research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystallographic studies of 2-(di­phenyl­phosphino­thio­yl)-2-(3-oxobut-1-en-yl)ferrocene

crossmark logo

aCNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France, and bDepartment of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
*Correspondence e-mail: jean-claude.daran@lcc-toulouse.fr

Edited by M. Zeller, Purdue University, USA (Received 12 July 2021; accepted 26 July 2021; online 30 July 2021)

As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, 2-(di­phenyl­phosphino­thio­yl)-2-(3-oxobut-1-en-yl)ferrocene, [Fe(C5H5)(C21H18OPS)], are described. The mol­ecule is built up from a ferrocene unit disubstituted by an S-protected di­phenyl­phosphine group and by a methyl­vinyl­ketone chain. The crystal structure features weak C—H⋯O and C—H⋯S inter­actions, which build a two-dimensional network. This structure is compared to that of the related disubstituted di­phenyl­phosphino ferrocene.

1. Chemical context

Over the last few years, our team has developed several bidentate phosphine-containing planar chiral ferrocene ligands and tested them in various asymmetric catalytic reactions (Manoury & Poli, 2011[Manoury, E. & Poli, R. (2011). Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis. In Catalysis by Metal Complexes (CMCO), Vol. 37 (Phosphorus Chemistry: Catalysis and Material Science Applications), edited by M. Peruzzini & L. Gonsalvi, pp. 121-149. Germany: Springer Verlag]). In particular, some P,O ligands were synthesized from 2-(di­phenyl­phosphino­thio­yl)ferro­cenecarboxaldehyde (Mateus et al., 2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]). This compound can be easily obtained as a racemic mixture or as each pure enanti­omer and bears a versatile aldehyde function, which can be used to obtain more complex mol­ecules. In this context, we were delighted to report a new and efficient aldol/elimination reaction of the aldehyde group to yield the corresponding ene-one under mild conditions (see Scheme) using a weak base (pKa of 2-picolyl amine is 8.60; Miletti et al., 2010[Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270-4279.]).

[Scheme 1]

Similar compounds have been synthesized but using the Wittig reaction, which requires the synthesis of a specific phospho­nium reagent and the use of a strong base, such as n-butyl­lithium (Ye et al., 2017[Ye, K.-Y., Wang, X., Daniliuc, C. G., Kehr, G. & Erker, G. (2017). Eur. J. Inorg. Chem. pp. 368-371.]; Schaarschmidt et al., 2014[Schaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742-753.]; Štěpnička et al. 2008[Štěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446-456.]) or sodium hydride (Stepnicka et al., 2008[Štěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446-456.]). Indeed, the aldol/elimination sequence has been used to functionalize ferrocenecarboxaldehyde, which is a much less crowded analog of 2-(di­phenyl­phosphino­thio­yl)ferro­cene­carboxaldehyde but with a much stronger base such as NaOH, KOH or tBuOK (see, for instance, Achelle et al., 2012[Achelle, S., Barsella, A., Baudequin, C., Caro, B. & Robin-le Guen, F. (2012). J. Org. Chem. 77, 4087-4096.]; Romanov et al., 2015[Romanov, A. S., Shapovalov, A. V., Angles, G. F., Timofeeva, T. V., Corsini, M., Fusi, S. & Fabrizi de Biani, F. (2015). CrystEngComm, 17, 7564-7573.]; Li et al., 2020[Li, Y., Tang, B., Dong, S., Gao, W., Jiang, W. & Chen, Y. (2020). Chemistry Select, 5, 2746-2752.]; Wieczorek et al., 2016[Wieczorek, A., Błauż, A., Zakrzewski, J., Rychlik, B. & Plażuk, D. (2016). ACS Med. Chem. Lett. 7, 612-617.]).

2. Structural commentary

The mol­ecule is built up from a ferrocene unit disubstituted by an S-protected di­phenyl­phosphine group and by a methyl­vinyl­ketone chain (Fig. 1[link]). As is usually observed for thio­phenyl­phosphine ferrocenyl derivatives, the P atom is roughly in the plane of the Cp ring, deviating from the mean plane by −0.034 (5) Å, whereas the S atom is offset from this plane by 1.159 (6) Å. The two Cp rings have a staggered conformation with a twist angle of ca 37.1°. The O atom is trans to the ferrocene unit with respect to the C=C double bond. The torsion angle of the C2—C21—C22—C23 chain is 172.4 (4)° and the plane containing the double bond is twisted with respect to the Cp ring by 22.8 (2)°. This mol­ecule has a planar chirality related to the occurrence of two different substituents on the Cp ring; however, as the space group is centrosymmetric, the two enanti­omers R/S are present in equal numbers within the crystal. Two intra­molecular C—H⋯S inter­actions occur (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.95 2.63 3.548 (4) 164
C112—H112⋯S1ii 0.95 2.83 3.576 (3) 136
C116—H116⋯S1 0.95 2.89 3.374 (3) 113
C21—H21⋯S1 0.95 2.87 3.604 (3) 135
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 50% probability level and the H atoms are represented as small circle of arbitrary radii.

3. Supra­molecular features

The packing of the structure is stabilized by weak C—H⋯O and C—H⋯S inter­actions (Table 1[link]). The C—H⋯O inter­action results in the formation of a pseudo-dimer through an R22(8) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 2[link]). The C—H⋯S inter­cations build up a chain parallel to the b axis and these chains are further associated by the C—H⋯O inter­actions of the pseudo-dimer, building a ribbon parallel to the (0[\overline{1}]1) plane (Fig. 3[link]).

[Figure 2]
Figure 2
Partial packing view showing the formation of the R22(8) pseudo-ring arranged around the (1/2, 1, 1/2) inversion center.
[Figure 3]
Figure 3
Partial packing view showing the formation of the ribbon parallel to the (0[\overline{1}]1) plane.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, update 2020.3; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) does not reveal any structures with ferrocenyl disubstituted by a thiodi­phenyl­phosphine and a vinyl; however, a search using a fragment containing a ferrocenyl disubsituted by an unprotected phosphine and a vinyl substituent (Fig. 4[link]) reveals 15 hits of which seven can be compared with the title compound, having only different substituents R1 and R2 (Fig. 4[link]). A comparison of C—C and C—P distances and dihedral angles between the Cp ring and vinyl mean plane are shown in Fig. 5[link]. Clearly the substit­uent on the phosphine has some influence on the C—P bond lengths, which range from 1.795 (3) Å for the title compound to 1.827 Å for the [η5-1-di­cyclo­hexyl­phosphino-2-(2-phenyl­ethen­yl)cyclo­penta­dien­yl](η5-cyclo­penta­dien­yl)iron com­pound (Schaarschmidt et al., 2014[Schaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742-753.]) in which the phosphine bears two cyclo­hexyl substituents that are rather bulky. The occurrence of the S atom attached to the phosphine in the title compound may explain why the shortest value observed for the title compound. There is no significant difference in the C—C bonds within the vinyl moiety, showing that these values are not affected by the substituent, whereas the discrepancy observed for the dihedral angles between the vinyl unit and the Cp rings (6.4 to 22.8°) is related to the nature of the R1 and R2 substituents on the vinyl unit. The largest value of 22.8°, observed for the title compound, is related to the weak C21—H21⋯S1 inter­action.

[Figure 4]
Figure 4
The model used for the CCDC search.
[Figure 5]
Figure 5
Comparison of bond distances (Å) and dihedral angles between the substituted Cp ring (Cp1) and the vinyl mean plane (°) for closely related compounds (CIVHAR: Stepnicka et al., 2008[Štěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446-456.]; BETBOU: Kehr et al., 2017[Ye, K.-Y., Wang, X., Daniliuc, C. G., Kehr, G. & Erker, G. (2017). Eur. J. Inorg. Chem. pp. 368-371.]; KOB***: Schaarschmidt et al., 2014[Schaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742-753.]; WIXYAD: Iftime et al., 2000[Iftime, G., Balavoine, G. G. A., Daran, J.-C., Lacroix, P. G. & Manoury, E. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 139-146.]).

5. Synthesis and crystallization

To a solution of 2-(di­phenyl­phosphino­thio­yl)ferrocene­carboxaldehyde (220 mg, 0.51 mmol) in acetone (40 mL) was added 2-picolyl­amine (0.2 mL, 1.53 mmol). The reaction mixture was refluxed for 24–36h with TLC monitoring of the consumption of aldehyde. After complete consumption, the reaction mixture was evaporated in vacuo and extracted with di­chloro­methane and washed with three portions of water. The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness. The crude material was purified by silica gel column chromatography with a hexa­ne–ether mixture (1/1, v/v) to obtain the product as a red solid (0.13 g, 55%). Monocrystals suitable for X-ray diffraction analysis were obtained by slow diffusion of pentane into a di­chloro­methane solution of 4-(2-thiodi­phenyl­phosphinoferrocen­yl)-but-3-ene-one.

1H NMR (ppm, CD2Cl2): δ 8.46 (1H, d, J = 16.3Hz, vin­yl); 7.90–7.80 (m, 1H, Ph); 7.65–7.15 (9H, m, Ph); 6.28 (1H, d, J = 16.3Hz, vin­yl); 5.01 (1H, m, subst. Cp); 4.65 (1H, m, subst. Cp); 4.39 (5H, s, subst. Cp); 4.07 (1H, m, subst. Cp); 3.87 (3H, s, CH3).

13C NMR (ppm, CD2Cl2): δ 198. 16 (s, C=O); 143.46 (s, vin­yl); 134.93 (δ, JCP = 87.4Hz, quat Ph); 133.01 (δ, JCP = 86.6Hz, quat Ph); 132.03 (δ, JCP = 11.0Hz, CH Ph); 131.69 (δ, JCP = 10.7Hz, CH Ph); 131.54 (δ, JCP = 3.0Hz, CH Ph para); 131.39 (δ, JCP = 3.0Hz, CH Ph para); 128.40 (δ, JCP = 12.5Hz, CH Ph); 128.19 (δ, JCP = 12.4Hz, CH Ph); 126.89 (s, vin­yl); 83.06 (δ, JCP = 10.7Hz, quat Cp); 77.44 (δ, JCP = 11.9Hz, subst Cp); 77.00 (δ, JCP = 93.2Hz, quat Cp); 71.87 (s, Cp); 71.85 (δ, JCP = 10.3Hz, subst Cp); 69.90 (δ, JCP = 8.4Hz, subst Cp); 25.87 (s, CH3).

31P NMR (δ, ppm, CD2Cl2): δ 41.01.

HRMS (DCI, CH4): 471.0638 (100%, calculated for C26H24FeOPS [M] 471.0635).

M.p.: 441 K (dec).

IR (ATR mode, diamond crystal): νmax(solid)/cm−1: 1630 (s), 1607 (s), 1677 (w), 1364 (m), 1335 (m), 1264 (s), 1226 (m), 1165 (s), 1099 (s), 1055 (m), 987 (s), 863 (w), 832 (m), 822 (s), 760 (s), 7478 (m), 712 (s), 698 (s), 690 (s), 660 (s), 640 (s), 614 (sm), 583 (m), 534 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic) or 0.98 Å (meth­yl) with Uiso(H) = 1.2Ueq(CH aromatic) or Uiso(H) = 1.5Ueq(CH3). In the final difference-Fourier map, there is a large residual density, 1.43 e Å−3 in the vicinity (1.20 Å) of the H24A atom of the terminal methyl group; it is roughly located in the (100) plane; no chemically logical explanation could be found to explain this residual density.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C21H18OPS)]
Mr 470.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 7.3643 (9), 17.909 (2), 16.710 (2)
β (°) 95.230 (4)
V3) 2194.8 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.1 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.730
No. of measured, independent and observed [I > 2σ(I)] reflections 43009, 5657, 3907
Rint 0.113
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 1.03
No. of reflections 5657
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

2-(Diphenylphosphinothioyl)-2-(3-oxobut-1-en-yl)ferrocene top
Crystal data top
[Fe(C5H5)(C21H18OPS)]F(000) = 976
Mr = 470.32Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3643 (9) ÅCell parameters from 4518 reflections
b = 17.909 (2) Åθ = 2.7–24.2°
c = 16.710 (2) ŵ = 0.87 mm1
β = 95.230 (4)°T = 110 K
V = 2194.8 (5) Å3Platelet, orange yellow
Z = 40.1 × 0.07 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
5657 independent reflections
Radiation source: micro-focus sealed tube3907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
φ and ω scansθmax = 29.3°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.673, Tmax = 0.730k = 2424
43009 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0664P)2 + 1.8414P]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.39674 (5)0.81999 (2)0.74273 (2)0.01578 (14)
S10.61309 (10)0.63480 (5)0.64301 (5)0.0248 (2)
P10.35129 (10)0.65181 (4)0.64545 (5)0.01527 (18)
O10.7131 (3)0.95064 (13)0.44772 (14)0.0292 (5)
C10.2847 (4)0.74695 (16)0.65962 (17)0.0147 (6)
C20.3485 (4)0.81389 (16)0.62101 (17)0.0151 (6)
C30.2527 (4)0.87556 (17)0.65055 (18)0.0183 (6)
H30.2678920.9262600.6358310.022*
C40.1317 (4)0.84957 (18)0.70518 (19)0.0196 (6)
H40.0516830.8797050.7328890.024*
C50.1495 (4)0.77100 (17)0.71171 (18)0.0181 (6)
H50.0840080.7395060.7446510.022*
C60.6382 (4)0.8733 (2)0.7754 (2)0.0296 (8)
H60.6994270.9064690.7425410.036*
C70.6625 (5)0.7957 (2)0.7792 (2)0.0344 (9)
H70.7426470.7673500.7496590.041*
C80.5462 (5)0.7670 (2)0.8349 (2)0.0336 (9)
H80.5341680.7160320.8491530.040*
C90.4507 (5)0.8281 (2)0.86554 (19)0.0287 (8)
H90.3638640.8254180.9041440.034*
C100.5090 (4)0.89381 (19)0.8279 (2)0.0259 (7)
H100.4676090.9431080.8366890.031*
C210.4977 (4)0.81952 (17)0.56951 (17)0.0182 (6)
H210.5736710.7772070.5646310.022*
C220.5325 (4)0.88155 (17)0.52879 (17)0.0192 (6)
H220.4465730.9211010.5288440.023*
C230.6929 (4)0.89337 (17)0.48403 (18)0.0202 (6)
C240.8396 (5)0.8344 (2)0.4856 (2)0.0289 (8)
H24A0.9188330.8443270.4427750.043*
H24B0.7830930.7851390.4773080.043*
H24C0.9121530.8354650.5377580.043*
C1110.2541 (4)0.60087 (16)0.72528 (17)0.0157 (6)
C1120.0667 (4)0.58941 (18)0.72292 (18)0.0207 (7)
H1120.0102910.6057090.6775690.025*
C1130.0085 (4)0.55449 (18)0.78603 (19)0.0246 (7)
H1130.1367810.5477650.7842220.029*
C1140.1032 (5)0.52926 (19)0.8520 (2)0.0265 (7)
H1140.0518260.5055800.8955510.032*
C1150.2907 (5)0.53900 (19)0.8537 (2)0.0267 (7)
H1150.3679960.5208420.8980380.032*
C1160.3662 (4)0.57508 (17)0.79095 (18)0.0202 (6)
H1160.4943650.5821270.7929350.024*
C1210.2198 (4)0.62196 (17)0.55413 (17)0.0172 (6)
C1220.0639 (5)0.65958 (19)0.5239 (2)0.0258 (7)
H1220.0251800.7027420.5507380.031*
C1230.0366 (5)0.63428 (19)0.4543 (2)0.0294 (8)
H1230.1433080.6601500.4336280.035*
C1240.0204 (5)0.57107 (19)0.41551 (19)0.0257 (7)
H1240.0468040.5537530.3679070.031*
C1250.1738 (5)0.53371 (18)0.4459 (2)0.0253 (7)
H1250.2111590.4901630.4194310.030*
C1260.2746 (4)0.55824 (17)0.51434 (19)0.0211 (7)
H1260.3811370.5319320.5344620.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0149 (2)0.0185 (2)0.0138 (2)0.00177 (17)0.00064 (16)0.00037 (17)
S10.0137 (4)0.0228 (4)0.0384 (5)0.0056 (3)0.0057 (3)0.0026 (3)
P10.0126 (4)0.0148 (4)0.0185 (4)0.0030 (3)0.0017 (3)0.0020 (3)
O10.0346 (13)0.0265 (13)0.0273 (13)0.0097 (11)0.0069 (10)0.0070 (10)
C10.0107 (13)0.0166 (15)0.0165 (14)0.0022 (11)0.0000 (11)0.0008 (11)
C20.0122 (13)0.0180 (15)0.0145 (14)0.0019 (11)0.0022 (11)0.0008 (11)
C30.0205 (15)0.0158 (15)0.0179 (15)0.0014 (12)0.0017 (12)0.0000 (12)
C40.0136 (14)0.0210 (16)0.0243 (16)0.0060 (12)0.0023 (12)0.0021 (13)
C50.0092 (13)0.0238 (17)0.0217 (15)0.0022 (12)0.0033 (11)0.0012 (12)
C60.0207 (17)0.043 (2)0.0235 (17)0.0084 (15)0.0076 (13)0.0031 (15)
C70.0179 (16)0.055 (3)0.0286 (19)0.0117 (16)0.0066 (14)0.0145 (17)
C80.043 (2)0.0265 (19)0.0271 (18)0.0002 (16)0.0214 (16)0.0042 (15)
C90.0310 (18)0.040 (2)0.0150 (16)0.0072 (16)0.0017 (13)0.0031 (14)
C100.0279 (17)0.0236 (18)0.0247 (17)0.0024 (14)0.0059 (13)0.0083 (14)
C210.0204 (15)0.0175 (15)0.0164 (15)0.0020 (12)0.0003 (12)0.0009 (12)
C220.0209 (15)0.0192 (16)0.0174 (15)0.0015 (12)0.0014 (12)0.0006 (12)
C230.0218 (16)0.0196 (16)0.0188 (15)0.0001 (13)0.0008 (12)0.0028 (12)
C240.0243 (17)0.030 (2)0.0331 (19)0.0044 (14)0.0069 (14)0.0034 (15)
C1110.0158 (14)0.0145 (14)0.0168 (14)0.0003 (11)0.0008 (11)0.0007 (11)
C1120.0160 (14)0.0256 (17)0.0196 (15)0.0015 (13)0.0038 (12)0.0041 (13)
C1130.0203 (16)0.0262 (18)0.0273 (18)0.0057 (13)0.0024 (13)0.0008 (14)
C1140.0316 (18)0.0254 (18)0.0229 (17)0.0034 (14)0.0046 (14)0.0056 (14)
C1150.0310 (18)0.0242 (18)0.0237 (17)0.0003 (14)0.0049 (14)0.0095 (14)
C1160.0187 (15)0.0168 (16)0.0241 (16)0.0009 (12)0.0030 (12)0.0018 (12)
C1210.0188 (14)0.0190 (15)0.0143 (14)0.0019 (12)0.0037 (11)0.0008 (12)
C1220.0301 (18)0.0209 (17)0.0254 (17)0.0101 (14)0.0032 (14)0.0046 (13)
C1230.036 (2)0.0261 (18)0.0241 (17)0.0089 (15)0.0073 (14)0.0014 (14)
C1240.0356 (19)0.0241 (17)0.0172 (16)0.0054 (15)0.0020 (13)0.0005 (13)
C1250.0314 (18)0.0191 (16)0.0271 (18)0.0006 (14)0.0112 (14)0.0053 (13)
C1260.0215 (15)0.0183 (16)0.0245 (16)0.0023 (13)0.0072 (12)0.0015 (13)
Geometric parameters (Å, º) top
Fe1—C12.028 (3)C9—H90.9500
Fe1—C22.035 (3)C10—H100.9500
Fe1—C72.043 (3)C21—C221.340 (4)
Fe1—C82.043 (3)C21—H210.9500
Fe1—C52.045 (3)C22—C231.470 (4)
Fe1—C32.047 (3)C22—H220.9500
Fe1—C62.048 (3)C23—C241.509 (4)
Fe1—C102.059 (3)C24—H24A0.9800
Fe1—C92.060 (3)C24—H24B0.9800
Fe1—C42.064 (3)C24—H24C0.9800
S1—P11.9560 (11)C111—C1161.391 (4)
P1—C11.795 (3)C111—C1121.392 (4)
P1—C1211.812 (3)C112—C1131.384 (4)
P1—C1111.816 (3)C112—H1120.9500
O1—C231.208 (4)C113—C1141.390 (5)
C1—C51.446 (4)C113—H1130.9500
C1—C21.459 (4)C114—C1151.390 (5)
C2—C31.423 (4)C114—H1140.9500
C2—C211.459 (4)C115—C1161.389 (4)
C3—C41.412 (4)C115—H1150.9500
C3—H30.9500C116—H1160.9500
C4—C51.417 (4)C121—C1221.386 (4)
C4—H40.9500C121—C1261.399 (4)
C5—H50.9500C122—C1231.396 (4)
C6—C101.401 (5)C122—H1220.9500
C6—C71.401 (5)C123—C1241.389 (5)
C6—H60.9500C123—H1230.9500
C7—C81.417 (6)C124—C1251.370 (5)
C7—H70.9500C124—H1240.9500
C8—C91.421 (5)C125—C1261.377 (5)
C8—H80.9500C125—H1250.9500
C9—C101.420 (5)C126—H1260.9500
C1—Fe1—C242.10 (11)C10—C6—C7108.8 (3)
C1—Fe1—C7112.69 (13)C10—C6—Fe170.49 (19)
C2—Fe1—C7111.19 (13)C7—C6—Fe169.8 (2)
C1—Fe1—C8111.98 (13)C10—C6—H6125.6
C2—Fe1—C8139.56 (14)C7—C6—H6125.6
C7—Fe1—C840.60 (16)Fe1—C6—H6125.7
C1—Fe1—C541.60 (11)C6—C7—C8107.9 (3)
C2—Fe1—C569.73 (12)C6—C7—Fe170.16 (19)
C7—Fe1—C5142.26 (15)C8—C7—Fe169.70 (19)
C8—Fe1—C5113.44 (14)C6—C7—H7126.1
C1—Fe1—C369.37 (12)C8—C7—H7126.1
C2—Fe1—C340.80 (11)Fe1—C7—H7125.7
C7—Fe1—C3138.11 (14)C7—C8—C9107.9 (3)
C8—Fe1—C3178.29 (14)C7—C8—Fe169.70 (19)
C5—Fe1—C368.27 (12)C9—C8—Fe170.38 (19)
C1—Fe1—C6140.55 (13)C7—C8—H8126.1
C2—Fe1—C6111.05 (13)C9—C8—H8126.1
C7—Fe1—C640.06 (15)Fe1—C8—H8125.4
C8—Fe1—C667.70 (15)C10—C9—C8107.4 (3)
C5—Fe1—C6177.42 (14)C10—C9—Fe169.82 (18)
C3—Fe1—C6110.59 (14)C8—C9—Fe169.10 (18)
C1—Fe1—C10179.48 (13)C10—C9—H9126.3
C2—Fe1—C10138.35 (13)C8—C9—H9126.3
C7—Fe1—C1067.51 (14)Fe1—C9—H9126.3
C8—Fe1—C1067.83 (14)C6—C10—C9108.1 (3)
C5—Fe1—C10137.97 (13)C6—C10—Fe169.62 (19)
C3—Fe1—C10110.83 (13)C9—C10—Fe169.85 (18)
C6—Fe1—C1039.90 (14)C6—C10—H10126.0
C1—Fe1—C9139.22 (13)C9—C10—H10126.0
C2—Fe1—C9178.56 (13)Fe1—C10—H10126.1
C7—Fe1—C968.00 (14)C22—C21—C2123.1 (3)
C8—Fe1—C940.52 (15)C22—C21—H21118.4
C5—Fe1—C9111.67 (13)C2—C21—H21118.4
C3—Fe1—C9139.05 (13)C21—C22—C23125.3 (3)
C6—Fe1—C967.54 (14)C21—C22—H22117.3
C10—Fe1—C940.33 (14)C23—C22—H22117.3
C1—Fe1—C469.08 (12)O1—C23—C22121.3 (3)
C2—Fe1—C468.66 (12)O1—C23—C24118.8 (3)
C7—Fe1—C4177.37 (15)C22—C23—C24119.8 (3)
C8—Fe1—C4141.06 (15)C23—C24—H24A109.5
C5—Fe1—C440.33 (12)C23—C24—H24B109.5
C3—Fe1—C440.17 (12)H24A—C24—H24B109.5
C6—Fe1—C4137.36 (14)C23—C24—H24C109.5
C10—Fe1—C4110.75 (13)H24A—C24—H24C109.5
C9—Fe1—C4112.09 (13)H24B—C24—H24C109.5
C1—P1—C121105.06 (14)C116—C111—C112119.3 (3)
C1—P1—C111104.43 (13)C116—C111—P1120.1 (2)
C121—P1—C111104.73 (14)C112—C111—P1120.6 (2)
C1—P1—S1115.62 (10)C113—C112—C111120.6 (3)
C121—P1—S1112.86 (10)C113—C112—H112119.7
C111—P1—S1113.10 (10)C111—C112—H112119.7
C5—C1—C2106.8 (2)C112—C113—C114120.2 (3)
C5—C1—P1125.0 (2)C112—C113—H113119.9
C2—C1—P1128.2 (2)C114—C113—H113119.9
C5—C1—Fe169.82 (17)C113—C114—C115119.4 (3)
C2—C1—Fe169.23 (16)C113—C114—H114120.3
P1—C1—Fe1127.14 (15)C115—C114—H114120.3
C3—C2—C21125.1 (3)C116—C115—C114120.6 (3)
C3—C2—C1107.1 (2)C116—C115—H115119.7
C21—C2—C1127.4 (3)C114—C115—H115119.7
C3—C2—Fe170.03 (16)C115—C116—C111120.0 (3)
C21—C2—Fe1120.9 (2)C115—C116—H116120.0
C1—C2—Fe168.67 (16)C111—C116—H116120.0
C4—C3—C2109.3 (3)C122—C121—C126119.3 (3)
C4—C3—Fe170.58 (17)C122—C121—P1121.6 (2)
C2—C3—Fe169.17 (16)C126—C121—P1119.1 (2)
C4—C3—H3125.3C121—C122—C123120.3 (3)
C2—C3—H3125.3C121—C122—H122119.9
Fe1—C3—H3126.5C123—C122—H122119.9
C3—C4—C5108.5 (3)C124—C123—C122119.6 (3)
C3—C4—Fe169.25 (17)C124—C123—H123120.2
C5—C4—Fe169.09 (16)C122—C123—H123120.2
C3—C4—H4125.7C125—C124—C123119.9 (3)
C5—C4—H4125.7C125—C124—H124120.0
Fe1—C4—H4127.5C123—C124—H124120.0
C4—C5—C1108.3 (3)C124—C125—C126121.1 (3)
C4—C5—Fe170.58 (17)C124—C125—H125119.5
C1—C5—Fe168.58 (16)C126—C125—H125119.5
C4—C5—H5125.9C125—C126—C121119.9 (3)
C1—C5—H5125.9C125—C126—H126120.1
Fe1—C5—H5126.5C121—C126—H126120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.952.633.548 (4)164
C112—H112···S1ii0.952.833.576 (3)136
C116—H116···S10.952.893.374 (3)113
C21—H21···S10.952.873.604 (3)135
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
 

Funding information

The authors thank the Indo-French Centre for the Promotion of Advanced Research (IFCPRA/CEFIPRA) for funding (contract No. 5805).

References

First citationAchelle, S., Barsella, A., Baudequin, C., Caro, B. & Robin-le Guen, F. (2012). J. Org. Chem. 77, 4087–4096.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIftime, G., Balavoine, G. G. A., Daran, J.-C., Lacroix, P. G. & Manoury, E. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 139–146.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y., Tang, B., Dong, S., Gao, W., Jiang, W. & Chen, Y. (2020). Chemistry Select, 5, 2746–2752.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManoury, E. & Poli, R. (2011). Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis. In Catalysis by Metal Complexes (CMCO), Vol. 37 (Phosphorus Chemistry: Catalysis and Material Science Applications), edited by M. Peruzzini & L. Gonsalvi, pp. 121–149. Germany: Springer Verlag  Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationMilletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279.  CrossRef CAS PubMed Google Scholar
First citationRomanov, A. S., Shapovalov, A. V., Angles, G. F., Timofeeva, T. V., Corsini, M., Fusi, S. & Fabrizi de Biani, F. (2015). CrystEngComm, 17, 7564–7573.  CrossRef CAS Google Scholar
First citationSchaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742–753.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠtěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446–456.  Google Scholar
First citationWieczorek, A., Błauż, A., Zakrzewski, J., Rychlik, B. & Plażuk, D. (2016). ACS Med. Chem. Lett. 7, 612–617.  CrossRef CAS PubMed Google Scholar
First citationYe, K.-Y., Wang, X., Daniliuc, C. G., Kehr, G. & Erker, G. (2017). Eur. J. Inorg. Chem. pp. 368–371.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds