research communications
Hirshfeld surface analysis and density functional theory study of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate
aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cDepartment of Biochemistry, Faculty of Education & Science, Al-Baydha University, Yemen
*Correspondence e-mail: faresalostoot@gmail.com
The title molecule, C20H15NO3, adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the dihydroquinoline unit. In the crystal, corrugated layers are formed by C—H⋯O hydrogen bonds and are stacked by C—H⋯π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (26.6%) and H⋯O/O⋯H (16.3%) interactions. The optimized structure calculated using density functional theory at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 4.0319 eV.
CCDC reference: 2097267
1. Chemical context
Nitrogen-based structures have attracted increased attention in recent years because of their interesting properties in structural and inorganic chemistry (Chkirate et al., 2019, 2020a,b, 2021). The family of quinolines, particularly those containing the 2-oxoquinoline moiety, is important in medicinal chemistry because of their wide range of pharmacological applications including as potential anticancer agents (Fang et al., 2021), anti-proliferative agents (Banu et al., 2017) and as potent modulators of ABCB1-related drug resistance of mouse T-lymphoma cells (Filali Baba et al., 2020). In particular, 2-oxoquinoline-4-carboxylate derivatives are active antioxidants (Filali Baba et al., 2019). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from quinolin-2-one (Bouzian et al., 2020), a similar approach gave the title compound, benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate, (I). Besides the synthesis, we also report the molecular and crystalline structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6– 311 G(d,p) level.
2. Structural commentary
The molecule adopts a Z-shaped conformation with the propynyl and benzyl substituents projecting from opposite sides of the mean plane of the dihydroquinoline moiety. This moiety is planar to within 0.0340 (6) Å (r.m.s. deviation = 0.0164) with N1 and C9 being, respectively, 0.0340 (6) and −0.0279 (7) Å from the mean plane, resulting in a slight twist at this location. The carboxyl group is nearly coplanar with the dihydroquinoline as seen from the 1.04 (5)° dihedral angle between the plane defined by C7/C13/O2/O3 and that of the dihydroquinoline (C1–C9/N1/O1). This is likely due, in part, to the intramolecular C5—H5⋯O2 interaction (Table 1 and Fig. 1). The propynyl substituent is rotated out of the mean plane of the dihydroquinoline moiety by 80.88 (3)°. The plane of the C15–C20 ring is inclined to that of the dihydroquinoline by 68.47 (2)°.
3. Supramolecular features
In the crystal, C12—H12⋯O1 and C16—H16⋯O1 hydrogen bonds (Table 1) link the molecules into zigzag chains extending along the b-axis direction, which are connected by inversion-related pairs of C4—H4⋯O2 hydrogen bonds (Table 1) into corrugated layers parallel to the (103) plane (Fig. 2). The layers are stacked along the normal to (103) with C2—H2⋯Cg3 and C14—H14A⋯Cg2 interactions (Table 1 and Fig. 3).
4. Hirshfeld surface analysis
The CrystalExplorer program (Turner et al., 2017) was used to investigate and visualize further the intermolecular interactions of (I). The Hirshfeld surface plotted over dnorm in the range −0.3677 to 1.3896 a.u. is shown in Fig. 4a. The electrostatic potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range of ±0.05 a.u. clearly shows the positions of close intermolecular contacts in the compound (Fig. 4b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).
The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, H⋯N/N⋯H, N⋯C/C⋯N and N⋯O/O⋯N contacts are illustrated in Fig. 5b–i, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important interaction is H⋯H, contributing 43.3% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule, with its tip at de = di = 1.19 Å. In the presence of C—H interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.6% contribution to the HS, Fig. 5c) has tips at de + di = 3.07 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 5d, 16.3%) have tips at de + di = 2.08 Å. The C⋯C contacts (Fig. 5e, 10.4%) have tips at de + di = 3.34 Å. The O⋯C/C⋯O contacts, Fig. 5f, contribute 1.5% to the HS and appear as a pair of scattered points of spikes with tips at de + di = 3.55 Å. The H⋯N/N⋯H contacts (Fig. 5g, 1.3%) have tips at de + di = 3.28 Å. Finally, the C⋯N/N⋯C and O⋯N/N⋯ O contacts, Fig. 5h–i, contribute only 0.5% and 0.1% respectively to the HS and have a low-density distribution of points.
5. Density Functional Theory calculations
The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke's model (Becke, 1993) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian 09 program (Frisch et al., 2009). Theoretical and experimental results related to bond lengths and angles are in good agreement, and are summarized in Table 2. Calculated numerical values for the title compound including (χ), hardness (η), (I), (μ), (A), (ω) and softness (σ) are collated in Table 3. The electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending over the whole benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate system. The energy band gap (ΔE = ELUMO − EHOMO) of the molecule is 4.0319 eV, and the frontier molecular orbital energies, EHOMO and ELUMO, are −6.3166 and −2.2847 eV, respectively.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016) with the 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate fragment yielded multiple matches. Of these, two had an alkyl substituent on O3 comparable to (I). The first compound (refcode OKIGAT; Hayani et al., 2021) carries an ethyl group on O3, while the second one (refcode OKIGOH; Hayani et al., 2021) carries a cyclohexyl group. The ethyl carboxylate in OKIGAT forms a dihedral angle of −8.3 (7)° with the dihydroquinoline unit. In OKIGOH, the dihedral angle between the mean planes of the cyclohexyl carboxylate and dihydroquinoline rings is 37.3 (8)°. As previously mentioned, the carboxyl group in (I) is nearly coplanar with the dihydroquinoline [dihedral angle of 1.04 (5)°], which is approximately the same as in OKIGAT, but less tilted than in OKIGOH.
7. Synthesis and crystallization
A mixture of 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylic acid (0.7 g, 3 mmol), K2CO3 (0.51 g, 3.6 mmol), benzyl chloride (0.76 ml, 6 mmol) and tetra n-butylammonium bromide as a catalyst in DMF (30 mL) was stirred at room temperature for 48 h. After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The organic phase was dried over Na2SO4 and concentrated under vacuum. The crude product obtained was purified by on a column of silica gel (eluent: hexane/ ethyl acetate: 9/1). 1H NMR (300 MHz, DMSO-d6) δ ppm: 3.08 (t, 1H, CH≡); 4.37 (d, 2H, CH2—N); 5.12 (s, 2H, CH2—O); 7.08–8.74 (m, 10H, CHarom); 13C NMR (75 MHz, DMSO-d6) δ ppm: 34.3 (CH3—N); 66.2 (CH2—O); 72.1 (–C≡); 73.2 (CH≡); 115.6-148.7 (CHarom and Cquat arom); 162. 5 (C=Oquinol); 168.2 (C=Ocarboxyl). MS (ESI): m/z = 318 (M + H)+.
8. Refinement
Crystal data, data collection and structure . H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å), and were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2097267
https://doi.org/10.1107/S2056989021007416/tx2040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007416/tx2040Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007416/tx2040Isup3.cml
Data collection: APEX3 (Bruker, 2020); cell
SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C20H15NO3 | F(000) = 664 |
Mr = 317.33 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2284 (3) Å | Cell parameters from 9939 reflections |
b = 13.7693 (4) Å | θ = 2.5–33.3° |
c = 13.9230 (4) Å | µ = 0.09 mm−1 |
β = 96.155 (1)° | T = 150 K |
V = 1568.37 (9) Å3 | Block, colourless |
Z = 4 | 0.44 × 0.35 × 0.32 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 6020 independent reflections |
Radiation source: fine-focus sealed tube | 5304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 33.4°, θmin = 2.9° |
φ and ω scans | h = −12→12 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −21→21 |
Tmin = 0.93, Tmax = 0.97 | l = −21→21 |
80207 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0739P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3 |
6020 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 7 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.79130 (8) | 0.56932 (5) | 0.29079 (6) | 0.03386 (17) | |
O2 | 0.15346 (8) | 0.39853 (5) | 0.36012 (6) | 0.03159 (16) | |
O3 | 0.34027 (8) | 0.35057 (5) | 0.26450 (5) | 0.02547 (14) | |
N1 | 0.63622 (8) | 0.63640 (5) | 0.39987 (5) | 0.01811 (12) | |
C1 | 0.49088 (9) | 0.64053 (5) | 0.44357 (5) | 0.01656 (13) | |
C2 | 0.46483 (10) | 0.71713 (6) | 0.50694 (6) | 0.02098 (14) | |
H2 | 0.544815 | 0.766658 | 0.518906 | 0.025* | |
C3 | 0.32280 (11) | 0.72050 (6) | 0.55192 (6) | 0.02469 (16) | |
H3 | 0.306866 | 0.771800 | 0.595567 | 0.030* | |
C4 | 0.20287 (10) | 0.64925 (7) | 0.53375 (6) | 0.02508 (16) | |
H4 | 0.106080 | 0.651845 | 0.565229 | 0.030* | |
C5 | 0.22538 (10) | 0.57466 (6) | 0.46961 (6) | 0.02108 (14) | |
H5 | 0.142234 | 0.527154 | 0.456509 | 0.025* | |
C6 | 0.36952 (9) | 0.56798 (5) | 0.42340 (5) | 0.01629 (13) | |
C7 | 0.40167 (8) | 0.49162 (5) | 0.35579 (5) | 0.01659 (13) | |
C8 | 0.54184 (9) | 0.49270 (6) | 0.31341 (6) | 0.02043 (14) | |
H8 | 0.560136 | 0.442273 | 0.269253 | 0.025* | |
C9 | 0.66584 (10) | 0.56733 (6) | 0.33219 (6) | 0.02148 (15) | |
C10 | 0.76472 (10) | 0.71018 (6) | 0.42091 (6) | 0.02241 (15) | |
H10A | 0.775440 | 0.725750 | 0.490720 | 0.027* | |
H10B | 0.870536 | 0.683646 | 0.405222 | 0.027* | |
C11 | 0.72727 (11) | 0.79935 (6) | 0.36498 (7) | 0.02598 (17) | |
C12 | 0.69298 (13) | 0.87027 (8) | 0.31880 (9) | 0.0356 (2) | |
H12 | 0.665529 | 0.927061 | 0.281827 | 0.043* | |
C13 | 0.28317 (9) | 0.41024 (5) | 0.32886 (6) | 0.01886 (14) | |
C14 | 0.23208 (11) | 0.27253 (7) | 0.22635 (6) | 0.02652 (17) | |
H14A | 0.266692 | 0.250123 | 0.164117 | 0.032* | |
H14B | 0.119369 | 0.298095 | 0.213628 | 0.032* | |
C15 | 0.23223 (10) | 0.18782 (6) | 0.29404 (6) | 0.02316 (15) | |
C16 | 0.36596 (12) | 0.12502 (8) | 0.30625 (7) | 0.0318 (2) | |
H16 | 0.457268 | 0.135594 | 0.271197 | 0.038* | |
C17 | 0.36579 (17) | 0.04679 (9) | 0.36979 (9) | 0.0430 (3) | |
H17 | 0.457907 | 0.004905 | 0.378888 | 0.052* | |
C18 | 0.2320 (2) | 0.02998 (9) | 0.41959 (9) | 0.0502 (3) | |
H18 | 0.232480 | −0.023368 | 0.462895 | 0.060* | |
C19 | 0.09713 (18) | 0.09064 (9) | 0.40660 (9) | 0.0442 (3) | |
H19 | 0.004674 | 0.078535 | 0.440243 | 0.053* | |
C20 | 0.09774 (12) | 0.16940 (7) | 0.34402 (7) | 0.02989 (19) | |
H20 | 0.005332 | 0.211073 | 0.335298 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (3) | 0.0298 (3) | 0.0496 (4) | −0.0088 (3) | 0.0203 (3) | −0.0130 (3) |
O2 | 0.0222 (3) | 0.0270 (3) | 0.0474 (4) | −0.0083 (2) | 0.0127 (3) | −0.0108 (3) |
O3 | 0.0263 (3) | 0.0234 (3) | 0.0276 (3) | −0.0089 (2) | 0.0067 (2) | −0.0090 (2) |
N1 | 0.0171 (3) | 0.0150 (3) | 0.0224 (3) | −0.0026 (2) | 0.0026 (2) | −0.0004 (2) |
C1 | 0.0176 (3) | 0.0148 (3) | 0.0171 (3) | 0.0000 (2) | 0.0009 (2) | 0.0012 (2) |
C2 | 0.0242 (3) | 0.0177 (3) | 0.0208 (3) | −0.0006 (3) | 0.0015 (3) | −0.0023 (2) |
C3 | 0.0270 (4) | 0.0233 (4) | 0.0240 (3) | 0.0028 (3) | 0.0041 (3) | −0.0051 (3) |
C4 | 0.0219 (3) | 0.0277 (4) | 0.0265 (4) | 0.0025 (3) | 0.0070 (3) | −0.0035 (3) |
C5 | 0.0182 (3) | 0.0223 (3) | 0.0232 (3) | 0.0000 (2) | 0.0040 (2) | −0.0010 (3) |
C6 | 0.0160 (3) | 0.0154 (3) | 0.0174 (3) | 0.0005 (2) | 0.0011 (2) | 0.0012 (2) |
C7 | 0.0165 (3) | 0.0145 (3) | 0.0186 (3) | −0.0011 (2) | 0.0013 (2) | 0.0007 (2) |
C8 | 0.0196 (3) | 0.0164 (3) | 0.0260 (3) | −0.0028 (2) | 0.0059 (3) | −0.0032 (2) |
C9 | 0.0191 (3) | 0.0178 (3) | 0.0284 (4) | −0.0025 (2) | 0.0068 (3) | −0.0027 (3) |
C10 | 0.0197 (3) | 0.0192 (3) | 0.0281 (4) | −0.0051 (3) | 0.0013 (3) | −0.0009 (3) |
C11 | 0.0237 (3) | 0.0219 (4) | 0.0332 (4) | −0.0062 (3) | 0.0072 (3) | 0.0002 (3) |
C12 | 0.0313 (4) | 0.0291 (4) | 0.0484 (6) | −0.0021 (4) | 0.0138 (4) | 0.0106 (4) |
C13 | 0.0183 (3) | 0.0167 (3) | 0.0213 (3) | −0.0018 (2) | 0.0008 (2) | −0.0001 (2) |
C14 | 0.0295 (4) | 0.0249 (4) | 0.0247 (4) | −0.0092 (3) | 0.0008 (3) | −0.0067 (3) |
C15 | 0.0230 (3) | 0.0217 (3) | 0.0250 (3) | −0.0049 (3) | 0.0034 (3) | −0.0082 (3) |
C16 | 0.0268 (4) | 0.0337 (5) | 0.0345 (4) | 0.0020 (3) | 0.0016 (3) | −0.0126 (4) |
C17 | 0.0522 (7) | 0.0316 (5) | 0.0426 (6) | 0.0117 (5) | −0.0067 (5) | −0.0085 (4) |
C18 | 0.0824 (10) | 0.0299 (5) | 0.0385 (6) | −0.0013 (6) | 0.0066 (6) | 0.0026 (4) |
C19 | 0.0619 (7) | 0.0333 (5) | 0.0409 (6) | −0.0112 (5) | 0.0214 (5) | −0.0035 (4) |
C20 | 0.0309 (4) | 0.0253 (4) | 0.0355 (4) | −0.0054 (3) | 0.0123 (3) | −0.0084 (3) |
O1—C9 | 1.2355 (10) | C8—H8 | 0.9500 |
O2—C13 | 1.2058 (10) | C10—C11 | 1.4687 (12) |
O3—C13 | 1.3375 (10) | C10—H10A | 0.9900 |
O3—C14 | 1.4588 (10) | C10—H10B | 0.9900 |
N1—C9 | 1.3788 (10) | C11—C12 | 1.1865 (14) |
N1—C1 | 1.3999 (10) | C12—H12 | 0.9500 |
N1—C10 | 1.4730 (10) | C14—C15 | 1.4995 (13) |
C1—C2 | 1.4062 (10) | C14—H14A | 0.9900 |
C1—C6 | 1.4192 (10) | C14—H14B | 0.9900 |
C2—C3 | 1.3846 (11) | C15—C20 | 1.3922 (12) |
C2—H2 | 0.9500 | C15—C16 | 1.3955 (13) |
C3—C4 | 1.3953 (12) | C16—C17 | 1.3940 (17) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.3864 (11) | C17—C18 | 1.382 (2) |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.4116 (10) | C18—C19 | 1.385 (2) |
C5—H5 | 0.9500 | C18—H18 | 0.9500 |
C6—C7 | 1.4543 (10) | C19—C20 | 1.3914 (16) |
C7—C8 | 1.3507 (10) | C19—H19 | 0.9500 |
C7—C13 | 1.5062 (10) | C20—H20 | 0.9500 |
C8—C9 | 1.4520 (11) | ||
C13—O3—C14 | 116.87 (7) | N1—C10—H10A | 109.3 |
C9—N1—C1 | 123.16 (6) | C11—C10—H10B | 109.3 |
C9—N1—C10 | 115.85 (6) | N1—C10—H10B | 109.3 |
C1—N1—C10 | 120.93 (6) | H10A—C10—H10B | 108.0 |
N1—C1—C2 | 119.87 (7) | C12—C11—C10 | 178.18 (10) |
N1—C1—C6 | 120.08 (6) | C11—C12—H12 | 180.0 |
C2—C1—C6 | 120.05 (7) | O2—C13—O3 | 123.21 (7) |
C3—C2—C1 | 120.12 (7) | O2—C13—C7 | 125.74 (7) |
C3—C2—H2 | 119.9 | O3—C13—C7 | 111.05 (6) |
C1—C2—H2 | 119.9 | O3—C14—C15 | 112.63 (7) |
C2—C3—C4 | 120.62 (7) | O3—C14—H14A | 109.1 |
C2—C3—H3 | 119.7 | C15—C14—H14A | 109.1 |
C4—C3—H3 | 119.7 | O3—C14—H14B | 109.1 |
C5—C4—C3 | 119.80 (8) | C15—C14—H14B | 109.1 |
C5—C4—H4 | 120.1 | H14A—C14—H14B | 107.8 |
C3—C4—H4 | 120.1 | C20—C15—C16 | 119.00 (9) |
C4—C5—C6 | 121.24 (7) | C20—C15—C14 | 120.58 (8) |
C4—C5—H5 | 119.4 | C16—C15—C14 | 120.41 (8) |
C6—C5—H5 | 119.4 | C17—C16—C15 | 120.11 (10) |
C5—C6—C1 | 118.15 (7) | C17—C16—H16 | 119.9 |
C5—C6—C7 | 124.21 (7) | C15—C16—H16 | 119.9 |
C1—C6—C7 | 117.65 (6) | C18—C17—C16 | 120.18 (11) |
C8—C7—C6 | 119.87 (6) | C18—C17—H17 | 119.9 |
C8—C7—C13 | 117.37 (7) | C16—C17—H17 | 119.9 |
C6—C7—C13 | 122.76 (6) | C17—C18—C19 | 120.23 (11) |
C7—C8—C9 | 123.06 (7) | C17—C18—H18 | 119.9 |
C7—C8—H8 | 118.5 | C19—C18—H18 | 119.9 |
C9—C8—H8 | 118.5 | C18—C19—C20 | 119.68 (11) |
O1—C9—N1 | 121.42 (7) | C18—C19—H19 | 120.2 |
O1—C9—C8 | 122.54 (7) | C20—C19—H19 | 120.2 |
N1—C9—C8 | 116.04 (7) | C19—C20—C15 | 120.76 (10) |
C11—C10—N1 | 111.46 (7) | C19—C20—H20 | 119.6 |
C11—C10—H10A | 109.3 | C15—C20—H20 | 119.6 |
C9—N1—C1—C2 | −175.56 (7) | C1—N1—C9—C8 | −4.77 (11) |
C10—N1—C1—C2 | 1.37 (10) | C10—N1—C9—C8 | 178.16 (7) |
C9—N1—C1—C6 | 3.97 (11) | C7—C8—C9—O1 | −177.70 (9) |
C10—N1—C1—C6 | −179.10 (7) | C7—C8—C9—N1 | 2.64 (12) |
N1—C1—C2—C3 | −178.65 (7) | C9—N1—C10—C11 | 96.66 (8) |
C6—C1—C2—C3 | 1.82 (11) | C1—N1—C10—C11 | −80.48 (9) |
C1—C2—C3—C4 | −1.16 (13) | C14—O3—C13—O2 | 4.71 (12) |
C2—C3—C4—C5 | −0.41 (13) | C14—O3—C13—C7 | −175.41 (7) |
C3—C4—C5—C6 | 1.33 (13) | C8—C7—C13—O2 | 179.78 (8) |
C4—C5—C6—C1 | −0.66 (11) | C6—C7—C13—O2 | −1.07 (12) |
C4—C5—C6—C7 | 179.70 (7) | C8—C7—C13—O3 | −0.10 (10) |
N1—C1—C6—C5 | 179.56 (7) | C6—C7—C13—O3 | 179.05 (7) |
C2—C1—C6—C5 | −0.91 (11) | C13—O3—C14—C15 | −80.18 (10) |
N1—C1—C6—C7 | −0.77 (10) | O3—C14—C15—C20 | 107.82 (9) |
C2—C1—C6—C7 | 178.76 (7) | O3—C14—C15—C16 | −73.57 (10) |
C5—C6—C7—C8 | 178.41 (7) | C20—C15—C16—C17 | −1.82 (13) |
C1—C6—C7—C8 | −1.23 (11) | C14—C15—C16—C17 | 179.56 (8) |
C5—C6—C7—C13 | −0.72 (11) | C15—C16—C17—C18 | 1.23 (16) |
C1—C6—C7—C13 | 179.64 (6) | C16—C17—C18—C19 | 0.10 (18) |
C6—C7—C8—C9 | 0.28 (12) | C17—C18—C19—C20 | −0.80 (19) |
C13—C7—C8—C9 | 179.45 (7) | C18—C19—C20—C15 | 0.19 (17) |
C1—N1—C9—O1 | 175.57 (8) | C16—C15—C20—C19 | 1.12 (14) |
C10—N1—C9—O1 | −1.50 (12) | C14—C15—C20—C19 | 179.74 (9) |
Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cg3i | 0.95 | 2.94 | 3.8206 (10) | 154 |
C4—H4···O2ii | 0.95 | 2.57 | 3.4846 (11) | 162 |
C5—H5···O2 | 0.95 | 2.23 | 2.8917 (11) | 126 |
C12—H12···O1iii | 0.95 | 2.25 | 3.1463 (14) | 157 |
C14—H14A···Cg2iv | 0.99 | 2.65 | 3.4652 (9) | 140 |
C16—H16···O1v | 0.95 | 2.50 | 3.3443 (12) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2. |
X-ray | B3LYP/6–311G(d,p) | |
O1—C9 | 1.2355 (10) | 1.223 |
O3—C13 | 1.3375 (10) | 1.3447 |
N1—C9 | 1.3788 (10) | 1.4042 |
N1—C10 | 1.4730 (10) | 1.4725 |
O2—C13 | 1.2058 (10) | 1.2092 |
O3—C14 | 1.4588 (10) | 1.4611 |
N1—C1 | 1.3999 (10) | 1.3953 |
C13—O3—C14 | 116.87 (7) | 117.1258 |
C9—N1—C10 | 115.85 (6) | 115.6313 |
N1—C1—C2 | 119.87 (7) | 120.5532 |
O1—C9—N1 | 121.42 (7) | 121.7499 |
N1—C9—C8 | 116.04 (7) | 115.2168 |
O2—C13—C7 | 125.74 (7) | 125.0357 |
O3—C14—C15 | 112.63 (7) | 111.678 |
C9—N1—C1 | 123.16 (6) | 123.4431 |
C1—N1—C10 | 120.93 (6) | 120.911 |
N1—C1—C6 | 120.08 (6) | 120.1155 |
O1—C9—C8 | 122.54 (7) | 123.0317 |
C11—C10—N1 | 111.46 (7) | 113.9875 |
O2—C13—O3 | 123.21 (7) | 123.6586 |
O3—C13—C7 | 111.05 (6) | 111.3015 |
Molecular energy | Compound (I) |
Total energy TE (eV) | -28621.0571 |
EHOMO (eV) | -6.3166 |
ELUMO (eV) | -2.2847 |
Gap, ΔE (eV) | 4.0319 |
Dipole moment, µ (Debye) | 1.9469 |
Ionization potential, I (eV) | 6.3166 |
Electron affinity, A | 2.2847 |
Electronegativity, χ | 4.3007 |
Hardness, η | 2.0160 |
Electrophilicity index, ω | 4.5873 |
Softness, σ | 0.4960 |
Fraction of electron transferred, ΔN | 0.6695 |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Authors' contributions are as follows. Conceptualization, YB; methodology, YB and NHA; investigation, KC; theoretical calculations, KC; writing (original draft), KC; writing (review and editing of the manuscript), FHAO; supervision, EME; crystal-structure determination and validation, JTM.
References
Banu, S., Bollu, R., Bantu, R., Nagarapu, L., Polepalli, S., Jain, N., Vangala, R. & Manga, V. (2017). Eur. J. Med. Chem. 125, 400–410. CrossRef CAS PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750. Web of Science CrossRef Google Scholar
Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28. Web of Science CSD CrossRef Google Scholar
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221. Web of Science CSD CrossRef CAS Google Scholar
Fang, Y., Wu, Z., Xiao, M., Wei, L., Li, K., Tang, Y., Ye, J., Xiang, J. & Hu, A. (2021). Bioorg. Chem. 106, 104469. CrossRef PubMed Google Scholar
Filali Baba, Y., Misbahi, H., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Vincze, K., Nové, M., Gajdács, M., Molnár, J., Spengler, G. & Mazzah, A. (2020). Chem. Data Collect. 29, 100501. Google Scholar
Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A. 02. Gaussian Inc, Wallingford, CT, US. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520. CSD CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.