research communications
Bis{N′-[3-(4-nitrophenyl)-1-phenylprop-2-en-1-ylidene]-N-phenylcarbamimidothioato}zinc(II): Hirshfeld surface analysis and computational study
aDepartment of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 50932 Setapak, Kuala Lumpur, Malaysia, bResearch Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia, dDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, and eFoundry of Reticular Materials for Sustainability (FORMS), Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul, Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The title zinc bis(thiosemicarbazone) complex, [Zn(C22H17N4O2S)2], comprises two N,S-donor anions, leading to a distorted tetrahedral N2S2 donor set. The resultant five-membered chelate rings are nearly planar and form a dihedral angle of 73.28 (3)°. The configurations about the endocyclic- and exocyclic-imine bonds are Z and E, respectively, and that about the ethylene bond is E. The major differences in the conformations of the ligands are seen in the dihedral angles between the chelate ring and nitrobenzene rings [40.48 (6) cf. 13.18 (4)°] and the N-bound phenyl and nitrobenzene ring [43.23 (8) and 22.64 (4)°]. In the crystal, a linear supramolecular chain along the b-axis direction features amine-N—H⋯O(nitro) hydrogen bonding. The chains assemble along the 21-screw axis through a combination of phenyl-C—H⋯O(nitro) and π(chelate ring)–π(phenyl) contacts. The double chains are linked into a three-dimensional architecture through phenyl-C—H⋯O(nitro) and nitro-O⋯π(phenyl) interactions.
Keywords: crystal structure; zinc; Schiff base; thiosemicarbazone; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 2097106
1. Chemical context
Thiosemicarbazones constitute part of the versatile nitrogen- and sulfur-donor ligands important in coordination chemistry because of their variable donor properties, structural diversity and pharmacological applications. These ligands usually act as monodentate or bidentate ligands and coordinate with transition and non-transition metal ions either in neutral or anionic form through thione/thiolate-sulfur and azomethine/imine-nitrogen donor atoms (Lobana et al., 2009; Prajapati & Patel, 2019; Şen Yüksel, 2021). The pharmacological activities of metal complexes are usually enhanced compared to their parent free thiosemicarbazone ligands (Mathews & Kurup, 2021). The enhanced activities may be attributed to the and increased of the metal complexes (Rapheal et al., 2021). Transition-metal complexes derived from thiosemicarbazones exhibit widespread pharmacological activities inclusive of anti-tubercular (Khan et al., 2020), anti-microbial (Nibila et al., 2021), anti-bacterial (Prajapati & Patel, 2019), anti-malarial (Savir et al., 2020), anti-diabetic (Kumar et al., 2020), anti-viral (Rogolino et al., 2015) and anti-cancer (Anjum et al., 2019; Balakrishnan et al., 2019). In this work, 4-phenyl-3-thiosemicarbazide was condensed with 4-nitrochalcone to form the thiosemicarbazone, which was then complexed with zinc(II) in a molar ratio of 2:1 to form the title compound, hereafter (I). In a continuation of on-going studies of metal complexes derived from thiosemicarbazones and their parent ligands (Tan, Ho et al., 2020; Tan, Kwong et al. 2020a,b), herein the synthesis, Hirshfeld surface analysis and computational chemistry of (I) are described.
2. Structural commentary
The molecular structure of (I), Fig. 1, comprises a zinc atom S,N-coordinated by two thiosemicarbazone anions within an N2S2-donor set. From the data in Table 1, the key geometric parameters for both ligands bear a close similarity. However, the Zn—S1 and Zn—N1 bond lengths are shorter and longer, respectively, compared with the Zn—S2 and Zn—N5 bonds, each by ca 0.07 Å. The angles about the zinc atom range from an acute 86.77 (4)° for the S1—Zn—N1 chelate angle, to a wide 131.16 (2)°, for S1—Zn—S2, consistent with an approximate tetrahedral geometry. The mode of coordination of the thiosemicarbazone ligands leads to the formation of five-membered chelate rings. These are nearly planar with r.m.s. deviations of 0.0459 and 0.0152 Å for the S1- and S2-containing rings, respectively. However, the maximum deviation from the plane through the S1-chelate ring of −0.0613 (9) Å for the N1 atom suggests an alternate description of the conformation of the S1-ring might be valid. Another description might be an with the zinc atom lying 0.209 (3) Å out of the plane of the four remaining atoms (r.m.s. deviation = 0.0005 Å). The dihedral angle between the mean plane through the rings is 73.28 (3)°. There are three formal double bonds in each thiosemicarbazone anion. Owing to the configuration about the endocyclic imine bond is Z whereas that about the exocylic imine bond is E; the configuration of the ethylene bond is E.
|
Some major differences are noted in the conformations of the ligands. Thus, the sequence of dihedral angles formed between the chelate ring and the imine-phenyl, N-bound phenyl and nitrobenzene rings is 72.41 (5), 16.96 (11) and 40.48 (6)°, respectively, for the S1-ring compared with 82.47 (6), 20.33 (5) and 13.18 (4)°, respectively, for the S2-ring. Similarly, the pairs of dihedral angles between the imine- and N-bound phenyl rings, i.e. 59.15 (6) and 76.48 (8)°, and N-bound phenyl and nitrobenzene rings, i.e. 43.23 (8) and 22.64 (4)°, show notable differences; the dihedral angles between the imine-phenyl and nitrobenzene rings are comparable, i.e. 82.28 (7) and 85.67 (7)°. Finally, the nitro groups present different relative orientations with respect to the benzene rings they are connected to, with the N4-nitro group being twisted out of the plane. This is shown in the value of the C2—C3—N4—O1 torsion angle of 161.88 (18)° compared with −0.4 (3)° for the C26—C25—N8—O3 torsion angle.
3. Supramolecular features
Conventional amine-N7—H⋯O4(nitro) hydrogen bonds are noted in the crystal of (I). These feature within a linear supramolecular chain aligned along the b-axis direction, Table 2 and Fig. 2(a). The hydrogen bonds involve the N7-amine, there being no apparent role for the N3-amine in the supramolecular aggregation. A phenyl-C44—H⋯O4(nitro) contact provides extra stability to the chain and indicates the nitro-O4 atom forms two contacts. Chains assemble about the 21-screw axis via a combination of phenyl-C37—H⋯O3(nitro) and π–π contacts. The π–π contacts are of particular interest in that the participating rings are a phenyl and a chelate ring, as highlighted in Fig. 2(b); such interactions are now well recognized in the supramolecular chemistry of metal complexes and impart significant energies of stabilization to the packing (Malenov et al., 2017; Tiekink, 2017). In (I), the inter-centroid separation between Cg(C23–C28)⋯Cg(Zn,S2,N5,N6,C38)i is 3.5559 (11) Å with an inter-planar angle = 6.70 (8)° and slippage of 0.34 Å for (i): − x, + y, − z. The links between chains to consolidate the three-dimensional architecture are of the type phenyl-C14—H⋯O1(nitro) and nitro-O1⋯π(phenyl), Table 2. The parameters associated with the latter interaction are: N4—O1⋯Cg(C23–C28)ii = 3.4788 (19) Å with angle at O1 = 108.71 (13)° for (ii): 1 − x, 1 − y, 1 − z. A view of the unit-cell contents is shown in Fig. 3.
4. Analysis of the Hirshfeld surfaces
In order to acquire further information on the supramolecular association between molecules in the crystal of (I), the Hirshfeld surface and two-dimensional fingerprint plots were calculated employing the program Crystal Explorer 17 (Turner et al., 2017) employing established methods (Tan et al., 2019). The bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 4, i.e. near the amine-H7N, phenyl-H44 and nitro-O4 atoms correspond to the interactions leading to the linear chain; geometric data for the identified contacts in the Hirshfeld surface analysis are given in Table 3. Links between chains include phenyl-C37—H⋯O3 (Fig. 4), phenyl-C14—H⋯O1 and phenyl-C35—H⋯C12 interactions (Fig. 5) and these shown as red spots on the dnorm-mapped Hirshfeld surfaces in Figs. 4 and 5.
The faint-red spots observed on the dnorm-mapped Hirshfeld surface of Fig. 6 correspond to a number of weak contacts listed in Table 3. In addition, an extra C24⋯S1 short contact was observed in the molecular packing, Fig. 7, with a distance of 0.05 Å shorter than the sum of their van der Waals radii, Table 3. The π(C23–C28)–π(Zn,S2,N5,N6,C38) and nitro-O1⋯π(C23–C28) interactions were not manifested on the dnorm-mapped Hirshfeld surface. However, the π–π interaction appears as a flat surface on the curvedness-mapped Hirshfeld surface of Fig. 8(a), the nitro-O⋯π interaction is shown as red concave and blue bump regions on the shape-index-mapped Hirshfeld surface of Fig. 8(b).
The overall two-dimensional fingerprint plot for (I) along with those delineated into the individual H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯N/N⋯H contacts are illustrated in Fig. 9(a)–(f), respectively. The percentage contributions from each interatomic contact are summarized in Table 4. As the greatest contributor to the overall Hirshfeld surface, the H⋯H contacts contributed 39.9%, Fig. 9(b), with the peak tipped at de = di ∼2.2 Å corresponding to the H24⋯H44 contact, Table 3. Consistent with the C—H⋯O and C—H⋯C interactions manifested in the molecular packing, H⋯O/O⋯H and H⋯C/C⋯H contacts are the next most prominent, with percentage contributions of 18.0 and 17.6% to the overall surface, with the peak of these contacts tipped at de + di ∼2.0 and 2.6 Å, respectively, Fig. 9(c) and (d). The H⋯S/S⋯H contacts contribute 8.6% and appear as two blunt-symmetric wings at de + di ∼2.9 Å in Fig. 9(e). This feature reflects the long-range H⋯S/S⋯H contact evinced in the packing with a separation of 0.1 Å shorter than the sum of their van der Waals radii, Table 3. Although H⋯N/N⋯H contacts appear at de + di ∼2.6 Å in the fingerprint plot of Fig. 9(f), the contribution to the overall Hirshfeld surface is only 5.2%. The other 11 interatomic contacts have a negligible effect on the molecular packing as their accumulated contribution is below 11%, Table 4.
|
5. Computational chemistry
The pairwise interaction energies between molecules in the molecular packing of (I) were calculated using wave-functions at the B3LYP/6-31G(d,p) level of theory. The total energy (Etot) was calculated by summing four energy components, comprising the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies. The independent energy components as well as the Etot are tabulated in Table 5. Even with the presence of hydrogen bonds, the Edis energy term still makes the major contribution to the interaction energies partly due to the presence of π–π, N—O⋯π, C—H⋯O and C—H⋯C interactions. The total Edis components of all pairwise interactions sum to −432.1 kJ mol−1, whereas the total Eele sums to −190.2 kJ mol−1. The stabilization of the crystal through the contribution of the dispersion forces is emphasized by the energy framework diagram, Fig. 10, viewed down the b axis.
|
6. Database survey
The ligand in (I) may be considered a chalcone–thiosemicarbazone hybrid ligand having elements of both chalcone and thiosemicarbazone. There are four related species in the literature, namely an N-bound ethyl species with a terminal phenyl ring [(II); Cambridge Structural Database refcode JAXFEW; Tan et al., 2017], a terminal 4-methoxybenzene ring [(III); QEMXUE; Tan et al., 2018] as well as two N-bound phenyl derivatives with terminal 4-cyano [(IV); QISJUA; Barbosa et al., 2018] and 4-chloro rings [(V); QISKEL; Barbosa et al., 2018]; (V) was characterized as a 1:1 THF solvate. In each of (I)–(V), the imine-bound substituent is a phenyl ring. Selected geometric parameters for (I)–(V), calculated employing PLATON (Spek, 2020), are collated in Table 6. From the data collated, there is an obvious in the data to the point of common disparities in the Zn—S and Zn—N bond lengths formed by the two ligands in each complex. The range of tetrahedral angles are similar as are the dihedral angles formed between the chelate rings. A measurement of the distortion of a four-coordinate donor set from a regular geometry is quantified by the value of τ4 (Yang et al., 2007). The value of τ4 is 1.00 for an ideal tetrahedron and 0.00 for perfect square-planar geometry. The range of values for τ4 listed in Table 6 vindicate the assignment of similar coordination geometries for (I)–(V), being distorted from a regular tetrahedron.
|
7. Synthesis and crystallization
Analytical grade reagents were used as procured and without further purification. 4-Phenyl-3-thiosemicarbazide (1.6723 g, 10 mmol) and 4-nitrochalcone (2.5325 g, 10 mmol) were dissolved separately in hot absolute ethanol (50 ml) and mixed while stirring. About five drops of concentrated hydrochloric acid were added to the mixture and the mixture was heated (348 K) while stirring for about 30 min. The yellow precipitate, (2E)-2-[3-(4-nitrophenyl)-1-phenylallylidene]-N-phenylhydrazine-1-carbothioamide, (VI), was filtered, washed with cold ethanol and dried in vacuo after which it was used without further purification. Compound (VI) (0.4047 g, 1 mmol) was dissolved in hot absolute ethanol (50 ml), which was added to a solution of Zn(CH3COO)2·2H2O (0.1098 g, 0.5 mmol) in hot absolute ethanol (40 ml). The mixture was heated (348 K) and stirred for about 10 min, followed by stirring for about 1 h at room temperature. The white precipitate obtained was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature by slow evaporation of (I) in a mixed solvent system containing methanol and acetonitrile (1:1; v/v 20 ml). Yield: 90%, m.p. 511–512 K. FT–IR (ATR (solid) cm−1): 3428 ν(N—H), 1593 ν(C=N), 1335 ν(N—N), 579 ν(Zn—N), 489 ν(Zn—S). UV–Visible: λmax (nm; ɛ (L mol−1 cm−1)): 250 (25,070), 292 (13,010), 433 (21,810). ICP–AES: Experimental %Zn = 7.26, Theoretical %Zn = 7.53.
8. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map, but were refined with an N—H = 0.88±0.01 Å distance restraint, and with Uiso(H) set to 1.2Ueq(N).
details are summarized in Table 7
|
Supporting information
CCDC reference: 2097106
https://doi.org/10.1107/S2056989021007398/mw2178sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007398/mw2178Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C22H17N4O2S)2] | F(000) = 1792 |
Mr = 868.28 | Dx = 1.455 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.4029 (4) Å | Cell parameters from 5987 reflections |
b = 15.8310 (4) Å | θ = 2.2–28.8° |
c = 19.6257 (6) Å | µ = 0.78 mm−1 |
β = 107.841 (3)° | T = 100 K |
V = 3964.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.34 × 0.17 × 0.12 mm |
Oxford Diffraction Gemini diffractometer | 7199 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 28.9°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2012) | h = −16→17 |
Tmin = 0.865, Tmax = 1.000 | k = −17→19 |
17644 measured reflections | l = −26→23 |
8932 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: mixed |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0322P)2 + 1.7875P] where P = (Fo2 + 2Fc2)/3 |
8932 reflections | (Δ/σ)max = 0.001 |
540 parameters | Δρmax = 0.36 e Å−3 |
2 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.58274 (2) | 0.37086 (2) | 0.20624 (2) | 0.01673 (7) | |
S1 | 0.58652 (4) | 0.44525 (3) | 0.10903 (3) | 0.02441 (12) | |
S2 | 0.58396 (4) | 0.23003 (3) | 0.22591 (3) | 0.01931 (11) | |
O1 | 0.55672 (12) | 0.15118 (10) | 0.65080 (8) | 0.0303 (4) | |
O2 | 0.50717 (14) | 0.05390 (9) | 0.57014 (9) | 0.0369 (4) | |
O3 | 0.54146 (13) | 0.94898 (9) | 0.17974 (8) | 0.0329 (4) | |
O4 | 0.61311 (15) | 0.99625 (9) | 0.28598 (9) | 0.0420 (4) | |
N1 | 0.46644 (12) | 0.45354 (9) | 0.21386 (8) | 0.0158 (3) | |
N2 | 0.44712 (12) | 0.52228 (10) | 0.16827 (8) | 0.0168 (3) | |
N3 | 0.48578 (14) | 0.58845 (11) | 0.07532 (9) | 0.0214 (4) | |
H3N | 0.5220 (15) | 0.5835 (13) | 0.0455 (10) | 0.020 (6)* | |
N4 | 0.52155 (14) | 0.12782 (11) | 0.58837 (10) | 0.0238 (4) | |
N5 | 0.68182 (12) | 0.38332 (9) | 0.30981 (8) | 0.0154 (3) | |
N6 | 0.70509 (13) | 0.30949 (9) | 0.34901 (9) | 0.0171 (3) | |
N7 | 0.68388 (14) | 0.16658 (10) | 0.35245 (9) | 0.0199 (4) | |
H7N | 0.6565 (16) | 0.1232 (10) | 0.3266 (10) | 0.026 (6)* | |
N8 | 0.59028 (13) | 0.93859 (10) | 0.24236 (9) | 0.0212 (4) | |
C1 | 0.45854 (15) | 0.23217 (12) | 0.41034 (11) | 0.0202 (4) | |
H1 | 0.453813 | 0.217926 | 0.362427 | 0.024* | |
C2 | 0.48297 (16) | 0.17003 (13) | 0.46245 (11) | 0.0218 (4) | |
H2 | 0.491912 | 0.112986 | 0.450476 | 0.026* | |
C3 | 0.49404 (15) | 0.19296 (12) | 0.53227 (11) | 0.0198 (4) | |
C4 | 0.47873 (15) | 0.27476 (12) | 0.55129 (11) | 0.0202 (4) | |
H4 | 0.487903 | 0.289001 | 0.599854 | 0.024* | |
C5 | 0.44979 (15) | 0.33557 (12) | 0.49829 (11) | 0.0201 (4) | |
H5 | 0.435907 | 0.391535 | 0.510350 | 0.024* | |
C6 | 0.44065 (14) | 0.31582 (12) | 0.42709 (10) | 0.0176 (4) | |
C7 | 0.41199 (15) | 0.38247 (12) | 0.37269 (10) | 0.0179 (4) | |
H7 | 0.373314 | 0.429169 | 0.381690 | 0.022* | |
C8 | 0.43599 (15) | 0.38270 (12) | 0.31141 (10) | 0.0174 (4) | |
H8 | 0.468932 | 0.333854 | 0.300077 | 0.021* | |
C9 | 0.41514 (15) | 0.45260 (12) | 0.26090 (10) | 0.0165 (4) | |
C10 | 0.33978 (15) | 0.52098 (12) | 0.26386 (10) | 0.0168 (4) | |
C11 | 0.23278 (16) | 0.50424 (13) | 0.24251 (11) | 0.0229 (4) | |
H11 | 0.207955 | 0.448858 | 0.228010 | 0.027* | |
C12 | 0.16233 (17) | 0.56849 (15) | 0.24240 (12) | 0.0282 (5) | |
H12 | 0.089173 | 0.557323 | 0.226578 | 0.034* | |
C13 | 0.19822 (18) | 0.64882 (14) | 0.26526 (11) | 0.0281 (5) | |
H13 | 0.149830 | 0.692385 | 0.266047 | 0.034* | |
C14 | 0.30442 (18) | 0.66550 (13) | 0.28691 (12) | 0.0269 (5) | |
H14 | 0.328964 | 0.720644 | 0.302532 | 0.032* | |
C15 | 0.37555 (16) | 0.60205 (13) | 0.28596 (11) | 0.0223 (4) | |
H15 | 0.448522 | 0.613961 | 0.300379 | 0.027* | |
C16 | 0.49833 (15) | 0.52179 (12) | 0.12093 (10) | 0.0181 (4) | |
C17 | 0.43201 (16) | 0.66552 (12) | 0.07269 (11) | 0.0207 (4) | |
C18 | 0.45367 (17) | 0.72857 (13) | 0.02964 (11) | 0.0257 (5) | |
H18 | 0.499997 | 0.717405 | 0.002519 | 0.031* | |
C19 | 0.40772 (17) | 0.80745 (14) | 0.02638 (12) | 0.0304 (5) | |
H19 | 0.422299 | 0.849898 | −0.003447 | 0.037* | |
C20 | 0.34085 (18) | 0.82520 (14) | 0.06602 (13) | 0.0332 (5) | |
H20 | 0.310569 | 0.879725 | 0.064307 | 0.040* | |
C21 | 0.31882 (17) | 0.76236 (14) | 0.10812 (13) | 0.0315 (5) | |
H21 | 0.272830 | 0.774161 | 0.135360 | 0.038* | |
C22 | 0.36257 (16) | 0.68213 (13) | 0.11149 (12) | 0.0259 (5) | |
H22 | 0.345390 | 0.639214 | 0.139829 | 0.031* | |
C23 | 0.70309 (15) | 0.76045 (12) | 0.36476 (11) | 0.0194 (4) | |
H23 | 0.740369 | 0.751645 | 0.413851 | 0.023* | |
C24 | 0.67607 (15) | 0.84148 (12) | 0.33996 (11) | 0.0195 (4) | |
H24 | 0.694471 | 0.888503 | 0.371405 | 0.023* | |
C25 | 0.62165 (15) | 0.85267 (11) | 0.26834 (11) | 0.0169 (4) | |
C26 | 0.59400 (15) | 0.78618 (12) | 0.22071 (11) | 0.0195 (4) | |
H26 | 0.557032 | 0.795631 | 0.171657 | 0.023* | |
C27 | 0.62175 (16) | 0.70522 (12) | 0.24655 (11) | 0.0203 (4) | |
H27 | 0.603312 | 0.658577 | 0.214698 | 0.024* | |
C28 | 0.67624 (14) | 0.69108 (11) | 0.31847 (10) | 0.0160 (4) | |
C29 | 0.70270 (15) | 0.60651 (12) | 0.34873 (11) | 0.0182 (4) | |
H29 | 0.733633 | 0.603231 | 0.399152 | 0.022* | |
C30 | 0.68795 (15) | 0.53321 (12) | 0.31287 (11) | 0.0174 (4) | |
H30 | 0.662728 | 0.534603 | 0.262062 | 0.021* | |
C31 | 0.70882 (14) | 0.45193 (11) | 0.34831 (10) | 0.0161 (4) | |
C32 | 0.75469 (15) | 0.44706 (11) | 0.42785 (10) | 0.0172 (4) | |
C33 | 0.68844 (17) | 0.44340 (12) | 0.47036 (11) | 0.0232 (4) | |
H33 | 0.614641 | 0.445966 | 0.448801 | 0.028* | |
C34 | 0.72993 (18) | 0.43605 (13) | 0.54392 (12) | 0.0276 (5) | |
H34 | 0.684477 | 0.432751 | 0.572662 | 0.033* | |
C35 | 0.83700 (19) | 0.43348 (13) | 0.57565 (12) | 0.0286 (5) | |
H35 | 0.865457 | 0.429202 | 0.626204 | 0.034* | |
C36 | 0.90223 (18) | 0.43714 (14) | 0.53374 (12) | 0.0306 (5) | |
H36 | 0.975996 | 0.435308 | 0.555597 | 0.037* | |
C37 | 0.86174 (17) | 0.44350 (14) | 0.45986 (11) | 0.0259 (5) | |
H37 | 0.907621 | 0.445393 | 0.431367 | 0.031* | |
C38 | 0.66455 (15) | 0.24045 (12) | 0.31503 (10) | 0.0166 (4) | |
C39 | 0.72045 (15) | 0.15319 (12) | 0.42737 (11) | 0.0198 (4) | |
C40 | 0.76208 (17) | 0.21521 (14) | 0.47840 (11) | 0.0277 (5) | |
H40 | 0.773700 | 0.270666 | 0.463945 | 0.033* | |
C41 | 0.78648 (18) | 0.19551 (14) | 0.55048 (12) | 0.0314 (5) | |
H41 | 0.813842 | 0.238257 | 0.585148 | 0.038* | |
C42 | 0.77190 (18) | 0.11516 (14) | 0.57297 (12) | 0.0306 (5) | |
H42 | 0.787784 | 0.102876 | 0.622539 | 0.037* | |
C43 | 0.73386 (19) | 0.05284 (14) | 0.52240 (13) | 0.0334 (5) | |
H43 | 0.725650 | −0.003121 | 0.537320 | 0.040* | |
C44 | 0.70773 (18) | 0.07131 (13) | 0.45040 (12) | 0.0286 (5) | |
H44 | 0.680855 | 0.028083 | 0.416101 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.02270 (13) | 0.01347 (11) | 0.01473 (12) | 0.00168 (9) | 0.00678 (9) | 0.00058 (9) |
S1 | 0.0346 (3) | 0.0236 (3) | 0.0196 (3) | 0.0088 (2) | 0.0151 (2) | 0.0058 (2) |
S2 | 0.0269 (3) | 0.0131 (2) | 0.0173 (2) | −0.00068 (19) | 0.0060 (2) | −0.00247 (19) |
O1 | 0.0369 (9) | 0.0309 (9) | 0.0207 (8) | 0.0035 (7) | 0.0053 (7) | 0.0061 (7) |
O2 | 0.0563 (11) | 0.0170 (8) | 0.0372 (10) | −0.0021 (7) | 0.0139 (8) | 0.0060 (7) |
O3 | 0.0496 (10) | 0.0212 (8) | 0.0222 (8) | 0.0083 (7) | 0.0025 (7) | 0.0060 (6) |
O4 | 0.0681 (12) | 0.0114 (8) | 0.0320 (9) | 0.0003 (7) | −0.0060 (8) | −0.0031 (7) |
N1 | 0.0194 (8) | 0.0127 (8) | 0.0139 (8) | −0.0009 (6) | 0.0030 (6) | 0.0004 (6) |
N2 | 0.0207 (8) | 0.0145 (8) | 0.0143 (8) | 0.0006 (6) | 0.0037 (7) | 0.0025 (6) |
N3 | 0.0299 (10) | 0.0202 (9) | 0.0152 (9) | 0.0025 (7) | 0.0088 (7) | 0.0040 (7) |
N4 | 0.0250 (9) | 0.0220 (9) | 0.0259 (10) | 0.0017 (7) | 0.0100 (8) | 0.0075 (8) |
N5 | 0.0169 (8) | 0.0125 (8) | 0.0172 (8) | 0.0014 (6) | 0.0057 (7) | 0.0018 (6) |
N6 | 0.0221 (8) | 0.0109 (8) | 0.0180 (8) | 0.0017 (6) | 0.0057 (7) | 0.0016 (6) |
N7 | 0.0288 (10) | 0.0101 (8) | 0.0196 (9) | −0.0008 (7) | 0.0059 (7) | −0.0004 (7) |
N8 | 0.0260 (9) | 0.0147 (8) | 0.0218 (9) | 0.0003 (7) | 0.0058 (7) | 0.0028 (7) |
C1 | 0.0248 (11) | 0.0186 (10) | 0.0186 (10) | −0.0005 (8) | 0.0089 (8) | −0.0013 (8) |
C2 | 0.0247 (11) | 0.0168 (10) | 0.0245 (11) | 0.0002 (8) | 0.0085 (9) | −0.0006 (8) |
C3 | 0.0184 (10) | 0.0194 (10) | 0.0217 (11) | 0.0006 (8) | 0.0064 (8) | 0.0060 (8) |
C4 | 0.0228 (10) | 0.0222 (10) | 0.0160 (10) | −0.0010 (8) | 0.0066 (8) | 0.0005 (8) |
C5 | 0.0224 (10) | 0.0172 (10) | 0.0219 (11) | 0.0000 (8) | 0.0088 (8) | −0.0012 (8) |
C6 | 0.0149 (9) | 0.0204 (10) | 0.0182 (10) | −0.0026 (8) | 0.0061 (8) | 0.0015 (8) |
C7 | 0.0183 (10) | 0.0154 (9) | 0.0202 (10) | 0.0001 (7) | 0.0060 (8) | 0.0001 (8) |
C8 | 0.0178 (9) | 0.0145 (9) | 0.0202 (10) | −0.0003 (7) | 0.0060 (8) | 0.0000 (8) |
C9 | 0.0174 (10) | 0.0150 (9) | 0.0154 (9) | −0.0023 (7) | 0.0027 (8) | −0.0026 (8) |
C10 | 0.0193 (10) | 0.0186 (10) | 0.0129 (9) | 0.0013 (8) | 0.0053 (8) | 0.0011 (8) |
C11 | 0.0221 (11) | 0.0244 (11) | 0.0211 (11) | −0.0004 (8) | 0.0051 (9) | 0.0000 (9) |
C12 | 0.0200 (11) | 0.0385 (13) | 0.0244 (11) | 0.0047 (9) | 0.0045 (9) | 0.0031 (10) |
C13 | 0.0331 (12) | 0.0309 (12) | 0.0214 (11) | 0.0153 (10) | 0.0098 (10) | 0.0063 (9) |
C14 | 0.0366 (13) | 0.0192 (10) | 0.0253 (12) | 0.0031 (9) | 0.0103 (10) | −0.0005 (9) |
C15 | 0.0233 (10) | 0.0204 (10) | 0.0240 (11) | −0.0005 (8) | 0.0083 (9) | −0.0019 (9) |
C16 | 0.0221 (10) | 0.0157 (9) | 0.0149 (10) | −0.0015 (8) | 0.0032 (8) | 0.0002 (8) |
C17 | 0.0216 (10) | 0.0173 (10) | 0.0181 (10) | 0.0006 (8) | −0.0016 (8) | 0.0036 (8) |
C18 | 0.0291 (12) | 0.0218 (11) | 0.0208 (11) | −0.0046 (9) | −0.0002 (9) | 0.0043 (9) |
C19 | 0.0287 (12) | 0.0222 (11) | 0.0303 (12) | −0.0058 (9) | −0.0059 (10) | 0.0088 (9) |
C20 | 0.0258 (12) | 0.0200 (11) | 0.0448 (15) | 0.0033 (9) | −0.0024 (10) | 0.0052 (10) |
C21 | 0.0228 (11) | 0.0278 (12) | 0.0415 (14) | 0.0060 (9) | 0.0062 (10) | 0.0071 (10) |
C22 | 0.0212 (11) | 0.0220 (11) | 0.0317 (12) | 0.0026 (8) | 0.0039 (9) | 0.0079 (9) |
C23 | 0.0210 (10) | 0.0166 (10) | 0.0181 (10) | 0.0002 (8) | 0.0023 (8) | −0.0001 (8) |
C24 | 0.0225 (10) | 0.0128 (9) | 0.0222 (11) | −0.0016 (8) | 0.0055 (8) | −0.0028 (8) |
C25 | 0.0189 (10) | 0.0113 (9) | 0.0213 (10) | 0.0003 (7) | 0.0071 (8) | 0.0023 (8) |
C26 | 0.0231 (10) | 0.0169 (10) | 0.0174 (10) | −0.0016 (8) | 0.0046 (8) | 0.0005 (8) |
C27 | 0.0242 (11) | 0.0141 (9) | 0.0219 (11) | −0.0021 (8) | 0.0061 (9) | −0.0026 (8) |
C28 | 0.0149 (9) | 0.0133 (9) | 0.0199 (10) | −0.0015 (7) | 0.0056 (8) | 0.0009 (8) |
C29 | 0.0189 (10) | 0.0170 (9) | 0.0179 (10) | −0.0008 (8) | 0.0044 (8) | 0.0012 (8) |
C30 | 0.0186 (10) | 0.0150 (9) | 0.0185 (10) | −0.0017 (8) | 0.0056 (8) | 0.0004 (8) |
C31 | 0.0153 (9) | 0.0137 (9) | 0.0198 (10) | 0.0011 (7) | 0.0061 (8) | 0.0010 (8) |
C32 | 0.0218 (10) | 0.0098 (9) | 0.0189 (10) | −0.0021 (7) | 0.0048 (8) | −0.0029 (7) |
C33 | 0.0259 (11) | 0.0191 (10) | 0.0263 (11) | −0.0031 (8) | 0.0107 (9) | −0.0031 (9) |
C34 | 0.0400 (13) | 0.0224 (11) | 0.0263 (12) | −0.0067 (9) | 0.0190 (10) | −0.0047 (9) |
C35 | 0.0448 (14) | 0.0220 (11) | 0.0171 (11) | −0.0068 (10) | 0.0065 (10) | −0.0046 (9) |
C36 | 0.0278 (12) | 0.0365 (13) | 0.0233 (12) | −0.0033 (10) | 0.0018 (9) | −0.0050 (10) |
C37 | 0.0250 (11) | 0.0311 (12) | 0.0225 (11) | −0.0018 (9) | 0.0086 (9) | −0.0022 (9) |
C38 | 0.0207 (10) | 0.0133 (9) | 0.0168 (10) | 0.0022 (7) | 0.0071 (8) | 0.0003 (8) |
C39 | 0.0205 (10) | 0.0178 (10) | 0.0202 (10) | 0.0052 (8) | 0.0052 (8) | 0.0047 (8) |
C40 | 0.0329 (12) | 0.0236 (11) | 0.0215 (11) | −0.0015 (9) | 0.0007 (9) | 0.0054 (9) |
C41 | 0.0366 (13) | 0.0284 (12) | 0.0225 (12) | −0.0006 (10) | −0.0006 (10) | 0.0011 (10) |
C42 | 0.0306 (12) | 0.0360 (13) | 0.0221 (11) | 0.0091 (10) | 0.0038 (9) | 0.0118 (10) |
C43 | 0.0463 (15) | 0.0221 (11) | 0.0310 (13) | 0.0076 (10) | 0.0107 (11) | 0.0125 (10) |
C44 | 0.0412 (13) | 0.0164 (10) | 0.0282 (12) | 0.0032 (9) | 0.0108 (10) | 0.0020 (9) |
Zn—S1 | 2.2558 (5) | C15—H15 | 0.9500 |
Zn—N1 | 2.0757 (16) | C17—C18 | 1.395 (3) |
S1—C16 | 1.758 (2) | C17—C22 | 1.396 (3) |
N1—N2 | 1.382 (2) | C18—C19 | 1.385 (3) |
N2—C16 | 1.314 (2) | C18—H18 | 0.9500 |
N3—C16 | 1.360 (2) | C19—C20 | 1.384 (3) |
Zn—S2 | 2.2618 (5) | C19—H19 | 0.9500 |
Zn—N5 | 2.0688 (16) | C20—C21 | 1.382 (3) |
S2—C38 | 1.759 (2) | C20—H20 | 0.9500 |
N5—N6 | 1.381 (2) | C21—C22 | 1.392 (3) |
N6—C38 | 1.309 (2) | C21—H21 | 0.9500 |
N7—C38 | 1.363 (2) | C22—H22 | 0.9500 |
O1—N4 | 1.227 (2) | C23—C24 | 1.380 (3) |
O2—N4 | 1.222 (2) | C23—C28 | 1.400 (3) |
O3—N8 | 1.214 (2) | C23—H23 | 0.9500 |
O4—N8 | 1.224 (2) | C24—C25 | 1.382 (3) |
N1—C9 | 1.309 (2) | C24—H24 | 0.9500 |
N3—C17 | 1.410 (3) | C25—C26 | 1.381 (3) |
N3—H3N | 0.871 (9) | C26—C27 | 1.387 (3) |
N4—C3 | 1.471 (2) | C26—H26 | 0.9500 |
N5—C31 | 1.309 (2) | C27—C28 | 1.394 (3) |
N7—C39 | 1.416 (3) | C27—H27 | 0.9500 |
N7—H7N | 0.866 (9) | C28—C29 | 1.464 (3) |
N8—C25 | 1.468 (2) | C29—C30 | 1.340 (3) |
C1—C2 | 1.384 (3) | C29—H29 | 0.9500 |
C1—C6 | 1.403 (3) | C30—C31 | 1.449 (3) |
C1—H1 | 0.9500 | C30—H30 | 0.9500 |
C2—C3 | 1.381 (3) | C31—C32 | 1.494 (3) |
C2—H2 | 0.9500 | C32—C37 | 1.380 (3) |
C3—C4 | 1.380 (3) | C32—C33 | 1.394 (3) |
C4—C5 | 1.383 (3) | C33—C34 | 1.384 (3) |
C4—H4 | 0.9500 | C33—H33 | 0.9500 |
C5—C6 | 1.400 (3) | C34—C35 | 1.379 (3) |
C5—H5 | 0.9500 | C34—H34 | 0.9500 |
C6—C7 | 1.466 (3) | C35—C36 | 1.373 (3) |
C7—C8 | 1.337 (3) | C35—H35 | 0.9500 |
C7—H7 | 0.9500 | C36—C37 | 1.387 (3) |
C8—C9 | 1.455 (3) | C36—H36 | 0.9500 |
C8—H8 | 0.9500 | C37—H37 | 0.9500 |
C9—C10 | 1.494 (3) | C39—C40 | 1.391 (3) |
C10—C11 | 1.391 (3) | C39—C44 | 1.400 (3) |
C10—C15 | 1.392 (3) | C40—C41 | 1.386 (3) |
C11—C12 | 1.387 (3) | C40—H40 | 0.9500 |
C11—H11 | 0.9500 | C41—C42 | 1.380 (3) |
C12—C13 | 1.385 (3) | C41—H41 | 0.9500 |
C12—H12 | 0.9500 | C42—C43 | 1.382 (3) |
C13—C14 | 1.380 (3) | C42—H42 | 0.9500 |
C13—H13 | 0.9500 | C43—C44 | 1.379 (3) |
C14—C15 | 1.389 (3) | C43—H43 | 0.9500 |
C14—H14 | 0.9500 | C44—H44 | 0.9500 |
S1—Zn—S2 | 131.16 (2) | C19—C18—H18 | 120.0 |
S1—Zn—N1 | 86.77 (4) | C17—C18—H18 | 120.0 |
S1—Zn—N5 | 127.38 (5) | C20—C19—C18 | 120.8 (2) |
S2—Zn—N1 | 125.14 (4) | C20—C19—H19 | 119.6 |
S2—Zn—N5 | 87.56 (4) | C18—C19—H19 | 119.6 |
N1—Zn—N5 | 98.00 (6) | C21—C20—C19 | 118.9 (2) |
C16—S1—Zn | 93.29 (6) | C21—C20—H20 | 120.5 |
C38—S2—Zn | 92.72 (6) | C19—C20—H20 | 120.5 |
C9—N1—N2 | 115.51 (15) | C20—C21—C22 | 121.4 (2) |
C9—N1—Zn | 127.72 (13) | C20—C21—H21 | 119.3 |
N2—N1—Zn | 116.48 (11) | C22—C21—H21 | 119.3 |
C16—N2—N1 | 114.74 (15) | C21—C22—C17 | 119.2 (2) |
C16—N3—C17 | 130.84 (17) | C21—C22—H22 | 120.4 |
C16—N3—H3N | 113.0 (14) | C17—C22—H22 | 120.4 |
C17—N3—H3N | 115.9 (14) | C24—C23—C28 | 120.84 (18) |
O2—N4—O1 | 123.98 (18) | C24—C23—H23 | 119.6 |
O2—N4—C3 | 118.13 (18) | C28—C23—H23 | 119.6 |
O1—N4—C3 | 117.89 (17) | C23—C24—C25 | 118.51 (18) |
C31—N5—N6 | 113.90 (16) | C23—C24—H24 | 120.7 |
C31—N5—Zn | 128.82 (13) | C25—C24—H24 | 120.7 |
N6—N5—Zn | 115.72 (11) | C26—C25—C24 | 122.63 (17) |
C38—N6—N5 | 115.80 (16) | C26—C25—N8 | 118.83 (17) |
C38—N7—C39 | 129.51 (17) | C24—C25—N8 | 118.53 (17) |
C38—N7—H7N | 112.8 (15) | C25—C26—C27 | 118.09 (18) |
C39—N7—H7N | 116.1 (15) | C25—C26—H26 | 121.0 |
O3—N8—O4 | 123.27 (17) | C27—C26—H26 | 121.0 |
O3—N8—C25 | 119.05 (16) | C26—C27—C28 | 121.15 (18) |
O4—N8—C25 | 117.66 (17) | C26—C27—H27 | 119.4 |
C2—C1—C6 | 121.10 (18) | C28—C27—H27 | 119.4 |
C2—C1—H1 | 119.5 | C27—C28—C23 | 118.79 (17) |
C6—C1—H1 | 119.5 | C27—C28—C29 | 122.97 (17) |
C3—C2—C1 | 118.40 (18) | C23—C28—C29 | 118.17 (17) |
C3—C2—H2 | 120.8 | C30—C29—C28 | 126.92 (18) |
C1—C2—H2 | 120.8 | C30—C29—H29 | 116.5 |
C4—C3—C2 | 122.36 (18) | C28—C29—H29 | 116.5 |
C4—C3—N4 | 118.64 (18) | C29—C30—C31 | 122.77 (18) |
C2—C3—N4 | 118.99 (18) | C29—C30—H30 | 118.6 |
C3—C4—C5 | 118.71 (18) | C31—C30—H30 | 118.6 |
C3—C4—H4 | 120.6 | N5—C31—C30 | 118.76 (17) |
C5—C4—H4 | 120.6 | N5—C31—C32 | 120.84 (16) |
C4—C5—C6 | 120.92 (18) | C30—C31—C32 | 120.31 (16) |
C4—C5—H5 | 119.5 | C37—C32—C33 | 119.35 (19) |
C6—C5—H5 | 119.5 | C37—C32—C31 | 121.02 (17) |
C5—C6—C1 | 118.41 (18) | C33—C32—C31 | 119.60 (18) |
C5—C6—C7 | 119.30 (18) | C34—C33—C32 | 120.1 (2) |
C1—C6—C7 | 122.29 (18) | C34—C33—H33 | 119.9 |
C8—C7—C6 | 125.14 (18) | C32—C33—H33 | 119.9 |
C8—C7—H7 | 117.4 | C35—C34—C33 | 120.2 (2) |
C6—C7—H7 | 117.4 | C35—C34—H34 | 119.9 |
C7—C8—C9 | 124.49 (18) | C33—C34—H34 | 119.9 |
C7—C8—H8 | 117.8 | C36—C35—C34 | 119.6 (2) |
C9—C8—H8 | 117.8 | C36—C35—H35 | 120.2 |
N1—C9—C8 | 117.16 (17) | C34—C35—H35 | 120.2 |
N1—C9—C10 | 121.78 (17) | C35—C36—C37 | 120.8 (2) |
C8—C9—C10 | 121.05 (16) | C35—C36—H36 | 119.6 |
C11—C10—C15 | 119.64 (18) | C37—C36—H36 | 119.6 |
C11—C10—C9 | 119.83 (17) | C32—C37—C36 | 119.9 (2) |
C15—C10—C9 | 120.51 (17) | C32—C37—H37 | 120.1 |
C12—C11—C10 | 120.0 (2) | C36—C37—H37 | 120.1 |
C12—C11—H11 | 120.0 | N6—C38—N7 | 117.47 (17) |
C10—C11—H11 | 120.0 | N6—C38—S2 | 128.14 (15) |
C13—C12—C11 | 120.3 (2) | N7—C38—S2 | 114.38 (14) |
C13—C12—H12 | 119.9 | C40—C39—C44 | 118.86 (19) |
C11—C12—H12 | 119.9 | C40—C39—N7 | 125.21 (18) |
C14—C13—C12 | 119.9 (2) | C44—C39—N7 | 115.85 (18) |
C14—C13—H13 | 120.1 | C41—C40—C39 | 119.5 (2) |
C12—C13—H13 | 120.1 | C41—C40—H40 | 120.2 |
C13—C14—C15 | 120.3 (2) | C39—C40—H40 | 120.2 |
C13—C14—H14 | 119.8 | C42—C41—C40 | 121.4 (2) |
C15—C14—H14 | 119.8 | C42—C41—H41 | 119.3 |
C14—C15—C10 | 119.9 (2) | C40—C41—H41 | 119.3 |
C14—C15—H15 | 120.0 | C41—C42—C43 | 119.1 (2) |
C10—C15—H15 | 120.0 | C41—C42—H42 | 120.5 |
N2—C16—N3 | 118.35 (17) | C43—C42—H42 | 120.5 |
N2—C16—S1 | 128.06 (15) | C44—C43—C42 | 120.4 (2) |
N3—C16—S1 | 113.57 (14) | C44—C43—H43 | 119.8 |
C18—C17—C22 | 119.54 (19) | C42—C43—H43 | 119.8 |
C18—C17—N3 | 116.26 (18) | C43—C44—C39 | 120.6 (2) |
C22—C17—N3 | 124.18 (18) | C43—C44—H44 | 119.7 |
C19—C18—C17 | 120.1 (2) | C39—C44—H44 | 119.7 |
C9—N1—N2—C16 | −179.30 (17) | C18—C17—C22—C21 | −2.0 (3) |
Zn—N1—N2—C16 | 6.4 (2) | N3—C17—C22—C21 | 176.1 (2) |
C31—N5—N6—C38 | 169.32 (16) | C28—C23—C24—C25 | 0.1 (3) |
Zn—N5—N6—C38 | 2.3 (2) | C23—C24—C25—C26 | −0.5 (3) |
C6—C1—C2—C3 | −2.9 (3) | C23—C24—C25—N8 | 178.29 (17) |
C1—C2—C3—C4 | 1.9 (3) | O3—N8—C25—C26 | −0.4 (3) |
C1—C2—C3—N4 | −179.09 (17) | O4—N8—C25—C26 | 177.99 (19) |
O2—N4—C3—C4 | 160.31 (19) | O3—N8—C25—C24 | −179.19 (18) |
O1—N4—C3—C4 | −19.0 (3) | O4—N8—C25—C24 | −0.8 (3) |
O2—N4—C3—C2 | −18.8 (3) | C24—C25—C26—C27 | 0.5 (3) |
O1—N4—C3—C2 | 161.88 (18) | N8—C25—C26—C27 | −178.27 (17) |
C2—C3—C4—C5 | 1.0 (3) | C25—C26—C27—C28 | −0.2 (3) |
N4—C3—C4—C5 | −178.09 (17) | C26—C27—C28—C23 | −0.1 (3) |
C3—C4—C5—C6 | −2.8 (3) | C26—C27—C28—C29 | 176.99 (18) |
C4—C5—C6—C1 | 1.9 (3) | C24—C23—C28—C27 | 0.2 (3) |
C4—C5—C6—C7 | −178.68 (18) | C24—C23—C28—C29 | −177.12 (17) |
C2—C1—C6—C5 | 1.1 (3) | C27—C28—C29—C30 | 6.2 (3) |
C2—C1—C6—C7 | −178.38 (18) | C23—C28—C29—C30 | −176.68 (19) |
C5—C6—C7—C8 | 154.6 (2) | C28—C29—C30—C31 | −174.73 (18) |
C1—C6—C7—C8 | −26.0 (3) | N6—N5—C31—C30 | −179.84 (15) |
C6—C7—C8—C9 | −174.32 (18) | Zn—N5—C31—C30 | −14.9 (2) |
N2—N1—C9—C8 | −178.00 (15) | N6—N5—C31—C32 | −3.3 (2) |
Zn—N1—C9—C8 | −4.4 (2) | Zn—N5—C31—C32 | 161.66 (13) |
N2—N1—C9—C10 | 0.9 (3) | C29—C30—C31—N5 | 172.80 (18) |
Zn—N1—C9—C10 | 174.45 (13) | C29—C30—C31—C32 | −3.7 (3) |
C7—C8—C9—N1 | 162.41 (19) | N5—C31—C32—C37 | 92.3 (2) |
C7—C8—C9—C10 | −16.5 (3) | C30—C31—C32—C37 | −91.2 (2) |
N1—C9—C10—C11 | 109.3 (2) | N5—C31—C32—C33 | −85.7 (2) |
C8—C9—C10—C11 | −71.9 (2) | C30—C31—C32—C33 | 90.8 (2) |
N1—C9—C10—C15 | −68.9 (3) | C37—C32—C33—C34 | −0.2 (3) |
C8—C9—C10—C15 | 109.9 (2) | C31—C32—C33—C34 | 177.85 (18) |
C15—C10—C11—C12 | 0.9 (3) | C32—C33—C34—C35 | 0.9 (3) |
C9—C10—C11—C12 | −177.35 (18) | C33—C34—C35—C36 | −0.9 (3) |
C10—C11—C12—C13 | −1.7 (3) | C34—C35—C36—C37 | 0.1 (3) |
C11—C12—C13—C14 | 1.3 (3) | C33—C32—C37—C36 | −0.6 (3) |
C12—C13—C14—C15 | −0.1 (3) | C31—C32—C37—C36 | −178.59 (19) |
C13—C14—C15—C10 | −0.7 (3) | C35—C36—C37—C32 | 0.7 (3) |
C11—C10—C15—C14 | 0.3 (3) | N5—N6—C38—N7 | −178.58 (15) |
C9—C10—C15—C14 | 178.54 (18) | N5—N6—C38—S2 | −0.2 (3) |
N1—N2—C16—N3 | −178.24 (16) | C39—N7—C38—N6 | 16.9 (3) |
N1—N2—C16—S1 | 0.2 (3) | C39—N7—C38—S2 | −161.73 (16) |
C17—N3—C16—N2 | 6.2 (3) | Zn—S2—C38—N6 | −1.62 (18) |
C17—N3—C16—S1 | −172.37 (17) | Zn—S2—C38—N7 | 176.80 (13) |
Zn—S1—C16—N2 | −5.44 (18) | C38—N7—C39—C40 | −12.1 (3) |
Zn—S1—C16—N3 | 173.01 (14) | C38—N7—C39—C44 | 164.5 (2) |
C16—N3—C17—C18 | 165.8 (2) | C44—C39—C40—C41 | −2.2 (3) |
C16—N3—C17—C22 | −12.3 (3) | N7—C39—C40—C41 | 174.3 (2) |
C22—C17—C18—C19 | 1.0 (3) | C39—C40—C41—C42 | 1.0 (4) |
N3—C17—C18—C19 | −177.24 (18) | C40—C41—C42—C43 | 1.2 (4) |
C17—C18—C19—C20 | 0.6 (3) | C41—C42—C43—C44 | −2.0 (4) |
C18—C19—C20—C21 | −1.2 (3) | C42—C43—C44—C39 | 0.8 (4) |
C19—C20—C21—C22 | 0.1 (4) | C40—C39—C44—C43 | 1.4 (3) |
C20—C21—C22—C17 | 1.5 (3) | N7—C39—C44—C43 | −175.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7N···O4i | 0.87 (2) | 2.17 (2) | 3.019 (2) | 165 (2) |
C44—H44···O4i | 0.95 | 2.49 | 3.305 (3) | 144 |
C37—H37···O3ii | 0.95 | 2.48 | 3.373 (3) | 157 |
C14—H14···O1iii | 0.95 | 2.54 | 3.462 (3) | 164 |
Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
N7—H7N···O4b | 2.04 | x, y - 1, z |
C44—H44···O4b | 2.38 | x, y - 1, z |
C37—H37···O3b | 2.36 | -x + 3/2, y - 1/2, -z + 1/2 |
C14—H14···O1b | 2.41 | -x + 1, -y + 1, -z + 1 |
C35—H35···C12 | 2.60 | -x + 1, -y + 1, -z + 1 |
C2—H2···O2 | 2.54 | x, y, z |
H24···H44 | 2.17 | x, y - 1, z |
S1···H24 | 2.93 | -x + 3/2, y - 1/2, -z + 1/2 |
C23—H23···C19 | 2.66 | x + 1/2, -y + 3/2, z + 1/2 |
C11—H11···O1 | 2.54 | x - 1/2, -y + 1/2, z - 1/2 |
C42—H42···N1 | 2.59 | x + 1/2, -y + 1/2, z + 1/2 |
C21—H21···C6 | 2.75 | -x + 1/2, y + 1/2, -z + 1/2 |
S1···C24 | 3.45 | -x + 3/2, y - 1/2, -z + 1/2 |
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values; (b) these interactions correspond to those listed in Table 2. |
Contact | Percentage contribution | Contact | Percentage contribution |
H···H | 39.9 | C···N/N···C | 1.5 |
H···O/O···H | 18.0 | C···Zn/Zn···C | 0.9 |
H···C/C···H | 17.6 | H···Zn/Zn···H | 0.5 |
H···S/S···H | 8.6 | O···O | 0.4 |
H···N/N···H | 5.2 | O···N/N···O | 0.4 |
C···S/S···C | 2.4 | N···N | 0.3 |
C···C | 1.9 | O···S/S···O | 0.3 |
C···O/O···C | 1.8 | N···S/S···N | 0.3 |
Contact | R (Å) | Eele | Epol | Edis | Erep | Etot |
C14—H14···O1i + | ||||||
C35—H35···C12i + | ||||||
N4—O1···Cg1i + | ||||||
H4···H15i | 7.91 | -44.4 | -12.4 | -140.2 | 146.0 | -88.0 |
C37—H37···O3ii + | ||||||
Cg1···Cg2iii + | ||||||
S1···H24ii + | ||||||
H19···H36iii | 10.18 | -36.9 | -5.1 | -83.6 | 78.3 | -67.2 |
C2—H2···O2iv | 16.54 | -14.3 | -4.0 | -20.9 | 15.4 | -26.8 |
N7—H7N···O4v + | ||||||
C44—H44···O4v + | ||||||
H24···H44vi | 15.83 | -22.5 | -5.8 | -15.2 | 32.7 | -21.1 |
C42—H42···N1vii + | ||||||
C11—H11···O1viii | 12.05 | -16.9 | -3.3 | -43.8 | 33.0 | -38.0 |
C12—H12···O4ix + | ||||||
C21—H21···C6x | 11.21 | -11.4 | -3.5 | -48.8 | 37.4 | -34.0 |
C23—H23···C19xi + | ||||||
H19···H29xii | 13.60 | -16.5 | -3.4 | -32.6 | 29.0 | -30.5 |
N3—H3N···S1xiii | 12.14 | -23.3 | -3.5 | -27.7 | 35.1 | -29.7 |
H36···H37xiv | 11.81 | -4.0 | -1.0 | -19.3 | 15.8 | -12.0 |
Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 3/2, y + 1/2, -z + 1/2; (iv) -x + 1, -y, -z + 1; (v) x, y - 1, z; (vi) x, y + 1, z; (vii) x + 1/2, -y + 1/2, z + 1/2; (viii) x - 1/2, -y + 1/2, z - 1/2; (ix) -x + 1/2, y - 1/2, -z + 1/2; (x) -x + 1/2, y + 1/2, -z + 1/2; (xi) x + 1/2, -y + 3/2, z + 1/2, (xii) x + 1/2, -y + 3/2, z - 1/2; (xiii) -x + 1, -y+1, z - 1/2; (xiv) -x + 2, -y + 1, z - 1/2. |
Compound | Zn—S, N (chelate 1) | Zn—S, N (chelate 2) | range of X—Zn—Y angles | chelate 1/chelate 2 angle | τ4 | Ref. |
(I) | 2.2558 (5), 2.0757 (16) | 2.2618 (5), 2.0688 (16) | 86.77 (4)–131.16 (2) | 73.28 (3) | 0.72 | This work |
(II)a | 2.2825 (8), 2.0526 (17) | 2.2689 (7), 2.0523 (17) | 87.00 (5)–133.99 (5) | 73.49 (6) | 0.70 | Tan et al. (2017) |
2.2706 (7), 2.0727 (17) | 2.2824 (9), 2.0495 (17) | 85.99 (5)–131.30 (6) | 77.00 (6) | 0.74 | ||
(III) | 2.2880 (12), 2.042 (3) | 2.2758 (10), 2.070 (3) | 86.73 (9)–127.92 (5) | 79.68 (13) | 0.74 | Tan et al. (2018) |
(IV) | 2.2524 (10), 2.073 (3) | 2.2493 (9), 2.060 (2) | 87.06 (7)–128.55 (4) | 76.11 (9) | 0.74 | Barbosa et al. (2018) |
(V) | 2.2636 (7), 2.068 (2) | 2.2529 (8), 2.041 (2) | 86.41 (6)–128.29 (6) | 78.82 (8) | 0.73 | Barbosa et al. (2018) |
Note: (a) Two independent molecules comprise the asymmetric unit. |
Footnotes
‡Additional correspondence author, e-mail: kacrouse@gmail.com.
Acknowledgements
The intensity data were collected by M. I. M. Tahir, Universiti Putra Malaysia.
Funding information
The synthetic aspect of this research was supported by the University Grant Scheme (RUGS Nos. 9199834 and 9174000) and the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. GRTIN-IRG-01–2021).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Anjum, R., Palanimuthu, D., Kalinowski, D. S., Lewis, W., Park, K. C., Kovacevic, Z., Khan, I. U. & Richardson, D. R. (2019). Inorg. Chem. 58, 13709–13723. CSD CrossRef CAS PubMed Google Scholar
Balakrishnan, N., Haribabu, J., Anantha Krishnan, D., Swaminathan, S., Mahendiran, D., Bhuvanesh, N. S. P. & Karvembu, R. (2019). Polyhedron, 170, 188–201. CSD CrossRef CAS Google Scholar
Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739–751. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khan, A., Paul, K., Singh, I., Jasinski, J. P., Smolenski, V. A., Hotchkiss, E. P., Kelley, P. T., Shalit, Z. A., Kaur, M., Banerjee, S., Roy, P. & Sharma, R. (2020). Dalton Trans. 49, 17350–17367. CSD CrossRef CAS PubMed Google Scholar
Kumar, L. V., Sunitha, S. & Rathika Nath, G. (2020). Mater. Today Proc. 41, 669–675. CrossRef Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341. Web of Science CrossRef CAS Google Scholar
Mathews, N. A. & Kurup, M. R. P. (2021). Appl. Organomet. Chem. 35, 1–16. CSD CrossRef Google Scholar
Nibila, T. A., Soufeena, P. P., Periyat, P. & Aravindakshan, K. K. (2021). J. Mol. Struct. 1231, 129938. CrossRef Google Scholar
Prajapati, N. P. & Patel, H. D. (2019). Synth. Commun. 49, 2767–2804. CAS Google Scholar
Rapheal, P. F., Manoj, E., Kurup, M. R. P. & Venugopalan, P. (2021). Chem. Data Collect. 33, 100681. CSD CrossRef Google Scholar
Rogolino, D., Bacchi, A., De Luca, L., Rispoli, G., Sechi, M., Stevaert, A., Naesens, L. & Carcelli, M. (2015). J. Biol. Inorg. Chem. 20, 1109–1121. CrossRef CAS PubMed Google Scholar
Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S. & Tan, K. W. (2020). J. Mol. Struct. 1211, 128090. CSD CrossRef Google Scholar
Şen Yüksel, B. (2021). J. Mol. Struct. 1229, 129617. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 151–157. CSD CrossRef IUCr Journals Google Scholar
Tan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439–1441. Web of Science CSD CrossRef CAS Google Scholar
Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503–1505. Web of Science CSD CrossRef CAS Google Scholar
Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539–1541. Web of Science CSD CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.