholar
Ganorkar, R. S., Ganorkar, R. P. & Parhate, V. V. (2013). Rasayan J. Chem. 6(1), 65–7. Google Scholar
Gao, L. & Hollingsworth, R. I. (2005). J. Org. Chem. 70, 9013–9016. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holub, J. M., OToole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135–157. CrossRef CAS Google Scholar
Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411–1416. Web of Science CSD CrossRef CAS Google Scholar
Indumathi, S., Perumal, S., Banerjee, D., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 4978–4984. Web of Science CrossRef PubMed CAS Google Scholar
Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Schreder, M. E. & Erker, T. (2000). J. Heterocycl. Chem. 37, 349–354. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, L. E. (1942). Ind. Eng. Chem. 34, 499–501. CrossRef CAS Google Scholar
Smith, N. L. (1951). J. Org. Chem. 16, 415–418. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267–1271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tanaka, A., Mizuno, H. & Sakurai, M. (1998). PCT. Int. Appl. WO, 9811089. Google Scholar
Tandon, V. K., Maurya, H. K., Yadav, D. B., Tripathi, A., Kumar, M. & Shukla, P. K. (2006). Bioorg. Med. Chem. Lett. 16, 5883–5887. Web of Science CrossRef PubMed CAS Google Scholar
Tozkoparan, B., Aktay, G. & Yesilada, E. (2002). II Farmaco, 57, 145-152. Web of Science CrossRef CAS Google Scholar
Tung-Mei, T. & Wen-Chuan, H. (2005). J. Chin. Pharma, 57, 43–48. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. Google Scholar
Wang, W., Zhao, B., Xu, C. & Wu, W. (2012). Int. J. Org. Chem. pp. 117–120. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.