research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexa­chloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-1,3-dioxo-1,3,3a,4,7,7a-hexa­hydro-2H-4,7-methano­isoindol-2-yl]hex­yl}-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione

crossmark logo

aInstitute of Polymer Materials, National Academy of Sciences of Azerbaijan, Sumgayit, 5004, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 29 June 2021; accepted 6 July 2021; online 9 July 2021)

The mol­ecule of the title compound, C24H16Cl12N2O4, is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the mol­ecule is defined by a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge. The pyrrolidine ring is essentially planar [max. deviation = 0.014 (1) Å]. The cyclo­hexane ring has a boat conformation, while both cyclo­pentane rings adopt an envelope conformation. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O, C—H⋯Cl and C—Cl⋯π inter­actions, and short inter­molecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.

1. Chemical context

N-heterocyclic compounds are of inter­est in the fields of synthetic organic chemistry, coordination chemistry and medicinal chemistry because of their important biological properties (Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.]; 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). For this reason, many approaches have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]). On the other hand, N-heterocycles or N-ligands can also be used as precursors in the synthesis of coordination compounds (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]), and as building blocks in the construction of supra­molecular structures as they have both hydrogen-bond donor and acceptor capabilities (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175-180.],b[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248-7250.]; Asgarova et al., 2019[Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342-347.]). In fact, attachment of suitable functional groups to N-ligands can improve their solubility and the catalytic activity of the corresponding coordination compounds (Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Gurbanov et al., 2020b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.], 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Maharramov et al., 2019[Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Inter­molecular halogen bonds and other types of non-covalent inter­actions in halogenated N-heterocyclic compounds can improve their solubility and other functional properties. In order to continue our work in this perspective, we have synthesized a new halogenated N-heterocyclic compound, (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexa­chloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-1,3-dioxo-1,3,3a,4,7,7a-hexa­hydro-2H-4,7-methano­isoindol-2-yl]hex­yl}-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione, which provides multiple iner­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the mol­ecule is defined by the C10—C11–C12—C12_a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge (Fig. 1[link]). The pyrrolidine ring (N1/C1/C2/C6/C7) is essentially planar [maximum deviation = −0.014 (1) Å for N1]. The cyclo­hexane ring (C2/C3/C5/C6/C8/C9) has a boat conformation [the puckering parameters (Cremer and Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are QT = 0.9300 (14) Å, θ = 89.99 (9)°, φ = 59.37 (9)°], while both the cyclo­pentane rings (C2–C6 and C3–C5/C8/C9) adopt an envelope conformation [Q(2) = 0.6308 (14) Å, φ(2) = 252.44 (13)° and Q(2) = 0.5835 (14) Å, φ(2) = 215.53 (14)°, respectively] with the C4 atom bearing the di­chloro­methane group as the flap.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. [Symmetry code: (a) 2 − x, 1 − y, −z].

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O, C—H⋯Cl and C—Cl⋯π inter­actions (Table 1[link]), and short inter­molecular contacts, listed in Table 2[link], forming a three-dimensional network (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 1.00 2.43 3.3867 (16) 161
C10—H10A⋯O2ii 0.99 2.45 3.4402 (17) 178
C12—H12B⋯Cl2iii 0.99 2.80 3.5299 (15) 131
C3—Cl1⋯Cg1iii 1.75 (1) 3.89 (1) 4.9389 (14) 117 (1)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl3⋯Cl2 3.4333 (5) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
O1⋯H6 2.43 2 − x, [{1\over 2}] + y, [{1\over 2}] − z
Cl1⋯H11B 2.99 x, [{1\over 2}] − y, [{1\over 2}] + z
Cl3⋯H10B 2.96 −1 + x, y, z
O2⋯Cl4 3.4606 (11) 1 − x, −y, −z
H10A⋯O2 2.45 2 − x, −y, −z
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the a-axis direction. C—H⋯O, C—H⋯Cl hydrogen bonds and C—Cl⋯π inter­actions (Table 1[link]) are represented by dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 3]
Figure 3
Crystal packing viewed along the b axis, with inter­molecular inter­actions shown as in Fig. 2[link]. H atoms not involved in hydrogen bonding are omitted for clarity.

In order to visualize the inter­molecular inter­actions (Table 2[link]) in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net]). Fig. 4[link] shows the Hirshfeld surface plotted over dnorm in the range −0.1922 to 1.7149 a.u. The red spots on the Hirshfeld surface represent C—H⋯O and C—H⋯Cl contacts. Fig. 5[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: Cl⋯H/H⋯Cl (33.6%; Fig. 5[link]b), Cl⋯Cl (29.3%; Fig. 5[link]c), O⋯H/H⋯O (13.9%; Fig. 5[link]d), Cl⋯O/O⋯Cl (11.4%; Fig. 5[link]e) and H⋯H (7.0%; Fig. 5[link]f) inter­actions. The remaining other weak inter­actions (contribution percentages) are Cl⋯C/C⋯Cl (3.2%), Cl⋯N/N⋯Cl (1.4%) and C⋯H/H⋯C (0.2%).

[Figure 4]
Figure 4
A view of the Hirshfeld surface for the title compound, plotted over dnorm in the range −0.1922 to 1.7149 a.u. together with inter­acting neighbouring mol­ecules.
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) Cl⋯Cl and (d) O⋯H/H⋯O, (e) Cl⋯O/O⋯Cl and (f) H⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Four related compounds containing the methano­iso­indole moiety were found in the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): 4,5,6,7,8,8-hexa­chloro-2-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (refcode COHTUR: Manohar et al., 2019[Manohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562-564.]), 5-hy­droxy-4-(4-methyl­phen­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-en-3-one (QOVCAH: Aslantaş et al., 2015[Aslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). Acta Cryst. E71, o143-o144.]), (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (MOJFUP: Peloquin et al., 2019[Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153-1157.]) and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (MOJ­GAW: Peloquin et al., 2019[Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153-1157.]).

In COHTUR, the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-di­meth­oxy­phenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal of COHTUR, weak C—H⋯O hydrogen bonds link the mol­ecules, forming a cyclic R44(48) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The mol­ecules are stacked in layers held together by offset ππ inter­actions, with a centroid–centroid distance of 3.564 (1) Å for the pyrrolidine and benzene rings. There is also an inter­molecular C—Cl⋯π inter­action present.

In the crystal of QOVCAH, the cyclo­hexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The mol­ecular structure is stabilized by a short intra­molecular C—H⋯O contact. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

The compound MOJFUP crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules, A and B, in the asymmetric unit, and MOJGAW in the monoclinic space group P21/n with one mol­ecule per asymmetric unit. The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In MOJFUP, steric inter­actions between the ortho-fluorine atoms and the carbonyl oxygen atoms prevents free rotation about the nitro­gen–ipso-carbon bond, which is evidenced by separate 19F NMR peaks in solution for the ortho-F atoms. In mol­ecule A, the 2,3,5,6-tetra­fluoro­pyridine plane is rotated by 58.05 (5)° relative to the pyrrolidine plane and the corresponding dihedral angle for mol­ecule B is 61.65 (7)°. The addition of an oxygen atom between N and C in the bridge between the ring systems in MOJGAW alleviates this steric restriction and only one 19F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the 2,3,5,6-tetra­fluoro­pyridine and pyrrolidine planes in the crystal of MOJGAW of 84.01 (5)° is larger than that found in MOJFUP.

The main directional inter­actions in the crystal structures of MOJFUP and MOJGAW are of the type C—H⋯O, C—H⋯F, C—O⋯π, and C—F⋯π. In both compounds, weak hydrogen-bonding inter­actions are observed for the hydrogen atom(s) α to the carbonyl groups (C—H⋯O and C— H⋯F in MOJFUP; C—H⋯O in MOJGAW) and the olefinic hydrogen atoms (C—H⋯F in MOJFUP; C—H⋯O in MOJGAW). A weak inter­action is also observed for a bridge hydrogen atom in MOJGAW, C—H⋯F. The packing is further aided by π-inter­actions with the pyridine ring in MOJGAW.

5. Synthesis and crystallization

To 741 mg (2 mmol) of (3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-3a,4,7,7a-tetra­hydro-4,7-methano­isobenzo­furan-1,3-dione were added 0.12 mL (1 mmol) of hexane-1,6-di­amine and 25 mL of di­methyl­formamide, and the mixture was stirred for 6 h at 373 K. Then, the reaction mixture was cooled to room temperature and poured into cold water. The obtained precipitate was filtered off, washed with water, recrystallized from chloro­form and dried under vacuum. Yellow powder, yield 92%, m.p 404–405 K (decomp.). Analysis calculated for C24H16Cl12N2O4 (Mr = 821.80): C 35.08, H 1.96, N 3.41%; found: C 35.03, H 2.00, N 3.35%. ESI–MS: m/z: 822.9 [Mr + H]+. 1H NMR (300.130 MHz) in acetone-d6, inter­nal TMS, δ (ppm): 1.29–3.43 (12H, 6CH2), 3.86 (4H, CH). 13C{1H} NMR (75.468 MHz, acetone-d6). δ: 25.8 (2CH2), 27.2 (2CH2), 39.3 (4C–H), 52.0 (2CH2), 79.3 (4CCl), 104.4 (2CCl2), 130.9 (2ClC=CCl) and 170.2 (4C=O). Off-white prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a chloro­form–hexane (1/1, v/v) mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 (methyl­ene) and 1.00 Å (methine), with Uiso(H) = 1.2Ueq(C). Two reflections (100 and 002), affected by the incident beam-stop, and owing to poor agreement between observed and calculated intensities, two outliers (136 and 118) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C24H16Cl12N2O4
Mr 821.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.9549 (3), 10.5908 (4), 16.6043 (6)
β (°) 103.499 (1)
V3) 1531.24 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.12
Crystal size (mm) 0.34 × 0.32 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.684, 0.736
No. of measured, independent and observed [I > 2σ(I)] reflections 12567, 3403, 3141
Rint 0.023
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.04
No. of reflections 3403
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(3aR,4S,7S,7aS)-4,5,6,7,8,8-Hexachloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione top
Crystal data top
C24H16Cl12N2O4F(000) = 820
Mr = 821.79Dx = 1.782 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9549 (3) ÅCell parameters from 7701 reflections
b = 10.5908 (4) Åθ = 2.3–27.2°
c = 16.6043 (6) ŵ = 1.12 mm1
β = 103.499 (1)°T = 150 K
V = 1531.24 (10) Å3Block, colourless
Z = 20.34 × 0.32 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
3141 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.2°, θmin = 2.3°
Tmin = 0.684, Tmax = 0.736h = 811
12567 measured reflectionsk = 1313
3403 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.7545P]
where P = (Fo2 + 2Fc2)/3
3403 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81506 (4)0.38645 (3)0.33748 (2)0.02092 (8)
Cl20.65657 (4)0.08552 (3)0.31569 (2)0.02036 (8)
Cl30.45141 (4)0.28198 (3)0.24334 (2)0.01993 (8)
Cl40.48797 (4)0.05628 (3)0.10287 (2)0.02218 (8)
Cl50.75019 (4)0.52267 (3)0.15453 (2)0.02455 (9)
Cl60.55737 (5)0.31532 (4)0.00843 (2)0.02966 (9)
O11.10843 (11)0.32935 (10)0.22625 (6)0.0224 (2)
O20.83761 (12)0.05643 (10)0.03360 (6)0.0220 (2)
N10.99701 (12)0.19567 (11)0.11936 (7)0.0156 (2)
C11.01234 (15)0.25177 (13)0.19624 (8)0.0152 (3)
C20.88902 (15)0.19800 (12)0.23555 (8)0.0139 (2)
H20.9355860.1538770.2887240.017*
C30.76483 (15)0.29560 (12)0.24743 (8)0.0142 (2)
C40.62421 (15)0.20595 (12)0.24022 (8)0.0142 (2)
C50.63197 (15)0.15971 (12)0.15208 (8)0.0140 (2)
C60.79769 (15)0.10488 (12)0.17088 (8)0.0142 (2)
H60.8011420.0171910.1935670.017*
C70.87382 (15)0.11223 (12)0.09843 (8)0.0153 (3)
C80.71121 (15)0.36779 (12)0.16671 (8)0.0153 (3)
C90.63396 (15)0.28797 (13)0.11034 (8)0.0157 (3)
C101.09720 (16)0.21915 (14)0.06241 (8)0.0200 (3)
H10A1.1126150.1392470.0344880.024*
H10B1.1987630.2483830.0944450.024*
C111.02959 (17)0.31780 (14)0.00267 (8)0.0213 (3)
H11A1.0812930.3111530.0490940.026*
H11B0.9193120.2991000.0248050.026*
C121.04563 (18)0.45260 (13)0.03013 (8)0.0223 (3)
H12A1.0108490.4559250.0824770.027*
H12B1.1554270.4767940.0427810.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02260 (17)0.01966 (17)0.01950 (16)0.00008 (13)0.00287 (13)0.00824 (12)
Cl20.02766 (18)0.01698 (16)0.01742 (15)0.00127 (13)0.00727 (13)0.00505 (12)
Cl30.01596 (15)0.01944 (17)0.02574 (17)0.00286 (12)0.00760 (13)0.00038 (12)
Cl40.01995 (16)0.02252 (18)0.02291 (16)0.00783 (13)0.00266 (13)0.00581 (13)
Cl50.02410 (18)0.01230 (16)0.0374 (2)0.00025 (13)0.00750 (15)0.00650 (13)
Cl60.0340 (2)0.0339 (2)0.01635 (16)0.00063 (16)0.00359 (14)0.00900 (14)
O10.0162 (5)0.0248 (5)0.0257 (5)0.0038 (4)0.0037 (4)0.0082 (4)
O20.0253 (5)0.0215 (5)0.0197 (5)0.0021 (4)0.0061 (4)0.0076 (4)
N10.0153 (5)0.0151 (6)0.0165 (5)0.0019 (4)0.0043 (4)0.0011 (4)
C10.0124 (6)0.0151 (6)0.0168 (6)0.0048 (5)0.0008 (5)0.0006 (5)
C20.0146 (6)0.0121 (6)0.0139 (6)0.0031 (5)0.0008 (5)0.0012 (5)
C30.0147 (6)0.0129 (6)0.0145 (6)0.0014 (5)0.0021 (5)0.0018 (5)
C40.0153 (6)0.0118 (6)0.0154 (6)0.0020 (5)0.0037 (5)0.0016 (5)
C50.0144 (6)0.0128 (6)0.0138 (6)0.0016 (5)0.0015 (5)0.0002 (5)
C60.0163 (6)0.0116 (6)0.0142 (6)0.0007 (5)0.0023 (5)0.0003 (5)
C70.0163 (6)0.0117 (6)0.0177 (6)0.0035 (5)0.0036 (5)0.0000 (5)
C80.0135 (6)0.0129 (6)0.0200 (6)0.0024 (5)0.0049 (5)0.0037 (5)
C90.0146 (6)0.0173 (6)0.0146 (6)0.0036 (5)0.0021 (5)0.0049 (5)
C100.0189 (7)0.0217 (7)0.0220 (7)0.0003 (6)0.0100 (5)0.0032 (5)
C110.0262 (7)0.0211 (7)0.0172 (6)0.0055 (6)0.0067 (6)0.0023 (5)
C120.0274 (7)0.0209 (7)0.0178 (6)0.0054 (6)0.0037 (6)0.0022 (5)
Geometric parameters (Å, º) top
Cl1—C31.7464 (13)C3—C41.5592 (18)
Cl2—C41.7639 (13)C4—C51.5599 (17)
Cl3—C41.7558 (13)C5—C91.5269 (18)
Cl4—C51.7432 (13)C5—C61.5559 (18)
Cl5—C81.6989 (14)C6—C71.5168 (18)
Cl6—C91.6958 (13)C6—H61.0000
O1—C11.2098 (17)C8—C91.3293 (19)
O2—C71.2042 (16)C10—C111.523 (2)
N1—C11.3855 (16)C10—H10A0.9900
N1—C71.3927 (17)C10—H10B0.9900
N1—C101.4686 (17)C11—C121.5228 (19)
C1—C21.5186 (19)C11—H11A0.9900
C2—C61.5442 (17)C11—H11B0.9900
C2—C31.5642 (17)C12—C12i1.515 (3)
C2—H21.0000C12—H12A0.9900
C3—C81.5203 (17)C12—H12B0.9900
C1—N1—C7113.85 (11)C2—C6—C5103.10 (10)
C1—N1—C10125.21 (11)C7—C6—H6111.5
C7—N1—C10120.94 (11)C2—C6—H6111.5
O1—C1—N1125.37 (13)C5—C6—H6111.5
O1—C1—C2126.60 (12)O2—C7—N1124.52 (13)
N1—C1—C2108.03 (11)O2—C7—C6127.35 (12)
C1—C2—C6105.12 (10)N1—C7—C6108.13 (11)
C1—C2—C3114.59 (11)C9—C8—C3107.83 (11)
C6—C2—C3103.47 (10)C9—C8—Cl5128.16 (11)
C1—C2—H2111.1C3—C8—Cl5124.00 (10)
C6—C2—H2111.1C8—C9—C5107.78 (11)
C3—C2—H2111.1C8—C9—Cl6128.08 (11)
C8—C3—C498.94 (10)C5—C9—Cl6124.06 (10)
C8—C3—C2107.98 (10)N1—C10—C11111.81 (11)
C4—C3—C299.97 (10)N1—C10—H10A109.3
C8—C3—Cl1116.29 (9)C11—C10—H10A109.3
C4—C3—Cl1116.31 (9)N1—C10—H10B109.3
C2—C3—Cl1115.05 (9)C11—C10—H10B109.3
C3—C4—C592.94 (9)H10A—C10—H10B107.9
C3—C4—Cl3114.83 (9)C12—C11—C10113.62 (11)
C5—C4—Cl3113.84 (9)C12—C11—H11A108.8
C3—C4—Cl2112.95 (9)C10—C11—H11A108.8
C5—C4—Cl2113.80 (9)C12—C11—H11B108.8
Cl3—C4—Cl2108.08 (7)C10—C11—H11B108.8
C9—C5—C6108.14 (10)H11A—C11—H11B107.7
C9—C5—C498.88 (10)C12i—C12—C11113.19 (14)
C6—C5—C4100.27 (9)C12i—C12—H12A108.9
C9—C5—Cl4115.59 (9)C11—C12—H12A108.9
C6—C5—Cl4115.22 (9)C12i—C12—H12B108.9
C4—C5—Cl4116.55 (9)C11—C12—H12B108.9
C7—C6—C2104.81 (10)H12A—C12—H12B107.8
C7—C6—C5113.96 (10)
C7—N1—C1—O1178.12 (13)C3—C2—C6—C50.55 (12)
C10—N1—C1—O11.4 (2)C9—C5—C6—C747.46 (14)
C7—N1—C1—C22.31 (14)C4—C5—C6—C7150.44 (11)
C10—N1—C1—C2178.13 (11)Cl4—C5—C6—C783.59 (12)
O1—C1—C2—C6179.44 (13)C9—C5—C6—C265.53 (12)
N1—C1—C2—C61.01 (13)C4—C5—C6—C237.45 (12)
O1—C1—C2—C366.54 (17)Cl4—C5—C6—C2163.42 (9)
N1—C1—C2—C3113.90 (12)C1—N1—C7—O2177.78 (13)
C1—C2—C3—C847.50 (14)C10—N1—C7—O21.8 (2)
C6—C2—C3—C866.37 (12)C1—N1—C7—C62.63 (15)
C1—C2—C3—C4150.38 (10)C10—N1—C7—C6177.79 (11)
C6—C2—C3—C436.51 (11)C2—C6—C7—O2178.64 (13)
C1—C2—C3—Cl184.24 (12)C5—C6—C7—O266.68 (18)
C6—C2—C3—Cl1161.89 (9)C2—C6—C7—N11.79 (13)
C8—C3—C4—C552.32 (10)C5—C6—C7—N1113.75 (12)
C2—C3—C4—C557.86 (10)C4—C3—C8—C935.34 (13)
Cl1—C3—C4—C5177.63 (9)C2—C3—C8—C968.27 (13)
C8—C3—C4—Cl365.69 (11)Cl1—C3—C8—C9160.66 (10)
C2—C3—C4—Cl3175.87 (8)C4—C3—C8—Cl5145.71 (10)
Cl1—C3—C4—Cl359.62 (12)C2—C3—C8—Cl5110.68 (11)
C8—C3—C4—Cl2169.74 (9)Cl1—C3—C8—Cl520.39 (15)
C2—C3—C4—Cl259.57 (11)C3—C8—C9—C50.64 (14)
Cl1—C3—C4—Cl264.95 (11)Cl5—C8—C9—C5179.54 (10)
C3—C4—C5—C951.85 (10)C3—C8—C9—Cl6176.19 (10)
Cl3—C4—C5—C966.99 (11)Cl5—C8—C9—Cl62.7 (2)
Cl2—C4—C5—C9168.55 (9)C6—C5—C9—C869.69 (13)
C3—C4—C5—C658.55 (10)C4—C5—C9—C834.26 (13)
Cl3—C4—C5—C6177.40 (9)Cl4—C5—C9—C8159.47 (10)
Cl2—C4—C5—C658.15 (11)C6—C5—C9—Cl6107.30 (11)
C3—C4—C5—Cl4176.38 (9)C4—C5—C9—Cl6148.75 (10)
Cl3—C4—C5—Cl457.54 (12)Cl4—C5—C9—Cl623.54 (15)
Cl2—C4—C5—Cl466.92 (11)C1—N1—C10—C1196.26 (15)
C1—C2—C6—C70.47 (13)C7—N1—C10—C1183.27 (15)
C3—C2—C6—C7120.07 (11)N1—C10—C11—C1276.43 (15)
C1—C2—C6—C5119.99 (10)C10—C11—C12—C12i169.86 (15)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1ii1.002.433.3867 (16)161
C10—H10A···O2iii0.992.453.4402 (17)178
C12—H12B···Cl2iv0.992.803.5299 (15)131
C3—Cl1···Cg1iv1.75 (1)3.89 (1)4.9389 (14)117 (1)
Symmetry codes: (ii) x+2, y1/2, z+1/2; (iii) x+2, y, z; (iv) x+2, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl3···Cl23.4333 (5)1 - x, 1/2 + y, 1/2 - z
O1···H62.432 - x, 1/2 + y, 1/2 - z
Cl1···H11B2.99x, 1/2 - y, 1/2 + z
Cl3···H10B2.96-1 + x, y, z
O2···Cl43.4606 (11)1 - x, -y, -z
H10A···O22.452 - x, -y, -z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, AIA and MA; methodology, AIA and ZA; investigation, AIA, ZA, and SM; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and SM; visualization, AIA and ZA; funding acquisition, AIA; resources, AIA, ZA and SHM; supervision, MA and SM.

Funding information

This work was supported by the Institute of Polymer Materials, National Academy of Sciences of Azerbaijan.

References

First citationAsgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). Acta Cryst. E71, o143–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationManohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562–564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationPeloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153–1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.https://hirshfeldsuface.net  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds