research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three N-acyl­hydrazone isomers

crossmark logo

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire 574 240, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and dKarnataka State Higher Education Council, Y. Ramachandra Road, Gandhingar, Bengaluru-560009, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by J. T. Mague, Tulane University, USA (Received 10 May 2021; accepted 5 July 2021; online 9 July 2021)

The crystal structures of three isomers of (E)-4-chloro-N-{2-[2-(chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide, namely, (E)-4-chloro-N-{2-[2-(2-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide (I), (E)-4-chloro-N-{2-[2-(3-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sul­fon­amide (II) and (E)-4-chloro-N-{2-[2-(4-chloro­benzyl­idene)hydrazin­yl]-2-oxo­eth­yl}­benzene­sulfonamide (III), with the general formula C15H13Cl2N3O3S are described, with the chloro group in ortho, meta and para positions in the benzyl­idene benzene ring. All the three isomeric compounds crystallize in the centrosymmetric triclinic P[\overline{1}] space group with one mol­ecule each in the asymmetric unit and two mol­ecules in the unit cell. The dihedral angles between the two phenyl rings are 11.09 (14), 53.79 (18) and 72.37 (11)° in (I), (II) and (III), respectively. The central part of the mol­ecule (–C—N—N=C–) is almost linear with C—N—N—C torsion angles of 179.1 (2), −169.5 (3) and 178.5 (2)° for (I), (II) and (III), respectively. In all the three crystals, the mol­ecules form inversion dimers with R22(8) ring motifs, which are further augmented by C—H⋯O inter­actions.

1. Chemical context

The properties of mol­ecules in solution and the solid state are strongly influenced by weak non-covalent inter­actions. Weak mol­ecular inter­actions are investigated routinely in the areas of mol­ecular recognition (Brouwer et al., 1999[Brouwer, E. B., Enright, G. D., Ratcliffe, C. I., Facey, G. A. & Ripmeester, J. A. (1999). J. Phys. Chem. B, 103, 10604-10616.]), self-assembly (Seth et al., 2011[Seth, S. K., Sarkar, D., Jana, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837-4849.]), supra­molecular chemistry and general host–guest inter­actions (Kim et al., 2000[Kim, K. S., Tarakeshwar, P. & Lee, J. Y. (2000). Chem. Rev. 100, 4145-4186.]; Sharma et al., 2009[Sharma, P., Sharma, S., Chawla, M. & Mitra, A. (2009). J. Mol. Model. 15, 633-649.]). Analysis of inter­molecular inter­actions and estimation of their energies provide greater insights into mol­ecular conformations (Cao et al., 2020[Cao, Y., Yu, T., Lai, W., Liu, Y. & Wang, B. (2020). Energetic Materials Frontiers, 1, 95-102.]; Jablonski, 2020[Jabłoński, M. (2020). Molecules, 25, 5512-5548.]). The nature and site of substituents influence the extent of polarization of electron distribution in covalent compounds. In our previous work (Purandara et al., 2017a[Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683-1686.],b[Purandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946-1951.]), the presence of the electron-withdrawing nitro group on the benzene ring was found to decrease the electronic density, rendering aromatic C—H protons acidic, whereas a methyl substituent did not activate aromatic protons for participation in inter­molecular C—H⋯O inter­actions. In a continuation of these efforts to study the effect of substituents on weak mol­ecular inter­actions, we report herein the synthesis, characterization and crystal structures of three isomeric mol­ecules.

[Scheme 1]

2. Structural commentary

All three isomers (I)–(III) (Figs. 1[link]–3[link][link]) crystallize in the centrosymmetric triclinic system with space group P[\overline{1}] and with one mol­ecule in the asymmetric unit and two mol­ecules in the unit cell. The conformation of both the sulfonamide and hydrazine N—H bonds are syn with respect to the C=O bonds in all the three compounds. Similarly, the imine C—H bond in the amide part is also syn with respect to the amide N—H bond. All four such bonds in the central part are syn to each other. The C8—O3 and C9—N3 bond lengths of 1.224 (3)–1.236 (3) Å and 1.271 (3)–1.275 (4) Å, respectively, are in the ranges of normal C=O and C=N bond lengths, indicating double-bond character and thus confirming the keto tautomeric form and are comparable with those in related N-acyl­hydrazone structures (Purandara et al., 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683-1686.]). The delocalization of π-electron density over the C9/N3/N2/C8/O3 fragment is indicated by the shortening of the C8—N2 [1.337 (3)–1.342 (4) Å] distances compared to the normal C—N single bond length of 1.40 Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-19.]). The sulfonamide bonds are synclinal, anti­clinal and anti­periplanar with the S1—N1—C7—C8 torsion angle being 83.6 (3), −107.2 (3) and 171.09 (18)°, in compounds (I)[link], (II)[link] and (III)[link], respectively. The major twist in the mol­ecule occurs about the S1—N1 bond [C1—S1—N1—C7 = 97.6 (2) (I)[link], 65.6 (2) (II)[link] and −80.1 (2)° (III)], giving the mol­ecule an approximate overall L-shape. All the mol­ecules adopt an E configuration around the C9=N3 bond as indicated by the N2—N3—C9—C10 torsion angles of 179.6 (2), 179.1 (3) and 180.0 (2)° for (I)[link], (II)[link] and (III)[link], respectively. The central fragment of the mol­ecule, (C9/N3/N2/C8/O3) is nearly coplanar with the phenyl ring (C10–C15), as indicated by the dihedral angles between their best planes of 4.2 (2) in (I)[link], 11.9 (3) in (II)[link] and 7.0 (3)° in (III)[link]. The dihedral angles between the two phenyl rings, C1–C6 and C10–·C15 are 11.1 (1), 53.8 (1) and 72.4 (1)° for (I)[link], (II)[link] and (III)[link], respectively, indicating non-planarity of the three mol­ecules. An intra­molecular hydrogen bond, N1—H1N⋯O3, is observed in (II)[link] and (III)[link], generating an S(5) ring motif.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is depicted by a dashed line.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is depicted by a dashed line.

3. Supra­molecular features

In the crystal of (I)[link], the carbonyl oxygen (O3) shows bifurcated hydrogen bonding. In one part, the mol­ecules are linked by a pair of N2—H2N⋯O3 hydrogen bonds involving the amide NH atom, forming inversion dimers with an [R_{2}^{2}](8) ring motif. In the other part, the mol­ecules are linked by a pair of N1—H1N⋯O3 hydrogen bonds with the sulfonamide NH atom of another mol­ecule, forming rings with an [R_{2}^{2}](10) graph-set motif, leading to a layered structure with the mean planes of the layers inclined to the ab plane by 16.1 (5)° (Table 1[link], Fig. 4[link]). In the crystal of (II)[link], the mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds (N1—H1N⋯O2 and N2—H2N⋯O3), involving both the sulfonyl and carbonyl O atoms with both sulfonamide and amide N—H bonds (N1—H1N and N2—H2N), forming inversion dimers with [R_{2}^{2}](8) ring motifs. These inter­actions are further strengthened by C—H⋯O hydrogen bonds. Thus, three-center N1—H1N/C6—H6⋯O1 hydrogen bonds result in mol­ecular chains containing the R21(7) ring motif (Fig. 5[link]). These rings are extended along the principal diagonal of the ac plane via C7—H7⋯O2 hydrogen bonds, forming [R_{2}^{2}](10) ring motifs, and by C15—H15⋯O2 inter­actions. In addition, the crystal structure is reinforced by C—H⋯π(ring) inter­actions (Fig. 5[link]), details of which are summarized in Table 2[link]. In the crystal of (III)[link], the mol­ecules are also linked by two pairs of N—H⋯O hydrogen bonds (N1—H1N⋯O2 and N2—H2N⋯O3), forming inversion dimers with [R_{2}^{2}](8) ring motifs. These dimers are connected by inter­molecular C15—H15⋯O1 inter­actions, forming ribbons two mol­ecules wide and extending along the principal diagonal of the ab plane (Table 3[link], Fig. 6[link]). The presence of the chlorine atom on the phenyl ring (C10–C15) of (I)–(III) makes the aromatic protons acidic, resulting in the formation of C—H⋯O hydrogen bonds with the sulfonyl O atom.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.01 (2) 2.823 (3) 162 (3)
N2—H2N⋯O3ii 0.85 (2) 2.06 (2) 2.897 (2) 167 (2)
C12—H12⋯O2iii 0.93 2.53 3.439 (3) 166
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+1, -z+1]; (iii) x+1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.23 (2) 3.041 (3) 161 (3)
N2—H2N⋯O3ii 0.86 (2) 1.97 (2) 2.828 (3) 171 (3)
C6—H6⋯O1i 0.93 2.53 3.422 (4) 161
C7—H7B⋯O2iii 0.97 2.47 3.434 (4) 172
C15—H15⋯O2iv 0.93 2.58 3.474 (4) 162
C14—H14⋯Cgv 0.93 2.84 3.675 (5) 150
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+1, -y, -z+1]; (iii) [-x, -y, -z+2]; (iv) [x, y, z-1]; (v) [-x, -y, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.25 (2) 3.032 (3) 162 (3)
N1—H1N⋯O3 0.82 (2) 2.23 (3) 2.609 (3) 109 (2)
N2—H2N⋯O3ii 0.86 (2) 1.98 (2) 2.829 (3) 170 (3)
C15—H15⋯O1iii 0.93 2.45 3.330 (3) 157
Symmetry codes: (i) [-x-1, -y+2, -z]; (ii) [-x, -y+1, -z]; (iii) [x+1, y-1, z].
[Figure 4]
Figure 4
A view of a portion of one chain of inversion dimers in (I)[link] connected by N—H⋯O hydrogen bonds (dashed lines) and extending along the a-axis direction.
[Figure 5]
Figure 5
A partial packing diagram for (II)[link] with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by light-blue and black dashed lines. The C—H⋯π(ring) inter­actions are depicted by violet dashed lines.
[Figure 6]
Figure 6
A portion of one chain in (III)[link] viewed along the a-axis direction with hydrogen bonds depicted as in Fig. 5[link].

4. Database survey

Comparison of structures (I)–(III) with those of related N-acyl­hydrazone derivatives (Purandara et al., 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683-1686.], 2018[Purandara, H., Foro, S. & Thimme Gowda, B. (2018). Acta Cryst. C74, 1553-1560.]) shows that the site of substitution of an electron-withdrawing group on the aromatic ring plays a major role in stabilizing the crystal packing by linking the mol­ecules through various weak inter­actions.

5. Synthesis and crystallization

General procedure for the synthesis of N-(4-chloro­benzene­sulfon­yl) glycine hydrazone derivatives (I)–(III)

A mixture of N-(4-chloro­benzene­sulfon­yl) glycinyl hydrazide (0.01 mol) and the appropriate chloro­benzaldehyde (0.01 mol) in anhydrous methanol (30 mL) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to constant melting point from methanol. The purity of the compound was checked by TLC and characterized by its IR and NMR spectra. Single crystals suitable for the X-ray diffraction study were grown from DMF solution by slow evaporation of the solvent.

Compound (I)[link]: Prism-like yellow single crystals; m.p. 506–507 K; IR (KBr, γ, cm−1): 3190.3 (N—H), 1672.3 (C=O), 1608.6 (C=N), 1334.7 (S=O, asym) and 1159.2 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d6, δ ppm): 3.64, 4.14 (d, 2H), 7.36–7.45 (m, 2H, Ar-H), 7.47–7.50 (m, 1H, Ar-H), 7.61–7.67 (m, 2H, Ar-H), 7.83–7.95 (m, 3H, Ar-H), 8.12 (s, 1H), 8.13 (s, 1H), 11.64 (s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 43.27, 44.49, 126.82, 127.53, 128.54, 129.11, 129.82, 131.25, 133.02, 137.24, 139.19, 139.81, 143.18, 164.23, 169.08.

Compound (II)[link]: Prism-like colourless single crystals; m.p. 469–470 K; IR (KBr, γ, cm−1): 3265.5 (N—-H), 1687.7 (C=O), 1589.3 (C=N), 1340.5 (S=O, asym) and 1168.9 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d6, δ ppm): 3.64, 4.11 (2d, 2H), 7.39–7.44 (m, 2H, Ar-H), 7.54–7.65 (m, 4H, Ar-H), 7.84–7.87 (m, 2H, Ar-H), 7.91, 8.15 (2s, 1H), 8.01, 8.21 (2t, 1H), 11.51, 11.54 (2s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 43.24, 44.42, 125.52, 126.14, 128.44, 128.91, 129.47, 130.31, 133.70, 136.05, 137.34, 139.36, 142.18, 145.60, 164.17, 168.96.

Compound (III)[link]: Rod-like colourless single crystals; m.p. 473–475 K; IR (KBr, γ, cm−1): 3246.2 (N—H), 1685.8 (C=O), 1591.3 (C=N), 1344.4 (S=O, asym) and 1168.9 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d6, δ ppm): 3.62, 4.11 (2d, 2H), 7.48–7.51 (m, 2H, Ar-H), 7.63–7.71 (m, 4H, Ar-H), 7.81–7.85 (m, 2H, Ar-H), 7.92, 8.14 (2s, 1H), 8.01 (t, 1H), 11.49, 11.53 (2s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 43.21, 128.50, 128.70, 128.86, 129.14, 132.87, 134.34, 137.20, 139.50, 142.53, 145.80, 164.07, 168.96.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) and 0.97 Å (methyl­ene). The amino H atoms were refined with the N—H distances restrained to 0.86 (2) Å. All H atoms were assigned isotropic displacement parameters 1.2 × Ueq of the parent atom. In compound (III)[link], the [\overline{1}][\overline{1}]3 reflection had a poor agreement with its calculated value and was omitted from the final refinement.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C15H13Cl2N3O3S C15H13Cl2N3O3S C15H13Cl2N3O3S
Mr 386.24 386.24 386.24
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 7.7426 (7), 10.429 (1), 10.934 (1) 9.491 (1), 9.976 (1), 10.446 (1) 6.7234 (9), 10.281 (1), 13.611 (2)
α, β, γ (°) 85.51 (1), 76.92 (1), 81.04 (1) 67.22 (1), 66.80 (1), 86.32 (1) 74.98 (1), 87.11 (1), 75.34 (1)
V3) 848.64 (14) 833.59 (17) 879.0 (2)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.52 0.53 0.51
Crystal size (mm) 0.48 × 0.36 × 0.10 0.36 × 0.14 × 0.08 0.46 × 0.42 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED, Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED, Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.787, 0.949 0.831, 0.959 0.801, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 5699, 3417, 2359 5759, 3354, 2688 5737, 3598, 2600
Rint 0.018 0.018 0.019
(sin θ/λ)max−1) 0.625 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.102, 1.04 0.054, 0.108, 1.22 0.048, 0.120, 1.04
No. of reflections 3417 3354 3598
No. of parameters 223 223 223
No. of restraints 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.29 0.27, −0.39 0.33, −0.30
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) top
Crystal data top
C15H13Cl2N3O3SZ = 2
Mr = 386.24F(000) = 396
Triclinic, P1Dx = 1.512 Mg m3
a = 7.7426 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.429 (1) ÅCell parameters from 2012 reflections
c = 10.934 (1) Åθ = 2.8–27.8°
α = 85.51 (1)°µ = 0.52 mm1
β = 76.92 (1)°T = 293 K
γ = 81.04 (1)°Prism, yellow
V = 848.64 (14) Å30.48 × 0.36 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2359 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.018
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.787, Tmax = 0.949k = 1013
5699 measured reflectionsl = 1313
3417 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.3938P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3417 reflectionsΔρmax = 0.24 e Å3
223 parametersΔρmin = 0.29 e Å3
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1746 (3)0.6076 (2)0.8440 (2)0.0487 (6)
C20.1897 (4)0.7192 (3)0.8985 (3)0.0687 (8)
H20.30230.73990.89850.082*
C30.0378 (5)0.7997 (3)0.9529 (3)0.0852 (11)
H30.04730.87560.98880.102*
C40.1270 (5)0.7675 (4)0.9540 (3)0.0801 (11)
C50.1448 (4)0.6551 (4)0.9042 (3)0.0763 (10)
H50.25790.63300.90830.092*
C60.0079 (4)0.5742 (3)0.8473 (3)0.0595 (7)
H60.00220.49820.81180.071*
C70.5597 (3)0.6727 (2)0.6046 (3)0.0521 (7)
H7A0.55040.71980.67940.063*
H7B0.53760.73570.53780.063*
C80.7483 (3)0.6002 (2)0.5670 (2)0.0386 (5)
C90.9738 (3)0.8484 (2)0.6184 (2)0.0405 (6)
H91.09100.80740.59430.049*
C100.9368 (3)0.9816 (2)0.6622 (2)0.0381 (5)
C111.0705 (3)1.0515 (2)0.6753 (2)0.0430 (6)
C121.0322 (4)1.1777 (2)0.7149 (3)0.0545 (7)
H121.12391.22170.72400.065*
C130.8572 (4)1.2374 (3)0.7408 (3)0.0616 (8)
H130.83061.32240.76690.074*
C140.7213 (4)1.1717 (3)0.7281 (3)0.0614 (8)
H140.60321.21240.74520.074*
C150.7610 (3)1.0457 (2)0.6902 (3)0.0516 (7)
H150.66811.00190.68310.062*
N10.4241 (3)0.5872 (2)0.6292 (2)0.0526 (6)
H1N0.383 (3)0.569 (3)0.569 (2)0.063*
N20.8820 (3)0.66560 (18)0.5716 (2)0.0420 (5)
H2N0.990 (2)0.631 (2)0.544 (2)0.050*
N30.8430 (2)0.79018 (18)0.61392 (19)0.0411 (5)
O10.5090 (3)0.5131 (2)0.8282 (2)0.0751 (6)
O20.3180 (3)0.39150 (17)0.7388 (2)0.0732 (6)
O30.7778 (2)0.48784 (15)0.53116 (17)0.0483 (4)
Cl10.31736 (16)0.87209 (13)1.01893 (11)0.1407 (6)
Cl21.29502 (9)0.98193 (7)0.63926 (8)0.0690 (3)
S10.36939 (9)0.51159 (7)0.76264 (7)0.0529 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (15)0.0454 (15)0.0497 (16)0.0040 (12)0.0062 (12)0.0005 (12)
C20.0685 (19)0.062 (2)0.071 (2)0.0128 (16)0.0002 (16)0.0158 (17)
C30.105 (3)0.062 (2)0.071 (2)0.004 (2)0.011 (2)0.0138 (18)
C40.079 (2)0.077 (2)0.056 (2)0.026 (2)0.0122 (17)0.0121 (18)
C50.0474 (17)0.105 (3)0.064 (2)0.0034 (18)0.0040 (15)0.019 (2)
C60.0504 (16)0.0663 (19)0.0597 (18)0.0082 (14)0.0104 (14)0.0043 (15)
C70.0380 (13)0.0404 (15)0.0759 (19)0.0050 (11)0.0040 (13)0.0151 (13)
C80.0374 (12)0.0324 (13)0.0450 (14)0.0041 (10)0.0076 (11)0.0029 (11)
C90.0360 (12)0.0333 (13)0.0513 (15)0.0035 (10)0.0079 (11)0.0032 (11)
C100.0392 (12)0.0289 (12)0.0452 (14)0.0035 (10)0.0077 (11)0.0018 (11)
C110.0402 (13)0.0371 (13)0.0525 (16)0.0063 (10)0.0113 (11)0.0021 (12)
C120.0604 (17)0.0397 (15)0.0690 (19)0.0164 (13)0.0179 (14)0.0070 (14)
C130.075 (2)0.0322 (14)0.077 (2)0.0029 (14)0.0153 (16)0.0124 (14)
C140.0508 (16)0.0414 (16)0.086 (2)0.0051 (13)0.0068 (15)0.0124 (15)
C150.0414 (14)0.0391 (14)0.0737 (19)0.0058 (11)0.0096 (13)0.0072 (13)
N10.0412 (12)0.0617 (15)0.0576 (15)0.0181 (11)0.0039 (10)0.0171 (12)
N20.0340 (10)0.0305 (11)0.0600 (14)0.0033 (9)0.0053 (10)0.0093 (10)
N30.0405 (11)0.0298 (10)0.0529 (13)0.0052 (9)0.0086 (9)0.0057 (9)
O10.0577 (12)0.0822 (15)0.0895 (16)0.0029 (11)0.0313 (11)0.0095 (13)
O20.0696 (13)0.0384 (11)0.1099 (18)0.0079 (10)0.0132 (12)0.0116 (11)
O30.0393 (9)0.0342 (9)0.0725 (12)0.0030 (7)0.0115 (8)0.0153 (9)
Cl10.1177 (9)0.1400 (10)0.1047 (8)0.0695 (8)0.0332 (7)0.0151 (7)
Cl20.0391 (4)0.0617 (5)0.1092 (7)0.0066 (3)0.0181 (4)0.0182 (4)
S10.0428 (4)0.0433 (4)0.0722 (5)0.0029 (3)0.0113 (3)0.0093 (3)
Geometric parameters (Å, º) top
C1—C21.380 (4)C9—C101.469 (3)
C1—C61.381 (4)C9—H90.9300
C1—S11.769 (3)C10—C111.394 (3)
C2—C31.377 (4)C10—C151.398 (3)
C2—H20.9300C11—C121.385 (3)
C3—C41.367 (5)C11—Cl21.745 (2)
C3—H30.9300C12—C131.376 (4)
C4—C51.369 (5)C12—H120.9300
C4—Cl11.736 (3)C13—C141.379 (4)
C5—C61.391 (4)C13—H130.9300
C5—H50.9300C14—C151.377 (3)
C6—H60.9300C14—H140.9300
C7—N11.447 (3)C15—H150.9300
C7—C81.518 (3)N1—S11.604 (2)
C7—H7A0.9700N1—H1N0.841 (16)
C7—H7B0.9700N2—N31.379 (3)
C8—O31.236 (3)N2—H2N0.852 (16)
C8—N21.337 (3)O1—S11.4283 (19)
C9—N31.271 (3)O2—S11.4312 (19)
C2—C1—C6120.3 (3)C11—C10—C9123.2 (2)
C2—C1—S1119.8 (2)C15—C10—C9120.2 (2)
C6—C1—S1119.8 (2)C12—C11—C10122.1 (2)
C3—C2—C1119.9 (3)C12—C11—Cl2117.61 (19)
C3—C2—H2120.1C10—C11—Cl2120.32 (18)
C1—C2—H2120.1C13—C12—C11119.4 (2)
C4—C3—C2119.6 (3)C13—C12—H12120.3
C4—C3—H3120.2C11—C12—H12120.3
C2—C3—H3120.2C12—C13—C14120.2 (2)
C3—C4—C5121.4 (3)C12—C13—H13119.9
C3—C4—Cl1119.1 (3)C14—C13—H13119.9
C5—C4—Cl1119.5 (3)C15—C14—C13119.7 (3)
C4—C5—C6119.4 (3)C15—C14—H14120.1
C4—C5—H5120.3C13—C14—H14120.1
C6—C5—H5120.3C14—C15—C10121.9 (2)
C1—C6—C5119.4 (3)C14—C15—H15119.0
C1—C6—H6120.3C10—C15—H15119.0
C5—C6—H6120.3C7—N1—S1122.21 (19)
N1—C7—C8112.8 (2)C7—N1—H1N119 (2)
N1—C7—H7A109.0S1—N1—H1N119 (2)
C8—C7—H7A109.0C8—N2—N3119.52 (19)
N1—C7—H7B109.0C8—N2—H2N119.0 (17)
C8—C7—H7B109.0N3—N2—H2N121.4 (17)
H7A—C7—H7B107.8C9—N3—N2117.61 (19)
O3—C8—N2121.5 (2)O1—S1—O2120.84 (13)
O3—C8—C7122.1 (2)O1—S1—N1107.43 (13)
N2—C8—C7116.5 (2)O2—S1—N1107.08 (12)
N3—C9—C10119.0 (2)O1—S1—C1107.99 (13)
N3—C9—H9120.5O2—S1—C1107.31 (12)
C10—C9—H9120.5N1—S1—C1105.16 (12)
C11—C10—C15116.6 (2)
C6—C1—C2—C32.1 (4)C11—C12—C13—C140.5 (4)
S1—C1—C2—C3174.7 (2)C12—C13—C14—C150.4 (5)
C1—C2—C3—C40.9 (5)C13—C14—C15—C100.8 (4)
C2—C3—C4—C51.3 (5)C11—C10—C15—C140.4 (4)
C2—C3—C4—Cl1178.2 (2)C9—C10—C15—C14178.1 (3)
C3—C4—C5—C62.3 (5)C8—C7—N1—S183.6 (3)
Cl1—C4—C5—C6177.2 (2)O3—C8—N2—N3179.0 (2)
C2—C1—C6—C51.1 (4)C7—C8—N2—N32.6 (3)
S1—C1—C6—C5175.7 (2)C10—C9—N3—N2179.6 (2)
C4—C5—C6—C11.1 (4)C8—N2—N3—C9179.1 (2)
N1—C7—C8—O317.0 (4)C7—N1—S1—O117.3 (2)
N1—C7—C8—N2164.6 (2)C7—N1—S1—O2148.5 (2)
N3—C9—C10—C11177.3 (2)C7—N1—S1—C197.6 (2)
N3—C9—C10—C154.3 (4)C2—C1—S1—O136.9 (3)
C15—C10—C11—C120.5 (4)C6—C1—S1—O1146.3 (2)
C9—C10—C11—C12179.0 (2)C2—C1—S1—O2168.7 (2)
C15—C10—C11—Cl2178.54 (19)C6—C1—S1—O214.6 (3)
C9—C10—C11—Cl20.0 (3)C2—C1—S1—N177.6 (2)
C10—C11—C12—C130.9 (4)C6—C1—S1—N199.2 (2)
Cl2—C11—C12—C13178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.84 (2)2.01 (2)2.823 (3)162 (3)
N2—H2N···O3ii0.85 (2)2.06 (2)2.897 (2)167 (2)
C12—H12···O2iii0.932.533.439 (3)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z.
(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) top
Crystal data top
C15H13Cl2N3O3SZ = 2
Mr = 386.24F(000) = 396
Triclinic, P1Dx = 1.539 Mg m3
a = 9.491 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.976 (1) ÅCell parameters from 2850 reflections
c = 10.446 (1) Åθ = 2.6–27.9°
α = 67.22 (1)°µ = 0.53 mm1
β = 66.80 (1)°T = 293 K
γ = 86.32 (1)°Prism, colourless
V = 833.59 (17) Å30.36 × 0.14 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2688 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED, Oxford Diffraction, 2009)
h = 1111
Tmin = 0.831, Tmax = 0.959k = 1212
5759 measured reflectionsl = 1312
3354 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0148P)2 + 1.1114P]
where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.39 e Å3
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2520 (3)0.1930 (3)1.0295 (3)0.0312 (6)
C20.1178 (3)0.2828 (3)1.0900 (4)0.0408 (7)
H20.02410.25491.14150.049*
C30.1226 (4)0.4145 (4)1.0739 (4)0.0458 (8)
H30.03290.47691.11660.055*
C40.2616 (4)0.4519 (3)0.9939 (4)0.0392 (7)
C50.3966 (4)0.3626 (3)0.9327 (4)0.0393 (7)
H50.48980.38960.87890.047*
C60.3924 (3)0.2326 (3)0.9519 (3)0.0356 (7)
H60.48280.17240.91310.043*
C70.2808 (3)0.1427 (3)0.7715 (3)0.0356 (7)
H7A0.28140.24800.72730.043*
H7B0.17510.09950.81620.043*
C80.3771 (3)0.0903 (3)0.6490 (3)0.0351 (7)
C90.1510 (4)0.1675 (4)0.4412 (3)0.0414 (7)
H90.21080.12620.37400.050*
C100.0084 (4)0.2250 (3)0.4311 (3)0.0400 (7)
C110.0769 (4)0.3041 (4)0.5152 (4)0.0469 (8)
H110.04260.32450.57830.056*
C120.2121 (4)0.3515 (4)0.5037 (4)0.0540 (9)
C130.2654 (4)0.3247 (4)0.4096 (5)0.0600 (10)
H130.35660.35890.40220.072*
C140.1815 (5)0.2467 (4)0.3273 (5)0.0603 (10)
H140.21650.22740.26400.072*
C150.0459 (4)0.1966 (4)0.3371 (4)0.0497 (8)
H150.00970.14350.28080.060*
Cl10.26935 (11)0.61454 (10)0.96808 (12)0.0584 (3)
Cl20.32203 (15)0.44557 (16)0.61290 (17)0.0976 (5)
N10.3402 (3)0.1031 (3)0.8891 (3)0.0318 (5)
H1N0.436 (2)0.101 (3)0.860 (3)0.038*
N20.3309 (3)0.1124 (3)0.5371 (3)0.0436 (7)
H2N0.378 (4)0.072 (4)0.474 (3)0.052*
N30.1952 (3)0.1727 (3)0.5398 (3)0.0394 (6)
O10.3340 (2)0.0350 (2)1.1413 (2)0.0411 (5)
O20.0898 (2)0.0034 (2)1.1055 (2)0.0408 (5)
O30.4936 (2)0.0311 (3)0.6515 (2)0.0475 (6)
S10.24739 (8)0.02589 (8)1.05320 (8)0.03071 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (15)0.0300 (15)0.0385 (16)0.0073 (12)0.0189 (13)0.0176 (13)
C20.0280 (16)0.0415 (18)0.057 (2)0.0072 (13)0.0145 (15)0.0268 (16)
C30.0347 (17)0.0386 (18)0.069 (2)0.0006 (14)0.0209 (17)0.0261 (17)
C40.0461 (19)0.0299 (16)0.0530 (19)0.0096 (14)0.0279 (16)0.0204 (15)
C50.0347 (17)0.0377 (17)0.0496 (19)0.0124 (13)0.0173 (15)0.0224 (15)
C60.0291 (15)0.0343 (16)0.0469 (18)0.0061 (12)0.0159 (14)0.0192 (14)
C70.0354 (16)0.0374 (17)0.0375 (16)0.0116 (13)0.0156 (14)0.0185 (14)
C80.0341 (16)0.0371 (17)0.0339 (16)0.0086 (13)0.0129 (13)0.0153 (14)
C90.0435 (18)0.050 (2)0.0326 (16)0.0112 (15)0.0145 (14)0.0195 (15)
C100.0422 (18)0.0414 (18)0.0329 (16)0.0052 (14)0.0150 (14)0.0113 (14)
C110.047 (2)0.054 (2)0.0451 (19)0.0126 (16)0.0246 (16)0.0199 (17)
C120.048 (2)0.052 (2)0.052 (2)0.0109 (17)0.0181 (18)0.0131 (18)
C130.044 (2)0.060 (2)0.067 (3)0.0048 (18)0.031 (2)0.006 (2)
C140.065 (3)0.060 (2)0.062 (2)0.004 (2)0.042 (2)0.011 (2)
C150.062 (2)0.047 (2)0.0440 (19)0.0028 (17)0.0269 (18)0.0156 (16)
Cl10.0641 (6)0.0405 (5)0.0897 (7)0.0132 (4)0.0367 (5)0.0401 (5)
Cl20.0847 (9)0.1137 (11)0.1072 (10)0.0590 (8)0.0404 (8)0.0618 (9)
N10.0274 (12)0.0354 (13)0.0368 (14)0.0033 (11)0.0109 (11)0.0205 (11)
N20.0416 (16)0.0597 (18)0.0408 (15)0.0224 (13)0.0198 (13)0.0303 (14)
N30.0378 (14)0.0457 (16)0.0368 (14)0.0134 (12)0.0165 (12)0.0183 (12)
O10.0400 (12)0.0535 (14)0.0406 (12)0.0020 (10)0.0200 (10)0.0249 (11)
O20.0309 (11)0.0474 (13)0.0512 (13)0.0071 (9)0.0115 (10)0.0320 (11)
O30.0404 (13)0.0727 (16)0.0418 (13)0.0248 (12)0.0208 (11)0.0336 (12)
S10.0279 (4)0.0352 (4)0.0363 (4)0.0050 (3)0.0127 (3)0.0219 (3)
Geometric parameters (Å, º) top
C1—C21.377 (4)C9—C101.462 (4)
C1—C61.385 (4)C9—H90.9300
C1—S11.773 (3)C10—C151.394 (4)
C2—C31.384 (4)C10—C111.394 (4)
C2—H20.9300C11—C121.372 (5)
C3—C41.374 (4)C11—H110.9300
C3—H30.9300C12—C131.381 (5)
C4—C51.380 (4)C12—Cl21.743 (4)
C4—Cl11.737 (3)C13—C141.370 (6)
C5—C61.382 (4)C13—H130.9300
C5—H50.9300C14—C151.378 (5)
C6—H60.9300C14—H140.9300
C7—N11.457 (4)C15—H150.9300
C7—C81.510 (4)N1—S11.618 (3)
C7—H7A0.9700N1—H1N0.841 (17)
C7—H7B0.9700N2—N31.380 (3)
C8—O31.224 (3)N2—H2N0.863 (18)
C8—N21.342 (4)O1—S11.433 (2)
C9—N31.275 (4)O2—S11.430 (2)
C2—C1—C6120.8 (3)C15—C10—C9118.8 (3)
C2—C1—S1120.2 (2)C11—C10—C9122.2 (3)
C6—C1—S1119.0 (2)C12—C11—C10119.3 (3)
C1—C2—C3119.9 (3)C12—C11—H11120.4
C1—C2—H2120.0C10—C11—H11120.4
C3—C2—H2120.0C11—C12—C13121.9 (4)
C4—C3—C2119.1 (3)C11—C12—Cl2119.4 (3)
C4—C3—H3120.4C13—C12—Cl2118.7 (3)
C2—C3—H3120.4C14—C13—C12118.7 (3)
C3—C4—C5121.4 (3)C14—C13—H13120.6
C3—C4—Cl1119.8 (2)C12—C13—H13120.6
C5—C4—Cl1118.8 (2)C13—C14—C15120.9 (4)
C4—C5—C6119.5 (3)C13—C14—H14119.6
C4—C5—H5120.3C15—C14—H14119.6
C6—C5—H5120.3C14—C15—C10120.3 (4)
C5—C6—C1119.3 (3)C14—C15—H15119.9
C5—C6—H6120.4C10—C15—H15119.9
C1—C6—H6120.4C7—N1—S1119.9 (2)
N1—C7—C8111.0 (2)C7—N1—H1N116 (2)
N1—C7—H7A109.4S1—N1—H1N112 (2)
C8—C7—H7A109.4C8—N2—N3120.8 (2)
N1—C7—H7B109.4C8—N2—H2N117 (2)
C8—C7—H7B109.4N3—N2—H2N121 (2)
H7A—C7—H7B108.0C9—N3—N2115.1 (3)
O3—C8—N2121.4 (3)O2—S1—O1119.53 (13)
O3—C8—C7121.1 (3)O2—S1—N1107.80 (13)
N2—C8—C7117.5 (3)O1—S1—N1105.65 (13)
N3—C9—C10121.6 (3)O2—S1—C1107.23 (13)
N3—C9—H9119.2O1—S1—C1107.84 (13)
C10—C9—H9119.2N1—S1—C1108.40 (13)
C15—C10—C11119.0 (3)
C6—C1—C2—C30.2 (5)Cl2—C12—C13—C14178.0 (3)
S1—C1—C2—C3178.6 (3)C12—C13—C14—C150.4 (6)
C1—C2—C3—C41.7 (5)C13—C14—C15—C100.2 (6)
C2—C3—C4—C51.5 (5)C11—C10—C15—C140.3 (5)
C2—C3—C4—Cl1178.3 (3)C9—C10—C15—C14178.7 (3)
C3—C4—C5—C60.0 (5)C8—C7—N1—S1107.2 (3)
Cl1—C4—C5—C6179.8 (2)O3—C8—N2—N3176.8 (3)
C4—C5—C6—C11.4 (5)C7—C8—N2—N33.8 (5)
C2—C1—C6—C51.3 (5)C10—C9—N3—N2179.1 (3)
S1—C1—C6—C5179.8 (2)C8—N2—N3—C9169.5 (3)
N1—C7—C8—O34.1 (4)C7—N1—S1—O250.2 (2)
N1—C7—C8—N2176.5 (3)C7—N1—S1—O1179.0 (2)
N3—C9—C10—C15170.4 (3)C7—N1—S1—C165.6 (2)
N3—C9—C10—C118.0 (5)C2—C1—S1—O213.7 (3)
C15—C10—C11—C120.2 (5)C6—C1—S1—O2167.4 (2)
C9—C10—C11—C12178.2 (3)C2—C1—S1—O1116.3 (3)
C10—C11—C12—C130.8 (6)C6—C1—S1—O162.6 (3)
C10—C11—C12—Cl2178.1 (3)C2—C1—S1—N1129.8 (3)
C11—C12—C13—C140.9 (6)C6—C1—S1—N151.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.23 (2)3.041 (3)161 (3)
N2—H2N···O3ii0.86 (2)1.97 (2)2.828 (3)171 (3)
C6—H6···O1i0.932.533.422 (4)161
C7—H7B···O2iii0.972.473.434 (4)172
C15—H15···O2iv0.932.583.474 (4)162
C14—H14···Cgv0.932.843.675 (5)150
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x, y, z+2; (iv) x, y, z1; (v) x, y, z+1.
(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) top
Crystal data top
C15H13Cl2N3O3SZ = 2
Mr = 386.24F(000) = 396
Triclinic, P1Dx = 1.459 Mg m3
a = 6.7234 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.281 (1) ÅCell parameters from 1746 reflections
c = 13.611 (2) Åθ = 2.9–27.9°
α = 74.98 (1)°µ = 0.51 mm1
β = 87.11 (1)°T = 293 K
γ = 75.34 (1)°Rod, colourless
V = 879.0 (2) Å30.46 × 0.42 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED, Oxford Diffraction, 2009)
h = 88
Tmin = 0.801, Tmax = 0.906k = 1212
5737 measured reflectionsl = 1316
3598 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.5495P]
where P = (Fo2 + 2Fc2)/3
3598 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75370 (19)0.81534 (16)0.50474 (9)0.1284 (5)
Cl21.20248 (15)0.42711 (14)0.39838 (7)0.1119 (4)
S10.27969 (10)1.01993 (7)0.11321 (5)0.04891 (19)
O10.1031 (3)1.05461 (19)0.14290 (15)0.0609 (5)
O20.4241 (3)1.12132 (19)0.04119 (15)0.0628 (5)
O30.1441 (3)0.66440 (19)0.00307 (15)0.0601 (5)
N10.1982 (3)0.8899 (2)0.06592 (17)0.0518 (5)
H1N0.285 (4)0.868 (3)0.038 (2)0.062*
N20.1718 (3)0.5636 (2)0.07085 (17)0.0529 (5)
H2N0.179 (4)0.490 (2)0.050 (2)0.063*
N30.3257 (3)0.5661 (2)0.13326 (15)0.0490 (5)
C10.4154 (4)0.9674 (3)0.2247 (2)0.0487 (6)
C20.3286 (5)0.9436 (4)0.3189 (2)0.0707 (8)
H20.1995330.9588480.3244120.085*
C30.4330 (5)0.8971 (4)0.4049 (2)0.0840 (10)
H30.3745710.8804410.4689070.101*
C40.6231 (5)0.8754 (4)0.3961 (3)0.0767 (9)
C50.7090 (5)0.8990 (4)0.3026 (3)0.0909 (11)
H50.8378540.8833420.2972570.109*
C60.6066 (5)0.9456 (4)0.2165 (2)0.0773 (9)
H60.6661160.9625700.1527350.093*
C70.0149 (4)0.7821 (3)0.10526 (19)0.0471 (6)
H7A0.0226910.7485720.1784900.057*
H7B0.1059600.8185350.0899750.057*
C80.0016 (4)0.6659 (3)0.05555 (18)0.0466 (6)
C90.4825 (4)0.4633 (3)0.1450 (2)0.0521 (6)
H90.4866240.3935370.1124350.063*
C100.6568 (4)0.4535 (3)0.20951 (19)0.0480 (6)
C110.6490 (4)0.5479 (3)0.2675 (2)0.0606 (7)
H110.5301300.6181210.2665450.073*
C120.8152 (5)0.5385 (3)0.3263 (2)0.0682 (8)
H120.8085680.6015250.3653870.082*
C130.9906 (4)0.4354 (4)0.3268 (2)0.0648 (8)
C141.0018 (4)0.3406 (3)0.2719 (2)0.0692 (8)
H141.1209980.2703240.2737610.083*
C150.8334 (4)0.3497 (3)0.2128 (2)0.0596 (7)
H150.8404150.2849850.1751850.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1225 (9)0.1721 (12)0.0862 (7)0.0563 (9)0.0375 (7)0.0130 (8)
Cl20.0737 (6)0.1848 (12)0.0779 (6)0.0439 (7)0.0247 (5)0.0185 (7)
S10.0460 (3)0.0478 (4)0.0565 (4)0.0123 (3)0.0034 (3)0.0181 (3)
O10.0516 (10)0.0629 (12)0.0799 (13)0.0225 (9)0.0016 (9)0.0303 (10)
O20.0616 (12)0.0518 (11)0.0695 (13)0.0097 (9)0.0111 (9)0.0076 (9)
O30.0520 (10)0.0608 (11)0.0742 (13)0.0063 (9)0.0165 (9)0.0329 (10)
N10.0454 (12)0.0572 (13)0.0591 (14)0.0092 (10)0.0070 (10)0.0277 (11)
N20.0500 (12)0.0529 (13)0.0604 (14)0.0070 (10)0.0122 (10)0.0258 (11)
N30.0473 (12)0.0524 (13)0.0495 (12)0.0115 (10)0.0077 (9)0.0161 (10)
C10.0438 (13)0.0487 (14)0.0566 (15)0.0078 (11)0.0012 (11)0.0215 (12)
C20.0552 (17)0.103 (3)0.0606 (18)0.0226 (16)0.0005 (14)0.0302 (18)
C30.076 (2)0.119 (3)0.0541 (19)0.019 (2)0.0019 (16)0.0212 (19)
C40.072 (2)0.090 (2)0.066 (2)0.0230 (18)0.0196 (16)0.0157 (18)
C50.061 (2)0.139 (3)0.080 (2)0.044 (2)0.0082 (17)0.023 (2)
C60.0577 (18)0.118 (3)0.0617 (19)0.0349 (18)0.0015 (15)0.0199 (19)
C70.0455 (13)0.0516 (14)0.0475 (14)0.0129 (11)0.0030 (11)0.0169 (12)
C80.0462 (13)0.0511 (14)0.0455 (14)0.0142 (11)0.0029 (11)0.0145 (11)
C90.0533 (15)0.0527 (15)0.0548 (15)0.0139 (12)0.0041 (12)0.0200 (12)
C100.0469 (13)0.0483 (14)0.0483 (14)0.0115 (11)0.0032 (11)0.0110 (11)
C110.0581 (16)0.0583 (17)0.0647 (18)0.0068 (13)0.0100 (13)0.0200 (14)
C120.075 (2)0.077 (2)0.0606 (18)0.0238 (17)0.0107 (15)0.0244 (16)
C130.0557 (17)0.089 (2)0.0481 (16)0.0261 (16)0.0076 (13)0.0056 (15)
C140.0499 (16)0.075 (2)0.0688 (19)0.0025 (14)0.0039 (14)0.0055 (16)
C150.0584 (16)0.0557 (16)0.0644 (18)0.0101 (13)0.0019 (13)0.0183 (14)
Geometric parameters (Å, º) top
Cl1—C41.735 (3)C4—C51.362 (5)
Cl2—C131.738 (3)C5—C61.368 (4)
S1—O11.4275 (18)C5—H50.9300
S1—O21.4297 (19)C6—H60.9300
S1—N11.594 (2)C7—C81.500 (3)
S1—C11.764 (3)C7—H7A0.9700
O3—C81.229 (3)C7—H7B0.9700
N1—C71.450 (3)C9—C101.467 (3)
N1—H1N0.818 (17)C9—H90.9300
N2—C81.341 (3)C10—C151.375 (4)
N2—N31.380 (3)C10—C111.390 (4)
N2—H2N0.861 (17)C11—C121.377 (4)
N3—C91.273 (3)C11—H110.9300
C1—C21.373 (4)C12—C131.371 (4)
C1—C61.374 (4)C12—H120.9300
C2—C31.375 (4)C13—C141.360 (4)
C2—H20.9300C14—C151.392 (4)
C3—C41.369 (5)C14—H140.9300
C3—H30.9300C15—H150.9300
O1—S1—O2119.70 (12)N1—C7—C8107.76 (19)
O1—S1—N1107.02 (11)N1—C7—H7A110.2
O2—S1—N1106.60 (12)C8—C7—H7A110.2
O1—S1—C1107.38 (12)N1—C7—H7B110.2
O2—S1—C1107.41 (12)C8—C7—H7B110.2
N1—S1—C1108.32 (12)H7A—C7—H7B108.5
C7—N1—S1121.73 (16)O3—C8—N2121.3 (2)
C7—N1—H1N117 (2)O3—C8—C7121.3 (2)
S1—N1—H1N116 (2)N2—C8—C7117.4 (2)
C8—N2—N3119.7 (2)N3—C9—C10120.7 (2)
C8—N2—H2N119.9 (19)N3—C9—H9119.7
N3—N2—H2N119.6 (19)C10—C9—H9119.7
C9—N3—N2115.3 (2)C15—C10—C11118.6 (2)
C2—C1—C6120.1 (3)C15—C10—C9119.8 (2)
C2—C1—S1120.5 (2)C11—C10—C9121.6 (2)
C6—C1—S1119.3 (2)C12—C11—C10120.8 (3)
C1—C2—C3119.8 (3)C12—C11—H11119.6
C1—C2—H2120.1C10—C11—H11119.6
C3—C2—H2120.1C13—C12—C11119.3 (3)
C4—C3—C2119.7 (3)C13—C12—H12120.3
C4—C3—H3120.1C11—C12—H12120.3
C2—C3—H3120.1C14—C13—C12121.2 (3)
C5—C4—C3120.4 (3)C14—C13—Cl2119.7 (3)
C5—C4—Cl1119.9 (3)C12—C13—Cl2119.1 (2)
C3—C4—Cl1119.7 (3)C13—C14—C15119.5 (3)
C4—C5—C6120.3 (3)C13—C14—H14120.3
C4—C5—H5119.8C15—C14—H14120.3
C6—C5—H5119.8C10—C15—C14120.6 (3)
C5—C6—C1119.7 (3)C10—C15—H15119.7
C5—C6—H6120.2C14—C15—H15119.7
C1—C6—H6120.2
O1—S1—N1—C735.4 (2)S1—C1—C6—C5177.1 (3)
O2—S1—N1—C7164.6 (2)S1—N1—C7—C8171.09 (18)
C1—S1—N1—C780.1 (2)N3—N2—C8—O3177.6 (2)
C8—N2—N3—C9178.5 (2)N3—N2—C8—C72.2 (4)
O1—S1—C1—C210.8 (3)N1—C7—C8—O39.0 (3)
O2—S1—C1—C2140.8 (2)N1—C7—C8—N2171.1 (2)
N1—S1—C1—C2104.5 (2)N2—N3—C9—C10180.0 (2)
O1—S1—C1—C6171.5 (2)N3—C9—C10—C15173.1 (3)
O2—S1—C1—C641.5 (3)N3—C9—C10—C116.4 (4)
N1—S1—C1—C673.3 (3)C15—C10—C11—C120.6 (4)
C6—C1—C2—C30.4 (5)C9—C10—C11—C12179.0 (3)
S1—C1—C2—C3177.3 (3)C10—C11—C12—C130.5 (5)
C1—C2—C3—C40.2 (5)C11—C12—C13—C141.4 (5)
C2—C3—C4—C50.3 (6)C11—C12—C13—Cl2178.2 (2)
C2—C3—C4—Cl1179.5 (3)C12—C13—C14—C151.1 (5)
C3—C4—C5—C60.5 (6)Cl2—C13—C14—C15178.5 (2)
Cl1—C4—C5—C6179.7 (3)C11—C10—C15—C140.9 (4)
C4—C5—C6—C10.6 (6)C9—C10—C15—C14178.7 (3)
C2—C1—C6—C50.6 (5)C13—C14—C15—C100.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (2)2.25 (2)3.032 (3)162 (3)
N1—H1N···O30.82 (2)2.23 (3)2.609 (3)109 (2)
N2—H2N···O3ii0.86 (2)1.98 (2)2.829 (3)170 (3)
C15—H15···O1iii0.932.453.330 (3)157
Symmetry codes: (i) x1, y+2, z; (ii) x, y+1, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors thank the SAIF, Panjab University, for providing the NMR facility.

Funding information

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationBrouwer, E. B., Enright, G. D., Ratcliffe, C. I., Facey, G. A. & Ripmeester, J. A. (1999). J. Phys. Chem. B, 103, 10604–10616.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, Y., Yu, T., Lai, W., Liu, Y. & Wang, B. (2020). Energetic Materials Frontiers, 1, 95–102.  CrossRef Google Scholar
First citationJabłoński, M. (2020). Molecules, 25, 5512–5548.  Google Scholar
First citationKim, K. S., Tarakeshwar, P. & Lee, J. Y. (2000). Chem. Rev. 100, 4145–4186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683–1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946–1951.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2018). Acta Cryst. C74, 1553–1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeth, S. K., Sarkar, D., Jana, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837–4849.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, P., Sharma, S., Chawla, M. & Mitra, A. (2009). J. Mol. Model. 15, 633–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds