research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{N′-[3-(4-nitro­phen­yl)-1-phenyl­prop-2-en-1-yl­­idene]-N-phenyl­carbamimido­thio­ato}zinc(II): crystal structure, Hirshfeld surface analysis and computational study

crossmark logo

aDepartment of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, 50932 Setapak, Kuala Lumpur, Malaysia, bResearch Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia, dDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, and eFoundry of Reticular Materials for Sustainability (FORMS), Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul, Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by J. T. Mague, Tulane University, USA (Received 5 July 2021; accepted 16 July 2021; online 27 July 2021)

The title zinc bis­(thio­semicarbazone) complex, [Zn(C22H17N4O2S)2], comprises two N,S-donor anions, leading to a distorted tetra­hedral N2S2 donor set. The resultant five-membered chelate rings are nearly planar and form a dihedral angle of 73.28 (3)°. The configurations about the endocyclic- and exocyclic-imine bonds are Z and E, respectively, and that about the ethyl­ene bond is E. The major differences in the conformations of the ligands are seen in the dihedral angles between the chelate ring and nitro­benzene rings [40.48 (6) cf. 13.18 (4)°] and the N-bound phenyl and nitro­benzene ring [43.23 (8) and 22.64 (4)°]. In the crystal, a linear supra­molecular chain along the b-axis direction features amine-N—H⋯O(nitro) hydrogen bonding. The chains assemble along the 21-screw axis through a combination of phenyl-C—H⋯O(nitro) and π(chelate ring)–π(phen­yl) contacts. The double chains are linked into a three-dimensional architecture through phenyl-C—H⋯O(nitro) and nitro-O⋯π(phen­yl) inter­actions.

1. Chemical context

Thio­semicarbazones constitute part of the versatile nitro­gen- and sulfur-donor ligands important in coordination chemistry because of their variable donor properties, structural diversity and pharmacological applications. These ligands usually act as monodentate or bidentate ligands and coordinate with transition and non-transition metal ions either in neutral or anionic form through thione/thiol­ate-sulfur and azomethine/imine-nitro­gen donor atoms (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]; Prajapati & Patel, 2019[Prajapati, N. P. & Patel, H. D. (2019). Synth. Commun. 49, 2767-2804.]; Şen Yüksel, 2021[Şen Yüksel, B. (2021). J. Mol. Struct. 1229, 129617.]). The pharmacological activities of metal complexes are usually enhanced compared to their parent free thio­semicarbazone ligands (Mathews & Kurup, 2021[Mathews, N. A. & Kurup, M. R. P. (2021). Appl. Organomet. Chem. 35, 1-16.]). The enhanced activities may be attributed to the redox potential and increased lipophilicity of the metal complexes (Rapheal et al., 2021[Rapheal, P. F., Manoj, E., Kurup, M. R. P. & Venugopalan, P. (2021). Chem. Data Collect. 33, 100681.]). Transition-metal complexes derived from thio­semicarbazones exhibit widespread pharmacological activities inclusive of anti-tubercular (Khan et al., 2020[Khan, A., Paul, K., Singh, I., Jasinski, J. P., Smolenski, V. A., Hotchkiss, E. P., Kelley, P. T., Shalit, Z. A., Kaur, M., Banerjee, S., Roy, P. & Sharma, R. (2020). Dalton Trans. 49, 17350-17367.]), anti-microbial (Nibila et al., 2021[Nibila, T. A., Soufeena, P. P., Periyat, P. & Aravindakshan, K. K. (2021). J. Mol. Struct. 1231, 129938.]), anti-bacterial (Prajapati & Patel, 2019[Prajapati, N. P. & Patel, H. D. (2019). Synth. Commun. 49, 2767-2804.]), anti-malarial (Savir et al., 2020[Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S. & Tan, K. W. (2020). J. Mol. Struct. 1211, 128090.]), anti-diabetic (Kumar et al., 2020[Kumar, L. V., Sunitha, S. & Rathika Nath, G. (2020). Mater. Today Proc. 41, 669-675.]), anti-viral (Rogolino et al., 2015[Rogolino, D., Bacchi, A., De Luca, L., Rispoli, G., Sechi, M., Stevaert, A., Naesens, L. & Carcelli, M. (2015). J. Biol. Inorg. Chem. 20, 1109-1121.]) and anti-cancer (Anjum et al., 2019[Anjum, R., Palanimuthu, D., Kalinowski, D. S., Lewis, W., Park, K. C., Kovacevic, Z., Khan, I. U. & Richardson, D. R. (2019). Inorg. Chem. 58, 13709-13723.]; Balakrishnan et al., 2019[Balakrishnan, N., Haribabu, J., Anantha Krishnan, D., Swaminathan, S., Mahendiran, D., Bhuvanesh, N. S. P. & Karvembu, R. (2019). Polyhedron, 170, 188-201.]). In this work, 4-phenyl-3-thio­semicarbazide was condensed with 4-nitro­chalcone to form the thio­semicarbazone, which was then complexed with zinc(II) in a molar ratio of 2:1 to form the title compound, hereafter (I)[link]. In a continuation of on-going studies of metal complexes derived from thio­semicarbazones and their parent ligands (Tan, Ho et al., 2020[Tan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439-1441.]; Tan, Kwong et al. 2020a[Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503-1505.],b[Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539-1541.]), herein the synthesis, structure determination, Hirshfeld surface analysis and computational chemistry of (I)[link] are described.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], comprises a zinc atom S,N-coordinated by two thio­semicarbazone anions within an N2S2-donor set. From the data in Table 1[link], the key geometric parameters for both ligands bear a close similarity. However, the Zn—S1 and Zn—N1 bond lengths are shorter and longer, respectively, compared with the Zn—S2 and Zn—N5 bonds, each by ca 0.07 Å. The angles about the zinc atom range from an acute 86.77 (4)° for the S1—Zn—N1 chelate angle, to a wide 131.16 (2)°, for S1—Zn—S2, consistent with an approximate tetra­hedral geometry. The mode of coordination of the thio­semicarbazone ligands leads to the formation of five-membered chelate rings. These are nearly planar with r.m.s. deviations of 0.0459 and 0.0152 Å for the S1- and S2-containing rings, respectively. However, the maximum deviation from the plane through the S1-chelate ring of −0.0613 (9) Å for the N1 atom suggests an alternate description of the conformation of the S1-ring might be valid. Another description might be an envelope conformation with the zinc atom lying 0.209 (3) Å out of the plane of the four remaining atoms (r.m.s. deviation = 0.0005 Å). The dihedral angle between the mean plane through the rings is 73.28 (3)°. There are three formal double bonds in each thio­semicarbazone anion. Owing to chelation, the configuration about the endocyclic imine bond is Z whereas that about the exocylic imine bond is E; the configuration of the ethyl­ene bond is E.

Table 1
Selected geometric parameters (Å, °)

Zn—S1 2.2558 (5) Zn—S2 2.2618 (5)
Zn—N1 2.0757 (16) Zn—N5 2.0688 (16)
S1—C16 1.758 (2) S2—C38 1.759 (2)
N1—N2 1.382 (2) N5—N6 1.381 (2)
N2—C16 1.314 (2) N6—C38 1.309 (2)
N3—C16 1.360 (2) N7—C38 1.363 (2)
       
S1—Zn—S2 131.16 (2) S2—Zn—N1 125.14 (4)
S1—Zn—N1 86.77 (4) S2—Zn—N5 87.56 (4)
S1—Zn—N5 127.38 (5) N1—Zn—N5 98.00 (6)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Some major differences are noted in the conformations of the ligands. Thus, the sequence of dihedral angles formed between the chelate ring and the imine-phenyl, N-bound phenyl and nitro­benzene rings is 72.41 (5), 16.96 (11) and 40.48 (6)°, respectively, for the S1-ring compared with 82.47 (6), 20.33 (5) and 13.18 (4)°, respectively, for the S2-ring. Similarly, the pairs of dihedral angles between the imine- and N-bound phenyl rings, i.e. 59.15 (6) and 76.48 (8)°, and N-bound phenyl and nitro­benzene rings, i.e. 43.23 (8) and 22.64 (4)°, show notable differences; the dihedral angles between the imine-phenyl and nitro­benzene rings are comparable, i.e. 82.28 (7) and 85.67 (7)°. Finally, the nitro groups present different relative orientations with respect to the benzene rings they are connected to, with the N4-nitro group being twisted out of the plane. This is shown in the value of the C2—C3—N4—O1 torsion angle of 161.88 (18)° compared with −0.4 (3)° for the C26—C25—N8—O3 torsion angle.

3. Supra­molecular features

Conventional amine-N7—H⋯O4(nitro) hydrogen bonds are noted in the crystal of (I)[link]. These feature within a linear supra­molecular chain aligned along the b-axis direction, Table 2[link] and Fig. 2[link](a). The hydrogen bonds involve the N7-amine, there being no apparent role for the N3-amine in the supra­molecular aggregation. A phenyl-C44—H⋯O4(nitro) contact provides extra stability to the chain and indicates the nitro-O4 atom forms two contacts. Chains assemble about the 21-screw axis via a combination of phenyl-C37—H⋯O3(nitro) and ππ contacts. The ππ contacts are of particular inter­est in that the participating rings are a phenyl and a chelate ring, as highlighted in Fig. 2[link](b); such inter­actions are now well recognized in the supra­molecular chemistry of metal complexes and impart significant energies of stabilization to the packing (Malenov et al., 2017[Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318-341.]; Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). In (I)[link], the inter-centroid separation between Cg(C23–C28)⋯Cg(Zn,S2,N5,N6,C38)i is 3.5559 (11) Å with an inter-planar angle = 6.70 (8)° and slippage of 0.34 Å for symmetry operation (i): [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z. The links between chains to consolidate the three-dimensional architecture are of the type phenyl-C14—H⋯O1(nitro) and nitro-O1⋯π(phen­yl), Table 2[link]. The parameters associated with the latter inter­action are: N4—O1⋯Cg(C23–C28)ii = 3.4788 (19) Å with angle at O1 = 108.71 (13)° for (ii): 1 − x, 1 − y, 1 − z. A view of the unit-cell contents is shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯O4i 0.87 (2) 2.18 (2) 3.019 (2) 165 (2)
C44—H44⋯O4i 0.95 2.49 3.305 (3) 144
C37—H37⋯O3ii 0.95 2.48 3.373 (3) 157
C14—H14⋯O1iii 0.95 2.54 3.462 (3) 164
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) a view of the linear supra­molecular chain featuring amine-N—H⋯O(meth­oxy) hydrogen bonding shown as blue dashed lines and (b) detail of the π(phen­yl)–π(chelate ring) inter­action shown as purple dashed lines. In each image, non-participating H atoms are omitted.
[Figure 3]
Figure 3
A view of the unit-cell contents shown in projection down the b-axis direction. The C—H⋯O, N—O⋯π and ππ inter­actions are shown as orange, pink and purple dashed lines, respectively. The non-participating H atoms are omitted and one chain sustained by amine-N—H⋯O(meth­oxy), π(phen­yl)–π(chelate ring) and phenyl-C—H⋯O4(nitro) inter­actions is highlighted in space-filling mode.

4. Analysis of the Hirshfeld surfaces

In order to acquire further information on the supra­molecular association between mol­ecules in the crystal of (I)[link], the Hirshfeld surface and two-dimensional fingerprint plots were calculated employing the program Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) employing established methods (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The bright-red spots on the Hirshfeld surface mapped over dnorm in Fig. 4[link], i.e. near the amine-H7N, phenyl-H44 and nitro-O4 atoms correspond to the inter­actions leading to the linear chain; geometric data for the identified contacts in the Hirshfeld surface analysis are given in Table 3[link]. Links between chains include phenyl-C37—H⋯O3 (Fig. 4[link]), phenyl-C14—H⋯O1 and phenyl-C35—H⋯C12 inter­actions (Fig. 5[link]) and these shown as red spots on the dnorm-mapped Hirshfeld surfaces in Figs. 4[link] and 5[link].

Table 3
A summary of short inter­atomic contacts (Å) for (I)a

Contact Distance Symmetry operation
N7—H7N⋯O4b 2.04 x, y − 1, z
C44—H44⋯O4b 2.38 x, y − 1, z
C37—H37⋯O3b 2.36 x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
C14—H14⋯O1b 2.41 x + 1, −y + 1, −z + 1
C35—H35⋯C12 2.60 x + 1, −y + 1, −z + 1
C2—H2⋯O2 2.54 x, y, z
H24⋯H44 2.17 x, y − 1, z
S1⋯H24 2.93 x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
C23—H23⋯C19 2.66 x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]
C11—H11⋯O1 2.54 x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]
C42—H42⋯N1 2.59 x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]
C21—H21⋯C6 2.75 x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]
S1⋯C24 3.45 x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) with the X—H bond lengths adjusted to their neutron values; (b) these inter­actions correspond to those listed in Table 2[link].
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over dnorm for (I)[link] in the range −0.239 to +1.045 arbitrary units, highlighting N—H⋯O and C—H⋯O contact within red circles.
[Figure 5]
Figure 5
View of the Hirshfeld surface mapped over dnorm for (I)[link], highlighting inter-chain C—H⋯O and C—H⋯C inter­actions.

The faint-red spots observed on the dnorm-mapped Hirshfeld surface of Fig. 6[link] correspond to a number of weak contacts listed in Table 3[link]. In addition, an extra C24⋯S1 short contact was observed in the mol­ecular packing, Fig. 7[link], with a distance of 0.05 Å shorter than the sum of their van der Waals radii, Table 3[link]. The π(C23–C28)–π(Zn,S2,N5,N6,C38) and nitro-O1⋯π(C23–C28) inter­actions were not manifested on the dnorm-mapped Hirshfeld surface. However, the ππ inter­action appears as a flat surface on the curvedness-mapped Hirshfeld surface of Fig. 8[link](a), the nitro-O⋯π inter­action is shown as red concave and blue bump regions on the shape-index-mapped Hirshfeld surface of Fig. 8[link](b).

[Figure 6]
Figure 6
Two views of the Hirshfeld surface mapped over dnorm for (I)[link], highlighting weak inter­actions within red circles (see text).
[Figure 7]
Figure 7
View of the Hirshfeld surface mapped over dnorm for (I)[link], highlighting C⋯S short contacts.
[Figure 8]
Figure 8
Views of the Hirshfeld surface mapped over (a) curveness and (b) the shape index property highlighting the inter­molecular ππ and N—O⋯π inter­actions, respectively.

The overall two-dimensional fingerprint plot for (I)[link] along with those delineated into the individual H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯N/N⋯H contacts are illustrated in Fig. 9[link](a)–(f), respectively. The percentage contributions from each inter­atomic contact are summarized in Table 4[link]. As the greatest contributor to the overall Hirshfeld surface, the H⋯H contacts contributed 39.9%, Fig. 9[link](b), with the peak tipped at de = di ∼2.2 Å corresponding to the H24⋯H44 contact, Table 3[link]. Consistent with the C—H⋯O and C—H⋯C inter­actions manifested in the mol­ecular packing, H⋯O/O⋯H and H⋯C/C⋯H contacts are the next most prominent, with percentage contributions of 18.0 and 17.6% to the overall surface, with the peak of these contacts tipped at de + di ∼2.0 and 2.6 Å, respectively, Fig. 9[link](c) and (d). The H⋯S/S⋯H contacts contribute 8.6% and appear as two blunt-symmetric wings at de + di ∼2.9 Å in Fig. 9[link](e). This feature reflects the long-range H⋯S/S⋯H contact evinced in the packing with a separation of 0.1 Å shorter than the sum of their van der Waals radii, Table 3[link]. Although H⋯N/N⋯H contacts appear at de + di ∼2.6 Å in the fingerprint plot of Fig. 9[link](f), the contribution to the overall Hirshfeld surface is only 5.2%. The other 11 inter­atomic contacts have a negligible effect on the mol­ecular packing as their accumulated contribution is below 11%, Table 4[link].

Table 4
Percentage contributions of inter­atomic contacts to the calculated Hirshfeld surface of (I)

Contact Percentage contribution Contact Percentage contribution
H⋯H 39.9 C⋯N/N⋯C 1.5
H⋯O/O⋯H 18.0 C⋯Zn/Zn⋯C 0.9
H⋯C/C⋯H 17.6 H⋯Zn/Zn⋯H 0.5
H⋯S/S⋯H 8.6 O⋯O 0.4
H⋯N/N⋯H 5.2 O⋯N/N⋯O 0.4
C⋯S/S⋯C 2.4 N⋯N 0.3
C⋯C 1.9 O⋯S/S⋯O 0.3
C⋯O/O⋯C 1.8 N⋯S/S⋯N 0.3
[Figure 9]
Figure 9
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) H⋯S/S⋯H and (f) H⋯N/N⋯H contacts.

5. Computational chemistry

The pairwise inter­action energies between mol­ecules in the mol­ecular packing of (I)[link] were calculated using wave-functions at the B3LYP/6-31G(d,p) level of theory. The total energy (Etot) was calculated by summing four energy components, comprising the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies. The independent energy components as well as the Etot are tabulated in Table 5[link]. Even with the presence of hydrogen bonds, the Edis energy term still makes the major contribution to the inter­action energies partly due to the presence of ππ, N—O⋯π, C—H⋯O and C—H⋯C inter­actions. The total Edis components of all pairwise inter­actions sum to −432.1 kJ mol−1, whereas the total Eele sums to −190.2 kJ mol−1. The stabilization of the crystal through the contribution of the dispersion forces is emphasized by the energy framework diagram, Fig. 10[link], viewed down the b axis.

Table 5
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
C14—H14⋯O1i +            
C35—H35⋯C12i +            
N4—O1⋯Cg1i +            
H4⋯H15i 7.91 −44.4 −12.4 −140.2 146.0 −88.0
C37—H37⋯O3ii +            
Cg1⋯Cg2iii +            
S1⋯H24ii +            
H19⋯H36iii 10.18 −36.9 −5.1 −83.6 78.3 −67.2
C2—H2⋯O2iv 16.54 −14.3 −4.0 −20.9 15.4 −26.8
N7—H7N⋯O4v +            
C44—H44⋯O4v +            
H24⋯H44vi 15.83 −22.5 −5.8 −15.2 32.7 −21.1
C42—H42⋯N1vii +            
C11—H11⋯O1viii 12.05 −16.9 −3.3 −43.8 33.0 −38.0
C12—H12⋯O4ix +            
C21—H21⋯C6x 11.21 −11.4 −3.5 −48.8 37.4 −34.0
C23—H23⋯C19xi +            
H19⋯H29xii 13.60 −16.5 −3.4 −32.6 29.0 −30.5
N3—H3N⋯S1xiii 12.14 −23.3 −3.5 −27.7 35.1 −29.7
H36⋯H37xiv 11.81 −4.0 −1.0 −19.3 15.8 −12.0
Symmetry code: (i) −x + 1, −y + 1, −z + 1; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x + 1, −y, −z + 1; (v) x, y − 1, z; (vi) x, y + 1, z; (vii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ix) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (x) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (xi) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}], (xii) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (xiii) −x + 1, −y + 1, z − [{1\over 2}]; (xiv) −x + 2, −y + 1, z − [{1\over 2}].
[Figure 10]
Figure 10
Perspective views of the energy frameworks calculated for (I)[link] showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the b axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 1 × 1 × 1 unit-cells.

6. Database survey

The ligand in (I)[link] may be considered a chalcone–thio­semicarbazone hybrid ligand having elements of both chalcone and thio­semicarbazone. There are four related species in the literature, namely an N-bound ethyl species with a terminal phenyl ring [(II); Cambridge Structural Database refcode JAXFEW; Tan et al., 2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.]], a terminal 4-meth­oxy­benzene ring [(III); QEMXUE; Tan et al., 2018[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 151-157.]] as well as two N-bound phenyl derivatives with terminal 4-cyano [(IV); QISJUA; Barbosa et al., 2018[Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739-751.]] and 4-chloro rings [(V); QISKEL; Barbosa et al., 2018[Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739-751.]]; (V) was characterized as a 1:1 THF solvate. In each of (I)–(V), the imine-bound substituent is a phenyl ring. Selected geometric parameters for (I)–(V), calculated employing PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), are collated in Table 6[link]. From the data collated, there is an obvious homogeneity in the data to the point of common disparities in the Zn—S and Zn—N bond lengths formed by the two ligands in each complex. The range of tetra­hedral angles are similar as are the dihedral angles formed between the chelate rings. A measurement of the distortion of a four-coordinate donor set from a regular geometry is qu­anti­fied by the value of τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The value of τ4 is 1.00 for an ideal tetra­hedron and 0.00 for perfect square-planar geometry. The range of values for τ4 listed in Table 6[link] vindicate the assignment of similar coordination geometries for (I)–(V), being distorted from a regular tetra­hedron.

Table 6
A comparison of key geometric parameters (Å, °) in structures related to (I)

Compound Zn—S, N (chelate 1) Zn—S, N (chelate 2) range of X—Zn—Y angles chelate 1/chelate 2 angle τ4 Ref.
(I) 2.2558 (5), 2.0757 (16) 2.2618 (5), 2.0688 (16) 86.77 (4)–131.16 (2) 73.28 (3) 0.72 This work
(II)a 2.2825 (8), 2.0526 (17) 2.2689 (7), 2.0523 (17) 87.00 (5)–133.99 (5) 73.49 (6) 0.70 Tan et al. (2017[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001-1008.])
  2.2706 (7), 2.0727 (17) 2.2824 (9), 2.0495 (17) 85.99 (5)–131.30 (6) 77.00 (6) 0.74  
(III) 2.2880 (12), 2.042 (3) 2.2758 (10), 2.070 (3) 86.73 (9)–127.92 (5) 79.68 (13) 0.74 Tan et al. (2018[Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 151-157.])
(IV) 2.2524 (10), 2.073 (3) 2.2493 (9), 2.060 (2) 87.06 (7)–128.55 (4) 76.11 (9) 0.74 Barbosa et al. (2018[Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739-751.])
(V) 2.2636 (7), 2.068 (2) 2.2529 (8), 2.041 (2) 86.41 (6)–128.29 (6) 78.82 (8) 0.73 Barbosa et al. (2018[Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739-751.])
Note: (a) Two independent mol­ecules comprise the asymmetric unit.

7. Synthesis and crystallization

Analytical grade reagents were used as procured and without further purification. 4-Phenyl-3-thio­semicarbazide (1.6723 g, 10 mmol) and 4-nitro­chalcone (2.5325 g, 10 mmol) were dissolved separately in hot absolute ethanol (50 ml) and mixed while stirring. About five drops of concentrated hydro­chloric acid were added to the mixture and the mixture was heated (348 K) while stirring for about 30 min. The yellow precipitate, (2E)-2-[3-(4-nitro­phen­yl)-1-phenyl­allyl­idene]-N-phenyl­hydrazine-1-carbo­thio­amide, (VI), was filtered, washed with cold ethanol and dried in vacuo after which it was used without further purification. Compound (VI) (0.4047 g, 1 mmol) was dissolved in hot absolute ethanol (50 ml), which was added to a solution of Zn(CH3COO)2·2H2O (0.1098 g, 0.5 mmol) in hot absolute ethanol (40 ml). The mixture was heated (348 K) and stirred for about 10 min, followed by stirring for about 1 h at room temperature. The white precipitate obtained was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature by slow evaporation of (I)[link] in a mixed solvent system containing methanol and aceto­nitrile (1:1; v/v 20 ml). Yield: 90%, m.p. 511–512 K. FT–IR (ATR (solid) cm−1): 3428 ν(N—H), 1593 ν(C=N), 1335 ν(N—N), 579 ν(Zn—N), 489 ν(Zn—S). UV–Visible: λmax (nm; ɛ (L mol−1 cm−1)): 250 (25,070), 292 (13,010), 433 (21,810). ICP–AES: Experimental %Zn = 7.26, Theoretical %Zn = 7.53.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map, but were refined with an N—H = 0.88±0.01 Å distance restraint, and with Uiso(H) set to 1.2Ueq(N).

Table 7
Experimental details

Crystal data
Chemical formula [Zn(C22H17N4O2S)2]
Mr 868.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.4029 (4), 15.8310 (4), 19.6257 (6)
β (°) 107.841 (3)
V3) 3964.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.34 × 0.17 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.865, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17644, 8932, 7199
Rint 0.032
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.02
No. of reflections 8932
No. of parameters 540
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.40
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{N'-[3-(4-nitrophenyl)-1-phenylprop-2-en-1-ylidene]-N-phenylcarbamimidothioato}zinc(II) top
Crystal data top
[Zn(C22H17N4O2S)2]F(000) = 1792
Mr = 868.28Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.4029 (4) ÅCell parameters from 5987 reflections
b = 15.8310 (4) Åθ = 2.2–28.8°
c = 19.6257 (6) ŵ = 0.78 mm1
β = 107.841 (3)°T = 100 K
V = 3964.0 (2) Å3Prism, colourless
Z = 40.34 × 0.17 × 0.12 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
7199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
h = 1617
Tmin = 0.865, Tmax = 1.000k = 1719
17644 measured reflectionsl = 2623
8932 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.7875P]
where P = (Fo2 + 2Fc2)/3
8932 reflections(Δ/σ)max = 0.001
540 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.58274 (2)0.37086 (2)0.20624 (2)0.01673 (7)
S10.58652 (4)0.44525 (3)0.10903 (3)0.02441 (12)
S20.58396 (4)0.23003 (3)0.22591 (3)0.01931 (11)
O10.55672 (12)0.15118 (10)0.65080 (8)0.0303 (4)
O20.50717 (14)0.05390 (9)0.57014 (9)0.0369 (4)
O30.54146 (13)0.94898 (9)0.17974 (8)0.0329 (4)
O40.61311 (15)0.99625 (9)0.28598 (9)0.0420 (4)
N10.46644 (12)0.45354 (9)0.21386 (8)0.0158 (3)
N20.44712 (12)0.52228 (10)0.16827 (8)0.0168 (3)
N30.48578 (14)0.58845 (11)0.07532 (9)0.0214 (4)
H3N0.5220 (15)0.5835 (13)0.0455 (10)0.020 (6)*
N40.52155 (14)0.12782 (11)0.58837 (10)0.0238 (4)
N50.68182 (12)0.38332 (9)0.30981 (8)0.0154 (3)
N60.70509 (13)0.30949 (9)0.34901 (9)0.0171 (3)
N70.68388 (14)0.16658 (10)0.35245 (9)0.0199 (4)
H7N0.6565 (16)0.1232 (10)0.3266 (10)0.026 (6)*
N80.59028 (13)0.93859 (10)0.24236 (9)0.0212 (4)
C10.45854 (15)0.23217 (12)0.41034 (11)0.0202 (4)
H10.4538130.2179260.3624270.024*
C20.48297 (16)0.17003 (13)0.46245 (11)0.0218 (4)
H20.4919120.1129860.4504760.026*
C30.49404 (15)0.19296 (12)0.53227 (11)0.0198 (4)
C40.47873 (15)0.27476 (12)0.55129 (11)0.0202 (4)
H40.4879030.2890010.5998540.024*
C50.44979 (15)0.33557 (12)0.49829 (11)0.0201 (4)
H50.4359070.3915350.5103500.024*
C60.44065 (14)0.31582 (12)0.42709 (10)0.0176 (4)
C70.41199 (15)0.38247 (12)0.37269 (10)0.0179 (4)
H70.3733140.4291690.3816900.022*
C80.43599 (15)0.38270 (12)0.31141 (10)0.0174 (4)
H80.4689320.3338540.3000770.021*
C90.41514 (15)0.45260 (12)0.26090 (10)0.0165 (4)
C100.33978 (15)0.52098 (12)0.26386 (10)0.0168 (4)
C110.23278 (16)0.50424 (13)0.24251 (11)0.0229 (4)
H110.2079550.4488580.2280100.027*
C120.16233 (17)0.56849 (15)0.24240 (12)0.0282 (5)
H120.0891730.5573230.2265780.034*
C130.19822 (18)0.64882 (14)0.26526 (11)0.0281 (5)
H130.1498300.6923850.2660470.034*
C140.30442 (18)0.66550 (13)0.28691 (12)0.0269 (5)
H140.3289640.7206440.3025320.032*
C150.37555 (16)0.60205 (13)0.28596 (11)0.0223 (4)
H150.4485220.6139610.3003790.027*
C160.49833 (15)0.52179 (12)0.12093 (10)0.0181 (4)
C170.43201 (16)0.66552 (12)0.07269 (11)0.0207 (4)
C180.45367 (17)0.72857 (13)0.02964 (11)0.0257 (5)
H180.4999970.7174050.0025190.031*
C190.40772 (17)0.80745 (14)0.02638 (12)0.0304 (5)
H190.4222990.8498980.0034470.037*
C200.34085 (18)0.82520 (14)0.06602 (13)0.0332 (5)
H200.3105690.8797250.0643070.040*
C210.31882 (17)0.76236 (14)0.10812 (13)0.0315 (5)
H210.2728300.7741610.1353600.038*
C220.36257 (16)0.68213 (13)0.11149 (12)0.0259 (5)
H220.3453900.6392140.1398290.031*
C230.70309 (15)0.76045 (12)0.36476 (11)0.0194 (4)
H230.7403690.7516450.4138510.023*
C240.67607 (15)0.84148 (12)0.33996 (11)0.0195 (4)
H240.6944710.8885030.3714050.023*
C250.62165 (15)0.85267 (11)0.26834 (11)0.0169 (4)
C260.59400 (15)0.78618 (12)0.22071 (11)0.0195 (4)
H260.5570320.7956310.1716570.023*
C270.62175 (16)0.70522 (12)0.24655 (11)0.0203 (4)
H270.6033120.6585770.2146980.024*
C280.67624 (14)0.69108 (11)0.31847 (10)0.0160 (4)
C290.70270 (15)0.60651 (12)0.34873 (11)0.0182 (4)
H290.7336330.6032310.3991520.022*
C300.68795 (15)0.53321 (12)0.31287 (11)0.0174 (4)
H300.6627280.5346030.2620620.021*
C310.70882 (14)0.45193 (11)0.34831 (10)0.0161 (4)
C320.75469 (15)0.44706 (11)0.42785 (10)0.0172 (4)
C330.68844 (17)0.44340 (12)0.47036 (11)0.0232 (4)
H330.6146410.4459660.4488010.028*
C340.72993 (18)0.43605 (13)0.54392 (12)0.0276 (5)
H340.6844770.4327510.5726620.033*
C350.83700 (19)0.43348 (13)0.57565 (12)0.0286 (5)
H350.8654570.4292020.6262040.034*
C360.90223 (18)0.43714 (14)0.53374 (12)0.0306 (5)
H360.9759960.4353080.5555970.037*
C370.86174 (17)0.44350 (14)0.45986 (11)0.0259 (5)
H370.9076210.4453930.4313670.031*
C380.66455 (15)0.24045 (12)0.31503 (10)0.0166 (4)
C390.72045 (15)0.15319 (12)0.42737 (11)0.0198 (4)
C400.76208 (17)0.21521 (14)0.47840 (11)0.0277 (5)
H400.7737000.2706660.4639450.033*
C410.78648 (18)0.19551 (14)0.55048 (12)0.0314 (5)
H410.8138420.2382570.5851480.038*
C420.77190 (18)0.11516 (14)0.57297 (12)0.0306 (5)
H420.7877840.1028760.6225390.037*
C430.73386 (19)0.05284 (14)0.52240 (13)0.0334 (5)
H430.7256500.0031210.5373200.040*
C440.70773 (18)0.07131 (13)0.45040 (12)0.0286 (5)
H440.6808550.0280830.4161010.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02270 (13)0.01347 (11)0.01473 (12)0.00168 (9)0.00678 (9)0.00058 (9)
S10.0346 (3)0.0236 (3)0.0196 (3)0.0088 (2)0.0151 (2)0.0058 (2)
S20.0269 (3)0.0131 (2)0.0173 (2)0.00068 (19)0.0060 (2)0.00247 (19)
O10.0369 (9)0.0309 (9)0.0207 (8)0.0035 (7)0.0053 (7)0.0061 (7)
O20.0563 (11)0.0170 (8)0.0372 (10)0.0021 (7)0.0139 (8)0.0060 (7)
O30.0496 (10)0.0212 (8)0.0222 (8)0.0083 (7)0.0025 (7)0.0060 (6)
O40.0681 (12)0.0114 (8)0.0320 (9)0.0003 (7)0.0060 (8)0.0031 (7)
N10.0194 (8)0.0127 (8)0.0139 (8)0.0009 (6)0.0030 (6)0.0004 (6)
N20.0207 (8)0.0145 (8)0.0143 (8)0.0006 (6)0.0037 (7)0.0025 (6)
N30.0299 (10)0.0202 (9)0.0152 (9)0.0025 (7)0.0088 (7)0.0040 (7)
N40.0250 (9)0.0220 (9)0.0259 (10)0.0017 (7)0.0100 (8)0.0075 (8)
N50.0169 (8)0.0125 (8)0.0172 (8)0.0014 (6)0.0057 (7)0.0018 (6)
N60.0221 (8)0.0109 (8)0.0180 (8)0.0017 (6)0.0057 (7)0.0016 (6)
N70.0288 (10)0.0101 (8)0.0196 (9)0.0008 (7)0.0059 (7)0.0004 (7)
N80.0260 (9)0.0147 (8)0.0218 (9)0.0003 (7)0.0058 (7)0.0028 (7)
C10.0248 (11)0.0186 (10)0.0186 (10)0.0005 (8)0.0089 (8)0.0013 (8)
C20.0247 (11)0.0168 (10)0.0245 (11)0.0002 (8)0.0085 (9)0.0006 (8)
C30.0184 (10)0.0194 (10)0.0217 (11)0.0006 (8)0.0064 (8)0.0060 (8)
C40.0228 (10)0.0222 (10)0.0160 (10)0.0010 (8)0.0066 (8)0.0005 (8)
C50.0224 (10)0.0172 (10)0.0219 (11)0.0000 (8)0.0088 (8)0.0012 (8)
C60.0149 (9)0.0204 (10)0.0182 (10)0.0026 (8)0.0061 (8)0.0015 (8)
C70.0183 (10)0.0154 (9)0.0202 (10)0.0001 (7)0.0060 (8)0.0001 (8)
C80.0178 (9)0.0145 (9)0.0202 (10)0.0003 (7)0.0060 (8)0.0000 (8)
C90.0174 (10)0.0150 (9)0.0154 (9)0.0023 (7)0.0027 (8)0.0026 (8)
C100.0193 (10)0.0186 (10)0.0129 (9)0.0013 (8)0.0053 (8)0.0011 (8)
C110.0221 (11)0.0244 (11)0.0211 (11)0.0004 (8)0.0051 (9)0.0000 (9)
C120.0200 (11)0.0385 (13)0.0244 (11)0.0047 (9)0.0045 (9)0.0031 (10)
C130.0331 (12)0.0309 (12)0.0214 (11)0.0153 (10)0.0098 (10)0.0063 (9)
C140.0366 (13)0.0192 (10)0.0253 (12)0.0031 (9)0.0103 (10)0.0005 (9)
C150.0233 (10)0.0204 (10)0.0240 (11)0.0005 (8)0.0083 (9)0.0019 (9)
C160.0221 (10)0.0157 (9)0.0149 (10)0.0015 (8)0.0032 (8)0.0002 (8)
C170.0216 (10)0.0173 (10)0.0181 (10)0.0006 (8)0.0016 (8)0.0036 (8)
C180.0291 (12)0.0218 (11)0.0208 (11)0.0046 (9)0.0002 (9)0.0043 (9)
C190.0287 (12)0.0222 (11)0.0303 (12)0.0058 (9)0.0059 (10)0.0088 (9)
C200.0258 (12)0.0200 (11)0.0448 (15)0.0033 (9)0.0024 (10)0.0052 (10)
C210.0228 (11)0.0278 (12)0.0415 (14)0.0060 (9)0.0062 (10)0.0071 (10)
C220.0212 (11)0.0220 (11)0.0317 (12)0.0026 (8)0.0039 (9)0.0079 (9)
C230.0210 (10)0.0166 (10)0.0181 (10)0.0002 (8)0.0023 (8)0.0001 (8)
C240.0225 (10)0.0128 (9)0.0222 (11)0.0016 (8)0.0055 (8)0.0028 (8)
C250.0189 (10)0.0113 (9)0.0213 (10)0.0003 (7)0.0071 (8)0.0023 (8)
C260.0231 (10)0.0169 (10)0.0174 (10)0.0016 (8)0.0046 (8)0.0005 (8)
C270.0242 (11)0.0141 (9)0.0219 (11)0.0021 (8)0.0061 (9)0.0026 (8)
C280.0149 (9)0.0133 (9)0.0199 (10)0.0015 (7)0.0056 (8)0.0009 (8)
C290.0189 (10)0.0170 (9)0.0179 (10)0.0008 (8)0.0044 (8)0.0012 (8)
C300.0186 (10)0.0150 (9)0.0185 (10)0.0017 (8)0.0056 (8)0.0004 (8)
C310.0153 (9)0.0137 (9)0.0198 (10)0.0011 (7)0.0061 (8)0.0010 (8)
C320.0218 (10)0.0098 (9)0.0189 (10)0.0021 (7)0.0048 (8)0.0029 (7)
C330.0259 (11)0.0191 (10)0.0263 (11)0.0031 (8)0.0107 (9)0.0031 (9)
C340.0400 (13)0.0224 (11)0.0263 (12)0.0067 (9)0.0190 (10)0.0047 (9)
C350.0448 (14)0.0220 (11)0.0171 (11)0.0068 (10)0.0065 (10)0.0046 (9)
C360.0278 (12)0.0365 (13)0.0233 (12)0.0033 (10)0.0018 (9)0.0050 (10)
C370.0250 (11)0.0311 (12)0.0225 (11)0.0018 (9)0.0086 (9)0.0022 (9)
C380.0207 (10)0.0133 (9)0.0168 (10)0.0022 (7)0.0071 (8)0.0003 (8)
C390.0205 (10)0.0178 (10)0.0202 (10)0.0052 (8)0.0052 (8)0.0047 (8)
C400.0329 (12)0.0236 (11)0.0215 (11)0.0015 (9)0.0007 (9)0.0054 (9)
C410.0366 (13)0.0284 (12)0.0225 (12)0.0006 (10)0.0006 (10)0.0011 (10)
C420.0306 (12)0.0360 (13)0.0221 (11)0.0091 (10)0.0038 (9)0.0118 (10)
C430.0463 (15)0.0221 (11)0.0310 (13)0.0076 (10)0.0107 (11)0.0125 (10)
C440.0412 (13)0.0164 (10)0.0282 (12)0.0032 (9)0.0108 (10)0.0020 (9)
Geometric parameters (Å, º) top
Zn—S12.2558 (5)C15—H150.9500
Zn—N12.0757 (16)C17—C181.395 (3)
S1—C161.758 (2)C17—C221.396 (3)
N1—N21.382 (2)C18—C191.385 (3)
N2—C161.314 (2)C18—H180.9500
N3—C161.360 (2)C19—C201.384 (3)
Zn—S22.2618 (5)C19—H190.9500
Zn—N52.0688 (16)C20—C211.382 (3)
S2—C381.759 (2)C20—H200.9500
N5—N61.381 (2)C21—C221.392 (3)
N6—C381.309 (2)C21—H210.9500
N7—C381.363 (2)C22—H220.9500
O1—N41.227 (2)C23—C241.380 (3)
O2—N41.222 (2)C23—C281.400 (3)
O3—N81.214 (2)C23—H230.9500
O4—N81.224 (2)C24—C251.382 (3)
N1—C91.309 (2)C24—H240.9500
N3—C171.410 (3)C25—C261.381 (3)
N3—H3N0.871 (9)C26—C271.387 (3)
N4—C31.471 (2)C26—H260.9500
N5—C311.309 (2)C27—C281.394 (3)
N7—C391.416 (3)C27—H270.9500
N7—H7N0.866 (9)C28—C291.464 (3)
N8—C251.468 (2)C29—C301.340 (3)
C1—C21.384 (3)C29—H290.9500
C1—C61.403 (3)C30—C311.449 (3)
C1—H10.9500C30—H300.9500
C2—C31.381 (3)C31—C321.494 (3)
C2—H20.9500C32—C371.380 (3)
C3—C41.380 (3)C32—C331.394 (3)
C4—C51.383 (3)C33—C341.384 (3)
C4—H40.9500C33—H330.9500
C5—C61.400 (3)C34—C351.379 (3)
C5—H50.9500C34—H340.9500
C6—C71.466 (3)C35—C361.373 (3)
C7—C81.337 (3)C35—H350.9500
C7—H70.9500C36—C371.387 (3)
C8—C91.455 (3)C36—H360.9500
C8—H80.9500C37—H370.9500
C9—C101.494 (3)C39—C401.391 (3)
C10—C111.391 (3)C39—C441.400 (3)
C10—C151.392 (3)C40—C411.386 (3)
C11—C121.387 (3)C40—H400.9500
C11—H110.9500C41—C421.380 (3)
C12—C131.385 (3)C41—H410.9500
C12—H120.9500C42—C431.382 (3)
C13—C141.380 (3)C42—H420.9500
C13—H130.9500C43—C441.379 (3)
C14—C151.389 (3)C43—H430.9500
C14—H140.9500C44—H440.9500
S1—Zn—S2131.16 (2)C19—C18—H18120.0
S1—Zn—N186.77 (4)C17—C18—H18120.0
S1—Zn—N5127.38 (5)C20—C19—C18120.8 (2)
S2—Zn—N1125.14 (4)C20—C19—H19119.6
S2—Zn—N587.56 (4)C18—C19—H19119.6
N1—Zn—N598.00 (6)C21—C20—C19118.9 (2)
C16—S1—Zn93.29 (6)C21—C20—H20120.5
C38—S2—Zn92.72 (6)C19—C20—H20120.5
C9—N1—N2115.51 (15)C20—C21—C22121.4 (2)
C9—N1—Zn127.72 (13)C20—C21—H21119.3
N2—N1—Zn116.48 (11)C22—C21—H21119.3
C16—N2—N1114.74 (15)C21—C22—C17119.2 (2)
C16—N3—C17130.84 (17)C21—C22—H22120.4
C16—N3—H3N113.0 (14)C17—C22—H22120.4
C17—N3—H3N115.9 (14)C24—C23—C28120.84 (18)
O2—N4—O1123.98 (18)C24—C23—H23119.6
O2—N4—C3118.13 (18)C28—C23—H23119.6
O1—N4—C3117.89 (17)C23—C24—C25118.51 (18)
C31—N5—N6113.90 (16)C23—C24—H24120.7
C31—N5—Zn128.82 (13)C25—C24—H24120.7
N6—N5—Zn115.72 (11)C26—C25—C24122.63 (17)
C38—N6—N5115.80 (16)C26—C25—N8118.83 (17)
C38—N7—C39129.51 (17)C24—C25—N8118.53 (17)
C38—N7—H7N112.8 (15)C25—C26—C27118.09 (18)
C39—N7—H7N116.1 (15)C25—C26—H26121.0
O3—N8—O4123.27 (17)C27—C26—H26121.0
O3—N8—C25119.05 (16)C26—C27—C28121.15 (18)
O4—N8—C25117.66 (17)C26—C27—H27119.4
C2—C1—C6121.10 (18)C28—C27—H27119.4
C2—C1—H1119.5C27—C28—C23118.79 (17)
C6—C1—H1119.5C27—C28—C29122.97 (17)
C3—C2—C1118.40 (18)C23—C28—C29118.17 (17)
C3—C2—H2120.8C30—C29—C28126.92 (18)
C1—C2—H2120.8C30—C29—H29116.5
C4—C3—C2122.36 (18)C28—C29—H29116.5
C4—C3—N4118.64 (18)C29—C30—C31122.77 (18)
C2—C3—N4118.99 (18)C29—C30—H30118.6
C3—C4—C5118.71 (18)C31—C30—H30118.6
C3—C4—H4120.6N5—C31—C30118.76 (17)
C5—C4—H4120.6N5—C31—C32120.84 (16)
C4—C5—C6120.92 (18)C30—C31—C32120.31 (16)
C4—C5—H5119.5C37—C32—C33119.35 (19)
C6—C5—H5119.5C37—C32—C31121.02 (17)
C5—C6—C1118.41 (18)C33—C32—C31119.60 (18)
C5—C6—C7119.30 (18)C34—C33—C32120.1 (2)
C1—C6—C7122.29 (18)C34—C33—H33119.9
C8—C7—C6125.14 (18)C32—C33—H33119.9
C8—C7—H7117.4C35—C34—C33120.2 (2)
C6—C7—H7117.4C35—C34—H34119.9
C7—C8—C9124.49 (18)C33—C34—H34119.9
C7—C8—H8117.8C36—C35—C34119.6 (2)
C9—C8—H8117.8C36—C35—H35120.2
N1—C9—C8117.16 (17)C34—C35—H35120.2
N1—C9—C10121.78 (17)C35—C36—C37120.8 (2)
C8—C9—C10121.05 (16)C35—C36—H36119.6
C11—C10—C15119.64 (18)C37—C36—H36119.6
C11—C10—C9119.83 (17)C32—C37—C36119.9 (2)
C15—C10—C9120.51 (17)C32—C37—H37120.1
C12—C11—C10120.0 (2)C36—C37—H37120.1
C12—C11—H11120.0N6—C38—N7117.47 (17)
C10—C11—H11120.0N6—C38—S2128.14 (15)
C13—C12—C11120.3 (2)N7—C38—S2114.38 (14)
C13—C12—H12119.9C40—C39—C44118.86 (19)
C11—C12—H12119.9C40—C39—N7125.21 (18)
C14—C13—C12119.9 (2)C44—C39—N7115.85 (18)
C14—C13—H13120.1C41—C40—C39119.5 (2)
C12—C13—H13120.1C41—C40—H40120.2
C13—C14—C15120.3 (2)C39—C40—H40120.2
C13—C14—H14119.8C42—C41—C40121.4 (2)
C15—C14—H14119.8C42—C41—H41119.3
C14—C15—C10119.9 (2)C40—C41—H41119.3
C14—C15—H15120.0C41—C42—C43119.1 (2)
C10—C15—H15120.0C41—C42—H42120.5
N2—C16—N3118.35 (17)C43—C42—H42120.5
N2—C16—S1128.06 (15)C44—C43—C42120.4 (2)
N3—C16—S1113.57 (14)C44—C43—H43119.8
C18—C17—C22119.54 (19)C42—C43—H43119.8
C18—C17—N3116.26 (18)C43—C44—C39120.6 (2)
C22—C17—N3124.18 (18)C43—C44—H44119.7
C19—C18—C17120.1 (2)C39—C44—H44119.7
C9—N1—N2—C16179.30 (17)C18—C17—C22—C212.0 (3)
Zn—N1—N2—C166.4 (2)N3—C17—C22—C21176.1 (2)
C31—N5—N6—C38169.32 (16)C28—C23—C24—C250.1 (3)
Zn—N5—N6—C382.3 (2)C23—C24—C25—C260.5 (3)
C6—C1—C2—C32.9 (3)C23—C24—C25—N8178.29 (17)
C1—C2—C3—C41.9 (3)O3—N8—C25—C260.4 (3)
C1—C2—C3—N4179.09 (17)O4—N8—C25—C26177.99 (19)
O2—N4—C3—C4160.31 (19)O3—N8—C25—C24179.19 (18)
O1—N4—C3—C419.0 (3)O4—N8—C25—C240.8 (3)
O2—N4—C3—C218.8 (3)C24—C25—C26—C270.5 (3)
O1—N4—C3—C2161.88 (18)N8—C25—C26—C27178.27 (17)
C2—C3—C4—C51.0 (3)C25—C26—C27—C280.2 (3)
N4—C3—C4—C5178.09 (17)C26—C27—C28—C230.1 (3)
C3—C4—C5—C62.8 (3)C26—C27—C28—C29176.99 (18)
C4—C5—C6—C11.9 (3)C24—C23—C28—C270.2 (3)
C4—C5—C6—C7178.68 (18)C24—C23—C28—C29177.12 (17)
C2—C1—C6—C51.1 (3)C27—C28—C29—C306.2 (3)
C2—C1—C6—C7178.38 (18)C23—C28—C29—C30176.68 (19)
C5—C6—C7—C8154.6 (2)C28—C29—C30—C31174.73 (18)
C1—C6—C7—C826.0 (3)N6—N5—C31—C30179.84 (15)
C6—C7—C8—C9174.32 (18)Zn—N5—C31—C3014.9 (2)
N2—N1—C9—C8178.00 (15)N6—N5—C31—C323.3 (2)
Zn—N1—C9—C84.4 (2)Zn—N5—C31—C32161.66 (13)
N2—N1—C9—C100.9 (3)C29—C30—C31—N5172.80 (18)
Zn—N1—C9—C10174.45 (13)C29—C30—C31—C323.7 (3)
C7—C8—C9—N1162.41 (19)N5—C31—C32—C3792.3 (2)
C7—C8—C9—C1016.5 (3)C30—C31—C32—C3791.2 (2)
N1—C9—C10—C11109.3 (2)N5—C31—C32—C3385.7 (2)
C8—C9—C10—C1171.9 (2)C30—C31—C32—C3390.8 (2)
N1—C9—C10—C1568.9 (3)C37—C32—C33—C340.2 (3)
C8—C9—C10—C15109.9 (2)C31—C32—C33—C34177.85 (18)
C15—C10—C11—C120.9 (3)C32—C33—C34—C350.9 (3)
C9—C10—C11—C12177.35 (18)C33—C34—C35—C360.9 (3)
C10—C11—C12—C131.7 (3)C34—C35—C36—C370.1 (3)
C11—C12—C13—C141.3 (3)C33—C32—C37—C360.6 (3)
C12—C13—C14—C150.1 (3)C31—C32—C37—C36178.59 (19)
C13—C14—C15—C100.7 (3)C35—C36—C37—C320.7 (3)
C11—C10—C15—C140.3 (3)N5—N6—C38—N7178.58 (15)
C9—C10—C15—C14178.54 (18)N5—N6—C38—S20.2 (3)
N1—N2—C16—N3178.24 (16)C39—N7—C38—N616.9 (3)
N1—N2—C16—S10.2 (3)C39—N7—C38—S2161.73 (16)
C17—N3—C16—N26.2 (3)Zn—S2—C38—N61.62 (18)
C17—N3—C16—S1172.37 (17)Zn—S2—C38—N7176.80 (13)
Zn—S1—C16—N25.44 (18)C38—N7—C39—C4012.1 (3)
Zn—S1—C16—N3173.01 (14)C38—N7—C39—C44164.5 (2)
C16—N3—C17—C18165.8 (2)C44—C39—C40—C412.2 (3)
C16—N3—C17—C2212.3 (3)N7—C39—C40—C41174.3 (2)
C22—C17—C18—C191.0 (3)C39—C40—C41—C421.0 (4)
N3—C17—C18—C19177.24 (18)C40—C41—C42—C431.2 (4)
C17—C18—C19—C200.6 (3)C41—C42—C43—C442.0 (4)
C18—C19—C20—C211.2 (3)C42—C43—C44—C390.8 (4)
C19—C20—C21—C220.1 (4)C40—C39—C44—C431.4 (3)
C20—C21—C22—C171.5 (3)N7—C39—C44—C43175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7N···O4i0.87 (2)2.17 (2)3.019 (2)165 (2)
C44—H44···O4i0.952.493.305 (3)144
C37—H37···O3ii0.952.483.373 (3)157
C14—H14···O1iii0.952.543.462 (3)164
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceSymmetry operation
N7—H7N···O4b2.04x, y - 1, z
C44—H44···O4b2.38x, y - 1, z
C37—H37···O3b2.36-x + 3/2, y - 1/2, -z + 1/2
C14—H14···O1b2.41-x + 1, -y + 1, -z + 1
C35—H35···C122.60-x + 1, -y + 1, -z + 1
C2—H2···O22.54x, y, z
H24···H442.17x, y - 1, z
S1···H242.93-x + 3/2, y - 1/2, -z + 1/2
C23—H23···C192.66x + 1/2, -y + 3/2, z + 1/2
C11—H11···O12.54x - 1/2, -y + 1/2, z - 1/2
C42—H42···N12.59x + 1/2, -y + 1/2, z + 1/2
C21—H21···C62.75-x + 1/2, y + 1/2, -z + 1/2
S1···C243.45-x + 3/2, y - 1/2, -z + 1/2
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values; (b) these interactions correspond to those listed in Table 2.
Percentage contributions of interatomic contacts to the calculated Hirshfeld surface of (I) top
ContactPercentage contributionContactPercentage contribution
H···H39.9C···N/N···C1.5
H···O/O···H18.0C···Zn/Zn···C0.9
H···C/C···H17.6H···Zn/Zn···H0.5
H···S/S···H8.6O···O0.4
H···N/N···H5.2O···N/N···O0.4
C···S/S···C2.4N···N0.3
C···C1.9O···S/S···O0.3
C···O/O···C1.8N···S/S···N0.3
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
C14—H14···O1i +
C35—H35···C12i +
N4—O1···Cg1i +
H4···H15i7.91-44.4-12.4-140.2146.0-88.0
C37—H37···O3ii +
Cg1···Cg2iii +
S1···H24ii +
H19···H36iii10.18-36.9-5.1-83.678.3-67.2
C2—H2···O2iv16.54-14.3-4.0-20.915.4-26.8
N7—H7N···O4v +
C44—H44···O4v +
H24···H44vi15.83-22.5-5.8-15.232.7-21.1
C42—H42···N1vii +
C11—H11···O1viii12.05-16.9-3.3-43.833.0-38.0
C12—H12···O4ix +
C21—H21···C6x11.21-11.4-3.5-48.837.4-34.0
C23—H23···C19xi +
H19···H29xii13.60-16.5-3.4-32.629.0-30.5
N3—H3N···S1xiii12.14-23.3-3.5-27.735.1-29.7
H36···H37xiv11.81-4.0-1.0-19.315.8-12.0
Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 3/2, y + 1/2, -z + 1/2; (iv) -x + 1, -y, -z + 1; (v) x, y - 1, z; (vi) x, y + 1, z; (vii) x + 1/2, -y + 1/2, z + 1/2; (viii) x - 1/2, -y + 1/2, z - 1/2; (ix) -x + 1/2, y - 1/2, -z + 1/2; (x) -x + 1/2, y + 1/2, -z + 1/2; (xi) x + 1/2, -y + 3/2, z + 1/2, (xii) x + 1/2, -y + 3/2, z - 1/2; (xiii) -x + 1, -y+1, z - 1/2; (xiv) -x + 2, -y + 1, z - 1/2.
A comparison of key geometric parameters (Å, °) in structures related to (I) top
CompoundZn—S, N (chelate 1)Zn—S, N (chelate 2)range of X—Zn—Y angleschelate 1/chelate 2 angleτ4Ref.
(I)2.2558 (5), 2.0757 (16)2.2618 (5), 2.0688 (16)86.77 (4)–131.16 (2)73.28 (3)0.72This work
(II)a2.2825 (8), 2.0526 (17)2.2689 (7), 2.0523 (17)87.00 (5)–133.99 (5)73.49 (6)0.70Tan et al. (2017)
2.2706 (7), 2.0727 (17)2.2824 (9), 2.0495 (17)85.99 (5)–131.30 (6)77.00 (6)0.74
(III)2.2880 (12), 2.042 (3)2.2758 (10), 2.070 (3)86.73 (9)–127.92 (5)79.68 (13)0.74Tan et al. (2018)
(IV)2.2524 (10), 2.073 (3)2.2493 (9), 2.060 (2)87.06 (7)–128.55 (4)76.11 (9)0.74Barbosa et al. (2018)
(V)2.2636 (7), 2.068 (2)2.2529 (8), 2.041 (2)86.41 (6)–128.29 (6)78.82 (8)0.73Barbosa et al. (2018)
Note: (a) Two independent molecules comprise the asymmetric unit.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

The intensity data were collected by M. I. M. Tahir, Universiti Putra Malaysia.

Funding information

The synthetic aspect of this research was supported by the University Grant Scheme (RUGS Nos. 9199834 and 9174000) and the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. GRTIN-IRG-01–2021).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnjum, R., Palanimuthu, D., Kalinowski, D. S., Lewis, W., Park, K. C., Kovacevic, Z., Khan, I. U. & Richardson, D. R. (2019). Inorg. Chem. 58, 13709–13723.  CSD CrossRef CAS PubMed Google Scholar
First citationBalakrishnan, N., Haribabu, J., Anantha Krishnan, D., Swaminathan, S., Mahendiran, D., Bhuvanesh, N. S. P. & Karvembu, R. (2019). Polyhedron, 170, 188–201.  CSD CrossRef CAS Google Scholar
First citationBarbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739–751.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhan, A., Paul, K., Singh, I., Jasinski, J. P., Smolenski, V. A., Hotchkiss, E. P., Kelley, P. T., Shalit, Z. A., Kaur, M., Banerjee, S., Roy, P. & Sharma, R. (2020). Dalton Trans. 49, 17350–17367.  CSD CrossRef CAS PubMed Google Scholar
First citationKumar, L. V., Sunitha, S. & Rathika Nath, G. (2020). Mater. Today Proc. 41, 669–675.  CrossRef Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMalenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341.  Web of Science CrossRef CAS Google Scholar
First citationMathews, N. A. & Kurup, M. R. P. (2021). Appl. Organomet. Chem. 35, 1–16.  CSD CrossRef Google Scholar
First citationNibila, T. A., Soufeena, P. P., Periyat, P. & Aravindakshan, K. K. (2021). J. Mol. Struct. 1231, 129938.  CrossRef Google Scholar
First citationPrajapati, N. P. & Patel, H. D. (2019). Synth. Commun. 49, 2767–2804.  CAS Google Scholar
First citationRapheal, P. F., Manoj, E., Kurup, M. R. P. & Venugopalan, P. (2021). Chem. Data Collect. 33, 100681.  CSD CrossRef Google Scholar
First citationRogolino, D., Bacchi, A., De Luca, L., Rispoli, G., Sechi, M., Stevaert, A., Naesens, L. & Carcelli, M. (2015). J. Biol. Inorg. Chem. 20, 1109–1121.  CrossRef CAS PubMed Google Scholar
First citationSavir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S. & Tan, K. W. (2020). J. Mol. Struct. 1211, 128090.  CSD CrossRef Google Scholar
First citationŞen Yüksel, B. (2021). J. Mol. Struct. 1229, 129617.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 151–157.  CSD CrossRef IUCr Journals Google Scholar
First citationTan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439–1441.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503–1505.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539–1541.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds