research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a pyrrolo-thia­zine complex

crossmark logo

aDepartment of Physics, Thiagarajar College, Madurai - 625 009, India, bDepartment of Physics, M.G.R College, Hosur - 635130, India, and cSchool of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India
*Correspondence e-mail: vasan692000@yahoo.co.in

Edited by J. Reibenspies, Texas A & M University, USA (Received 31 May 2021; accepted 25 June 2021; online 2 July 2021)

In the title compound, diethyl 2,2-dioxo-4-(thio­phen-2-yl)-1-[(thio­phen-2-yl)meth­yl]-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate, C22H28NO6S3, the pyrrolo ring is in an envelope conformation while the thia­zine ring adopts a near chair conformation. The dihedral angles between the thia­zine ring and the methyl­thienyl, thienyl and pyrrolo rings are 64.0 (2), 87.92 (7) and 5.6 (2)°, respectively. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions. Disorder of the methyl­thienyl group with site occupancies of 0. 792 (3) and 0.208 (3) is observed

1. Chemical context

Heterocyclic compounds play a vital role in modern drug discovery and are used to generate novel frameworks with potential bioactivity. They are prevalent in nature and play a vital role in the metabolism of all living things, being utilized at almost every stage of the many biochemical processes necessary to sustain life. Heterocycles actively participate in various inter­molecular inter­actions, metal coordination bonds, hydro­phobic forces etc. The assimilation of heteroatoms within a carbon ring system can be used to explore different avenues for biologically active heterocycles, which have increasing importance in pharmacological activities. The crystal structures of sulfur-containing heterocycles and their supra­molecular features are of significant inter­est in the development of anti-cancer drugs. The role of the sulfur atom in biological system, viz. regulation translation via the sulfuration of transfer RNA is noteworthy. Majority of the anti-cancer drugs in the pharma industry are built with heterocycles as primary structural components.

[Scheme 1]

Thia­zine derivatives are the most important source of biologically active heterocyclic compounds. They exhibit anti­microbial and anti-diabetic (Faidallah et al., 2011[Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131-137.]; Adly, 2012[Adly, O. M. I. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 483-490.]), anti-histaminic (Arya et al., 2012[Arya, K., Rawat, D. S., Dandia, A. & Sasai, H. (2012). J. Fluor. Chem. 137, 117-122.]), anti­bacterial and anti­fungal (Tandon et al., 2006[Tandon, V. K., Maurya, H. K., Yadav, D. B., Tripathi, A., Kumar, M. & Shukla, P. K. (2006). Bioorg. Med. Chem. Lett. 16, 5883-5887.]; Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]; Ganorkar et al., 2013[Ganorkar, R. S., Ganorkar, R. P. & Parhate, V. V. (2013). Rasayan J. Chem. 6(1), 65-7.]), antagonistic (Galanski et al., 2006[Galanski, M. E., Erker, T., Handler, N., Lemmens-Gruber, R., Kamyar, M. & Studenik, C. R. (2006). Bioorg. Med. Chem. 14, 826-836.]), anti­oxidant (Smith, 1951[Smith, N. L. (1951). J. Org. Chem. 16, 415-418.]), analgesic and anti-inflammatory, (Chia et al., 2008[Chia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). Bioorg. Med. Chem. 16, 9432-9442.]; Tozkoparan et al., 2002[Tozkoparan, B., Aktay, G. & Yesilada, E. (2002). II Farmaco, 57, 145-152.]) anti-tuberculosis (Koketsu et al., 2002[Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307-310.]), anti­tumor (Wang et al., 2012[Wang, W., Zhao, B., Xu, C. & Wu, W. (2012). Int. J. Org. Chem. pp. 117-120.])), anti­mycobacterial (Indumathi et al., 2009[Indumathi, S., Perumal, S., Banerjee, D., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 4978-4984.]) and anti­helminthic and insecticidal (Smith, 1942[Smith, L. E. (1942). Ind. Eng. Chem. 34, 499-501.]) activity and act as potassium channel-opening agents (Erker et al., 2000[Erker, T., Schreder, M. E. & Studenik, C. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 58-62.]), nitric oxide synthase inhibitors (Tung-Mei et al., 2005[Tung-Mei, T. & Wen-Chuan, H. (2005). J. Chin. Pharma, 57, 43-48.]), smooth muscle relaxants (Schreder et al., 2000[Schreder, M. E. & Erker, T. (2000). J. Heterocycl. Chem. 37, 349-354.]), urokinase inhibitors (Tanaka et al., 1998[Tanaka, A., Mizuno, H. & Sakurai, M. (1998). PCT. Int. Appl. WO, 9811089.]) and as as myocardial calcium channel modulators (Budriesi et al., 2002[Budriesi, R., Cosimelli, B., Ioan, P., Lanza, C. Z., Spinelli, D. & Chiarini, A. (2002). J. Med. Chem. 45, 3475-3481.]). Besides, thia­zine derivatives are effective corrosion inhibitors for carbon steel in acidic media. They thus represent an inter­esting class of heterocyclic compound worthy of further exploration.

Pyrrolo derivatives have pharmacological activities such as anti-inflammatory, cytotoxicity against a variety of marine and human tumour models (Dannhardt et al., 2000[Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499-510.]; Evans et al., 2003[Evans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181-190.]) and are used in the treatment of hyperlipidemia (Holub et al.,2004[Holub, J. M., OToole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135-157.]). One of the tris­ubstituted pyrrole, porphobilinogen, serves as a biosynthetic precursor to many natural products including heme, the red pigment in haemoglobin (Cox et al., 2008[Cox, M. M. & Nelson, D. L. (2008). Lehninger Principles of Biochemistry, Vol. 5. New York: W. Freeman.]). In view of these observations and in a continuation of our work (Sribala et al., 2018[Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267-1271.]) on novel heterocycles of pharmaceutical importance, the crystal structure of the sulfur-containing heterocycle, diethyl 2,2-dioxo-4-(thio­phen-2-yl)-1-[(thio­phen-2-yl)meth­yl]-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate is des­cribed herein. Hydrogen-bonding inter­actions in the title compound were substanti­ated with the aid of Hirshfeld surface analysis.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic system with a centrosymmetric space group P[\overline{1}]. The thienylmethyl group shows an unexpected geometry, suggesting a ring-flip disorder where two sets of atomic sites with disorder components are related by an approximate 180° rotation about the exocyclic C—C bond. A conformational analysis of the five-membered pyrrolo ring (N1/C2/C3/C4/C5) [puckering parameters Q(2) = 0.386 (3) Å and φ(2) = 0.6 (6)°] indicates an envelope conformation on the nitro­gen atom (N1). The six-membered thia­zine ring adopts a near chair conformation with puckering parameters Q = 0.607 (2) Å, θ = 171.65 (19)° and φ = 306.1 (14)°. The dihedral angle between the planes of the thia­zine (S1/C1/C2/N1/C6/C7; r.m.s. deviation = 0.2475 Å) and methyl­thienyl rings (S3/C19/C20/C21/C22) is 64.0 (2)°. The thia­zine ring subtends a dihedral angle of 87.92 (7)° with the thienyl ring (S2/C11/C12/C13/C14). The dihedral angle between the planes of the thia­zine and pyrrolo rings is 5.6 (2)°, which is slightly lower than that reported in diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carbox­ylate and diethyl 1-(4-meth­ylbenz­yl)-4-(4-meth­ylphen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carbox­ylate, hereafter referred to as compounds (I)[link] and (II) [6.68 (10) and 8.06 (11)°; Sribala et al., 2018[Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267-1271.]). The terminal methyl carbon atom C10 deviates from the plane involving carboxyl group (C7/C8/O3/O4/C9) by 1.431 (3) Å [1.371 (3) and 1.409 (3) Å in compounds (I)[link] and (II), respectively]. Similarly the major component of the disordered methyl carbon atom C17 deviates from the plane (C1/C15/O5/O6/C16) by 1.123 (12) Å. The dihedral angle between the two carboxyl planes is 55.74 (7)°, significantly different from the values obtained in (I)[link] [12.73 (10)°] and (II) [12.07 (10)°]. The difference in value is probably due to the disorder of this atom.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a two-dimensional network (Table 1[link], Fig. 2[link]). A rare trifurcated hydrogen-bond formation is observed involving donor atoms C2, C5 and C6 with oxygen O1 as acceptor (Fig. 3[link]). The C10—H10B⋯O2i inter­action leads to the formation of an R22(16) graph-set motif while C2—H2⋯O1 generates an R22(10) motif (Fig. 4[link]). Thus the thia­zine ring plays a dominant role in the structural cohesion via weak C—H⋯O hydrogen bonds. A parallel displaced ππ stacking inter­action is observed with Cg2⋯Cg2(−x, 1 − y, 1 − z) = 4.668 (3) Å and a slippage of 2.794 Å, where Cg2 is the centroid of the thienyl ring (C19/C20/C21/C22/S3).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.96 2.63 3.227 (4) 120
C2—H2⋯O1ii 0.98 2.67 3.519 (3) 145
C5—H5A⋯O1ii 0.97 2.69 3.491 (3) 141
C6—H6⋯O1ii 0.98 2.70 3.560 (3) 146
Symmetry codes: (i) [-x, -y+2, -z]; (ii) [-x, -y+2, -z+1].
[Figure 2]
Figure 2
A view of the mol­ecular aggregation down the a axis. Ring systems and H atoms that are not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Trifurcated hydrogen bond involving donor atoms C2,C5 and C6 with oxygen atom O1 as acceptor.
[Figure 4]
Figure 4
Packing of the title compound viewed along the c axis showing the C2—H2⋯O1 and C10—H10B⋯O2 hydrogen bonds forming R22(10) and R22(16)rings. Dotted lines indicate hydrogen bonds. Non-participating H atoms, methyl C atoms and S atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Hirshfeld surface analysis is a tool to encapsulate and visualize the inter­molecular inter­actions of a crystal on a three-dimensional surface. The mol­ecular inter­actions on the isosurface are determined using the parameters di and de (representing the distances from a given point on the surface to the nearest atom inside and outside the surface, respectively), which in turn add-on to provide the normalized contact distance, dnorm. The Hirshfeld surfaces (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) together with decomposed fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) for the title compound were generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]).

The Hirshfeld surfaces mapped over dnorm together with decomposed fingerprint plots are presented in Fig. 5[link]. The deep-red circular depressions represent inter­molecular short O⋯H contacts. The pale-red spots near the thienyl rings confirm the presence of C—H⋯O inter­actions, which stabilize the structure. The combined O⋯H/H⋯O inter­actions appear as large symmetrically sharp spikes at the bottom of the plot and occupy 18.9% of the total available surface. Nearly 67.2% of the total surface is captured by H⋯H short contacts resulting from the inter­action of methyl and methyl­ene hydrogens and appear as scattered points in the plot. Symmetrical wing-like projections appearing on the inter­ior side of the top of the plot result from C⋯H/H⋯C, inter­actions which represent 8.9% of the surface area. The S⋯H and H⋯S inter­actions (4.1%) appear as external sharp wings in the fingerprint plot. The least contribution comes from S⋯O contacts, accounting for only 0.8% of the Hirshfeld surface.

[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm and decomposed fingerprint plots for the dominant inter­actions.

5. Database survey

A search in the Cambridge Structural Database (CSD Version 5.39, update of November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the presence of pyrrolo ring organic structures having 3D coord­inates with no disorder, no ions and no other errors, with R factors less than 0.05 yielded 175 structures. When the search was further restricted to fused pyrrolo-thia­zine ring structures, the number of hits reduced to five, viz. EXIYAM (Chitradevi et al., 2011[Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268.]), IDOGIT (Chitradevi et al., 2013[Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706-o707.]), NEVCUN (Indumathi et al., 2007[Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411-1416.]), VOKHAG (Gao, et al., 2005[Gao, L. & Hollingsworth, R. I. (2005). J. Org. Chem. 70, 9013-9016.]) and SINSAM (Sribala, et al., 2018[Sribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267-1271.]) while a search for pyrrolo-thia­zine ring combined with the other substituents in skeleton of the title compound, gave zero hits.

6. Synthesis and crystallization

A mixture of ethyl 2-[(2-eth­oxy-2-oxoeth­yl)sulfon­yl]acetate (1.6 mmol), thio­phene-2-carboxaldehyde (3.2 mmol) and pyrrolidine (1.6 mmol) was dissolved in ethanol (10 mL), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as eluent (Indumathi et al., 2007[Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411-1416.]).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were fixed using geometric HFIX constraints. H atoms were positioned geometrically (N—H = 0.98 Å, C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C22H28NO6S3
Mr 498.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.6886 (5), 11.4878 (5), 11.8389 (6)
α, β, γ (°) 76.007 (1), 65.584 (1), 63.213 (1)
V3) 1178.87 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS., Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.864, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 21855, 4375, 3774
Rint 0.021
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.05
No. of reflections 4375
No. of parameters 337
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.56
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS., Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), PLUTON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The title compound crystallized with disorder in the terminal carbon atom attached to one of the ethyl group in di­carboxyl­ate side chain. During refinement, although the R value reduced to 0.0587, a few residual peaks with significant electron density (1.17 e Å−3) appeared, indicating disorder in the carbon atom attached to one of the ethyl groups in the di­carboxyl­ate side chain. Hence the the terminal carbon atom C17 was split over two positions with site occupancies of 0.792 (3) and 0.208 (3) The hydrogen atoms attached to C16 are also disordered and were split using suitable HFIX constraints. All atoms in the thienyl ring (S3/C19/C20/C21/C22) were subject to rigid-bond restraints using DELU and SIMU instructions. The ring carbon atom C19 shares the same atomic site in both disorder components and was refined using EXYZ and EADP constraints. The R value thus reduced to 0.0439 with maximum/minimum values of residual electron densities of 0.32 and 0.56 e Å−3.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Diethyl 2,2-dioxo-4-(thiophen-2-yl)-1-[(thiophen-2-yl)methyl]-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate top
Crystal data top
C22H28NO6S3Z = 2
Mr = 498.66F(000) = 526
Triclinic, P1Dx = 1.405 Mg m3
Dm = 1.40 Mg m3
Dm measured by floatation method
a = 10.6886 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4878 (5) ÅCell parameters from 6274 reflections
c = 11.8389 (6) Åθ = 4.8–60.3°
α = 76.007 (1)°µ = 0.35 mm1
β = 65.584 (1)°T = 293 K
γ = 63.213 (1)°Needle, colorless
V = 1178.87 (10) Å30.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.864, Tmax = 1.0k = 1313
21855 measured reflectionsl = 1414
4375 independent reflections
Refinement top
Refinement on F290 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.5387P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4375 reflectionsΔρmax = 0.33 e Å3
337 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10643 (6)0.88526 (5)0.27014 (5)0.04061 (16)
S20.55456 (8)0.97081 (7)0.15698 (7)0.0688 (2)
O10.03173 (17)0.95752 (15)0.36171 (15)0.0531 (4)
O20.1034 (2)0.85385 (16)0.16209 (15)0.0573 (4)
O30.0632 (2)1.20507 (16)0.24368 (18)0.0654 (5)
O40.12980 (18)1.11430 (16)0.06971 (14)0.0547 (4)
O50.3767 (2)0.52543 (17)0.2873 (2)0.0774 (6)
O60.4110 (2)0.69543 (16)0.16392 (17)0.0670 (5)
N10.34311 (19)0.84775 (17)0.37670 (16)0.0428 (4)
H10.4266350.7948180.3092670.051*
C10.1999 (2)0.73789 (19)0.35204 (19)0.0416 (5)
C20.2399 (2)0.7824 (2)0.44176 (19)0.0451 (5)
H20.1473180.8433150.4971640.054*
C30.3188 (3)0.6708 (3)0.5215 (3)0.0665 (7)
H3A0.2467380.6567340.6007620.080*
H3B0.3750800.5903020.4792780.080*
C40.4206 (4)0.7140 (4)0.5397 (4)0.0880 (10)
H4A0.5236560.6527160.5063630.106*
H4B0.3953210.7194350.6274670.106*
C50.3999 (3)0.8470 (3)0.4713 (2)0.0569 (6)
H5A0.3282810.9161830.5270480.068*
H5B0.4941410.8575800.4326650.068*
C60.2742 (2)0.97962 (19)0.32476 (19)0.0406 (4)
H60.1874691.0315970.3912220.049*
C70.2225 (2)0.97657 (19)0.22255 (19)0.0402 (4)
H70.3111270.9374100.1505060.048*
C80.1292 (2)1.1133 (2)0.1820 (2)0.0447 (5)
C90.0305 (3)1.2326 (3)0.0223 (3)0.0683 (7)
H9A0.0617771.2308700.0669110.082*
H9B0.0377611.3079490.0382030.082*
C100.1250 (4)1.2455 (4)0.0806 (4)0.0922 (11)
H10A0.1876001.3243890.0474800.138*
H10B0.1327051.1717880.0638180.138*
H10C0.1566971.2487900.1688280.138*
C110.3842 (2)1.0435 (2)0.2691 (2)0.0462 (5)
C120.3678 (3)1.1617 (2)0.2960 (2)0.0542 (6)
H120.2837301.2162030.3543330.065*
C130.4974 (4)1.1879 (3)0.2220 (3)0.0715 (8)
H130.5069151.2628460.2270140.086*
C140.6042 (3)1.0954 (3)0.1447 (3)0.0721 (8)
H140.6950611.0989780.0905020.087*
C150.3384 (3)0.6402 (2)0.2639 (2)0.0481 (5)
C160.5467 (4)0.6097 (3)0.0760 (3)0.0857 (10)
H160.5493430.5499160.0334760.103*0.792 (3)
H16A0.5247530.5997330.0080510.103*0.208 (3)
H16B0.5848190.5240790.1170160.103*0.208 (3)
C180.0856 (3)0.6761 (2)0.4312 (2)0.0494 (5)
H18A0.1360280.5967020.4742400.059*0.792 (3)
H18B0.0072360.7357210.4942890.059*0.792 (3)
H18C0.1360280.5967020.4742400.059*0.208 (3)
H18D0.0072360.7357210.4942890.059*0.208 (3)
S3_10.09583 (14)0.50348 (10)0.29130 (11)0.0652 (4)0.792 (3)
C19_10.0117 (2)0.64238 (18)0.3678 (2)0.0478 (5)0.792 (3)
C20_10.1310 (6)0.7043 (5)0.3731 (7)0.0594 (11)0.792 (3)
H20A_10.1481830.7941770.3411020.071*0.792 (3)
H20B_10.1954160.7059160.4598040.071*0.792 (3)
C21_10.0643 (5)0.5378 (4)0.2636 (5)0.0613 (9)0.792 (3)
H21_10.0719250.4831930.2223780.074*0.792 (3)
C22_10.1757 (5)0.6500 (4)0.3070 (5)0.0627 (9)0.792 (3)
H22_10.2676120.6869880.2961320.075*0.792 (3)
S3_20.1644 (4)0.7422 (5)0.3683 (7)0.0605 (12)0.208 (3)
C19_20.0117 (2)0.64238 (18)0.3678 (2)0.0478 (5)0.208 (3)
C20_20.0676 (16)0.5264 (9)0.3213 (15)0.052 (2)0.208 (3)
H20_20.1565870.4590710.3258150.062*0.208 (3)
C21_20.1504 (17)0.6172 (13)0.301 (2)0.059 (2)0.208 (3)
H21_20.2337280.6214000.2899460.070*0.208 (3)
C22_20.0206 (14)0.5147 (15)0.2644 (17)0.055 (2)0.208 (3)
H22_20.0063620.4505670.2138080.066*0.208 (3)
C17_20.6689 (10)0.6277 (11)0.0637 (12)0.203 (6)0.792 (3)
H17A_20.7562130.5688970.0059540.305*0.792 (3)
H17B_20.6805080.6106210.1429860.305*0.792 (3)
H17C_20.6564010.7161740.0332580.305*0.792 (3)
C17A_20.661 (2)0.6669 (18)0.0269 (11)0.046 (3)0.208 (3)
H17D_20.6254740.7490630.0182410.069*0.208 (3)
H17E_20.7525740.6081890.0275170.069*0.208 (3)
H17F_20.6789450.6804240.0948740.069*0.208 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0442 (3)0.0366 (3)0.0397 (3)0.0151 (2)0.0150 (2)0.0017 (2)
S20.0537 (4)0.0648 (4)0.0817 (5)0.0287 (3)0.0006 (3)0.0267 (4)
O10.0404 (8)0.0470 (9)0.0600 (10)0.0110 (7)0.0119 (7)0.0071 (7)
O20.0814 (12)0.0579 (10)0.0484 (9)0.0373 (9)0.0312 (8)0.0044 (7)
O30.0795 (12)0.0375 (9)0.0799 (12)0.0058 (8)0.0436 (10)0.0121 (8)
O40.0567 (10)0.0523 (9)0.0416 (8)0.0156 (8)0.0162 (7)0.0049 (7)
O50.0702 (12)0.0372 (9)0.0896 (14)0.0071 (8)0.0115 (10)0.0044 (9)
O60.0648 (11)0.0441 (9)0.0575 (10)0.0150 (8)0.0104 (8)0.0171 (8)
N10.0400 (9)0.0393 (9)0.0426 (9)0.0097 (7)0.0133 (7)0.0065 (7)
C10.0447 (11)0.0363 (10)0.0380 (10)0.0139 (9)0.0125 (9)0.0009 (8)
C20.0479 (12)0.0436 (11)0.0382 (10)0.0153 (9)0.0141 (9)0.0009 (8)
C30.0843 (19)0.0615 (16)0.0626 (16)0.0293 (14)0.0432 (15)0.0135 (12)
C40.091 (2)0.098 (2)0.095 (2)0.049 (2)0.062 (2)0.0368 (19)
C50.0508 (13)0.0620 (15)0.0588 (14)0.0145 (11)0.0276 (11)0.0061 (11)
C60.0382 (10)0.0364 (10)0.0403 (10)0.0095 (8)0.0099 (8)0.0087 (8)
C70.0413 (10)0.0343 (10)0.0388 (10)0.0127 (8)0.0101 (8)0.0043 (8)
C80.0446 (11)0.0389 (11)0.0500 (12)0.0172 (9)0.0174 (9)0.0005 (9)
C90.0739 (18)0.0593 (15)0.0632 (16)0.0208 (13)0.0333 (14)0.0151 (12)
C100.0672 (19)0.116 (3)0.096 (2)0.0219 (19)0.0418 (18)0.017 (2)
C110.0476 (12)0.0426 (11)0.0474 (12)0.0156 (9)0.0152 (10)0.0088 (9)
C120.0610 (14)0.0459 (12)0.0575 (14)0.0215 (11)0.0209 (11)0.0061 (10)
C130.096 (2)0.0687 (17)0.0725 (18)0.0496 (17)0.0292 (16)0.0091 (14)
C140.0703 (17)0.085 (2)0.0742 (18)0.0492 (16)0.0134 (14)0.0111 (15)
C150.0485 (12)0.0390 (11)0.0502 (12)0.0131 (9)0.0140 (10)0.0070 (9)
C160.0689 (19)0.0710 (19)0.085 (2)0.0228 (15)0.0167 (16)0.0416 (16)
C180.0558 (13)0.0470 (12)0.0408 (11)0.0238 (10)0.0114 (10)0.0017 (9)
S3_10.0748 (7)0.0432 (5)0.0734 (8)0.0199 (5)0.0213 (6)0.0125 (4)
C19_10.0562 (12)0.0403 (10)0.0427 (10)0.0240 (9)0.0108 (9)0.0021 (8)
C20_10.064 (2)0.050 (2)0.057 (2)0.0153 (16)0.0229 (19)0.0030 (19)
C21_10.070 (2)0.055 (2)0.0648 (18)0.0298 (17)0.0234 (18)0.0042 (15)
C22_10.066 (2)0.061 (2)0.0605 (19)0.0267 (16)0.0214 (17)0.0009 (18)
S3_20.059 (2)0.059 (3)0.069 (2)0.0261 (17)0.0281 (19)0.002 (2)
C19_20.0562 (12)0.0403 (10)0.0427 (10)0.0240 (9)0.0108 (9)0.0021 (8)
C20_20.057 (3)0.048 (3)0.051 (4)0.031 (3)0.012 (3)0.002 (3)
C21_20.062 (4)0.055 (4)0.065 (4)0.030 (3)0.023 (3)0.003 (3)
C22_20.061 (4)0.051 (4)0.059 (4)0.032 (3)0.019 (4)0.002 (3)
C17_20.066 (4)0.215 (11)0.328 (15)0.037 (6)0.012 (7)0.201 (11)
C17A_20.043 (7)0.058 (7)0.018 (4)0.021 (6)0.012 (4)0.009 (5)
Geometric parameters (Å, º) top
S1—O21.4270 (17)C11—C121.387 (3)
S1—O11.4324 (16)C12—C131.422 (4)
S1—C71.808 (2)C12—H120.9300
S1—C11.813 (2)C13—C141.335 (4)
S2—C141.694 (3)C13—H130.9300
S2—C111.715 (2)C14—H140.9300
O3—C81.191 (3)C16—C17_21.356 (10)
O4—C81.324 (3)C16—C17A_21.489 (19)
O4—C91.453 (3)C16—H160.9300
O5—C151.189 (3)C16—H16A0.9700
O6—C151.314 (3)C16—H16B0.9700
O6—C161.455 (3)C18—C19_21.499 (3)
N1—C61.461 (3)C18—C19_11.499 (3)
N1—C21.463 (3)C18—H18A0.9700
N1—C51.475 (3)C18—H18B0.9700
N1—H10.9800C18—H18C0.9700
C1—C151.527 (3)C18—H18D0.9700
C1—C181.546 (3)S3_1—C19_11.705 (2)
C1—C21.551 (3)S3_1—C21_11.728 (4)
C2—C31.531 (3)C19_1—C20_11.341 (6)
C2—H20.9800C20_1—C22_11.430 (7)
C3—C41.486 (4)C20_1—H20A_10.9700
C3—H3A0.9700C20_1—H20B_10.9700
C3—H3B0.9700C21_1—C22_11.332 (5)
C4—C51.512 (4)C21_1—H21_10.9300
C4—H4A0.9700C22_1—H22_10.9300
C4—H4B0.9700S3_2—C19_21.704 (2)
C5—H5A0.9700S3_2—C21_21.728 (4)
C5—H5B0.9700C19_2—C20_21.341 (6)
C6—C111.503 (3)C20_2—C22_21.430 (7)
C6—C71.537 (3)C20_2—H20_20.9300
C6—H60.9800C21_2—C22_21.332 (5)
C7—C81.521 (3)C21_2—H21_20.9300
C7—H70.9800C22_2—H22_20.9300
C9—C101.463 (4)C17_2—H17A_20.9600
C9—H9A0.9700C17_2—H17B_20.9600
C9—H9B0.9700C17_2—H17C_20.9600
C10—H10A0.9600C17A_2—H17D_20.9600
C10—H10B0.9600C17A_2—H17E_20.9600
C10—H10C0.9600C17A_2—H17F_20.9600
O2—S1—O1119.13 (11)C11—C12—C13110.5 (2)
O2—S1—C7109.00 (10)C11—C12—H12124.7
O1—S1—C7106.71 (10)C13—C12—H12124.7
O2—S1—C1110.41 (10)C14—C13—C12114.2 (2)
O1—S1—C1106.16 (10)C14—C13—H13122.9
C7—S1—C1104.40 (10)C12—C13—H13122.9
C14—S2—C1192.13 (13)C13—C14—S2112.0 (2)
C8—O4—C9117.8 (2)C13—C14—H14124.0
C15—O6—C16117.5 (2)S2—C14—H14124.0
C6—N1—C2113.82 (16)O5—C15—O6124.4 (2)
C6—N1—C5112.22 (17)O5—C15—C1121.9 (2)
C2—N1—C5104.09 (17)O6—C15—C1113.64 (18)
C6—N1—H1108.8C17_2—C16—O6111.8 (4)
C2—N1—H1108.8O6—C16—C17A_2109.3 (7)
C5—N1—H1108.8C17_2—C16—H16124.1
C15—C1—C18110.35 (17)O6—C16—H16124.1
C15—C1—C2111.72 (18)O6—C16—H16A109.8
C18—C1—C2108.07 (17)C17A_2—C16—H16A109.8
C15—C1—S1112.48 (14)O6—C16—H16B109.8
C18—C1—S1107.65 (15)C17A_2—C16—H16B109.8
C2—C1—S1106.34 (14)H16A—C16—H16B108.3
N1—C2—C3103.90 (19)C19_2—C18—C1118.81 (18)
N1—C2—C1112.87 (16)C19_1—C18—C1118.81 (18)
C3—C2—C1114.40 (19)C19_1—C18—H18A107.6
N1—C2—H2108.5C1—C18—H18A107.6
C3—C2—H2108.5C19_1—C18—H18B107.6
C1—C2—H2108.5C1—C18—H18B107.6
C4—C3—C2105.1 (2)H18A—C18—H18B107.0
C4—C3—H3A110.7C19_2—C18—H18C107.6
C2—C3—H3A110.7C1—C18—H18C107.6
C4—C3—H3B110.7C19_2—C18—H18D107.6
C2—C3—H3B110.7C1—C18—H18D107.6
H3A—C3—H3B108.8H18C—C18—H18D107.0
C3—C4—C5106.6 (2)C19_1—S3_1—C21_191.52 (18)
C3—C4—H4A110.4C20_1—C19_1—C18127.1 (3)
C5—C4—H4A110.4C20_1—C19_1—S3_1109.6 (3)
C3—C4—H4B110.4C18—C19_1—S3_1122.94 (17)
C5—C4—H4B110.4C19_1—C20_1—C22_1116.2 (5)
H4A—C4—H4B108.6C19_1—C20_1—H20A_1108.2
N1—C5—C4103.6 (2)C22_1—C20_1—H20A_1108.2
N1—C5—H5A111.0C19_1—C20_1—H20B_1108.2
C4—C5—H5A111.0C22_1—C20_1—H20B_1108.2
N1—C5—H5B111.0H20A_1—C20_1—H20B_1107.4
C4—C5—H5B111.0C22_1—C21_1—S3_1113.4 (4)
H5A—C5—H5B109.0C22_1—C21_1—H21_1123.3
N1—C6—C11110.30 (17)S3_1—C21_1—H21_1123.3
N1—C6—C7110.96 (16)C21_1—C22_1—C20_1109.0 (5)
C11—C6—C7108.32 (17)C21_1—C22_1—H22_1125.5
N1—C6—H6109.1C20_1—C22_1—H22_1125.5
C11—C6—H6109.1C19_2—S3_2—C21_285.3 (6)
C7—C6—H6109.1C20_2—C19_2—C18123.6 (7)
C8—C7—C6111.47 (16)C20_2—C19_2—S3_2114.4 (6)
C8—C7—S1105.56 (14)C18—C19_2—S3_2121.4 (3)
C6—C7—S1113.68 (14)C19_2—C20_2—C22_2114.6 (11)
C8—C7—H7108.7C19_2—C20_2—H20_2122.7
C6—C7—H7108.7C22_2—C20_2—H20_2122.7
S1—C7—H7108.7C22_2—C21_2—S3_2120.2 (12)
O3—C8—O4125.3 (2)C22_2—C21_2—H21_2119.9
O3—C8—C7124.6 (2)S3_2—C21_2—H21_2119.9
O4—C8—C7110.05 (18)C21_2—C22_2—C20_2103.9 (13)
O4—C9—C10111.5 (2)C21_2—C22_2—H22_2128.1
O4—C9—H9A109.3C20_2—C22_2—H22_2128.1
C10—C9—H9A109.3C16—C17_2—H17A_2109.5
O4—C9—H9B109.3C16—C17_2—H17B_2109.5
C10—C9—H9B109.3H17A_2—C17_2—H17B_2109.5
H9A—C9—H9B108.0C16—C17_2—H17C_2109.5
C9—C10—H10A109.5H17A_2—C17_2—H17C_2109.5
C9—C10—H10B109.5H17B_2—C17_2—H17C_2109.5
H10A—C10—H10B109.5C16—C17A_2—H17D_2109.5
C9—C10—H10C109.5C16—C17A_2—H17E_2109.5
H10A—C10—H10C109.5H17D_2—C17A_2—H17E_2109.5
H10B—C10—H10C109.5C16—C17A_2—H17F_2109.5
C12—C11—C6128.0 (2)H17D_2—C17A_2—H17F_2109.5
C12—C11—S2111.20 (18)H17E_2—C17A_2—H17F_2109.5
C6—C11—S2120.78 (15)
O2—S1—C1—C1540.84 (18)N1—C6—C11—C12124.6 (2)
O1—S1—C1—C15171.28 (15)C7—C6—C11—C12113.8 (3)
C7—S1—C1—C1576.17 (17)N1—C6—C11—S255.8 (2)
O2—S1—C1—C1880.94 (16)C7—C6—C11—S265.8 (2)
O1—S1—C1—C1849.50 (17)C14—S2—C11—C120.3 (2)
C7—S1—C1—C18162.05 (14)C14—S2—C11—C6179.4 (2)
O2—S1—C1—C2163.44 (14)C6—C11—C12—C13179.5 (2)
O1—S1—C1—C266.12 (16)S2—C11—C12—C130.2 (3)
C7—S1—C1—C246.43 (16)C11—C12—C13—C140.1 (4)
C6—N1—C2—C3162.13 (19)C12—C13—C14—S20.1 (4)
C5—N1—C2—C339.6 (2)C11—S2—C14—C130.2 (3)
C6—N1—C2—C173.4 (2)C16—O6—C15—O50.4 (4)
C5—N1—C2—C1164.14 (18)C16—O6—C15—C1178.5 (2)
C15—C1—C2—N160.9 (2)C18—C1—C15—O527.1 (3)
C18—C1—C2—N1177.54 (17)C2—C1—C15—O593.1 (3)
S1—C1—C2—N162.20 (19)S1—C1—C15—O5147.4 (2)
C15—C1—C2—C357.7 (3)C18—C1—C15—O6154.7 (2)
C18—C1—C2—C363.9 (2)C2—C1—C15—O685.0 (2)
S1—C1—C2—C3179.27 (18)S1—C1—C15—O634.5 (3)
N1—C2—C3—C424.3 (3)C15—O6—C16—C17_2118.1 (7)
C1—C2—C3—C4147.8 (2)C15—O6—C16—C17A_2141.0 (7)
C2—C3—C4—C50.2 (4)C15—C1—C18—C19_266.3 (2)
C6—N1—C5—C4163.0 (2)C2—C1—C18—C19_2171.31 (19)
C2—N1—C5—C439.5 (3)S1—C1—C18—C19_256.8 (2)
C3—C4—C5—N123.8 (3)C15—C1—C18—C19_166.3 (2)
C2—N1—C6—C11175.34 (17)C2—C1—C18—C19_1171.31 (19)
C5—N1—C6—C1157.4 (2)S1—C1—C18—C19_156.8 (2)
C2—N1—C6—C764.6 (2)C1—C18—C19_1—C20_1107.6 (4)
C5—N1—C6—C7177.47 (18)C1—C18—C19_1—S3_180.6 (2)
N1—C6—C7—C8171.04 (16)C21_1—S3_1—C19_1—C20_12.3 (4)
C11—C6—C7—C867.7 (2)C21_1—S3_1—C19_1—C18175.3 (3)
N1—C6—C7—S151.9 (2)C18—C19_1—C20_1—C22_1178.0 (4)
C11—C6—C7—S1173.09 (13)S3_1—C19_1—C20_1—C22_15.4 (7)
O2—S1—C7—C875.37 (16)C19_1—S3_1—C21_1—C22_11.4 (4)
O1—S1—C7—C854.49 (16)S3_1—C21_1—C22_1—C20_14.4 (7)
C1—S1—C7—C8166.65 (14)C19_1—C20_1—C22_1—C21_16.4 (8)
O2—S1—C7—C6162.15 (14)C1—C18—C19_2—C20_289.6 (9)
O1—S1—C7—C667.99 (16)C1—C18—C19_2—S3_299.5 (3)
C1—S1—C7—C644.17 (16)C21_2—S3_2—C19_2—C20_20.9 (13)
C9—O4—C8—O36.6 (3)C21_2—S3_2—C19_2—C18172.5 (8)
C9—O4—C8—C7172.04 (19)C18—C19_2—C20_2—C22_2179.9 (11)
C6—C7—C8—O322.8 (3)S3_2—C19_2—C20_2—C22_28.6 (17)
S1—C7—C8—O3101.0 (2)C19_2—S3_2—C21_2—C22_28.0 (19)
C6—C7—C8—O4158.49 (17)S3_2—C21_2—C22_2—C20_213 (2)
S1—C7—C8—O477.62 (19)C19_2—C20_2—C22_2—C21_213 (2)
C8—O4—C9—C1075.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.962.633.227 (4)120
C2—H2···O1ii0.982.673.519 (3)145
C5—H5A···O1ii0.972.693.491 (3)141
C6—H6···O1ii0.982.703.560 (3)146
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the Management of Thia­garajar College, Madurai, for financial support in establishing the Cambridge Structural Database in the Department of Physics.

References

First citationAdly, O. M. I. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 483–490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationArya, K., Rawat, D. S., Dandia, A. & Sasai, H. (2012). J. Fluor. Chem. 137, 117–122.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS., Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudriesi, R., Cosimelli, B., Ioan, P., Lanza, C. Z., Spinelli, D. & Chiarini, A. (2002). J. Med. Chem. 45, 3475–3481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). Bioorg. Med. Chem. 16, 9432–9442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706–o707.  CSD CrossRef IUCr Journals Google Scholar
First citationCox, M. M. & Nelson, D. L. (2008). Lehninger Principles of Biochemistry, Vol. 5. New York: W. Freeman.  Google Scholar
First citationDannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499–510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationErker, T., Schreder, M. E. & Studenik, C. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 58–62.  CrossRef CAS Google Scholar
First citationEvans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181–190.  Web of Science CrossRef CAS Google Scholar
First citationFaidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131–137.  Web of Science CrossRef CAS Google Scholar
First citationGalanski, M. E., Erker, T., Handler, N., Lemmens-Gruber, R., Kamyar, M. & Studenik, C. R. (2006). Bioorg. Med. Chem. 14, 826–836.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGanorkar, R. S., Ganorkar, R. P. & Parhate, V. V. (2013). Rasayan J. Chem. 6(1), 65–7.  Google Scholar
First citationGao, L. & Hollingsworth, R. I. (2005). J. Org. Chem. 70, 9013–9016.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolub, J. M., OToole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135–157.  CrossRef CAS Google Scholar
First citationIndumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411–1416.  Web of Science CSD CrossRef CAS Google Scholar
First citationIndumathi, S., Perumal, S., Banerjee, D., Yogeeswari, P. & Sriram, D. (2009). Eur. J. Med. Chem. 44, 4978–4984.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSchreder, M. E. & Erker, T. (2000). J. Heterocycl. Chem. 37, 349–354.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, L. E. (1942). Ind. Eng. Chem. 34, 499–501.  CrossRef CAS Google Scholar
First citationSmith, N. L. (1951). J. Org. Chem. 16, 415–418.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSribala, R., Srinivasan, N., Indumathi, S. & Krishnakumar, R. V. (2018). Acta Cryst. E74, 1267–1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, A., Mizuno, H. & Sakurai, M. (1998). PCT. Int. Appl. WO, 9811089.  Google Scholar
First citationTandon, V. K., Maurya, H. K., Yadav, D. B., Tripathi, A., Kumar, M. & Shukla, P. K. (2006). Bioorg. Med. Chem. Lett. 16, 5883–5887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTozkoparan, B., Aktay, G. & Yesilada, E. (2002). II Farmaco, 57, 145-152.  Web of Science CrossRef CAS Google Scholar
First citationTung-Mei, T. & Wen-Chuan, H. (2005). J. Chin. Pharma, 57, 43–48.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationWang, W., Zhao, B., Xu, C. & Wu, W. (2012). Int. J. Org. Chem. pp. 117–120.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds