research communications
H-1,5-benzodiazepine
Hirshfeld surface analysis and interaction energy calculation of 4-(furan-2-yl)-2-(6-methyl-2,4-dioxopyran-3-ylidene)-2,3,4,5-tetrahydro-1aLaboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, BP 1014, Rabat, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dFaculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen, and eApplied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
*Correspondence e-mail: Bushraamer2014@gmail.com
The title compound {systematic name: (S,E)-3-[4-(furan-2-yl)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-2-ylidene]-6-methyl-2H-pyran-2,4(3H)-dione}, C19H16N2O4, is constructed from a benzodiazepine ring system linked to furan and pendant dihydropyran rings, where the benzene and furan rings are oriented at a dihedral angle of 48.7 (2)°. The pyran ring is modestly non-planar [largest deviation of 0.029 (4) Å from the least-squares plane] while the tetrahydrodiazepine ring adopts a boat conformation. The rotational orientation of the pendant dihydropyran ring is partially determined by an intramolecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bond. In the crystal, layers of molecules parallel to the bc plane are formed by N—HDiazp⋯ODhydp hydrogen bonds and slipped π–π stacking interactions. The layers are connected by additional slipped π–π stacking interactions. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (46.8%), H⋯O/O⋯H (23.5%) and H⋯C/C⋯H (15.8%) interactions, indicating that van der Waals interactions are the dominant forces in the crystal packing. Computational chemistry indicates that in the crystal the N—H⋯O hydrogen-bond energy is 57.5 kJ mol−1.
Keywords: crystal structure; pyrandione; furan; tetrahydrobenzodiazepine; hydrogen bond; π-stacking.
CCDC reference: 2097593
1. Chemical context
1,5-Benzodiazepine derivatives are an important class of nitrogen-containing et al., 2017), antitubercular (Singh et al., 2017), antimicrobial (An et al., 2016) and anticonvulsant agents (Jyoti & Mithlesh, 2013). Many synthetic methodologies have been developed to access this type of compound (Sebhaoui et al., 2017; Chkirate et al., 2018).
because of their potent biological activities, acting as antidepressant (SharmaThe present study continues the investigation of 1,5-benzodiazepine derivatives recently published by our team (El Ghayati et al., 2019, 2021; Essaghouani et al., 2016, 2017). In this context, we report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies of the title compound, (I).
2. Structural commentary
The O1/C10–C14 pyran ring is not planar and a puckering analysis (Cremer & Pople, 1975) yielded the parameters Q = 0.082 (4) Å, θ = 114 (3)° and φ = 70 (3)°, thus indicating it adopts a slightly twisted with C10 at the tip of the flap. In the seven-membered ring, N1 and N2 are displaced from the C1–C6 plane by 0.159 (6) and 0.158 (6) Å, respectively, in the direction away from C8 (Fig. 1). A puckering analysis of the seven-membered ring gave the parameters Q(2) = 0.915 (4) Å, Q(3) = 0.187 (4) Å, φ(2) = 38.9 (2)° and φ(3) = 156.3 (12)° [total puckering amplitude Q = 0.933 (4) Å]. This ring adopts a boat conformation. The mean plane of the O1/C10–C14 ring is inclined to that of the C1–C6 ring by 34.8 (1)°, while the C1–C6 and O4/C16–C19 rings make a dihedral angle of 48.7 (2)°. The orientation of the O1/C10–C14 ring is partially determined by an intramolecular N1—H1⋯O2 hydrogen bond (Table 1, Fig. 1). All bond lengths and angles in the molecule of (I) are in the expected ranges.
3. Supramolecular features
In the crystal, N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds (Table 1) form helical chains of molecules extending along the b-axis direction. The chains are reinforced by slipped π–π stacking interactions between furan and pyran rings within the chains [centroid⋯centroid(−x + 1, y + , −z + ) distance = 3.610 (2) Å, dihedral angle = 4.4 (2)°, slippage = 1.14 Å]. The chains are connected into layers parallel to the bc plane by analogous π–π stacking interactions (Fig. 2) [centroid⋯centroid(−x + 1, y − , −z + ) distance = 3.610 (2) Å, dihedral angle = 4.4 (2)°, slippage = 1.38 Å]. The layers are connected by slipped π–π stacking interactions between inversion-related C1–C6 rings [centroid⋯centroid (−x + 1, −y, −z + 1) distance = 3.690 (2) Å, slippage = 1.47 Å] (Fig. 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4a), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O3 and hydrogen atom H2A indicate their roles as the respective donor and/or acceptor atoms in hydrogen bonding. They also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4b. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles. Fig. 4c clearly suggests that there are π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯N/N⋯H, C⋯ O/O⋯C and O⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 5b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 2) contributing 46.8% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.07 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (23.5% contribution to the HS,Fig. 5c; Table 2) have the tips at de + di = 2.09 Å. In the absence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 5d, 15.8%) have tips at de + di = 2.95 Å. The C⋯C contacts (Fig. 5e, 7.4%) have an arrow-shaped distribution of points with its tip at de = di = 1.65 Å. The H⋯N/N⋯H contacts (Fig. 5f, 2.8%) have tips at de + di = 2.78 Å. Finally, the C⋯O/O⋯C (Fig. 5g) and O⋯O (Fig. 5h) contacts (2.4% and 1.3% contributions, respectively, to the HS) appear with tips at de + di = 3.50 Å and de = di = 1.73 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C interactions in Fig. 6a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, and H⋯C/C⋯H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The hydrogen bonding interaction energy for the N2—H2A⋯O3 hydrogen bond was calculated (in kJ mol−1) as −32.6 (Eele), −7.4 (Epol), −60.8 (Edis), 57.3 (Erep) and −57.5 (Etot).
6. Database survey
A search of the Cambridge Structural Database (CSD, updated 29 May 2021; Groom et al., 2016) for 2,3,4,5-tetrahydro-1Hbenzo[b][1,4] diazepines substituted at the 2- and 4-positions gave a substantial number of hits with seven deemed closely similar to the title molecule (Fig. 7). These are: A (Lal et al., 2013), B (Siddiqui & Siddiqui, 2020), C with R = 4-ClC6H4, thiophene, 3,4-(MeO)C6H3 and R′ = 6- methyl-2H-pyran-2,4-(3H)-dione as well as R = 6-methyl-2H- pyran-2,4-(3H)-dione and R′ = 3-BrC6H4 (Faidallah et al., 2015) and D (Wu & Wang, 2020) (Fig. 7). All have the tetrahydrodiazepine ring adopting a boat conformation with puckering amplitudes in the range 0.702 (2) Å (for A) to 0.957 (2) Å (for C, R = thiophene). The dihedral angles between the mean planes of the benzo rings and those of the ring-containing substituents on the seven-membered ring vary considerably, likely due to packing considerations as the steric bulk of these groups differ markedly.
7. Synthesis and crystallization
To a suspension of 3-[1-(2-aminophenylimino)ethyl]-4-hydroxy-6-methylpyran-2-one (4 mmol) in ethanol (40 ml) were added 1.5 equivalents of furan-2-carboxaldehyde and four drops of trifluoroacetic acid (TFA). The mixture was refluxed for 3 h. Cooling to room temperature induced the precipitation of a yellow solid, which was filtered off, and then washed with 20 ml of cold ethanol. Crystals suitable for X-ray analysis were obtained by recrystallization of the bulk from ethanol solution to afford colourless crystals (yield: 75%).
8. Refinement
Crystal, data collection and . Inspection of the data with CELL_NOW (Sheldrick, 2009) revealed that the crystal under investigation was twinned by a 180° rotation about the a* axis with a subsequently refined 78:22 ratio of the two twin components. The full two-component reflection file (HKLF-5 format) was used for the final Hydrogen atoms attached to carbon were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with Uiso(H) = 1.2–1.5Ueq(C). Those attached to nitrogen were restrained to a target bond length of 0.91 Å using the DFIX instruction in SHELXL. The displacement ellipsoids of the O1/C10–C14 ring suggest a possible slight disorder in this group, but it does not appear large enough to model with alternate locations of the atoms.
details are presented in Table 3
|
Supporting information
CCDC reference: 2097593
https://doi.org/10.1107/S2056989021007441/wm5612sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989021007441/wm5612Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007441/wm5612Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007441/wm5612Isup4.cml
Data collection: APEX3 (Bruker, 2020); cell
SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C19H16N2O4 | F(000) = 704 |
Mr = 336.34 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0111 (8) Å | Cell parameters from 9980 reflections |
b = 11.0123 (13) Å | θ = 2.7–28.4° |
c = 20.493 (2) Å | µ = 0.10 mm−1 |
β = 96.202 (5)° | T = 150 K |
V = 1573.0 (3) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.22 × 0.11 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 5201 independent reflections |
Radiation source: fine-focus sealed tube | 4007 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 28.5°, θmin = 2.7° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = 0→14 |
Tmin = 0.97, Tmax = 0.99 | l = 0→27 |
5201 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.079 | Hydrogen site location: mixed |
wR(F2) = 0.214 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0648P)2 + 2.9838P] where P = (Fo2 + 2Fc2)/3 |
5201 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.54 e Å−3 |
2 restraints | Δρmin = −0.30 e Å−3 |
Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 20 sec/frame. Analysis of 2110 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.91 0.01 instruction. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.8749 (4) | 0.5209 (2) | 0.31078 (12) | 0.0307 (6) | |
O2 | 0.7779 (4) | 0.3547 (3) | 0.48140 (13) | 0.0386 (7) | |
O3 | 0.8042 (4) | 0.3592 (3) | 0.25076 (12) | 0.0348 (7) | |
O4 | 0.6845 (5) | −0.1158 (3) | 0.23160 (17) | 0.0516 (9) | |
N1 | 0.7413 (5) | 0.1528 (3) | 0.42168 (15) | 0.0309 (7) | |
H1 | 0.750 (7) | 0.206 (3) | 0.4557 (16) | 0.052 (14)* | |
N2 | 0.4861 (5) | 0.0341 (3) | 0.32311 (16) | 0.0325 (8) | |
H2A | 0.381 (5) | −0.006 (4) | 0.305 (2) | 0.066 (17)* | |
C1 | 0.5648 (5) | −0.0283 (3) | 0.37991 (18) | 0.0293 (8) | |
C2 | 0.5022 (6) | −0.1448 (4) | 0.3935 (2) | 0.0346 (9) | |
H2 | 0.417357 | −0.185984 | 0.361639 | 0.042* | |
C3 | 0.5608 (7) | −0.2015 (4) | 0.4524 (2) | 0.0410 (11) | |
H3 | 0.515597 | −0.280802 | 0.460548 | 0.049* | |
C4 | 0.6847 (7) | −0.1440 (4) | 0.4995 (2) | 0.0422 (11) | |
H4 | 0.726016 | −0.183596 | 0.539729 | 0.051* | |
C5 | 0.7479 (6) | −0.0280 (4) | 0.48747 (19) | 0.0350 (9) | |
H5 | 0.831745 | 0.012667 | 0.519869 | 0.042* | |
C6 | 0.6895 (6) | 0.0296 (3) | 0.42827 (18) | 0.0278 (8) | |
C7 | 0.7802 (5) | 0.2070 (3) | 0.36688 (18) | 0.0270 (8) | |
C8 | 0.8001 (6) | 0.1246 (4) | 0.30983 (19) | 0.0342 (9) | |
H8A | 0.873700 | 0.051597 | 0.325464 | 0.041* | |
H8B | 0.873351 | 0.167001 | 0.277963 | 0.041* | |
C9 | 0.6076 (6) | 0.0860 (4) | 0.27573 (19) | 0.0322 (9) | |
H9 | 0.541795 | 0.160745 | 0.256997 | 0.039* | |
C10 | 0.8108 (5) | 0.3343 (3) | 0.36710 (17) | 0.0261 (8) | |
C11 | 0.8122 (5) | 0.4025 (3) | 0.42765 (18) | 0.0288 (8) | |
C12 | 0.8580 (5) | 0.5294 (3) | 0.42500 (18) | 0.0292 (8) | |
H12 | 0.864632 | 0.576254 | 0.464103 | 0.035* | |
C13 | 0.8913 (6) | 0.5830 (3) | 0.36913 (19) | 0.0290 (8) | |
C14 | 0.8277 (5) | 0.3984 (3) | 0.30673 (18) | 0.0264 (8) | |
C15 | 0.9490 (7) | 0.7108 (4) | 0.3614 (2) | 0.0390 (10) | |
H15A | 0.967050 | 0.750057 | 0.404507 | 0.058* | |
H15B | 0.848667 | 0.753521 | 0.333246 | 0.058* | |
H15C | 1.069420 | 0.713570 | 0.341196 | 0.058* | |
C16 | 0.6325 (6) | 0.0022 (3) | 0.21928 (19) | 0.0305 (8) | |
C17 | 0.6236 (6) | 0.0268 (4) | 0.15511 (18) | 0.0382 (10) | |
H17 | 0.594168 | 0.102485 | 0.134101 | 0.046* | |
C18 | 0.6687 (7) | −0.0869 (5) | 0.1245 (2) | 0.0530 (14) | |
H18 | 0.671856 | −0.100553 | 0.078868 | 0.064* | |
C19 | 0.7044 (7) | −0.1673 (5) | 0.1713 (3) | 0.0563 (14) | |
H19 | 0.739039 | −0.249397 | 0.164714 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0372 (16) | 0.0320 (14) | 0.0233 (13) | −0.0023 (12) | 0.0052 (11) | 0.0010 (11) |
O2 | 0.0556 (18) | 0.0400 (16) | 0.0201 (13) | −0.0164 (14) | 0.0036 (12) | −0.0005 (12) |
O3 | 0.0434 (17) | 0.0393 (16) | 0.0213 (13) | 0.0028 (13) | 0.0017 (12) | −0.0026 (11) |
O4 | 0.063 (2) | 0.0425 (18) | 0.052 (2) | 0.0052 (16) | 0.0182 (17) | 0.0024 (16) |
N1 | 0.0393 (19) | 0.0303 (17) | 0.0230 (16) | −0.0078 (15) | 0.0023 (14) | −0.0018 (13) |
N2 | 0.0335 (19) | 0.0390 (19) | 0.0253 (16) | −0.0079 (15) | 0.0038 (14) | 0.0006 (14) |
C1 | 0.032 (2) | 0.032 (2) | 0.0263 (19) | −0.0001 (17) | 0.0106 (16) | −0.0033 (16) |
C2 | 0.040 (2) | 0.031 (2) | 0.034 (2) | −0.0042 (18) | 0.0112 (18) | −0.0050 (17) |
C3 | 0.057 (3) | 0.028 (2) | 0.042 (2) | −0.005 (2) | 0.022 (2) | 0.0029 (18) |
C4 | 0.055 (3) | 0.043 (2) | 0.031 (2) | 0.007 (2) | 0.013 (2) | 0.0119 (19) |
C5 | 0.039 (2) | 0.042 (2) | 0.0250 (19) | 0.0008 (19) | 0.0062 (17) | 0.0020 (17) |
C6 | 0.034 (2) | 0.0257 (18) | 0.0252 (18) | −0.0027 (16) | 0.0093 (15) | −0.0001 (15) |
C7 | 0.0247 (19) | 0.0323 (19) | 0.0238 (18) | −0.0049 (16) | 0.0020 (15) | −0.0009 (15) |
C8 | 0.041 (2) | 0.034 (2) | 0.030 (2) | −0.0044 (18) | 0.0093 (17) | −0.0025 (17) |
C9 | 0.038 (2) | 0.034 (2) | 0.0251 (19) | −0.0018 (18) | 0.0073 (16) | −0.0003 (16) |
C10 | 0.029 (2) | 0.0281 (18) | 0.0213 (17) | −0.0044 (15) | 0.0037 (15) | 0.0008 (14) |
C11 | 0.030 (2) | 0.034 (2) | 0.0218 (18) | −0.0079 (16) | 0.0009 (15) | −0.0001 (15) |
C12 | 0.036 (2) | 0.0288 (19) | 0.0227 (18) | −0.0055 (16) | 0.0021 (15) | −0.0031 (15) |
C13 | 0.030 (2) | 0.0299 (19) | 0.0277 (19) | −0.0011 (16) | 0.0040 (16) | −0.0011 (15) |
C14 | 0.0254 (19) | 0.0285 (19) | 0.0253 (18) | −0.0006 (15) | 0.0027 (15) | 0.0005 (15) |
C15 | 0.049 (3) | 0.034 (2) | 0.035 (2) | −0.004 (2) | 0.014 (2) | 0.0023 (18) |
C16 | 0.034 (2) | 0.0289 (19) | 0.0282 (19) | −0.0054 (17) | 0.0044 (16) | −0.0004 (16) |
C17 | 0.036 (2) | 0.056 (3) | 0.0219 (19) | 0.008 (2) | 0.0042 (17) | 0.0102 (18) |
C18 | 0.033 (3) | 0.090 (4) | 0.035 (2) | −0.003 (3) | 0.003 (2) | −0.026 (3) |
C19 | 0.048 (3) | 0.047 (3) | 0.078 (4) | −0.003 (2) | 0.025 (3) | −0.023 (3) |
O1—C13 | 1.372 (4) | C7—C10 | 1.419 (5) |
O1—C14 | 1.389 (4) | C7—C8 | 1.498 (5) |
O2—C11 | 1.267 (4) | C8—C9 | 1.513 (6) |
O3—C14 | 1.220 (4) | C8—H8A | 0.9900 |
O4—C16 | 1.366 (5) | C8—H8B | 0.9900 |
O4—C19 | 1.380 (6) | C9—C16 | 1.504 (5) |
N1—C7 | 1.326 (5) | C9—H9 | 1.0000 |
N1—C6 | 1.415 (5) | C10—C14 | 1.440 (5) |
N1—H1 | 0.912 (12) | C10—C11 | 1.449 (5) |
N2—C1 | 1.412 (5) | C11—C12 | 1.436 (5) |
N2—C9 | 1.474 (5) | C12—C13 | 1.331 (5) |
N2—H2A | 0.906 (12) | C12—H12 | 0.9500 |
C1—C2 | 1.393 (5) | C13—C15 | 1.477 (5) |
C1—C6 | 1.402 (5) | C15—H15A | 0.9800 |
C2—C3 | 1.382 (6) | C15—H15B | 0.9800 |
C2—H2 | 0.9500 | C15—H15C | 0.9800 |
C3—C4 | 1.381 (6) | C16—C17 | 1.338 (5) |
C3—H3 | 0.9500 | C17—C18 | 1.451 (7) |
C4—C5 | 1.383 (6) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | C18—C19 | 1.309 (7) |
C5—C6 | 1.391 (5) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
O2···C3i | 3.322 (5) | C3···C15v | 3.591 (6) |
O2···N1 | 2.537 (4) | C4···C6i | 3.387 (5) |
O2···C12ii | 3.282 (4) | C10···C18iii | 3.497 (6) |
O3···C9 | 3.372 (4) | C11···C17iii | 3.600 (5) |
O3···C8 | 2.856 (4) | C11···C18iii | 3.428 (5) |
O3···N2iii | 3.079 (4) | C12···C12ii | 3.541 (5) |
O4···N2 | 2.955 (5) | C12···C17iii | 3.589 (5) |
O4···C1 | 3.376 (5) | C14···C16iii | 3.407 (5) |
O1···H2Aiii | 2.84 (4) | C1···H8A | 2.68 |
O2···H12ii | 2.74 | C2···H17vi | 2.91 |
O2···H3i | 2.62 | C3···H17vi | 2.93 |
O2···H1 | 1.72 (3) | C6···H8A | 2.59 |
O3···H9 | 2.87 | C11···H1 | 2.28 (3) |
O3···H2Aiii | 2.20 (4) | C14···H2Aiii | 2.79 (4) |
H15C···O3iv | 2.70 | C14···H8B | 2.64 |
O3···H2iii | 2.68 | H2···H2A | 2.29 |
O3···H8B | 2.23 | H2···H17vi | 2.33 |
O4···H8A | 2.88 | H3···H17vi | 2.38 |
O4···H15Bv | 2.70 | H5···H1 | 2.55 |
N1···N2 | 2.865 (4) | H12···H15A | 2.42 |
N2···H19iii | 2.89 | ||
C13—O1—C14 | 122.3 (3) | C16—C9—C8 | 110.8 (3) |
C16—O4—C19 | 106.0 (4) | N2—C9—H9 | 107.3 |
C7—N1—C6 | 126.2 (3) | C16—C9—H9 | 107.3 |
C7—N1—H1 | 111 (3) | C8—C9—H9 | 107.3 |
C6—N1—H1 | 123 (3) | C7—C10—C14 | 120.5 (3) |
C1—N2—C9 | 122.0 (3) | C7—C10—C11 | 120.1 (3) |
C1—N2—H2A | 109 (3) | C14—C10—C11 | 119.2 (3) |
C9—N2—H2A | 115 (3) | O2—C11—C12 | 120.1 (3) |
C2—C1—C6 | 117.6 (4) | O2—C11—C10 | 123.0 (3) |
C2—C1—N2 | 120.6 (4) | C12—C11—C10 | 116.9 (3) |
C6—C1—N2 | 121.3 (3) | C13—C12—C11 | 121.7 (3) |
C3—C2—C1 | 121.4 (4) | C13—C12—H12 | 119.2 |
C3—C2—H2 | 119.3 | C11—C12—H12 | 119.2 |
C1—C2—H2 | 119.3 | C12—C13—O1 | 121.5 (3) |
C4—C3—C2 | 120.6 (4) | C12—C13—C15 | 126.2 (4) |
C4—C3—H3 | 119.7 | O1—C13—C15 | 112.3 (3) |
C2—C3—H3 | 119.7 | O3—C14—O1 | 114.0 (3) |
C3—C4—C5 | 119.3 (4) | O3—C14—C10 | 128.3 (3) |
C3—C4—H4 | 120.4 | O1—C14—C10 | 117.7 (3) |
C5—C4—H4 | 120.4 | C13—C15—H15A | 109.5 |
C4—C5—C6 | 120.5 (4) | C13—C15—H15B | 109.5 |
C4—C5—H5 | 119.8 | H15A—C15—H15B | 109.5 |
C6—C5—H5 | 119.8 | C13—C15—H15C | 109.5 |
C5—C6—C1 | 120.8 (4) | H15A—C15—H15C | 109.5 |
C5—C6—N1 | 117.8 (3) | H15B—C15—H15C | 109.5 |
C1—C6—N1 | 121.1 (3) | C17—C16—O4 | 111.0 (4) |
N1—C7—C10 | 119.1 (3) | C17—C16—C9 | 129.4 (4) |
N1—C7—C8 | 115.7 (3) | O4—C16—C9 | 119.5 (3) |
C10—C7—C8 | 125.0 (3) | C16—C17—C18 | 105.1 (4) |
C7—C8—C9 | 112.2 (3) | C16—C17—H17 | 127.4 |
C7—C8—H8A | 109.2 | C18—C17—H17 | 127.4 |
C9—C8—H8A | 109.2 | C19—C18—C17 | 107.5 (4) |
C7—C8—H8B | 109.2 | C19—C18—H18 | 126.3 |
C9—C8—H8B | 109.2 | C17—C18—H18 | 126.3 |
H8A—C8—H8B | 107.9 | C18—C19—O4 | 110.4 (4) |
N2—C9—C16 | 113.1 (3) | C18—C19—H19 | 124.8 |
N2—C9—C8 | 110.8 (3) | O4—C19—H19 | 124.8 |
C9—N2—C1—C2 | −126.6 (4) | C7—C10—C11—O2 | −3.5 (6) |
C9—N2—C1—C6 | 61.5 (5) | C14—C10—C11—O2 | 172.3 (4) |
C6—C1—C2—C3 | −0.2 (6) | C7—C10—C11—C12 | 175.6 (3) |
N2—C1—C2—C3 | −172.4 (4) | C14—C10—C11—C12 | −8.6 (5) |
C1—C2—C3—C4 | −0.3 (6) | O2—C11—C12—C13 | −178.7 (4) |
C2—C3—C4—C5 | 0.8 (7) | C10—C11—C12—C13 | 2.2 (6) |
C3—C4—C5—C6 | −0.8 (6) | C11—C12—C13—O1 | 3.1 (6) |
C4—C5—C6—C1 | 0.4 (6) | C11—C12—C13—C15 | −176.7 (4) |
C4—C5—C6—N1 | 173.1 (4) | C14—O1—C13—C12 | −1.7 (6) |
C2—C1—C6—C5 | 0.1 (5) | C14—O1—C13—C15 | 178.1 (3) |
N2—C1—C6—C5 | 172.2 (4) | C13—O1—C14—O3 | 174.5 (3) |
C2—C1—C6—N1 | −172.3 (3) | C13—O1—C14—C10 | −4.9 (5) |
N2—C1—C6—N1 | −0.2 (5) | C7—C10—C14—O3 | 6.4 (6) |
C7—N1—C6—C5 | 147.3 (4) | C11—C10—C14—O3 | −169.4 (4) |
C7—N1—C6—C1 | −40.0 (6) | C7—C10—C14—O1 | −174.3 (3) |
C6—N1—C7—C10 | 173.6 (4) | C11—C10—C14—O1 | 9.9 (5) |
C6—N1—C7—C8 | −10.1 (6) | C19—O4—C16—C17 | −1.4 (5) |
N1—C7—C8—C9 | 79.4 (4) | C19—O4—C16—C9 | −177.3 (4) |
C10—C7—C8—C9 | −104.5 (4) | N2—C9—C16—C17 | 135.7 (4) |
C1—N2—C9—C16 | 94.4 (4) | C8—C9—C16—C17 | −99.2 (5) |
C1—N2—C9—C8 | −30.7 (5) | N2—C9—C16—O4 | −49.3 (5) |
C7—C8—C9—N2 | −52.9 (4) | C8—C9—C16—O4 | 75.8 (5) |
C7—C8—C9—C16 | −179.3 (3) | O4—C16—C17—C18 | 1.8 (5) |
N1—C7—C10—C14 | −171.6 (4) | C9—C16—C17—C18 | 177.1 (4) |
C8—C7—C10—C14 | 12.4 (6) | C16—C17—C18—C19 | −1.4 (5) |
N1—C7—C10—C11 | 4.1 (6) | C17—C18—C19—O4 | 0.6 (6) |
C8—C7—C10—C11 | −171.9 (4) | C16—O4—C19—C18 | 0.5 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x, y−1, z; (vi) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.91 (1) | 1.72 (3) | 2.538 (4) | 148 (4) |
N2—H2A···O3vi | 0.91 (1) | 2.20 (2) | 3.079 (4) | 162 (5) |
Symmetry code: (vi) −x+1, y−1/2, −z+1/2. |
Acknowledgements
Authors' contributions are as follows. Conceptualization,MEH, SL, LEG and NKS; methodology, BA and MEH; investigation, MEH,JTM and TH; writing (original draft), JTM, TH and NKS; writing (review and editing of the manuscript), MEH, SL and LEG; visualization, NKS and EME; resources, EME and MEH; supervision, BA and NKS.
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
An, Y. S., Hao, Z. F., Zhang, X. J. & Wang, L. Z. (2016). Chem. Biol. Drug Des. 88, 110–121. CrossRef CAS PubMed Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2020). APEX3 and SAINT. Madison, WI. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl, 17, 1–27. CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
El Ghayati, L., Ramli, Y., Hökelek, T., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 94–98. Web of Science CSD CrossRef IUCr Journals Google Scholar
El Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al–Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270–289. CSD CrossRef CAS Google Scholar
Essaghouani, A., Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170120. Google Scholar
Essaghouani, A., Elmsellem, H., Boulhaoua, M., Ellouz, M., El Hafi, M., Sebbar, N. K., Essassi, E. M., Bouabdellaoui, M., Aouniti, A. & Hammouti, B. (2016). Pharma Chemica, 8, 347–355. CAS Google Scholar
Faidallah, H. M., Taib, L. A., Albeladi, S. N. A., Rahman, M. E. U., Al-Zahrani, F. A., Arshad, M. N. & Asiri, A. M. (2015). J. Chem. Res. 39, 502–508. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. Available at: https://dylan-jayatilaka.net/tonto Google Scholar
Jyoti, Y. & Mithlesh, P. D. (2013). Pharm. Sin. 4, 81–90. CAS Google Scholar
Lal, M., Basha, R. S., Sarkar, S. & Khan, A. T. (2013). Tetrahedron Lett. 54, 4264–4272. CSD CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057. Google Scholar
Sharma, R., Tilak, A., Thakur, R. N., Gangwar, S. S. & Sutar, R. C. (2017). World J. Pharm. Res. 6, 925–931. CAS Google Scholar
Sheldrick, G. M. (2009). TWINABS and CELL_NOW. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, S. & Siddiqui, Z. N. (2020). Nanoscale Advance 2, 4639–4651. CSD CrossRef CAS Google Scholar
Singh, G., Nayak, S. K. & Monga, V. (2017). Indian J. Heterocycl. Chem. 27, 143–149. CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H. T. & Wang, L. Z. (2020). New J. Chem. 44, 10428–10440. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.