research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of poly[bis­­[μ-3-(amino­meth­yl)pyridine-κ2N:N′]bis­(thio­cyanato-κN)manganese(II)]

crossmark logo

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ckrebs@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 June 2021; accepted 28 June 2021; online 2 July 2021)

The reaction of Mn(NCS)2 with a stoichiometric amount of 3-(amino­meth­yl)pyridine in ethanol led to the formation of the title compound, [Mn(NCS)2(C6H8N2)2]n, which is isotypic to its Zn, Co and Cd analogues. The manganese cation is located on a centre of inversion and is octa­hedrally coordinated in an all-trans configuration by two terminal N-bonded thio­cyanate anions as well as four 3-(amino­meth­yl)pyridine co-ligands, of which two coordinate with the pyridine N atom and two with the amino N atom. The 3-(amino­meth­yl)pyridine co-ligands connect the MnII cations into layers extending parallel to (10[\overline{1}]). These layers are further connected into a three-dimensional network by relatively strong inter­molecular N—H⋯S hydrogen bonding. Comparison of the experimental X-ray powder diffraction pattern with the calculated pattern on the basis of single-crystal data proves the formation of a pure crystalline phase. IR measurements showed the CN stretching vibration of the thio­cyanate anions at 2067 cm−1, which is in agreement with the presence of terminally N-bonded anionic ligands. TG–DTA measurements revealed that the title compound decomposes at about 500 K.

1. Chemical context

In contrast to other small-sized ligands such as azide or cyanide anions, thio­cyanate anions show many more coordination modes. Therefore, a variety of structures including discrete complexes (Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Małecki et al., 2011[Małecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746-753.]; Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]), dimers (Mautner et al., 2015[Mautner, F. A., Scherzer, M., Berger, C., Fischer, R. C., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20-26.]; Wei & Luo, 2010[Wei, R. & Luo, F. (2010). J. Coord. Chem. 63, 610-616.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]), chains (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]), layers (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.], 2017[Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.]) or in very rare cases three-dimensional networks (Suckert et al., 2017[Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.]) can be observed. This structural variability is further enhanced by isomerism, because for an octa­hedral coordination with three pairs of identical ligands, five different isomers exist, including the all-trans, all-cis and three different cis-cis-trans configurations. These features are found in compounds with structures where the metal cations are linked by pairs of anionic ligands into chains. The majority of compounds with μ-1,3-bridging thio­cyanate anions shows this behaviour. Depending on the actual metal coordination (all-trans or cis-cis-trans), linear or corrugated chains are observed (Jin et al., 2007[Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067-2074.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2020[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971-8982.]). Moreover, even for compounds with layered thio­cyanate structures, different networks are realized, in which the metal cations are linked exclusively by single anionic ligands or by both singly and doubly μ-1,3-bridging thio­cyanate anions. For less chalcophilic metal cations like MnII, FeII, CoII or NiII, the majority of compounds consist of structures with only terminally N-bonding thio­cyanate anions, because in this case this coordin­­ation is energetically favoured. With only mono-coordinating ligands this usually leads to the formation of discrete metal complexes with an octa­hedral coordination. If bridging co-ligands are used, chain structures can be realized and networks of higher dimensionality are available if additional μ-1,3-bridging thio­cyanate anions are present.

[Scheme 1]

Thio­cyanate coordination polymers are of inter­est not only because of their variable structural behaviour, but also because this ligand is able to mediate reasonable magnetic exchange. We and other groups have reported many new compounds in which the metal cations are linked by μ-1,3-bridging thio­cyanate anions into chains or layers (Werner et al., 2015[Werner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]; Bassey et al., 2020[Bassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. & Cliffe, M. J. (2020). Inorg. Chem. 59, 11627-11639.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]). In this context, we became inter­ested in 3-(amino­meth­yl)pyridine, because this ligand is able to link metal cations via the pyridine and the amino N atom. Surprisingly, with CoII we always obtained only one crystalline phase in which the CoII cations are coordinated by only terminally N-bonding thio­cyanate anions but linked into layers by the 3-(amino­meth­yl)pyridine co-ligands (Krebs et al., 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 428-432.]). In contrast to the CoII cation, the MnII cation is more chalcophilic and usually behaves like CdII, for which compounds with μ-1,3-bridging thio­cyanate anions are much easier to obtain. Therefore, we used Mn(NCS)2 in the present study. However, irrespective of the ratio between Mn(NCS)2 and 3-(amino­meth­yl)pyridine, we always obtained only one crystalline phase with compos­ition Mn(NCS)2(C6H8N2)2. Single-crystal structure analysis revealed isotypism with the CoII analogue reported recently (Krebs et al. 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 428-432.]). Comparison of the experimental X-ray powder diffraction pattern with the calculated pattern based on single-crystal data proved that a pure crystalline phase was obtained (see Fig. S1 in the supporting information); IR investigations revealed that the CN stretching vibration is observed at 2067 cm−1, in agreement with the presence of only terminally N-bound thio­cyanate anions (Fig. S2). TG–DTA measurements showed decomposition of the compound at about 500 K, which is accompanied by an endothermic event in the DTA curve (Fig. S3). The first decomposition step might be associated with the removal of the 3-(amino­meth­yl)pyridine co-ligand. On further heating, an exothermic signal is observed, which indicates the decomposition of the co-ligand.

2. Structural commentary

Mn(NCS)2(C6H8N2)2 is isotypic with its recently reported CdII, ZnII and CoII analogues (Neumann et al., 2017[Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.]; Krebs et al., 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 428-432.]). The asymmetric unit consists of one MnII cation that is located on a centre of inversion as well as one 3-(amino­meth­yl)pyridine co-ligand and one thio­cyanate anion (Fig. 1[link]). The MnII cation is octa­hedrally coordinated by the N atoms of four symmetry-equivalent 3-(amino­meth­yl)pyridine co-ligands and two symmetry-equivalent thio­cyanate anions. Two of these co-ligands coordinate through the pyridine N atom whereas the other two coordinate with the amino N atom. Each pair of identical donor atoms is in a trans-position (Fig. 1[link]). The Mn—N bond length to the negatively charged thio­cyanate N atom is significantly shorter than that to the 3-(amino­meth­yl)pyridine co-ligand; the Mn—N bond length to the pyridine N atom is significantly longer than that to the amino N atom of the 3-(amino­meth­yl)pyridine ligand (Table 1[link]). As expected, all Mn—N bond lengths are significantly longer and shorter, respectively, compared to the CoII and CdII analogues. The bond angles around MnII indicate a considerable distortion (Table 1[link]). This is also indicated by the mean octa­hedral quadratic elongation of 1.0013 and the octa­hedral angle variance of 0.8258 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The MnII cations are connected by bridging 3-(amino­meth­yl)pyridine ligands into chains, which are further linked into layers extending parallel to (10[\overline{1}]) by additional co-ligands (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.1955 (15) Mn1—N11 2.3154 (14)
Mn1—N12i 2.2901 (14)    
       
N1—Mn1—N1ii 180.0 N1ii—Mn1—N11 90.82 (5)
N1—Mn1—N12i 91.17 (6) N12i—Mn1—N11 89.52 (5)
N1—Mn1—N12iii 88.83 (6) N12iii—Mn1—N11 90.48 (5)
N1—Mn1—N11 89.18 (5) N1—Mn1—N11ii 90.82 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, -y+1, -z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The coordination of the MnII cation in the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (A) −x, −y + 1, −z, (B) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z, (C) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z.]
[Figure 2]
Figure 2
Crystal structure of the title compound in a view of a layer along the crystallographic a axis.

3. Supra­molecular features

The layers are linked into a three-dimensional network by inter­molecular N—H⋯S hydrogen bonds between the amino H atoms and the thio­cyanate S atoms (Fig. 3[link], Table 2[link]). The N—H⋯S angles indicate a relatively strong inter­action and the thio­cyanate S atom acts as an acceptor for two of these hydrogen bonds. There is also a C—H⋯S inter­action but the bonding angle is far from linearity, which points to a weak inter­action (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1iii 0.95 2.99 3.7264 (19) 136
N12—H12A⋯S1iv 0.91 2.81 3.7016 (16) 166
N12—H12B⋯S1v 0.91 2.66 3.5224 (15) 159
Symmetry codes: (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the crystallographic b axis. Inter­molecular N—H⋯S hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structure Database (CSD, version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) no Mn–3-(amino­meth­yl)pyridine compounds are reported but a few compounds based on Zn(NCS)2 and Cd(NCS)2 have been deposited. In all of the corresponding structures, the metal cations are octa­hedrally coordinated. This includes M(NCS)2[3-(amino­meth­yl)pyridine]2 (M = Cd, Zn; Neumann et al., 2017[Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.]; refcodes: QEKZEO and QEKYUD), which are isotypic to the title compound, as well as M(NCS)2[3-(amino­meth­yl)pyridine] (M = Cd, Zn; Neumann, et al. 2017[Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.]; refcodes: QEKZIS and QEKZAK). In the latter ZnII compound, dimers are observed in which two ZnII cations are connected by two 3-(amino­meth­yl)pyridine ligands. In the CdII compound, the metal cations are linked by μ-1,3-bridging thio­cyanate anions into chains that are connected into layers by the 3-(amino­meth­yl)pyridine ligands. This compound is the only one that contains μ-1,3-bridging thio­cyanate anions and which shows a cis-cis-trans coordination of the metal cations. There is also one solvate with the composition Cd(NCS)2[3-(amino­meth­yl)pyridine]2-tris­[3-(amino­meth­yl)pyridine] rep­orted in the CSD (refcode: QEKYOX; Neumann et al., 2017[Neumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904-1912.]). Finally, Co(NCS)2(3-(amino­meth­yl)pyridine)2, which is isotypic to the title compound, is also reported (Krebs et al., 2021[Krebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 428-432.]).

5. Synthesis and crystallization

Synthesis

Mn(NCS)2 and 3-(amino­meth­yl)pyridine were purchased from Alfa Aesar and all chemicals were used without further purification. Single crystals were obtained by reacting 1 mmol of Mn(NCS)2 (175.1 mg) with 1 mmol of 3-(amino­meth­yl)pyridine (108.1 mg) in 4 ml of ethanol. After approximately one week, light-brown crystals were obtained, which were suitable for single crystal X-ray analysis. For the synthesis of crystalline powders, the same amounts of reactants were stirred in 2 ml of ethanol for 1 d and the precipitate was filtered off and dried in air.

Elemental analysis calculated for C14H16N6MnS2: C 43.41%, H 4.16%, N 21.69%, S 16.55%; found: C 43.32%, H 4.11%, N 21.56, S 16.31%. IR: ν = 2971 (m), 2941 (w), 2928 (w), 2887 (s), 2875 (w), 2067 (s), 2023 (m), 1962(vw), 1861 (vw), 1595 (m), 1583 (w), 1480 (m), 1447 (m), 1426 (m), 1379 (w), 1361 (w), 1332 (w), 1274 (wv), 1244 (w), 1229 (w), 1189 (m), 1148 (w), 1124 (m), 1089 (m), 1048 (vs), 984 (s), 961 (m), 943 (w), 931 (m), 879 (m), 846 (w), 824 (w), 802 (m), 783 (m), 712 (s), 645 (s), 620 (m), 539 (s) cm−1.

Experimental details

The elemental analysis was performed using a EURO EA elemental analyzer fabricated by EURO VECTOR Instruments. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR spectrometer, control software: WINFIRST, from ATI Mattson. The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator. Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in a difference-Fourier map but were positioned with idealized geometry (N—H = 0.91 Å, C—H = 0.95–0.99 Å) and were refined in a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for amino H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Mn(NCS)2(C6H8N2S)2]
Mr 387.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 8.2157 (3), 12.2356 (5), 8.9601 (3)
β (°) 99.736 (3)
V3) 887.73 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.03 × 0.03 × 0.01
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED 32; Stoe, 2002[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.856, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 12559, 1939, 1755
Rint 0.040
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.14
No. of reflections 1939
No. of parameters 106
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: X-AREA (Stoe, 2002[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-AREA (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis[µ-3-(aminomethyl)pyridine-κ2N:N']bis(thiocyanato-κN)manganese(II)] top
Crystal data top
[Mn(NCS)2(C6H8N2S)2]F(000) = 398
Mr = 387.39Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2157 (3) ÅCell parameters from 12559 reflections
b = 12.2356 (5) Åθ = 2.8–27.0°
c = 8.9601 (3) ŵ = 0.99 mm1
β = 99.736 (3)°T = 200 K
V = 887.73 (6) Å3Block, light-brown
Z = 20.03 × 0.03 × 0.01 mm
Data collection top
Stoe IPDS-2
diffractometer
1755 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: numerical
(X-Shape and X-Red 32; Stoe, 2002)
θmax = 27.0°, θmin = 2.9°
Tmin = 0.856, Tmax = 0.980h = 1010
12559 measured reflectionsk = 1515
1939 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.2401P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1939 reflectionsΔρmax = 0.27 e Å3
106 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.0000000.5000000.0000000.02622 (11)
N10.20857 (19)0.56497 (13)0.09665 (18)0.0358 (3)
C10.3146 (2)0.62691 (14)0.10034 (19)0.0313 (4)
S10.46152 (6)0.71704 (4)0.10505 (6)0.04157 (14)
N110.14907 (18)0.52888 (12)0.24007 (16)0.0306 (3)
C110.1329 (2)0.46441 (15)0.3576 (2)0.0333 (4)
H110.0572400.4051680.3408620.040*
C120.2207 (2)0.47971 (15)0.5022 (2)0.0350 (4)
H120.2064480.4314580.5820800.042*
C130.3292 (2)0.56627 (15)0.5281 (2)0.0339 (4)
H130.3915680.5779490.6261570.041*
C140.3466 (2)0.63626 (14)0.40992 (19)0.0295 (3)
C150.2556 (2)0.61299 (14)0.2685 (2)0.0316 (3)
H150.2693450.6593370.1864480.038*
C160.4577 (2)0.73525 (14)0.4322 (2)0.0340 (4)
H16A0.5640730.7140740.4947630.041*
H16B0.4808240.7590480.3322620.041*
N120.38812 (18)0.82892 (11)0.50551 (17)0.0319 (3)
H12A0.3916350.8109860.6045710.038*
H12B0.2795890.8342010.4633450.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02752 (18)0.02188 (18)0.02836 (19)0.00181 (13)0.00218 (13)0.00086 (13)
N10.0343 (8)0.0370 (8)0.0371 (8)0.0054 (6)0.0086 (6)0.0015 (7)
C10.0330 (8)0.0321 (9)0.0291 (8)0.0047 (7)0.0060 (7)0.0012 (7)
S10.0355 (2)0.0368 (3)0.0526 (3)0.00815 (19)0.0079 (2)0.0034 (2)
N110.0327 (7)0.0273 (7)0.0305 (7)0.0022 (5)0.0019 (6)0.0013 (5)
C110.0362 (9)0.0276 (8)0.0361 (9)0.0047 (7)0.0063 (7)0.0024 (7)
C120.0424 (9)0.0305 (9)0.0326 (9)0.0020 (7)0.0074 (7)0.0022 (7)
C130.0396 (9)0.0322 (9)0.0291 (8)0.0000 (7)0.0039 (7)0.0021 (7)
C140.0302 (8)0.0250 (8)0.0333 (8)0.0008 (6)0.0054 (7)0.0033 (6)
C150.0359 (8)0.0269 (8)0.0313 (8)0.0010 (7)0.0038 (7)0.0012 (6)
C160.0348 (9)0.0281 (9)0.0389 (9)0.0027 (7)0.0061 (7)0.0043 (7)
N120.0334 (7)0.0253 (7)0.0368 (8)0.0023 (6)0.0048 (6)0.0017 (6)
Geometric parameters (Å, º) top
Mn1—N12.1955 (15)C12—C131.378 (3)
Mn1—N1i2.1955 (15)C12—H120.9500
Mn1—N12ii2.2901 (14)C13—C141.388 (2)
Mn1—N12iii2.2901 (14)C13—H130.9500
Mn1—N112.3154 (14)C14—C151.388 (2)
Mn1—N11i2.3154 (14)C14—C161.509 (2)
N1—C11.159 (2)C15—H150.9500
C1—S11.6406 (18)C16—N121.483 (2)
N11—C111.340 (2)C16—H16A0.9900
N11—C151.347 (2)C16—H16B0.9900
C11—C121.385 (3)N12—H12A0.9100
C11—H110.9500N12—H12B0.9100
N1—Mn1—N1i180.0C13—C12—H12120.6
N1—Mn1—N12ii91.17 (6)C11—C12—H12120.6
N1i—Mn1—N12ii88.83 (6)C12—C13—C14119.54 (17)
N1—Mn1—N12iii88.83 (6)C12—C13—H13120.2
N1i—Mn1—N12iii91.17 (6)C14—C13—H13120.2
N12ii—Mn1—N12iii180.0C15—C14—C13117.45 (16)
N1—Mn1—N1189.18 (5)C15—C14—C16120.37 (16)
N1i—Mn1—N1190.82 (5)C13—C14—C16122.17 (16)
N12ii—Mn1—N1189.52 (5)N11—C15—C14124.18 (16)
N12iii—Mn1—N1190.48 (5)N11—C15—H15117.9
N1—Mn1—N11i90.82 (5)C14—C15—H15117.9
N1i—Mn1—N11i89.18 (5)N12—C16—C14114.17 (14)
N12ii—Mn1—N11i90.48 (5)N12—C16—H16A108.7
N12iii—Mn1—N11i89.52 (5)C14—C16—H16A108.7
N11—Mn1—N11i180.0N12—C16—H16B108.7
C1—N1—Mn1152.67 (14)C14—C16—H16B108.7
N1—C1—S1178.57 (16)H16A—C16—H16B107.6
C11—N11—C15116.67 (15)C16—N12—Mn1iv120.72 (11)
C11—N11—Mn1122.20 (11)C16—N12—H12A107.1
C15—N11—Mn1121.12 (11)Mn1iv—N12—H12A107.1
N11—C11—C12123.38 (16)C16—N12—H12B107.1
N11—C11—H11118.3Mn1iv—N12—H12B107.1
C12—C11—H11118.3H12A—N12—H12B106.8
C13—C12—C11118.75 (17)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1iii0.952.993.7264 (19)136
N12—H12A···S1v0.912.813.7016 (16)166
N12—H12B···S1vi0.912.663.5224 (15)159
Symmetry codes: (iii) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x1/2, y+3/2, z+1/2.
 

Funding information

This project was supported by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (grant No. NA720/5-2).

References

First citationBassey, E. N., Paddison, J. A. M., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., Dutton, S. E., Grey, C. P. & Cliffe, M. J. (2020). Inorg. Chem. 59, 11627–11639.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 8971–8982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, C., Jess, I. & Näther, C. (2021). Acta Cryst. E77, 428–432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMałecki, J. G., Machura, B., Świtlicka, A., Groń, T. & Bałanda, M. (2011). Polyhedron, 30, 746–753.  Google Scholar
First citationMautner, F. A., Scherzer, M., Berger, C., Fischer, R. C., Vicente, R. & Massoud, S. S. (2015). Polyhedron, 85, 20–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNeumann, T., Germann, L. S., Moudrakovski, I., Dinnebier, R. E., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2017). Z. Anorg. Allg. Chem. 643, 1904–1912.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997–4005.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, R. & Luo, F. (2010). J. Coord. Chem. 63, 610–616.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902–1913.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds