research communications
E)-phenyldiazenyl]ethenyl}benzene
and Hirshfeld surface analysis of 1,3-bis{2,2-dichloro-1-[(aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the molecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups. In the crystal, molecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H interactions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.4%), C⋯H/H⋯C (20.4%), Cl⋯H/H⋯Cl (19.4%), Cl⋯Cl (7.8%) and Cl⋯C/C⋯Cl (7.3%) interactions.
Keywords: crystal structure; C—H⋯π; C—Cl⋯π; Cl⋯Cl; Cl⋯H interactions; Hirshfeld surface analysis.
CCDC reference: 1987627
1. Chemical context
Azodyes and related et al., 2016, 2017a,b,c, 2018a,b, 2019; Viswanathan et al., 2019). For this reason, diverse new synthetic procedures have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017, 2018a,b; Ma et al., 2017a,b). Moreover, azo/hydrazone ligands can also be used as starting materials in the synthesis of coordination and supramolecular compounds (Ma et al., 2020, 2021; Mahmudov et al., 2013; Sutradhar et al., 2015, 2016), and as building blocks in the construction of 1D, 2D or 3D networks owing to their non-covalent bond-donating and acceptor capabilities (Gurbanov et al., 2020a; Kopylovich et al., 2011a,b; Asgarova et al., 2019). In fact, inclusion of suitable substituents to azo/hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020b; Karmakar et al., 2017; Khalilov et al., 2011, 2018a,b; Mac Leod et al., 2012; Maharramov et al., 2019; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). Thus, the attachment of halogen-containing substituents to azo/hydrazone compounds can improve their functional properties via intermolecular halogen bonding. In order to continue our work in this perspective, we have synthesized a new halogenated bis-azo ligand, 1,3-bis{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzene, which is able to provide multiple intermolecular non-covalent interactions.
are of interest for synthetic organic chemistry, coordination chemistry, medicinal and material chemistry because of their important physical and biological properties (Mahmoudi2. Structural commentary
The molecule of the title compound consists of three nearly planar fragments: the central benzene ring and the two attached 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups, Cl1–C8 and Cl3–C22 (Fig. 1), the largest deviations from the least-squares planes of these side groups being 0.060 (1) and 0.083 (3) Å for Cl2 and C18, respectively. These groups are nearly perpendicular to the central benzene ring, subtending dihedral angles of 77.03 (9) and 81.42 (9)°, respectively, with this ring. All bond dimensions within the molecule are typical of such type of compounds (Allen et al., 1987).
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯π (Table 1) and C—Cl⋯π interactions [C15—Cl4⋯Cg3ii; Cl4⋯Cg3ii = 3.9572 (15); C15⋯Cg3ii = 4.381 (3) Å; C15—Cl4⋯Cg3ii = 92.60 (10)°; symmetry code: (ii) 2 − x, 1 − y, 1 − z] involving the terminal C17–C22 phenyl ring (Cg3). Besides this, there are the Cl⋯Cl and Cl⋯H contacts, which contribute to a three-dimensional network (Table 2, Figs. 2 and 3).
|
|
4. Hirshfeld surface analysis
The Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017). Hirshfeld surfaces show intermolecular interactions by different hues and intensities to denote short and long contacts, as well as the intensity of the connections. In Fig. 4, the 3D Hirshfeld surface of the title molecule is mapped over dnorm in the range −0.0453 to 1.4337 a.u. The red patches surrounding Cl1, Cl2, Cl3 and Cl4 are caused by the Cl1⋯Cl4, Cl3⋯Cl2 and Cl3⋯H20A interactions, which play a vital role in the molecular packing of the title compound, and highlight their functions as donors and/or acceptors; they also appear as blue and red regions on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) corresponding to positive and negative potentials, as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
In Fig. 6, the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, Cl⋯Cl and Cl⋯C/C⋯Cl contacts, as well as their relative contributions to the Hirshfeld surface, are shown, while Table 2 provides data on the distinct intermolecular contacts. The percentage contributions to the Hirshfeld surfaces from various interatomic contacts are: H⋯H (30.4%; Fig. 6b), C⋯H/H⋯C (20.4%; Fig. 6c), Cl⋯H/H⋯Cl (19.4%; Fig. 6d), Cl⋯Cl (7.8%; Fig. 6e) and Cl⋯C/C⋯Cl (7.3%; Fig. 6f). Other Cl⋯N/N⋯Cl, N⋯H/H⋯N, C⋯C, N⋯C/C⋯N and N⋯N contacts account for less than 5.9% of Hirshfeld surface mapping and have minimal directional impact on molecular packing (Table 3).
|
5. Database survey
A search of Cambridge Crystallographic Database (CSD, version 5.41, update of August 2020; Groom et al., 2016) revealed a closely related compound, meso-(E,E)-1,10-[1,2-bis(4-chlorophenyl)ethane-1,2-diyl]bis(phenyldiazene), for which triclinic (refcode PAGCEI; Mohamed et al., 2016) and monoclinic (PAGCEI01; Mohamed et al., 2016) polymorphs are known. In both polymorphs, the molecules lie on inversion centres, but in PAGCEI01, the molecules are subject to whole-molecule disorder equivalent to with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the of PAGCEI, whereas the molecules of PAGCEI01 are linked by C—H⋯π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C— H⋯N interactions.
6. Synthesis and crystallization
This bis-azo dye was synthesized according to a reported method (Maharramov et al., 2018; Shikhaliyev et al., 2018). A 20 mL screw neck vial was charged with DMSO (10 mL), 1,3-bis[(E)-(2-phenylhydrazineylidene)methyl]benzene (628 mg, 2 mmol), tetramethylethylenediamine (TMEDA) (581 mg, 5 mmol), CuCl (3 mg, 0.03 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution. Orange solid (50%); mp 402 K. Analysis calculated for C22H14Cl4N4 (M = 476.18): C 55.49, H 2.96, N 11.77; found: C 55.45, H 2.94, N 11.70%. 1H NMR (300 MHz, CDCl3) δ 6.58–8.02 (14H, Ar). 13C NMR (75MHz, CDCl3) δ 121.8, 122.15, 124.83, 126.28, 127.32, 128.04, 128.95, 130.09, 133.12, 139.07. ESI–MS: m/z: 477.32 [M + H]+.
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq (C). Owing to poor agreement between observed and calculated intensities, six outliers ( 16 2, 1 12, 1 13, 8 14 1, 2 13 and 16 1) were omitted in the final cycles of refinement.
details are summarized in Table 4Supporting information
CCDC reference: 1987627
https://doi.org/10.1107/S2056989021007192/yk2154sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007192/yk2154Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007192/yk2154Isup3.cml
Data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C22H14Cl4N4 | F(000) = 968 |
Mr = 476.17 | Dx = 1.421 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0289 (10) Å | Cell parameters from 6439 reflections |
b = 13.1213 (8) Å | θ = 2.5–26.4° |
c = 11.1286 (7) Å | µ = 0.55 mm−1 |
β = 108.073 (2)° | T = 296 K |
V = 2225.1 (2) Å3 | Prism, colourless |
Z = 4 | 0.44 × 0.26 × 0.12 mm |
Bruker APEXII CCD diffractometer | 3193 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.044 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.1° |
Tmin = 0.621, Tmax = 0.745 | h = −20→20 |
24362 measured reflections | k = −16→16 |
4399 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0697P] where P = (Fo2 + 2Fc2)/3 |
4399 reflections | (Δ/σ)max = 0.001 |
271 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74226 (5) | 0.14141 (5) | −0.10025 (7) | 0.0592 (2) | |
Cl2 | 0.81687 (6) | 0.33515 (7) | −0.12359 (8) | 0.0777 (3) | |
Cl3 | 0.97228 (5) | 0.57996 (7) | 0.11006 (7) | 0.0736 (3) | |
Cl4 | 1.05825 (5) | 0.63410 (7) | 0.36813 (8) | 0.0762 (3) | |
N1 | 0.65092 (13) | 0.24501 (16) | 0.05084 (19) | 0.0467 (5) | |
N2 | 0.60887 (13) | 0.28678 (16) | 0.11510 (19) | 0.0488 (5) | |
N3 | 0.88872 (14) | 0.60214 (16) | 0.40656 (19) | 0.0469 (5) | |
N4 | 0.81623 (14) | 0.58883 (16) | 0.42594 (18) | 0.0468 (5) | |
C1 | 0.74926 (16) | 0.2676 (2) | −0.0611 (2) | 0.0472 (6) | |
C2 | 0.70658 (15) | 0.31073 (19) | 0.0111 (2) | 0.0435 (6) | |
C3 | 0.55342 (16) | 0.2175 (2) | 0.1536 (2) | 0.0480 (6) | |
C4 | 0.5054 (2) | 0.2569 (3) | 0.2249 (3) | 0.0698 (8) | |
H4A | 0.510609 | 0.325648 | 0.246399 | 0.084* | |
C5 | 0.4494 (2) | 0.1959 (3) | 0.2652 (3) | 0.0830 (10) | |
H5A | 0.417287 | 0.223700 | 0.313982 | 0.100* | |
C6 | 0.44075 (19) | 0.0957 (3) | 0.2343 (3) | 0.0721 (9) | |
H6A | 0.402268 | 0.054889 | 0.260581 | 0.086* | |
C7 | 0.4887 (2) | 0.0553 (3) | 0.1645 (3) | 0.0730 (9) | |
H7A | 0.483059 | −0.013532 | 0.143736 | 0.088* | |
C8 | 0.5458 (2) | 0.1151 (2) | 0.1240 (3) | 0.0641 (8) | |
H8A | 0.578832 | 0.086471 | 0.077119 | 0.077* | |
C9 | 0.71822 (15) | 0.41985 (18) | 0.0494 (2) | 0.0419 (5) | |
C10 | 0.79331 (15) | 0.45017 (18) | 0.1441 (2) | 0.0409 (5) | |
H10A | 0.835438 | 0.401942 | 0.183488 | 0.049* | |
C11 | 0.80614 (15) | 0.55110 (18) | 0.1805 (2) | 0.0386 (5) | |
C12 | 0.74374 (16) | 0.62289 (19) | 0.1206 (2) | 0.0465 (6) | |
H12A | 0.751924 | 0.691101 | 0.144018 | 0.056* | |
C13 | 0.66925 (17) | 0.5928 (2) | 0.0259 (2) | 0.0545 (7) | |
H13A | 0.627449 | 0.641110 | −0.014303 | 0.065* | |
C14 | 0.65639 (16) | 0.4924 (2) | −0.0093 (2) | 0.0510 (6) | |
H14A | 0.605927 | 0.472971 | −0.072944 | 0.061* | |
C15 | 0.96300 (16) | 0.5965 (2) | 0.2578 (2) | 0.0498 (6) | |
C16 | 0.88676 (15) | 0.58312 (18) | 0.2816 (2) | 0.0418 (5) | |
C17 | 0.82000 (18) | 0.60524 (19) | 0.5545 (2) | 0.0477 (6) | |
C18 | 0.89313 (19) | 0.6384 (2) | 0.6491 (2) | 0.0571 (7) | |
H18A | 0.944637 | 0.653856 | 0.631148 | 0.068* | |
C19 | 0.8890 (2) | 0.6485 (2) | 0.7705 (3) | 0.0670 (8) | |
H19A | 0.938099 | 0.670842 | 0.834584 | 0.080* | |
C20 | 0.8130 (3) | 0.6258 (2) | 0.7979 (3) | 0.0717 (9) | |
H20A | 0.810894 | 0.632115 | 0.880182 | 0.086* | |
C21 | 0.7409 (2) | 0.5940 (2) | 0.7040 (3) | 0.0699 (8) | |
H21A | 0.689496 | 0.578686 | 0.722387 | 0.084* | |
C22 | 0.74340 (19) | 0.5843 (2) | 0.5820 (3) | 0.0589 (7) | |
H22A | 0.693555 | 0.563666 | 0.518131 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0678 (4) | 0.0510 (4) | 0.0588 (4) | 0.0018 (3) | 0.0197 (3) | −0.0113 (3) |
Cl2 | 0.0910 (6) | 0.0744 (5) | 0.0899 (6) | −0.0174 (4) | 0.0603 (5) | −0.0081 (4) |
Cl3 | 0.0575 (4) | 0.1103 (7) | 0.0610 (5) | −0.0054 (4) | 0.0302 (3) | −0.0060 (4) |
Cl4 | 0.0446 (4) | 0.0956 (6) | 0.0776 (5) | −0.0107 (4) | 0.0032 (3) | −0.0124 (4) |
N1 | 0.0497 (11) | 0.0487 (13) | 0.0435 (12) | −0.0082 (10) | 0.0171 (10) | −0.0042 (10) |
N2 | 0.0497 (12) | 0.0525 (13) | 0.0460 (12) | −0.0077 (10) | 0.0173 (10) | −0.0055 (10) |
N3 | 0.0532 (12) | 0.0440 (12) | 0.0414 (11) | −0.0046 (10) | 0.0115 (10) | −0.0043 (9) |
N4 | 0.0557 (12) | 0.0452 (12) | 0.0397 (11) | −0.0045 (10) | 0.0148 (10) | −0.0026 (9) |
C1 | 0.0491 (14) | 0.0484 (15) | 0.0438 (14) | −0.0029 (12) | 0.0141 (11) | −0.0023 (11) |
C2 | 0.0440 (13) | 0.0460 (14) | 0.0384 (13) | −0.0071 (11) | 0.0095 (10) | −0.0037 (11) |
C3 | 0.0451 (13) | 0.0547 (16) | 0.0432 (14) | −0.0065 (12) | 0.0122 (11) | −0.0016 (12) |
C4 | 0.0744 (19) | 0.065 (2) | 0.082 (2) | −0.0045 (16) | 0.0424 (18) | −0.0088 (16) |
C5 | 0.074 (2) | 0.099 (3) | 0.095 (3) | −0.006 (2) | 0.053 (2) | −0.004 (2) |
C6 | 0.0568 (17) | 0.093 (3) | 0.067 (2) | −0.0182 (17) | 0.0208 (15) | 0.0087 (18) |
C7 | 0.090 (2) | 0.062 (2) | 0.071 (2) | −0.0208 (17) | 0.0303 (18) | 0.0000 (16) |
C8 | 0.0746 (19) | 0.0585 (19) | 0.0672 (19) | −0.0088 (15) | 0.0335 (16) | −0.0058 (15) |
C9 | 0.0448 (12) | 0.0448 (14) | 0.0382 (12) | −0.0062 (11) | 0.0159 (10) | −0.0036 (11) |
C10 | 0.0415 (12) | 0.0418 (14) | 0.0399 (13) | −0.0003 (10) | 0.0136 (10) | 0.0027 (10) |
C11 | 0.0426 (12) | 0.0414 (14) | 0.0342 (12) | −0.0043 (10) | 0.0155 (10) | −0.0009 (10) |
C12 | 0.0528 (14) | 0.0410 (14) | 0.0471 (14) | 0.0010 (11) | 0.0177 (12) | −0.0023 (11) |
C13 | 0.0525 (15) | 0.0534 (17) | 0.0523 (16) | 0.0110 (13) | 0.0085 (12) | 0.0036 (13) |
C14 | 0.0461 (13) | 0.0591 (17) | 0.0422 (14) | −0.0033 (12) | 0.0056 (11) | −0.0045 (12) |
C15 | 0.0432 (13) | 0.0541 (16) | 0.0499 (15) | −0.0022 (12) | 0.0111 (11) | −0.0041 (12) |
C16 | 0.0454 (13) | 0.0371 (13) | 0.0419 (13) | −0.0019 (10) | 0.0117 (10) | −0.0017 (10) |
C17 | 0.0658 (16) | 0.0389 (14) | 0.0384 (13) | −0.0005 (12) | 0.0160 (12) | −0.0020 (11) |
C18 | 0.0664 (17) | 0.0538 (17) | 0.0474 (15) | −0.0019 (14) | 0.0125 (13) | −0.0034 (13) |
C19 | 0.090 (2) | 0.0604 (19) | 0.0432 (16) | −0.0001 (17) | 0.0098 (15) | −0.0027 (13) |
C20 | 0.112 (3) | 0.062 (2) | 0.0460 (17) | 0.0052 (18) | 0.0309 (18) | 0.0006 (14) |
C21 | 0.089 (2) | 0.071 (2) | 0.0593 (19) | −0.0048 (18) | 0.0366 (17) | −0.0004 (16) |
C22 | 0.0701 (18) | 0.0583 (18) | 0.0514 (16) | −0.0084 (14) | 0.0233 (14) | −0.0052 (13) |
Cl1—C1 | 1.707 (3) | C9—C14 | 1.383 (3) |
Cl2—C1 | 1.706 (3) | C9—C10 | 1.389 (3) |
Cl3—C15 | 1.710 (3) | C10—C11 | 1.381 (3) |
Cl4—C15 | 1.709 (2) | C10—H10A | 0.9300 |
N1—N2 | 1.251 (3) | C11—C12 | 1.385 (3) |
N1—C2 | 1.407 (3) | C11—C16 | 1.487 (3) |
N2—C3 | 1.427 (3) | C12—C13 | 1.383 (3) |
N3—N4 | 1.258 (3) | C12—H12A | 0.9300 |
N3—C16 | 1.404 (3) | C13—C14 | 1.372 (4) |
N4—C17 | 1.430 (3) | C13—H13A | 0.9300 |
C1—C2 | 1.333 (3) | C14—H14A | 0.9300 |
C2—C9 | 1.489 (3) | C15—C16 | 1.340 (3) |
C3—C4 | 1.367 (4) | C17—C18 | 1.381 (4) |
C3—C8 | 1.380 (4) | C17—C22 | 1.382 (4) |
C4—C5 | 1.378 (4) | C18—C19 | 1.380 (4) |
C4—H4A | 0.9300 | C18—H18A | 0.9300 |
C5—C6 | 1.356 (5) | C19—C20 | 1.378 (4) |
C5—H5A | 0.9300 | C19—H19A | 0.9300 |
C6—C7 | 1.358 (4) | C20—C21 | 1.361 (4) |
C6—H6A | 0.9300 | C20—H20A | 0.9300 |
C7—C8 | 1.383 (4) | C21—C22 | 1.376 (4) |
C7—H7A | 0.9300 | C21—H21A | 0.9300 |
C8—H8A | 0.9300 | C22—H22A | 0.9300 |
N2—N1—C2 | 114.7 (2) | C10—C11—C16 | 120.5 (2) |
N1—N2—C3 | 112.9 (2) | C12—C11—C16 | 120.0 (2) |
N4—N3—C16 | 114.0 (2) | C13—C12—C11 | 119.8 (2) |
N3—N4—C17 | 113.3 (2) | C13—C12—H12A | 120.1 |
C2—C1—Cl2 | 122.4 (2) | C11—C12—H12A | 120.1 |
C2—C1—Cl1 | 124.1 (2) | C14—C13—C12 | 120.6 (2) |
Cl2—C1—Cl1 | 113.55 (15) | C14—C13—H13A | 119.7 |
C1—C2—N1 | 115.1 (2) | C12—C13—H13A | 119.7 |
C1—C2—C9 | 122.6 (2) | C13—C14—C9 | 120.2 (2) |
N1—C2—C9 | 122.3 (2) | C13—C14—H14A | 119.9 |
C4—C3—C8 | 118.9 (3) | C9—C14—H14A | 119.9 |
C4—C3—N2 | 116.6 (3) | C16—C15—Cl4 | 124.2 (2) |
C8—C3—N2 | 124.5 (2) | C16—C15—Cl3 | 122.0 (2) |
C3—C4—C5 | 120.7 (3) | Cl4—C15—Cl3 | 113.76 (15) |
C3—C4—H4A | 119.7 | C15—C16—N3 | 115.6 (2) |
C5—C4—H4A | 119.7 | C15—C16—C11 | 121.3 (2) |
C6—C5—C4 | 120.4 (3) | N3—C16—C11 | 123.2 (2) |
C6—C5—H5A | 119.8 | C18—C17—C22 | 119.7 (3) |
C4—C5—H5A | 119.8 | C18—C17—N4 | 125.0 (3) |
C5—C6—C7 | 119.5 (3) | C22—C17—N4 | 115.3 (2) |
C5—C6—H6A | 120.2 | C19—C18—C17 | 119.3 (3) |
C7—C6—H6A | 120.2 | C19—C18—H18A | 120.3 |
C6—C7—C8 | 121.0 (3) | C17—C18—H18A | 120.3 |
C6—C7—H7A | 119.5 | C20—C19—C18 | 120.7 (3) |
C8—C7—H7A | 119.5 | C20—C19—H19A | 119.7 |
C3—C8—C7 | 119.5 (3) | C18—C19—H19A | 119.7 |
C3—C8—H8A | 120.2 | C21—C20—C19 | 119.7 (3) |
C7—C8—H8A | 120.2 | C21—C20—H20A | 120.2 |
C14—C9—C10 | 119.1 (2) | C19—C20—H20A | 120.2 |
C14—C9—C2 | 121.2 (2) | C20—C21—C22 | 120.5 (3) |
C10—C9—C2 | 119.6 (2) | C20—C21—H21A | 119.7 |
C11—C10—C9 | 120.8 (2) | C22—C21—H21A | 119.7 |
C11—C10—H10A | 119.6 | C21—C22—C17 | 120.0 (3) |
C9—C10—H10A | 119.6 | C21—C22—H22A | 120.0 |
C10—C11—C12 | 119.4 (2) | C17—C22—H22A | 120.0 |
C2—N1—N2—C3 | −179.88 (19) | C16—C11—C12—C13 | 179.5 (2) |
C16—N3—N4—C17 | 178.1 (2) | C11—C12—C13—C14 | 0.1 (4) |
Cl1—C1—C2—N1 | −2.4 (3) | C12—C13—C14—C9 | −0.2 (4) |
Cl2—C1—C2—C9 | −3.6 (3) | C10—C9—C14—C13 | −0.1 (4) |
Cl1—C1—C2—C9 | 176.39 (18) | C2—C9—C14—C13 | −178.8 (2) |
N2—N1—C2—C1 | −177.7 (2) | Cl4—C15—C16—N3 | 0.0 (3) |
N2—N1—C2—C9 | 3.5 (3) | Cl3—C15—C16—N3 | −178.32 (18) |
N1—N2—C3—C4 | 179.7 (2) | Cl4—C15—C16—C11 | 179.46 (19) |
N1—N2—C3—C8 | −0.1 (4) | Cl3—C15—C16—C11 | 1.2 (4) |
C8—C3—C4—C5 | −0.9 (5) | N4—N3—C16—C15 | −179.9 (2) |
N2—C3—C4—C5 | 179.3 (3) | N4—N3—C16—C11 | 0.6 (3) |
C3—C4—C5—C6 | −0.3 (5) | C10—C11—C16—C15 | 79.5 (3) |
C4—C5—C6—C7 | 0.9 (5) | C12—C11—C16—C15 | −99.6 (3) |
C5—C6—C7—C8 | −0.4 (5) | C10—C11—C16—N3 | −101.1 (3) |
C4—C3—C8—C7 | 1.4 (4) | C12—C11—C16—N3 | 79.9 (3) |
N2—C3—C8—C7 | −178.8 (3) | N3—N4—C17—C18 | 3.8 (4) |
C6—C7—C8—C3 | −0.7 (5) | N3—N4—C17—C22 | −175.5 (2) |
C1—C2—C9—C14 | 102.4 (3) | C22—C17—C18—C19 | 1.1 (4) |
N1—C2—C9—C14 | −79.0 (3) | N4—C17—C18—C19 | −178.1 (2) |
C1—C2—C9—C10 | −76.3 (3) | C17—C18—C19—C20 | 0.0 (4) |
N1—C2—C9—C10 | 102.4 (3) | C18—C19—C20—C21 | −0.6 (5) |
C14—C9—C10—C11 | 0.6 (3) | C19—C20—C21—C22 | 0.1 (5) |
C2—C9—C10—C11 | 179.3 (2) | C20—C21—C22—C17 | 1.1 (5) |
C9—C10—C11—C12 | −0.8 (3) | C18—C17—C22—C21 | −1.7 (4) |
C9—C10—C11—C16 | −179.8 (2) | N4—C17—C22—C21 | 177.6 (3) |
C10—C11—C12—C13 | 0.4 (4) |
Cg3 is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···Cg3i | 0.93 | 2.72 | 3.610 (3) | 162 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Contact | Distance | Symmetry operation |
Cl4···Cg3 | 1.709 (2) | 2 - x, 1 - y, 1 - z |
Cl1···Cl4 | 3.4325 (12) | 2 - x, -1/2 + y, 1/2 - z |
Cl3···Cl2 | 3.5171 (13) | 2 - x, 1 - y, -z |
H14A···C7 | 2.97 | x, 1/2 - y, -1/2 + z |
Cl3···H20A | 3.10 | x, y, - 1 + z |
H13A···C4 | 2.95 | 1 - x, 1 - y, -z |
H7A···H4A | 2.43 | 1 - x, -1/2 + y, 1/2 - z |
H12A···C21 | 2.92 | x, 3/2 - y, -1/2 + z |
H8A···H7A | 2.54 | 1 - x, -y, -z |
Contact | Percentage contribution |
H···H | 30.4 |
C···H/H···C | 20.4 |
Cl···H/H···Cl | 19.4 |
Cl···Cl | 7.8 |
Cl···C/C···Cl | 7.3 |
Cl···N/N···Cl | 5.9 |
N···H/H···N | 5.6 |
C···C | 1.8 |
N···C/C···N | 1.2 |
N···N | 0.2 |
Acknowledgements
Authors' contributions are as follows. Conceptualization, NQS, MA, and AB; synthesis, NQA and NEA; X-ray analysis, RKA; writing, NQS, ZA, MA and AB; funding acquisition, NQS, NEA and RKA; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Mohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57–62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088. Web of Science CSD CrossRef CAS Google Scholar
Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.