research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and density functional theory study of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cDepartment of Biochemistry, Faculty of Education & Science, Al-Baydha University, Yemen
*Correspondence e-mail: faresalostoot@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 14 July 2021; accepted 18 July 2021; online 23 July 2021)

The title mol­ecule, C20H15NO3, adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the di­hydro­quinoline unit. In the crystal, corrugated layers are formed by C—H⋯O hydrogen bonds and are stacked by C—H⋯π(ring) inter­actions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (26.6%) and H⋯O/O⋯H (16.3%) inter­actions. The optimized structure calculated using density functional theory at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 4.0319 eV.

1. Chemical context

Nitro­gen-based structures have attracted increased attention in recent years because of their inter­esting properties in structural and inorganic chemistry (Chkirate et al., 2019[Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.], 2020a[Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21-28.],b[Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210-2221.], 2021[Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.]). The family of quinolines, particularly those containing the 2-oxo­quinoline moiety, is important in medicinal chemistry because of their wide range of pharmacological applications including as potential anti­cancer agents (Fang et al., 2021[Fang, Y., Wu, Z., Xiao, M., Wei, L., Li, K., Tang, Y., Ye, J., Xiang, J. & Hu, A. (2021). Bioorg. Chem. 106, 104469.]), anti-proliferative agents (Banu et al., 2017[Banu, S., Bollu, R., Bantu, R., Nagarapu, L., Polepalli, S., Jain, N., Vangala, R. & Manga, V. (2017). Eur. J. Med. Chem. 125, 400-410.]) and as potent modulators of ABCB1-related drug resistance of mouse T-lymphoma cells (Filali Baba et al., 2020[Filali Baba, Y., Misbahi, H., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Vincze, K., Nové, M., Gajdács, M., Molnár, J., Spengler, G. & Mazzah, A. (2020). Chem. Data Collect. 29, 100501.]). In particular, 2-oxo­quinoline-4-carboxyl­ate derivatives are active anti­oxidants (Filali Baba et al., 2019[Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255-268.]). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from quinolin-2-one (Bouzian et al., 2020[Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.]), a similar approach gave the title compound, benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate, (I)[link]. Besides the synthesis, we also report the mol­ecular and crystalline structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6– 311 G(d,p) level.

[Scheme 1]

2. Structural commentary

The mol­ecule adopts a Z-shaped conformation with the propynyl and benzyl substituents projecting from opposite sides of the mean plane of the di­hydro­quinoline moiety. This moiety is planar to within 0.0340 (6) Å (r.m.s. deviation = 0.0164) with N1 and C9 being, respectively, 0.0340 (6) and −0.0279 (7) Å from the mean plane, resulting in a slight twist at this location. The carboxyl group is nearly coplanar with the di­hydro­quinoline as seen from the 1.04 (5)° dihedral angle between the plane defined by C7/C13/O2/O3 and that of the di­hydro­quinoline (C1–C9/N1/O1). This is likely due, in part, to the intra­molecular C5—H5⋯O2 inter­action (Table 1[link] and Fig. 1[link]). The propynyl substituent is rotated out of the mean plane of the di­hydro­quinoline moiety by 80.88 (3)°. The plane of the C15–C20 ring is inclined to that of the di­hydro­quinoline by 68.47 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.95 2.94 3.8206 (10) 154
C4—H4⋯O2ii 0.95 2.57 3.4846 (11) 162
C5—H5⋯O2 0.95 2.23 2.8917 (11) 126
C12—H12⋯O1iii 0.95 2.25 3.1463 (14) 157
C14—H14ACg2iv 0.99 2.65 3.4652 (9) 140
C16—H16⋯O1v 0.95 2.50 3.3443 (12) 148
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line.

3. Supra­molecular features

In the crystal, C12—H12⋯O1 and C16—H16⋯O1 hydrogen bonds (Table 1[link]) link the mol­ecules into zigzag chains extending along the b-axis direction, which are connected by inversion-related pairs of C4—H4⋯O2 hydrogen bonds (Table 1[link]) into corrugated layers parallel to the (103) plane (Fig. 2[link]). The layers are stacked along the normal to (103) with C2—H2⋯Cg3 and C14—H14ACg2 inter­actions (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A portion of one layer viewed along the c axis with C—H⋯O hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Packing viewed parallel to (103) with the b axis horizontal and running from left to right. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are depicted, respectively, by black and green dashed lines.

4. Hirshfeld surface analysis

The CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to investigate and visualize further the inter­molecular inter­actions of (I)[link]. The Hirshfeld surface plotted over dnorm in the range −0.3677 to 1.3896 a.u. is shown in Fig. 4[link]a. The electrostatic potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range of ±0.05 a.u. clearly shows the positions of close inter­molecular contacts in the compound (Fig. 4[link]b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).

[Figure 4]
Figure 4
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range of −0.3677 to 1.3896 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is shown in Fig. 5[link]a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, H⋯N/N⋯H, N⋯C/C⋯N and N⋯O/O⋯N contacts are illustrated in Fig. 5[link]bi, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important inter­action is H⋯H, contributing 43.3% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with its tip at de = di = 1.19 Å. In the presence of C—H inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.6% contribution to the HS, Fig. 5[link]c) has tips at de + di = 3.07 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 5[link]d, 16.3%) have tips at de + di = 2.08 Å. The C⋯C contacts (Fig. 5[link]e, 10.4%) have tips at de + di = 3.34 Å. The O⋯C/C⋯O contacts, Fig. 5[link]f, contribute 1.5% to the HS and appear as a pair of scattered points of spikes with tips at de + di = 3.55 Å. The H⋯N/N⋯H contacts (Fig. 5[link]g, 1.3%) have tips at de + di = 3.28 Å. Finally, the C⋯N/N⋯C and O⋯N/N⋯ O contacts, Fig. 5[link]hi, contribute only 0.5% and 0.1% respectively to the HS and have a low-density distribution of points.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C, (f) O⋯C/C⋯O, (g) H⋯N/N⋯H, (h) N⋯C/C⋯N and (i) N⋯O/O⋯N inter­actions. di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Density Functional Theory calculations

The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian 09 program (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A. 02. Gaussian Inc, Wallingford, CT, US.]). Theoretical and experimental results related to bond lengths and angles are in good agreement, and are summarized in Table 2[link]. Calculated numerical values for the title compound including electronegativity (χ), hardness (η), ionization potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ) are collated in Table 3[link]. The electron transition from the highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO) energy level is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane extending over the whole benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carb­oxyl­ate system. The energy band gap (ΔE = ELUMO − EHOMO) of the mol­ecule is 4.0319 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −6.3166 and −2.2847 eV, respectively.

Table 2
Comparison (X-ray and DFT) of selected bond lengths and angles (Å, °)

  X-ray B3LYP/6–311G(d,p)
O1—C9 1.2355 (10) 1.223
O3—C13 1.3375 (10) 1.3447
N1—C9 1.3788 (10) 1.4042
N1—C10 1.4730 (10) 1.4725
O2—C13 1.2058 (10) 1.2092
O3—C14 1.4588 (10) 1.4611
N1—C1 1.3999 (10) 1.3953
     
C13—O3—C14 116.87 (7) 117.1258
C9—N1—C10 115.85 (6) 115.6313
N1—C1—C2 119.87 (7) 120.5532
O1—C9—N1 121.42 (7) 121.7499
N1—C9—C8 116.04 (7) 115.2168
O2—C13—C7 125.74 (7) 125.0357
O3—C14—C15 112.63 (7) 111.678
C9—N1—C1 123.16 (6) 123.4431
C1—N1—C10 120.93 (6) 120.911
N1—C1—C6 120.08 (6) 120.1155
O1—C9—C8 122.54 (7) 123.0317
C11—C10—N1 111.46 (7) 113.9875
O2—C13—O3 123.21 (7) 123.6586
O3—C13—C7 111.05 (6) 111.3015

Table 3
Calculated energies

Mol­ecular energy Compound (I)
Total energy TE (eV) −28621.0571
EHOMO (eV) −6.3166
ELUMO (eV) −2.2847
Gap, ΔE (eV) 4.0319
Dipole moment, μ (Debye) 1.9469
Ionization potential, I (eV) 6.3166
Electron affinity, A 2.2847
Electronegativity, χ 4.3007
Hardness, η 2.0160
Electrophilicity index, ω 4.5873
Softness, σ 0.4960
Fraction of electron transferred, ΔN 0.6695
[Figure 6]
Figure 6
The energy band gap of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate.

6. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate fragment yielded multiple matches. Of these, two had an alkyl substituent on O3 comparable to (I)[link]. The first compound (refcode OKIGAT; Hayani et al., 2021[Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.]) carries an ethyl group on O3, while the second one (refcode OKIGOH; Hayani et al., 2021[Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.]) carries a cyclo­hexyl group. The ethyl carboxyl­ate in OKIGAT forms a dihedral angle of −8.3 (7)° with the di­hydro­quinoline unit. In OKIGOH, the dihedral angle between the mean planes of the cyclo­hexyl carboxyl­ate and di­hydro­quinoline rings is 37.3 (8)°. As previously mentioned, the carboxyl group in (I)[link] is nearly coplanar with the di­hydro­quinoline [dihedral angle of 1.04 (5)°], which is approximately the same as in OKIGAT, but less tilted than in OKIGOH.

7. Synthesis and crystallization

A mixture of 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (0.7 g, 3 mmol), K2CO3 (0.51 g, 3.6 mmol), benzyl chloride (0.76 ml, 6 mmol) and tetra n-butyl­ammonium bromide as a catalyst in DMF (30 mL) was stirred at room temperature for 48 h. After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and concentrated under vacuum. The crude product obtained was purified by chromatography on a column of silica gel (eluent: hexa­ne/ ethyl acetate: 9/1). 1H NMR (300 MHz, DMSO-d6) δ ppm: 3.08 (t, 1H, CH≡); 4.37 (d, 2H, CH2—N); 5.12 (s, 2H, CH2—O); 7.08–8.74 (m, 10H, CHarom); 13C NMR (75 MHz, DMSO-d6) δ ppm: 34.3 (CH3—N); 66.2 (CH2—O); 72.1 (–C≡); 73.2 (CH≡); 115.6-148.7 (CHarom and Cquat arom); 162. 5 (C=Oquinol); 168.2 (C=Ocarbox­yl). MS (ESI): m/z = 318 (M + H)+.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å), and were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Table 4
Experimental details

Crystal data
Chemical formula C20H15NO3
Mr 317.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.2284 (3), 13.7693 (4), 13.9230 (4)
β (°) 96.155 (1)
V3) 1568.37 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.44 × 0.35 × 0.32
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.93, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 80207, 6020, 5304
Rint 0.025
(sin θ/λ)max−1) 0.774
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.03
No. of reflections 6020
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C20H15NO3F(000) = 664
Mr = 317.33Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2284 (3) ÅCell parameters from 9939 reflections
b = 13.7693 (4) Åθ = 2.5–33.3°
c = 13.9230 (4) ŵ = 0.09 mm1
β = 96.155 (1)°T = 150 K
V = 1568.37 (9) Å3Block, colourless
Z = 40.44 × 0.35 × 0.32 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
6020 independent reflections
Radiation source: fine-focus sealed tube5304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.3910 pixels mm-1θmax = 33.4°, θmin = 2.9°
φ and ω scansh = 1212
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.93, Tmax = 0.97l = 2121
80207 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
6020 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 7 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79130 (8)0.56932 (5)0.29079 (6)0.03386 (17)
O20.15346 (8)0.39853 (5)0.36012 (6)0.03159 (16)
O30.34027 (8)0.35057 (5)0.26450 (5)0.02547 (14)
N10.63622 (8)0.63640 (5)0.39987 (5)0.01811 (12)
C10.49088 (9)0.64053 (5)0.44357 (5)0.01656 (13)
C20.46483 (10)0.71713 (6)0.50694 (6)0.02098 (14)
H20.5448150.7666580.5189060.025*
C30.32280 (11)0.72050 (6)0.55192 (6)0.02469 (16)
H30.3068660.7718000.5955670.030*
C40.20287 (10)0.64925 (7)0.53375 (6)0.02508 (16)
H40.1060800.6518450.5652290.030*
C50.22538 (10)0.57466 (6)0.46961 (6)0.02108 (14)
H50.1422340.5271540.4565090.025*
C60.36952 (9)0.56798 (5)0.42340 (5)0.01629 (13)
C70.40167 (8)0.49162 (5)0.35579 (5)0.01659 (13)
C80.54184 (9)0.49270 (6)0.31341 (6)0.02043 (14)
H80.5601360.4422730.2692530.025*
C90.66584 (10)0.56733 (6)0.33219 (6)0.02148 (15)
C100.76472 (10)0.71018 (6)0.42091 (6)0.02241 (15)
H10A0.7754400.7257500.4907200.027*
H10B0.8705360.6836460.4052220.027*
C110.72727 (11)0.79935 (6)0.36498 (7)0.02598 (17)
C120.69298 (13)0.87027 (8)0.31880 (9)0.0356 (2)
H120.6655290.9270610.2818270.043*
C130.28317 (9)0.41024 (5)0.32886 (6)0.01886 (14)
C140.23208 (11)0.27253 (7)0.22635 (6)0.02652 (17)
H14A0.2666920.2501230.1641170.032*
H14B0.1193690.2980950.2136280.032*
C150.23223 (10)0.18782 (6)0.29404 (6)0.02316 (15)
C160.36596 (12)0.12502 (8)0.30625 (7)0.0318 (2)
H160.4572680.1355940.2711970.038*
C170.36579 (17)0.04679 (9)0.36979 (9)0.0430 (3)
H170.4579070.0049050.3788880.052*
C180.2320 (2)0.02998 (9)0.41959 (9)0.0502 (3)
H180.2324800.0233680.4628950.060*
C190.09713 (18)0.09064 (9)0.40660 (9)0.0442 (3)
H190.0046740.0785350.4402430.053*
C200.09774 (12)0.16940 (7)0.34402 (7)0.02989 (19)
H200.0053320.2110730.3352980.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (3)0.0298 (3)0.0496 (4)0.0088 (3)0.0203 (3)0.0130 (3)
O20.0222 (3)0.0270 (3)0.0474 (4)0.0083 (2)0.0127 (3)0.0108 (3)
O30.0263 (3)0.0234 (3)0.0276 (3)0.0089 (2)0.0067 (2)0.0090 (2)
N10.0171 (3)0.0150 (3)0.0224 (3)0.0026 (2)0.0026 (2)0.0004 (2)
C10.0176 (3)0.0148 (3)0.0171 (3)0.0000 (2)0.0009 (2)0.0012 (2)
C20.0242 (3)0.0177 (3)0.0208 (3)0.0006 (3)0.0015 (3)0.0023 (2)
C30.0270 (4)0.0233 (4)0.0240 (3)0.0028 (3)0.0041 (3)0.0051 (3)
C40.0219 (3)0.0277 (4)0.0265 (4)0.0025 (3)0.0070 (3)0.0035 (3)
C50.0182 (3)0.0223 (3)0.0232 (3)0.0000 (2)0.0040 (2)0.0010 (3)
C60.0160 (3)0.0154 (3)0.0174 (3)0.0005 (2)0.0011 (2)0.0012 (2)
C70.0165 (3)0.0145 (3)0.0186 (3)0.0011 (2)0.0013 (2)0.0007 (2)
C80.0196 (3)0.0164 (3)0.0260 (3)0.0028 (2)0.0059 (3)0.0032 (2)
C90.0191 (3)0.0178 (3)0.0284 (4)0.0025 (2)0.0068 (3)0.0027 (3)
C100.0197 (3)0.0192 (3)0.0281 (4)0.0051 (3)0.0013 (3)0.0009 (3)
C110.0237 (3)0.0219 (4)0.0332 (4)0.0062 (3)0.0072 (3)0.0002 (3)
C120.0313 (4)0.0291 (4)0.0484 (6)0.0021 (4)0.0138 (4)0.0106 (4)
C130.0183 (3)0.0167 (3)0.0213 (3)0.0018 (2)0.0008 (2)0.0001 (2)
C140.0295 (4)0.0249 (4)0.0247 (4)0.0092 (3)0.0008 (3)0.0067 (3)
C150.0230 (3)0.0217 (3)0.0250 (3)0.0049 (3)0.0034 (3)0.0082 (3)
C160.0268 (4)0.0337 (5)0.0345 (4)0.0020 (3)0.0016 (3)0.0126 (4)
C170.0522 (7)0.0316 (5)0.0426 (6)0.0117 (5)0.0067 (5)0.0085 (4)
C180.0824 (10)0.0299 (5)0.0385 (6)0.0013 (6)0.0066 (6)0.0026 (4)
C190.0619 (7)0.0333 (5)0.0409 (6)0.0112 (5)0.0214 (5)0.0035 (4)
C200.0309 (4)0.0253 (4)0.0355 (4)0.0054 (3)0.0123 (3)0.0084 (3)
Geometric parameters (Å, º) top
O1—C91.2355 (10)C8—H80.9500
O2—C131.2058 (10)C10—C111.4687 (12)
O3—C131.3375 (10)C10—H10A0.9900
O3—C141.4588 (10)C10—H10B0.9900
N1—C91.3788 (10)C11—C121.1865 (14)
N1—C11.3999 (10)C12—H120.9500
N1—C101.4730 (10)C14—C151.4995 (13)
C1—C21.4062 (10)C14—H14A0.9900
C1—C61.4192 (10)C14—H14B0.9900
C2—C31.3846 (11)C15—C201.3922 (12)
C2—H20.9500C15—C161.3955 (13)
C3—C41.3953 (12)C16—C171.3940 (17)
C3—H30.9500C16—H160.9500
C4—C51.3864 (11)C17—C181.382 (2)
C4—H40.9500C17—H170.9500
C5—C61.4116 (10)C18—C191.385 (2)
C5—H50.9500C18—H180.9500
C6—C71.4543 (10)C19—C201.3914 (16)
C7—C81.3507 (10)C19—H190.9500
C7—C131.5062 (10)C20—H200.9500
C8—C91.4520 (11)
C13—O3—C14116.87 (7)N1—C10—H10A109.3
C9—N1—C1123.16 (6)C11—C10—H10B109.3
C9—N1—C10115.85 (6)N1—C10—H10B109.3
C1—N1—C10120.93 (6)H10A—C10—H10B108.0
N1—C1—C2119.87 (7)C12—C11—C10178.18 (10)
N1—C1—C6120.08 (6)C11—C12—H12180.0
C2—C1—C6120.05 (7)O2—C13—O3123.21 (7)
C3—C2—C1120.12 (7)O2—C13—C7125.74 (7)
C3—C2—H2119.9O3—C13—C7111.05 (6)
C1—C2—H2119.9O3—C14—C15112.63 (7)
C2—C3—C4120.62 (7)O3—C14—H14A109.1
C2—C3—H3119.7C15—C14—H14A109.1
C4—C3—H3119.7O3—C14—H14B109.1
C5—C4—C3119.80 (8)C15—C14—H14B109.1
C5—C4—H4120.1H14A—C14—H14B107.8
C3—C4—H4120.1C20—C15—C16119.00 (9)
C4—C5—C6121.24 (7)C20—C15—C14120.58 (8)
C4—C5—H5119.4C16—C15—C14120.41 (8)
C6—C5—H5119.4C17—C16—C15120.11 (10)
C5—C6—C1118.15 (7)C17—C16—H16119.9
C5—C6—C7124.21 (7)C15—C16—H16119.9
C1—C6—C7117.65 (6)C18—C17—C16120.18 (11)
C8—C7—C6119.87 (6)C18—C17—H17119.9
C8—C7—C13117.37 (7)C16—C17—H17119.9
C6—C7—C13122.76 (6)C17—C18—C19120.23 (11)
C7—C8—C9123.06 (7)C17—C18—H18119.9
C7—C8—H8118.5C19—C18—H18119.9
C9—C8—H8118.5C18—C19—C20119.68 (11)
O1—C9—N1121.42 (7)C18—C19—H19120.2
O1—C9—C8122.54 (7)C20—C19—H19120.2
N1—C9—C8116.04 (7)C19—C20—C15120.76 (10)
C11—C10—N1111.46 (7)C19—C20—H20119.6
C11—C10—H10A109.3C15—C20—H20119.6
C9—N1—C1—C2175.56 (7)C1—N1—C9—C84.77 (11)
C10—N1—C1—C21.37 (10)C10—N1—C9—C8178.16 (7)
C9—N1—C1—C63.97 (11)C7—C8—C9—O1177.70 (9)
C10—N1—C1—C6179.10 (7)C7—C8—C9—N12.64 (12)
N1—C1—C2—C3178.65 (7)C9—N1—C10—C1196.66 (8)
C6—C1—C2—C31.82 (11)C1—N1—C10—C1180.48 (9)
C1—C2—C3—C41.16 (13)C14—O3—C13—O24.71 (12)
C2—C3—C4—C50.41 (13)C14—O3—C13—C7175.41 (7)
C3—C4—C5—C61.33 (13)C8—C7—C13—O2179.78 (8)
C4—C5—C6—C10.66 (11)C6—C7—C13—O21.07 (12)
C4—C5—C6—C7179.70 (7)C8—C7—C13—O30.10 (10)
N1—C1—C6—C5179.56 (7)C6—C7—C13—O3179.05 (7)
C2—C1—C6—C50.91 (11)C13—O3—C14—C1580.18 (10)
N1—C1—C6—C70.77 (10)O3—C14—C15—C20107.82 (9)
C2—C1—C6—C7178.76 (7)O3—C14—C15—C1673.57 (10)
C5—C6—C7—C8178.41 (7)C20—C15—C16—C171.82 (13)
C1—C6—C7—C81.23 (11)C14—C15—C16—C17179.56 (8)
C5—C6—C7—C130.72 (11)C15—C16—C17—C181.23 (16)
C1—C6—C7—C13179.64 (6)C16—C17—C18—C190.10 (18)
C6—C7—C8—C90.28 (12)C17—C18—C19—C200.80 (19)
C13—C7—C8—C9179.45 (7)C18—C19—C20—C150.19 (17)
C1—N1—C9—O1175.57 (8)C16—C15—C20—C191.12 (14)
C10—N1—C9—O11.50 (12)C14—C15—C20—C19179.74 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.952.943.8206 (10)154
C4—H4···O2ii0.952.573.4846 (11)162
C5—H5···O20.952.232.8917 (11)126
C12—H12···O1iii0.952.253.1463 (14)157
C14—H14A···Cg2iv0.992.653.4652 (9)140
C16—H16···O1v0.952.503.3443 (12)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+3/2, y1/2, z+1/2.
Comparison (X-ray and DFT) of selected bond lengths and angles (Å, °) top
X-rayB3LYP/6–311G(d,p)
O1—C91.2355 (10)1.223
O3—C131.3375 (10)1.3447
N1—C91.3788 (10)1.4042
N1—C101.4730 (10)1.4725
O2—C131.2058 (10)1.2092
O3—C141.4588 (10)1.4611
N1—C11.3999 (10)1.3953
C13—O3—C14116.87 (7)117.1258
C9—N1—C10115.85 (6)115.6313
N1—C1—C2119.87 (7)120.5532
O1—C9—N1121.42 (7)121.7499
N1—C9—C8116.04 (7)115.2168
O2—C13—C7125.74 (7)125.0357
O3—C14—C15112.63 (7)111.678
C9—N1—C1123.16 (6)123.4431
C1—N1—C10120.93 (6)120.911
N1—C1—C6120.08 (6)120.1155
O1—C9—C8122.54 (7)123.0317
C11—C10—N1111.46 (7)113.9875
O2—C13—O3123.21 (7)123.6586
O3—C13—C7111.05 (6)111.3015
Calculated energies top
Molecular energyCompound (I)
Total energy TE (eV)-28621.0571
EHOMO (eV)-6.3166
ELUMO (eV)-2.2847
Gap, ΔE (eV)4.0319
Dipole moment, µ (Debye)1.9469
Ionization potential, I (eV)6.3166
Electron affinity, A2.2847
Electronegativity, χ4.3007
Hardness, η2.0160
Electrophilicity index, ω4.5873
Softness, σ0.4960
Fraction of electron transferred, ΔN0.6695
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Authors' contributions are as follows. Conceptualization, YB; methodology, YB and NHA; investigation, KC; theoretical calculations, KC; writing (original draft), KC; writing (review and editing of the manuscript), FHAO; supervision, EME; crystal-structure determination and validation, JTM.

References

First citationBanu, S., Bollu, R., Bantu, R., Nagarapu, L., Polepalli, S., Jain, N., Vangala, R. & Manga, V. (2017). Eur. J. Med. Chem. 125, 400–410.  CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.  Web of Science CrossRef Google Scholar
First citationChkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28.  Web of Science CSD CrossRef Google Scholar
First citationChkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221.  Web of Science CSD CrossRef CAS Google Scholar
First citationFang, Y., Wu, Z., Xiao, M., Wei, L., Li, K., Tang, Y., Ye, J., Xiang, J. & Hu, A. (2021). Bioorg. Chem. 106, 104469.  CrossRef PubMed Google Scholar
First citationFilali Baba, Y., Misbahi, H., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Vincze, K., Nové, M., Gajdács, M., Molnár, J., Spengler, G. & Mazzah, A. (2020). Chem. Data Collect. 29, 100501.  Google Scholar
First citationFilali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A. 02. Gaussian Inc, Wallingford, CT, US.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds