research communications
R,4S,7S,7aS)-4,5,6,7,8,8-hexachloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione
and Hirshfeld surface analysis of (3aaInstitute of Polymer Materials, National Academy of Sciences of Azerbaijan, Sumgayit, 5004, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
The molecule of the title compound, C24H16Cl12N2O4, is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the molecule is defined by a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge. The pyrrolidine ring is essentially planar [max. deviation = 0.014 (1) Å]. The cyclohexane ring has a boat conformation, while both cyclopentane rings adopt an In the molecules are linked by intermolecular C—H⋯O, C—H⋯Cl and C—Cl⋯π interactions, and short intermolecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.
Keywords: crystal structure; pyrrolidine ring; cyclopentane ring; cyclohexane ring; Hirshfeld surface analysis.
CCDC reference: 2094787
1. Chemical context
N-heterocyclic compounds are of interest in the fields of synthetic organic chemistry, coordination chemistry and medicinal chemistry because of their important biological properties (Mahmoudi et al., 2016, 2017a,b,c, 2018a,b; 2019; Viswanathan et al., 2019). For this reason, many approaches have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017, 2018a,b; Ma et al., 2017a,b). On the other hand, N-heterocycles or N-ligands can also be used as precursors in the synthesis of coordination compounds (Ma et al., 2020, 2021; Mahmudov et al., 2013), and as building blocks in the construction of supramolecular structures as they have both hydrogen-bond donor and acceptor capabilities (Gurbanov et al., 2020a; Kopylovich et al., 2011a,b; Asgarova et al., 2019). In fact, attachment of suitable functional groups to N-ligands can improve their solubility and the of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020b; Khalilov et al., 2011, 2018a,b; Maharramov et al., 2019; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). Intermolecular halogen bonds and other types of non-covalent interactions in halogenated N-heterocyclic compounds can improve their solubility and other functional properties. In order to continue our work in this perspective, we have synthesized a new halogenated N-heterocyclic compound, (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexachloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione, which provides multiple inermolecular non-covalent interactions.
2. Structural commentary
The molecule of the title compound is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the molecule is defined by the C10—C11–C12—C12_a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge (Fig. 1). The pyrrolidine ring (N1/C1/C2/C6/C7) is essentially planar [maximum deviation = −0.014 (1) Å for N1]. The cyclohexane ring (C2/C3/C5/C6/C8/C9) has a boat conformation [the puckering parameters (Cremer and Pople, 1975) are QT = 0.9300 (14) Å, θ = 89.99 (9)°, φ = 59.37 (9)°], while both the cyclopentane rings (C2–C6 and C3–C5/C8/C9) adopt an [Q(2) = 0.6308 (14) Å, φ(2) = 252.44 (13)° and Q(2) = 0.5835 (14) Å, φ(2) = 215.53 (14)°, respectively] with the C4 atom bearing the dichloromethane group as the flap.
3. Supramolecular features and Hirshfeld surface analysis
In the π interactions (Table 1), and short intermolecular contacts, listed in Table 2, forming a three-dimensional network (Figs. 2 and 3).
molecules are linked by intermolecular C—H⋯O, C—H⋯Cl and C—Cl⋯
|
In order to visualize the intermolecular interactions (Table 2) in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). Fig. 4 shows the Hirshfeld surface plotted over dnorm in the range −0.1922 to 1.7149 a.u. The red spots on the Hirshfeld surface represent C—H⋯O and C—H⋯Cl contacts. Fig. 5 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: Cl⋯H/H⋯Cl (33.6%; Fig. 5b), Cl⋯Cl (29.3%; Fig. 5c), O⋯H/H⋯O (13.9%; Fig. 5d), Cl⋯O/O⋯Cl (11.4%; Fig. 5e) and H⋯H (7.0%; Fig. 5f) interactions. The remaining other weak interactions (contribution percentages) are Cl⋯C/C⋯Cl (3.2%), Cl⋯N/N⋯Cl (1.4%) and C⋯H/H⋯C (0.2%).
4. Database survey
Four related compounds containing the methanoisoindole moiety were found in the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016): 4,5,6,7,8,8-hexachloro-2-[2-(3,4-dimethoxyphenyl)ethyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (refcode COHTUR: Manohar et al., 2019), 5-hydroxy-4-(4-methylphenyl)-4-azatricyclo[5.2.1.02,6]dec-8-en-3-one (QOVCAH: Aslantaş et al., 2015), (3aR,4S,7R,7aS)-2-(perfluoropyridin-4-yl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (MOJFUP: Peloquin et al., 2019) and (3aR,4S,7R,7aS)-2-[(perfluoropyridin-4-yl)oxy]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (MOJGAW: Peloquin et al., 2019).
In COHTUR, the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-dimethoxyphenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal of COHTUR, weak C—H⋯O hydrogen bonds link the molecules, forming a cyclic R44(48) ring motif (Bernstein et al., 1995). The molecules are stacked in layers held together by offset π–π interactions, with a centroid–centroid distance of 3.564 (1) Å for the pyrrolidine and benzene rings. There is also an intermolecular C—Cl⋯π interaction present.
In the crystal of QOVCAH, the cyclohexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The molecular structure is stabilized by a short intramolecular C—H⋯O contact. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by C—H⋯π interactions, forming slabs parallel to (001).
The compound MOJFUP crystallizes in the triclinic P with two molecules, A and B, in the and MOJGAW in the monoclinic P21/n with one molecule per The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In MOJFUP, steric interactions between the ortho-fluorine atoms and the carbonyl oxygen atoms prevents about the nitrogen–ipso-carbon bond, which is evidenced by separate 19F NMR peaks in solution for the ortho-F atoms. In molecule A, the 2,3,5,6-tetrafluoropyridine plane is rotated by 58.05 (5)° relative to the pyrrolidine plane and the corresponding dihedral angle for molecule B is 61.65 (7)°. The addition of an oxygen atom between N and C in the bridge between the ring systems in MOJGAW alleviates this steric restriction and only one 19F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the 2,3,5,6-tetrafluoropyridine and pyrrolidine planes in the crystal of MOJGAW of 84.01 (5)° is larger than that found in MOJFUP.
The main directional interactions in the crystal structures of MOJFUP and MOJGAW are of the type C—H⋯O, C—H⋯F, C—O⋯π, and C—F⋯π. In both compounds, weak hydrogen-bonding interactions are observed for the hydrogen atom(s) α to the carbonyl groups (C—H⋯O and C— H⋯F in MOJFUP; C—H⋯O in MOJGAW) and the olefinic hydrogen atoms (C—H⋯F in MOJFUP; C—H⋯O in MOJGAW). A weak interaction is also observed for a bridge hydrogen atom in MOJGAW, C—H⋯F. The packing is further aided by π-interactions with the pyridine ring in MOJGAW.
5. Synthesis and crystallization
To 741 mg (2 mmol) of (3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione were added 0.12 mL (1 mmol) of hexane-1,6-diamine and 25 mL of dimethylformamide, and the mixture was stirred for 6 h at 373 K. Then, the reaction mixture was cooled to room temperature and poured into cold water. The obtained precipitate was filtered off, washed with water, recrystallized from chloroform and dried under vacuum. Yellow powder, yield 92%, m.p 404–405 K (decomp.). Analysis calculated for C24H16Cl12N2O4 (Mr = 821.80): C 35.08, H 1.96, N 3.41%; found: C 35.03, H 2.00, N 3.35%. ESI–MS: m/z: 822.9 [Mr + H]+. 1H NMR (300.130 MHz) in acetone-d6, internal TMS, δ (ppm): 1.29–3.43 (12H, 6CH2), 3.86 (4H, CH). 13C{1H} NMR (75.468 MHz, acetone-d6). δ: 25.8 (2CH2), 27.2 (2CH2), 39.3 (4C–H), 52.0 (2CH2), 79.3 (4CCl), 104.4 (2CCl2), 130.9 (2ClC=CCl) and 170.2 (4C=O). Off-white prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform–hexane (1/1, v/v) mixture.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 (methylene) and 1.00 Å (methine), with Uiso(H) = 1.2Ueq(C). Two reflections (100 and 002), affected by the incident beam-stop, and owing to poor agreement between observed and calculated intensities, two outliers (136 and 118) were omitted in the final cycles of
details are summarized in Table 3
|
Supporting information
CCDC reference: 2094787
https://doi.org/10.1107/S2056989021006952/vm2251sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021006952/vm2251Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C24H16Cl12N2O4 | F(000) = 820 |
Mr = 821.79 | Dx = 1.782 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9549 (3) Å | Cell parameters from 7701 reflections |
b = 10.5908 (4) Å | θ = 2.3–27.2° |
c = 16.6043 (6) Å | µ = 1.12 mm−1 |
β = 103.499 (1)° | T = 150 K |
V = 1531.24 (10) Å3 | Block, colourless |
Z = 2 | 0.34 × 0.32 × 0.28 mm |
Bruker APEXII CCD diffractometer | 3141 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.2°, θmin = 2.3° |
Tmin = 0.684, Tmax = 0.736 | h = −8→11 |
12567 measured reflections | k = −13→13 |
3403 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0231P)2 + 0.7545P] where P = (Fo2 + 2Fc2)/3 |
3403 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.81506 (4) | 0.38645 (3) | 0.33748 (2) | 0.02092 (8) | |
Cl2 | 0.65657 (4) | 0.08552 (3) | 0.31569 (2) | 0.02036 (8) | |
Cl3 | 0.45141 (4) | 0.28198 (3) | 0.24334 (2) | 0.01993 (8) | |
Cl4 | 0.48797 (4) | 0.05628 (3) | 0.10287 (2) | 0.02218 (8) | |
Cl5 | 0.75019 (4) | 0.52267 (3) | 0.15453 (2) | 0.02455 (9) | |
Cl6 | 0.55737 (5) | 0.31532 (4) | 0.00843 (2) | 0.02966 (9) | |
O1 | 1.10843 (11) | 0.32935 (10) | 0.22625 (6) | 0.0224 (2) | |
O2 | 0.83761 (12) | 0.05643 (10) | 0.03360 (6) | 0.0220 (2) | |
N1 | 0.99701 (12) | 0.19567 (11) | 0.11936 (7) | 0.0156 (2) | |
C1 | 1.01234 (15) | 0.25177 (13) | 0.19624 (8) | 0.0152 (3) | |
C2 | 0.88902 (15) | 0.19800 (12) | 0.23555 (8) | 0.0139 (2) | |
H2 | 0.935586 | 0.153877 | 0.288724 | 0.017* | |
C3 | 0.76483 (15) | 0.29560 (12) | 0.24743 (8) | 0.0142 (2) | |
C4 | 0.62421 (15) | 0.20595 (12) | 0.24022 (8) | 0.0142 (2) | |
C5 | 0.63197 (15) | 0.15971 (12) | 0.15208 (8) | 0.0140 (2) | |
C6 | 0.79769 (15) | 0.10488 (12) | 0.17088 (8) | 0.0142 (2) | |
H6 | 0.801142 | 0.017191 | 0.193567 | 0.017* | |
C7 | 0.87382 (15) | 0.11223 (12) | 0.09843 (8) | 0.0153 (3) | |
C8 | 0.71121 (15) | 0.36779 (12) | 0.16671 (8) | 0.0153 (3) | |
C9 | 0.63396 (15) | 0.28797 (13) | 0.11034 (8) | 0.0157 (3) | |
C10 | 1.09720 (16) | 0.21915 (14) | 0.06241 (8) | 0.0200 (3) | |
H10A | 1.112615 | 0.139247 | 0.034488 | 0.024* | |
H10B | 1.198763 | 0.248383 | 0.094445 | 0.024* | |
C11 | 1.02959 (17) | 0.31780 (14) | −0.00267 (8) | 0.0213 (3) | |
H11A | 1.081293 | 0.311153 | −0.049094 | 0.026* | |
H11B | 0.919312 | 0.299100 | −0.024805 | 0.026* | |
C12 | 1.04563 (18) | 0.45260 (13) | 0.03013 (8) | 0.0223 (3) | |
H12A | 1.010849 | 0.455925 | 0.082477 | 0.027* | |
H12B | 1.155427 | 0.476794 | 0.042781 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02260 (17) | 0.01966 (17) | 0.01950 (16) | 0.00008 (13) | 0.00287 (13) | −0.00824 (12) |
Cl2 | 0.02766 (18) | 0.01698 (16) | 0.01742 (15) | 0.00127 (13) | 0.00727 (13) | 0.00505 (12) |
Cl3 | 0.01596 (15) | 0.01944 (17) | 0.02574 (17) | 0.00286 (12) | 0.00760 (13) | −0.00038 (12) |
Cl4 | 0.01995 (16) | 0.02252 (18) | 0.02291 (16) | −0.00783 (13) | 0.00266 (13) | −0.00581 (13) |
Cl5 | 0.02410 (18) | 0.01230 (16) | 0.0374 (2) | −0.00025 (13) | 0.00750 (15) | 0.00650 (13) |
Cl6 | 0.0340 (2) | 0.0339 (2) | 0.01635 (16) | 0.00063 (16) | −0.00359 (14) | 0.00900 (14) |
O1 | 0.0162 (5) | 0.0248 (5) | 0.0257 (5) | −0.0038 (4) | 0.0037 (4) | −0.0082 (4) |
O2 | 0.0253 (5) | 0.0215 (5) | 0.0197 (5) | −0.0021 (4) | 0.0061 (4) | −0.0076 (4) |
N1 | 0.0153 (5) | 0.0151 (6) | 0.0165 (5) | 0.0019 (4) | 0.0043 (4) | −0.0011 (4) |
C1 | 0.0124 (6) | 0.0151 (6) | 0.0168 (6) | 0.0048 (5) | 0.0008 (5) | −0.0006 (5) |
C2 | 0.0146 (6) | 0.0121 (6) | 0.0139 (6) | 0.0031 (5) | 0.0008 (5) | −0.0012 (5) |
C3 | 0.0147 (6) | 0.0129 (6) | 0.0145 (6) | 0.0014 (5) | 0.0021 (5) | −0.0018 (5) |
C4 | 0.0153 (6) | 0.0118 (6) | 0.0154 (6) | 0.0020 (5) | 0.0037 (5) | 0.0016 (5) |
C5 | 0.0144 (6) | 0.0128 (6) | 0.0138 (6) | −0.0016 (5) | 0.0015 (5) | −0.0002 (5) |
C6 | 0.0163 (6) | 0.0116 (6) | 0.0142 (6) | 0.0007 (5) | 0.0023 (5) | 0.0003 (5) |
C7 | 0.0163 (6) | 0.0117 (6) | 0.0177 (6) | 0.0035 (5) | 0.0036 (5) | 0.0000 (5) |
C8 | 0.0135 (6) | 0.0129 (6) | 0.0200 (6) | 0.0024 (5) | 0.0049 (5) | 0.0037 (5) |
C9 | 0.0146 (6) | 0.0173 (6) | 0.0146 (6) | 0.0036 (5) | 0.0021 (5) | 0.0049 (5) |
C10 | 0.0189 (7) | 0.0217 (7) | 0.0220 (7) | −0.0003 (6) | 0.0100 (5) | −0.0032 (5) |
C11 | 0.0262 (7) | 0.0211 (7) | 0.0172 (6) | −0.0055 (6) | 0.0067 (6) | −0.0023 (5) |
C12 | 0.0274 (7) | 0.0209 (7) | 0.0178 (6) | −0.0054 (6) | 0.0037 (6) | −0.0022 (5) |
Cl1—C3 | 1.7464 (13) | C3—C4 | 1.5592 (18) |
Cl2—C4 | 1.7639 (13) | C4—C5 | 1.5599 (17) |
Cl3—C4 | 1.7558 (13) | C5—C9 | 1.5269 (18) |
Cl4—C5 | 1.7432 (13) | C5—C6 | 1.5559 (18) |
Cl5—C8 | 1.6989 (14) | C6—C7 | 1.5168 (18) |
Cl6—C9 | 1.6958 (13) | C6—H6 | 1.0000 |
O1—C1 | 1.2098 (17) | C8—C9 | 1.3293 (19) |
O2—C7 | 1.2042 (16) | C10—C11 | 1.523 (2) |
N1—C1 | 1.3855 (16) | C10—H10A | 0.9900 |
N1—C7 | 1.3927 (17) | C10—H10B | 0.9900 |
N1—C10 | 1.4686 (17) | C11—C12 | 1.5228 (19) |
C1—C2 | 1.5186 (19) | C11—H11A | 0.9900 |
C2—C6 | 1.5442 (17) | C11—H11B | 0.9900 |
C2—C3 | 1.5642 (17) | C12—C12i | 1.515 (3) |
C2—H2 | 1.0000 | C12—H12A | 0.9900 |
C3—C8 | 1.5203 (17) | C12—H12B | 0.9900 |
C1—N1—C7 | 113.85 (11) | C2—C6—C5 | 103.10 (10) |
C1—N1—C10 | 125.21 (11) | C7—C6—H6 | 111.5 |
C7—N1—C10 | 120.94 (11) | C2—C6—H6 | 111.5 |
O1—C1—N1 | 125.37 (13) | C5—C6—H6 | 111.5 |
O1—C1—C2 | 126.60 (12) | O2—C7—N1 | 124.52 (13) |
N1—C1—C2 | 108.03 (11) | O2—C7—C6 | 127.35 (12) |
C1—C2—C6 | 105.12 (10) | N1—C7—C6 | 108.13 (11) |
C1—C2—C3 | 114.59 (11) | C9—C8—C3 | 107.83 (11) |
C6—C2—C3 | 103.47 (10) | C9—C8—Cl5 | 128.16 (11) |
C1—C2—H2 | 111.1 | C3—C8—Cl5 | 124.00 (10) |
C6—C2—H2 | 111.1 | C8—C9—C5 | 107.78 (11) |
C3—C2—H2 | 111.1 | C8—C9—Cl6 | 128.08 (11) |
C8—C3—C4 | 98.94 (10) | C5—C9—Cl6 | 124.06 (10) |
C8—C3—C2 | 107.98 (10) | N1—C10—C11 | 111.81 (11) |
C4—C3—C2 | 99.97 (10) | N1—C10—H10A | 109.3 |
C8—C3—Cl1 | 116.29 (9) | C11—C10—H10A | 109.3 |
C4—C3—Cl1 | 116.31 (9) | N1—C10—H10B | 109.3 |
C2—C3—Cl1 | 115.05 (9) | C11—C10—H10B | 109.3 |
C3—C4—C5 | 92.94 (9) | H10A—C10—H10B | 107.9 |
C3—C4—Cl3 | 114.83 (9) | C12—C11—C10 | 113.62 (11) |
C5—C4—Cl3 | 113.84 (9) | C12—C11—H11A | 108.8 |
C3—C4—Cl2 | 112.95 (9) | C10—C11—H11A | 108.8 |
C5—C4—Cl2 | 113.80 (9) | C12—C11—H11B | 108.8 |
Cl3—C4—Cl2 | 108.08 (7) | C10—C11—H11B | 108.8 |
C9—C5—C6 | 108.14 (10) | H11A—C11—H11B | 107.7 |
C9—C5—C4 | 98.88 (10) | C12i—C12—C11 | 113.19 (14) |
C6—C5—C4 | 100.27 (9) | C12i—C12—H12A | 108.9 |
C9—C5—Cl4 | 115.59 (9) | C11—C12—H12A | 108.9 |
C6—C5—Cl4 | 115.22 (9) | C12i—C12—H12B | 108.9 |
C4—C5—Cl4 | 116.55 (9) | C11—C12—H12B | 108.9 |
C7—C6—C2 | 104.81 (10) | H12A—C12—H12B | 107.8 |
C7—C6—C5 | 113.96 (10) | ||
C7—N1—C1—O1 | −178.12 (13) | C3—C2—C6—C5 | 0.55 (12) |
C10—N1—C1—O1 | 1.4 (2) | C9—C5—C6—C7 | −47.46 (14) |
C7—N1—C1—C2 | 2.31 (14) | C4—C5—C6—C7 | −150.44 (11) |
C10—N1—C1—C2 | −178.13 (11) | Cl4—C5—C6—C7 | 83.59 (12) |
O1—C1—C2—C6 | 179.44 (13) | C9—C5—C6—C2 | 65.53 (12) |
N1—C1—C2—C6 | −1.01 (13) | C4—C5—C6—C2 | −37.45 (12) |
O1—C1—C2—C3 | 66.54 (17) | Cl4—C5—C6—C2 | −163.42 (9) |
N1—C1—C2—C3 | −113.90 (12) | C1—N1—C7—O2 | 177.78 (13) |
C1—C2—C3—C8 | 47.50 (14) | C10—N1—C7—O2 | −1.8 (2) |
C6—C2—C3—C8 | −66.37 (12) | C1—N1—C7—C6 | −2.63 (15) |
C1—C2—C3—C4 | 150.38 (10) | C10—N1—C7—C6 | 177.79 (11) |
C6—C2—C3—C4 | 36.51 (11) | C2—C6—C7—O2 | −178.64 (13) |
C1—C2—C3—Cl1 | −84.24 (12) | C5—C6—C7—O2 | −66.68 (18) |
C6—C2—C3—Cl1 | 161.89 (9) | C2—C6—C7—N1 | 1.79 (13) |
C8—C3—C4—C5 | 52.32 (10) | C5—C6—C7—N1 | 113.75 (12) |
C2—C3—C4—C5 | −57.86 (10) | C4—C3—C8—C9 | −35.34 (13) |
Cl1—C3—C4—C5 | 177.63 (9) | C2—C3—C8—C9 | 68.27 (13) |
C8—C3—C4—Cl3 | −65.69 (11) | Cl1—C3—C8—C9 | −160.66 (10) |
C2—C3—C4—Cl3 | −175.87 (8) | C4—C3—C8—Cl5 | 145.71 (10) |
Cl1—C3—C4—Cl3 | 59.62 (12) | C2—C3—C8—Cl5 | −110.68 (11) |
C8—C3—C4—Cl2 | 169.74 (9) | Cl1—C3—C8—Cl5 | 20.39 (15) |
C2—C3—C4—Cl2 | 59.57 (11) | C3—C8—C9—C5 | 0.64 (14) |
Cl1—C3—C4—Cl2 | −64.95 (11) | Cl5—C8—C9—C5 | 179.54 (10) |
C3—C4—C5—C9 | −51.85 (10) | C3—C8—C9—Cl6 | −176.19 (10) |
Cl3—C4—C5—C9 | 66.99 (11) | Cl5—C8—C9—Cl6 | 2.7 (2) |
Cl2—C4—C5—C9 | −168.55 (9) | C6—C5—C9—C8 | −69.69 (13) |
C3—C4—C5—C6 | 58.55 (10) | C4—C5—C9—C8 | 34.26 (13) |
Cl3—C4—C5—C6 | 177.40 (9) | Cl4—C5—C9—C8 | 159.47 (10) |
Cl2—C4—C5—C6 | −58.15 (11) | C6—C5—C9—Cl6 | 107.30 (11) |
C3—C4—C5—Cl4 | −176.38 (9) | C4—C5—C9—Cl6 | −148.75 (10) |
Cl3—C4—C5—Cl4 | −57.54 (12) | Cl4—C5—C9—Cl6 | −23.54 (15) |
Cl2—C4—C5—Cl4 | 66.92 (11) | C1—N1—C10—C11 | −96.26 (15) |
C1—C2—C6—C7 | −0.47 (13) | C7—N1—C10—C11 | 83.27 (15) |
C3—C2—C6—C7 | 120.07 (11) | N1—C10—C11—C12 | 76.43 (15) |
C1—C2—C6—C5 | −119.99 (10) | C10—C11—C12—C12i | −169.86 (15) |
Symmetry code: (i) −x+2, −y+1, −z. |
Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1ii | 1.00 | 2.43 | 3.3867 (16) | 161 |
C10—H10A···O2iii | 0.99 | 2.45 | 3.4402 (17) | 178 |
C12—H12B···Cl2iv | 0.99 | 2.80 | 3.5299 (15) | 131 |
C3—Cl1···Cg1iv | 1.75 (1) | 3.89 (1) | 4.9389 (14) | 117 (1) |
Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y, −z; (iv) −x+2, y+1/2, −z+1/2. |
Contact | Distance | Symmetry operation |
Cl3···Cl2 | 3.4333 (5) | 1 - x, 1/2 + y, 1/2 - z |
O1···H6 | 2.43 | 2 - x, 1/2 + y, 1/2 - z |
Cl1···H11B | 2.99 | x, 1/2 - y, 1/2 + z |
Cl3···H10B | 2.96 | -1 + x, y, z |
O2···Cl4 | 3.4606 (11) | 1 - x, -y, -z |
H10A···O2 | 2.45 | 2 - x, -y, -z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, AIA and MA; methodology, AIA and ZA; investigation, AIA, ZA, and SM; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and SM; visualization, AIA and ZA; funding acquisition, AIA; resources, AIA, ZA and SHM; supervision, MA and SM.
Funding information
This work was supported by the Institute of Polymer Materials, National Academy of Sciences of Azerbaijan.
References
Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). Acta Cryst. E71, o143–o144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Manohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562–564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153–1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.