research communications
Synthesis and crystallographic studies of 2-(diphenylphosphinothioyl)-2-(3-oxobut-1-en-yl)ferrocene
aCNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France, and bDepartment of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
*Correspondence e-mail: jean-claude.daran@lcc-toulouse.fr
As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, 2-(diphenylphosphinothioyl)-2-(3-oxobut-1-en-yl)ferrocene, [Fe(C5H5)(C21H18OPS)], are described. The molecule is built up from a ferrocene unit disubstituted by an S-protected diphenylphosphine group and by a methylvinylketone chain. The features weak C—H⋯O and C—H⋯S interactions, which build a two-dimensional network. This structure is compared to that of the related disubstituted diphenylphosphino ferrocene.
Keywords: crystal structure; organometallic chemistry; 2-(diphenylphosphinothioyl)ferrocene chemistry; aldol/elimination reaction.
CCDC reference: 2099273
1. Chemical context
Over the last few years, our team has developed several bidentate phosphine-containing planar chiral ferrocene ligands and tested them in various asymmetric catalytic reactions (Manoury & Poli, 2011). In particular, some P,O ligands were synthesized from 2-(diphenylphosphinothioyl)ferrocenecarboxaldehyde (Mateus et al., 2006). This compound can be easily obtained as a or as each pure enantiomer and bears a versatile aldehyde function, which can be used to obtain more complex molecules. In this context, we were delighted to report a new and efficient aldol/elimination reaction of the aldehyde group to yield the corresponding ene-one under mild conditions (see Scheme) using a weak base (pKa of 2-picolyl amine is 8.60; Miletti et al., 2010).
Similar compounds have been synthesized but using the Wittig reaction, which requires the synthesis of a specific phosphonium reagent and the use of a strong base, such as n-butyllithium (Ye et al., 2017; Schaarschmidt et al., 2014; Štěpnička et al. 2008) or sodium hydride (Stepnicka et al., 2008). Indeed, the aldol/elimination sequence has been used to functionalize ferrocenecarboxaldehyde, which is a much less crowded analog of 2-(diphenylphosphinothioyl)ferrocenecarboxaldehyde but with a much stronger base such as NaOH, KOH or tBuOK (see, for instance, Achelle et al., 2012; Romanov et al., 2015; Li et al., 2020; Wieczorek et al., 2016).
2. Structural commentary
The molecule is built up from a ferrocene unit disubstituted by an S-protected diphenylphosphine group and by a methylvinylketone chain (Fig. 1). As is usually observed for thiophenylphosphine ferrocenyl derivatives, the P atom is roughly in the plane of the Cp ring, deviating from the mean plane by −0.034 (5) Å, whereas the S atom is offset from this plane by 1.159 (6) Å. The two Cp rings have a with a twist angle of ca 37.1°. The O atom is trans to the ferrocene unit with respect to the C=C double bond. The torsion angle of the C2—C21—C22—C23 chain is 172.4 (4)° and the plane containing the double bond is twisted with respect to the Cp ring by 22.8 (2)°. This molecule has a related to the occurrence of two different substituents on the Cp ring; however, as the is centrosymmetric, the two enantiomers R/S are present in equal numbers within the crystal. Two intramolecular C—H⋯S interactions occur (Table 1).
3. Supramolecular features
The packing of the structure is stabilized by weak C—H⋯O and C—H⋯S interactions (Table 1). The C—H⋯O interaction results in the formation of a pseudo-dimer through an R22(8) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 2). The C—H⋯S intercations build up a chain parallel to the b axis and these chains are further associated by the C—H⋯O interactions of the pseudo-dimer, building a ribbon parallel to the (01) plane (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, update 2020.3; Groom et al., 2016) does not reveal any structures with ferrocenyl disubstituted by a thiodiphenylphosphine and a vinyl; however, a search using a fragment containing a ferrocenyl disubsituted by an unprotected phosphine and a vinyl substituent (Fig. 4) reveals 15 hits of which seven can be compared with the title compound, having only different substituents R1 and R2 (Fig. 4). A comparison of C—C and C—P distances and dihedral angles between the Cp ring and vinyl mean plane are shown in Fig. 5. Clearly the substituent on the phosphine has some influence on the C—P bond lengths, which range from 1.795 (3) Å for the title compound to 1.827 Å for the [η5-1-dicyclohexylphosphino-2-(2-phenylethenyl)cyclopentadienyl](η5-cyclopentadienyl)iron compound (Schaarschmidt et al., 2014) in which the phosphine bears two cyclohexyl substituents that are rather bulky. The occurrence of the S atom attached to the phosphine in the title compound may explain why the shortest value observed for the title compound. There is no significant difference in the C—C bonds within the vinyl moiety, showing that these values are not affected by the substituent, whereas the discrepancy observed for the dihedral angles between the vinyl unit and the Cp rings (6.4 to 22.8°) is related to the nature of the R1 and R2 substituents on the vinyl unit. The largest value of 22.8°, observed for the title compound, is related to the weak C21—H21⋯S1 interaction.
5. Synthesis and crystallization
To a solution of 2-(diphenylphosphinothioyl)ferrocenecarboxaldehyde (220 mg, 0.51 mmol) in acetone (40 mL) was added 2-picolylamine (0.2 mL, 1.53 mmol). The reaction mixture was refluxed for 24–36h with TLC monitoring of the consumption of aldehyde. After complete consumption, the reaction mixture was evaporated in vacuo and extracted with dichloromethane and washed with three portions of water. The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness. The crude material was purified by silica gel with a hexane–ether mixture (1/1, v/v) to obtain the product as a red solid (0.13 g, 55%). Monocrystals suitable for X-ray were obtained by slow diffusion of pentane into a dichloromethane solution of 4-(2-thiodiphenylphosphinoferrocenyl)-but-3-ene-one.
1H NMR (ppm, CD2Cl2): δ 8.46 (1H, d, J = 16.3Hz, vinyl); 7.90–7.80 (m, 1H, Ph); 7.65–7.15 (9H, m, Ph); 6.28 (1H, d, J = 16.3Hz, vinyl); 5.01 (1H, m, subst. Cp); 4.65 (1H, m, subst. Cp); 4.39 (5H, s, subst. Cp); 4.07 (1H, m, subst. Cp); 3.87 (3H, s, CH3).
13C NMR (ppm, CD2Cl2): δ 198. 16 (s, C=O); 143.46 (s, vinyl); 134.93 (δ, JCP = 87.4Hz, quat Ph); 133.01 (δ, JCP = 86.6Hz, quat Ph); 132.03 (δ, JCP = 11.0Hz, CH Ph); 131.69 (δ, JCP = 10.7Hz, CH Ph); 131.54 (δ, JCP = 3.0Hz, CH Ph para); 131.39 (δ, JCP = 3.0Hz, CH Ph para); 128.40 (δ, JCP = 12.5Hz, CH Ph); 128.19 (δ, JCP = 12.4Hz, CH Ph); 126.89 (s, vinyl); 83.06 (δ, JCP = 10.7Hz, quat Cp); 77.44 (δ, JCP = 11.9Hz, subst Cp); 77.00 (δ, JCP = 93.2Hz, quat Cp); 71.87 (s, Cp); 71.85 (δ, JCP = 10.3Hz, subst Cp); 69.90 (δ, JCP = 8.4Hz, subst Cp); 25.87 (s, CH3).
31P NMR (δ, ppm, CD2Cl2): δ 41.01.
HRMS (DCI, CH4): 471.0638 (100%, calculated for C26H24FeOPS [M] 471.0635).
M.p.: 441 K (dec).
IR (ATR mode, diamond crystal): νmax(solid)/cm−1: 1630 (s), 1607 (s), 1677 (w), 1364 (m), 1335 (m), 1264 (s), 1226 (m), 1165 (s), 1099 (s), 1055 (m), 987 (s), 863 (w), 832 (m), 822 (s), 760 (s), 7478 (m), 712 (s), 698 (s), 690 (s), 660 (s), 640 (s), 614 (sm), 583 (m), 534 (s).
6. Refinement
Crystal data, data collection and structure . All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl) with Uiso(H) = 1.2Ueq(CH aromatic) or Uiso(H) = 1.5Ueq(CH3). In the final difference-Fourier map, there is a large residual density, 1.43 e Å−3 in the vicinity (1.20 Å) of the H24A atom of the terminal methyl group; it is roughly located in the (100) plane; no chemically logical explanation could be found to explain this residual density.
details are summarized in Table 2Supporting information
CCDC reference: 2099273
https://doi.org/10.1107/S205698902100760X/zl5019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100760X/zl5019Isup2.hkl
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).[Fe(C5H5)(C21H18OPS)] | F(000) = 976 |
Mr = 470.32 | Dx = 1.425 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3643 (9) Å | Cell parameters from 4518 reflections |
b = 17.909 (2) Å | θ = 2.7–24.2° |
c = 16.710 (2) Å | µ = 0.87 mm−1 |
β = 95.230 (4)° | T = 110 K |
V = 2194.8 (5) Å3 | Platelet, orange yellow |
Z = 4 | 0.1 × 0.07 × 0.01 mm |
Bruker APEXII CCD diffractometer | 5657 independent reflections |
Radiation source: micro-focus sealed tube | 3907 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.113 |
φ and ω scans | θmax = 29.3°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.673, Tmax = 0.730 | k = −24→24 |
43009 measured reflections | l = −22→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0664P)2 + 1.8414P] where P = (Fo2 + 2Fc2)/3 |
5657 reflections | (Δ/σ)max = 0.001 |
272 parameters | Δρmax = 1.43 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.39674 (5) | 0.81999 (2) | 0.74273 (2) | 0.01578 (14) | |
S1 | 0.61309 (10) | 0.63480 (5) | 0.64301 (5) | 0.0248 (2) | |
P1 | 0.35129 (10) | 0.65181 (4) | 0.64545 (5) | 0.01527 (18) | |
O1 | 0.7131 (3) | 0.95064 (13) | 0.44772 (14) | 0.0292 (5) | |
C1 | 0.2847 (4) | 0.74695 (16) | 0.65962 (17) | 0.0147 (6) | |
C2 | 0.3485 (4) | 0.81389 (16) | 0.62101 (17) | 0.0151 (6) | |
C3 | 0.2527 (4) | 0.87556 (17) | 0.65055 (18) | 0.0183 (6) | |
H3 | 0.267892 | 0.926260 | 0.635831 | 0.022* | |
C4 | 0.1317 (4) | 0.84957 (18) | 0.70518 (19) | 0.0196 (6) | |
H4 | 0.051683 | 0.879705 | 0.732889 | 0.024* | |
C5 | 0.1495 (4) | 0.77100 (17) | 0.71171 (18) | 0.0181 (6) | |
H5 | 0.084008 | 0.739506 | 0.744651 | 0.022* | |
C6 | 0.6382 (4) | 0.8733 (2) | 0.7754 (2) | 0.0296 (8) | |
H6 | 0.699427 | 0.906469 | 0.742541 | 0.036* | |
C7 | 0.6625 (5) | 0.7957 (2) | 0.7792 (2) | 0.0344 (9) | |
H7 | 0.742647 | 0.767350 | 0.749659 | 0.041* | |
C8 | 0.5462 (5) | 0.7670 (2) | 0.8349 (2) | 0.0336 (9) | |
H8 | 0.534168 | 0.716032 | 0.849153 | 0.040* | |
C9 | 0.4507 (5) | 0.8281 (2) | 0.86554 (19) | 0.0287 (8) | |
H9 | 0.363864 | 0.825418 | 0.904144 | 0.034* | |
C10 | 0.5090 (4) | 0.89381 (19) | 0.8279 (2) | 0.0259 (7) | |
H10 | 0.467609 | 0.943108 | 0.836689 | 0.031* | |
C21 | 0.4977 (4) | 0.81952 (17) | 0.56951 (17) | 0.0182 (6) | |
H21 | 0.573671 | 0.777207 | 0.564631 | 0.022* | |
C22 | 0.5325 (4) | 0.88155 (17) | 0.52879 (17) | 0.0192 (6) | |
H22 | 0.446573 | 0.921101 | 0.528844 | 0.023* | |
C23 | 0.6929 (4) | 0.89337 (17) | 0.48403 (18) | 0.0202 (6) | |
C24 | 0.8396 (5) | 0.8344 (2) | 0.4856 (2) | 0.0289 (8) | |
H24A | 0.918833 | 0.844327 | 0.442775 | 0.043* | |
H24B | 0.783093 | 0.785139 | 0.477308 | 0.043* | |
H24C | 0.912153 | 0.835465 | 0.537758 | 0.043* | |
C111 | 0.2541 (4) | 0.60087 (16) | 0.72528 (17) | 0.0157 (6) | |
C112 | 0.0667 (4) | 0.58941 (18) | 0.72292 (18) | 0.0207 (7) | |
H112 | −0.010291 | 0.605709 | 0.677569 | 0.025* | |
C113 | −0.0085 (4) | 0.55449 (18) | 0.78603 (19) | 0.0246 (7) | |
H113 | −0.136781 | 0.547765 | 0.784222 | 0.029* | |
C114 | 0.1032 (5) | 0.52926 (19) | 0.8520 (2) | 0.0265 (7) | |
H114 | 0.051826 | 0.505580 | 0.895551 | 0.032* | |
C115 | 0.2907 (5) | 0.53900 (19) | 0.8537 (2) | 0.0267 (7) | |
H115 | 0.367996 | 0.520842 | 0.898038 | 0.032* | |
C116 | 0.3662 (4) | 0.57508 (17) | 0.79095 (18) | 0.0202 (6) | |
H116 | 0.494365 | 0.582127 | 0.792935 | 0.024* | |
C121 | 0.2198 (4) | 0.62196 (17) | 0.55413 (17) | 0.0172 (6) | |
C122 | 0.0639 (5) | 0.65958 (19) | 0.5239 (2) | 0.0258 (7) | |
H122 | 0.025180 | 0.702742 | 0.550738 | 0.031* | |
C123 | −0.0366 (5) | 0.63428 (19) | 0.4543 (2) | 0.0294 (8) | |
H123 | −0.143308 | 0.660150 | 0.433628 | 0.035* | |
C124 | 0.0204 (5) | 0.57107 (19) | 0.41551 (19) | 0.0257 (7) | |
H124 | −0.046804 | 0.553753 | 0.367907 | 0.031* | |
C125 | 0.1738 (5) | 0.53371 (18) | 0.4459 (2) | 0.0253 (7) | |
H125 | 0.211159 | 0.490163 | 0.419431 | 0.030* | |
C126 | 0.2746 (4) | 0.55824 (17) | 0.51434 (19) | 0.0211 (7) | |
H126 | 0.381137 | 0.531932 | 0.534462 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0149 (2) | 0.0185 (2) | 0.0138 (2) | 0.00177 (17) | 0.00064 (16) | −0.00037 (17) |
S1 | 0.0137 (4) | 0.0228 (4) | 0.0384 (5) | 0.0056 (3) | 0.0057 (3) | 0.0026 (3) |
P1 | 0.0126 (4) | 0.0148 (4) | 0.0185 (4) | 0.0030 (3) | 0.0017 (3) | 0.0020 (3) |
O1 | 0.0346 (13) | 0.0265 (13) | 0.0273 (13) | −0.0097 (11) | 0.0069 (10) | 0.0070 (10) |
C1 | 0.0107 (13) | 0.0166 (15) | 0.0165 (14) | 0.0022 (11) | 0.0000 (11) | 0.0008 (11) |
C2 | 0.0122 (13) | 0.0180 (15) | 0.0145 (14) | 0.0019 (11) | −0.0022 (11) | 0.0008 (11) |
C3 | 0.0205 (15) | 0.0158 (15) | 0.0179 (15) | 0.0014 (12) | −0.0017 (12) | 0.0000 (12) |
C4 | 0.0136 (14) | 0.0210 (16) | 0.0243 (16) | 0.0060 (12) | 0.0023 (12) | −0.0021 (13) |
C5 | 0.0092 (13) | 0.0238 (17) | 0.0217 (15) | 0.0022 (12) | 0.0033 (11) | 0.0012 (12) |
C6 | 0.0207 (17) | 0.043 (2) | 0.0235 (17) | −0.0084 (15) | −0.0076 (13) | 0.0031 (15) |
C7 | 0.0179 (16) | 0.055 (3) | 0.0286 (19) | 0.0117 (16) | −0.0066 (14) | −0.0145 (17) |
C8 | 0.043 (2) | 0.0265 (19) | 0.0271 (18) | −0.0002 (16) | −0.0214 (16) | 0.0042 (15) |
C9 | 0.0310 (18) | 0.040 (2) | 0.0150 (16) | −0.0072 (16) | 0.0017 (13) | −0.0031 (14) |
C10 | 0.0279 (17) | 0.0236 (18) | 0.0247 (17) | −0.0024 (14) | −0.0059 (13) | −0.0083 (14) |
C21 | 0.0204 (15) | 0.0175 (15) | 0.0164 (15) | 0.0020 (12) | 0.0003 (12) | −0.0009 (12) |
C22 | 0.0209 (15) | 0.0192 (16) | 0.0174 (15) | 0.0015 (12) | 0.0014 (12) | −0.0006 (12) |
C23 | 0.0218 (16) | 0.0196 (16) | 0.0188 (15) | 0.0001 (13) | −0.0008 (12) | −0.0028 (12) |
C24 | 0.0243 (17) | 0.030 (2) | 0.0331 (19) | 0.0044 (14) | 0.0069 (14) | 0.0034 (15) |
C111 | 0.0158 (14) | 0.0145 (14) | 0.0168 (14) | 0.0003 (11) | 0.0008 (11) | 0.0007 (11) |
C112 | 0.0160 (14) | 0.0256 (17) | 0.0196 (15) | −0.0015 (13) | −0.0038 (12) | 0.0041 (13) |
C113 | 0.0203 (16) | 0.0262 (18) | 0.0273 (18) | −0.0057 (13) | 0.0024 (13) | 0.0008 (14) |
C114 | 0.0316 (18) | 0.0254 (18) | 0.0229 (17) | −0.0034 (14) | 0.0046 (14) | 0.0056 (14) |
C115 | 0.0310 (18) | 0.0242 (18) | 0.0237 (17) | 0.0003 (14) | −0.0049 (14) | 0.0095 (14) |
C116 | 0.0187 (15) | 0.0168 (16) | 0.0241 (16) | 0.0009 (12) | −0.0030 (12) | 0.0018 (12) |
C121 | 0.0188 (14) | 0.0190 (15) | 0.0143 (14) | 0.0019 (12) | 0.0037 (11) | 0.0008 (12) |
C122 | 0.0301 (18) | 0.0209 (17) | 0.0254 (17) | 0.0101 (14) | −0.0032 (14) | −0.0046 (13) |
C123 | 0.036 (2) | 0.0261 (18) | 0.0241 (17) | 0.0089 (15) | −0.0073 (14) | −0.0014 (14) |
C124 | 0.0356 (19) | 0.0241 (17) | 0.0172 (16) | −0.0054 (15) | 0.0020 (13) | −0.0005 (13) |
C125 | 0.0314 (18) | 0.0191 (16) | 0.0271 (18) | −0.0006 (14) | 0.0112 (14) | −0.0053 (13) |
C126 | 0.0215 (15) | 0.0183 (16) | 0.0245 (16) | 0.0023 (13) | 0.0072 (12) | −0.0015 (13) |
Fe1—C1 | 2.028 (3) | C9—H9 | 0.9500 |
Fe1—C2 | 2.035 (3) | C10—H10 | 0.9500 |
Fe1—C7 | 2.043 (3) | C21—C22 | 1.340 (4) |
Fe1—C8 | 2.043 (3) | C21—H21 | 0.9500 |
Fe1—C5 | 2.045 (3) | C22—C23 | 1.470 (4) |
Fe1—C3 | 2.047 (3) | C22—H22 | 0.9500 |
Fe1—C6 | 2.048 (3) | C23—C24 | 1.509 (4) |
Fe1—C10 | 2.059 (3) | C24—H24A | 0.9800 |
Fe1—C9 | 2.060 (3) | C24—H24B | 0.9800 |
Fe1—C4 | 2.064 (3) | C24—H24C | 0.9800 |
S1—P1 | 1.9560 (11) | C111—C116 | 1.391 (4) |
P1—C1 | 1.795 (3) | C111—C112 | 1.392 (4) |
P1—C121 | 1.812 (3) | C112—C113 | 1.384 (4) |
P1—C111 | 1.816 (3) | C112—H112 | 0.9500 |
O1—C23 | 1.208 (4) | C113—C114 | 1.390 (5) |
C1—C5 | 1.446 (4) | C113—H113 | 0.9500 |
C1—C2 | 1.459 (4) | C114—C115 | 1.390 (5) |
C2—C3 | 1.423 (4) | C114—H114 | 0.9500 |
C2—C21 | 1.459 (4) | C115—C116 | 1.389 (4) |
C3—C4 | 1.412 (4) | C115—H115 | 0.9500 |
C3—H3 | 0.9500 | C116—H116 | 0.9500 |
C4—C5 | 1.417 (4) | C121—C122 | 1.386 (4) |
C4—H4 | 0.9500 | C121—C126 | 1.399 (4) |
C5—H5 | 0.9500 | C122—C123 | 1.396 (4) |
C6—C10 | 1.401 (5) | C122—H122 | 0.9500 |
C6—C7 | 1.401 (5) | C123—C124 | 1.389 (5) |
C6—H6 | 0.9500 | C123—H123 | 0.9500 |
C7—C8 | 1.417 (6) | C124—C125 | 1.370 (5) |
C7—H7 | 0.9500 | C124—H124 | 0.9500 |
C8—C9 | 1.421 (5) | C125—C126 | 1.377 (5) |
C8—H8 | 0.9500 | C125—H125 | 0.9500 |
C9—C10 | 1.420 (5) | C126—H126 | 0.9500 |
C1—Fe1—C2 | 42.10 (11) | C10—C6—C7 | 108.8 (3) |
C1—Fe1—C7 | 112.69 (13) | C10—C6—Fe1 | 70.49 (19) |
C2—Fe1—C7 | 111.19 (13) | C7—C6—Fe1 | 69.8 (2) |
C1—Fe1—C8 | 111.98 (13) | C10—C6—H6 | 125.6 |
C2—Fe1—C8 | 139.56 (14) | C7—C6—H6 | 125.6 |
C7—Fe1—C8 | 40.60 (16) | Fe1—C6—H6 | 125.7 |
C1—Fe1—C5 | 41.60 (11) | C6—C7—C8 | 107.9 (3) |
C2—Fe1—C5 | 69.73 (12) | C6—C7—Fe1 | 70.16 (19) |
C7—Fe1—C5 | 142.26 (15) | C8—C7—Fe1 | 69.70 (19) |
C8—Fe1—C5 | 113.44 (14) | C6—C7—H7 | 126.1 |
C1—Fe1—C3 | 69.37 (12) | C8—C7—H7 | 126.1 |
C2—Fe1—C3 | 40.80 (11) | Fe1—C7—H7 | 125.7 |
C7—Fe1—C3 | 138.11 (14) | C7—C8—C9 | 107.9 (3) |
C8—Fe1—C3 | 178.29 (14) | C7—C8—Fe1 | 69.70 (19) |
C5—Fe1—C3 | 68.27 (12) | C9—C8—Fe1 | 70.38 (19) |
C1—Fe1—C6 | 140.55 (13) | C7—C8—H8 | 126.1 |
C2—Fe1—C6 | 111.05 (13) | C9—C8—H8 | 126.1 |
C7—Fe1—C6 | 40.06 (15) | Fe1—C8—H8 | 125.4 |
C8—Fe1—C6 | 67.70 (15) | C10—C9—C8 | 107.4 (3) |
C5—Fe1—C6 | 177.42 (14) | C10—C9—Fe1 | 69.82 (18) |
C3—Fe1—C6 | 110.59 (14) | C8—C9—Fe1 | 69.10 (18) |
C1—Fe1—C10 | 179.48 (13) | C10—C9—H9 | 126.3 |
C2—Fe1—C10 | 138.35 (13) | C8—C9—H9 | 126.3 |
C7—Fe1—C10 | 67.51 (14) | Fe1—C9—H9 | 126.3 |
C8—Fe1—C10 | 67.83 (14) | C6—C10—C9 | 108.1 (3) |
C5—Fe1—C10 | 137.97 (13) | C6—C10—Fe1 | 69.62 (19) |
C3—Fe1—C10 | 110.83 (13) | C9—C10—Fe1 | 69.85 (18) |
C6—Fe1—C10 | 39.90 (14) | C6—C10—H10 | 126.0 |
C1—Fe1—C9 | 139.22 (13) | C9—C10—H10 | 126.0 |
C2—Fe1—C9 | 178.56 (13) | Fe1—C10—H10 | 126.1 |
C7—Fe1—C9 | 68.00 (14) | C22—C21—C2 | 123.1 (3) |
C8—Fe1—C9 | 40.52 (15) | C22—C21—H21 | 118.4 |
C5—Fe1—C9 | 111.67 (13) | C2—C21—H21 | 118.4 |
C3—Fe1—C9 | 139.05 (13) | C21—C22—C23 | 125.3 (3) |
C6—Fe1—C9 | 67.54 (14) | C21—C22—H22 | 117.3 |
C10—Fe1—C9 | 40.33 (14) | C23—C22—H22 | 117.3 |
C1—Fe1—C4 | 69.08 (12) | O1—C23—C22 | 121.3 (3) |
C2—Fe1—C4 | 68.66 (12) | O1—C23—C24 | 118.8 (3) |
C7—Fe1—C4 | 177.37 (15) | C22—C23—C24 | 119.8 (3) |
C8—Fe1—C4 | 141.06 (15) | C23—C24—H24A | 109.5 |
C5—Fe1—C4 | 40.33 (12) | C23—C24—H24B | 109.5 |
C3—Fe1—C4 | 40.17 (12) | H24A—C24—H24B | 109.5 |
C6—Fe1—C4 | 137.36 (14) | C23—C24—H24C | 109.5 |
C10—Fe1—C4 | 110.75 (13) | H24A—C24—H24C | 109.5 |
C9—Fe1—C4 | 112.09 (13) | H24B—C24—H24C | 109.5 |
C1—P1—C121 | 105.06 (14) | C116—C111—C112 | 119.3 (3) |
C1—P1—C111 | 104.43 (13) | C116—C111—P1 | 120.1 (2) |
C121—P1—C111 | 104.73 (14) | C112—C111—P1 | 120.6 (2) |
C1—P1—S1 | 115.62 (10) | C113—C112—C111 | 120.6 (3) |
C121—P1—S1 | 112.86 (10) | C113—C112—H112 | 119.7 |
C111—P1—S1 | 113.10 (10) | C111—C112—H112 | 119.7 |
C5—C1—C2 | 106.8 (2) | C112—C113—C114 | 120.2 (3) |
C5—C1—P1 | 125.0 (2) | C112—C113—H113 | 119.9 |
C2—C1—P1 | 128.2 (2) | C114—C113—H113 | 119.9 |
C5—C1—Fe1 | 69.82 (17) | C113—C114—C115 | 119.4 (3) |
C2—C1—Fe1 | 69.23 (16) | C113—C114—H114 | 120.3 |
P1—C1—Fe1 | 127.14 (15) | C115—C114—H114 | 120.3 |
C3—C2—C21 | 125.1 (3) | C116—C115—C114 | 120.6 (3) |
C3—C2—C1 | 107.1 (2) | C116—C115—H115 | 119.7 |
C21—C2—C1 | 127.4 (3) | C114—C115—H115 | 119.7 |
C3—C2—Fe1 | 70.03 (16) | C115—C116—C111 | 120.0 (3) |
C21—C2—Fe1 | 120.9 (2) | C115—C116—H116 | 120.0 |
C1—C2—Fe1 | 68.67 (16) | C111—C116—H116 | 120.0 |
C4—C3—C2 | 109.3 (3) | C122—C121—C126 | 119.3 (3) |
C4—C3—Fe1 | 70.58 (17) | C122—C121—P1 | 121.6 (2) |
C2—C3—Fe1 | 69.17 (16) | C126—C121—P1 | 119.1 (2) |
C4—C3—H3 | 125.3 | C121—C122—C123 | 120.3 (3) |
C2—C3—H3 | 125.3 | C121—C122—H122 | 119.9 |
Fe1—C3—H3 | 126.5 | C123—C122—H122 | 119.9 |
C3—C4—C5 | 108.5 (3) | C124—C123—C122 | 119.6 (3) |
C3—C4—Fe1 | 69.25 (17) | C124—C123—H123 | 120.2 |
C5—C4—Fe1 | 69.09 (16) | C122—C123—H123 | 120.2 |
C3—C4—H4 | 125.7 | C125—C124—C123 | 119.9 (3) |
C5—C4—H4 | 125.7 | C125—C124—H124 | 120.0 |
Fe1—C4—H4 | 127.5 | C123—C124—H124 | 120.0 |
C4—C5—C1 | 108.3 (3) | C124—C125—C126 | 121.1 (3) |
C4—C5—Fe1 | 70.58 (17) | C124—C125—H125 | 119.5 |
C1—C5—Fe1 | 68.58 (16) | C126—C125—H125 | 119.5 |
C4—C5—H5 | 125.9 | C125—C126—C121 | 119.9 (3) |
C1—C5—H5 | 125.9 | C125—C126—H126 | 120.1 |
Fe1—C5—H5 | 126.5 | C121—C126—H126 | 120.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O1i | 0.95 | 2.63 | 3.548 (4) | 164 |
C112—H112···S1ii | 0.95 | 2.83 | 3.576 (3) | 136 |
C116—H116···S1 | 0.95 | 2.89 | 3.374 (3) | 113 |
C21—H21···S1 | 0.95 | 2.87 | 3.604 (3) | 135 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z. |
Funding information
The authors thank the Indo-French Centre for the Promotion of Advanced Research (IFCPRA/CEFIPRA) for funding (contract No. 5805).
References
Achelle, S., Barsella, A., Baudequin, C., Caro, B. & Robin-le Guen, F. (2012). J. Org. Chem. 77, 4087–4096. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iftime, G., Balavoine, G. G. A., Daran, J.-C., Lacroix, P. G. & Manoury, E. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 139–146. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Y., Tang, B., Dong, S., Gao, W., Jiang, W. & Chen, Y. (2020). Chemistry Select, 5, 2746–2752. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Manoury, E. & Poli, R. (2011). Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis. In Catalysis by Metal Complexes (CMCO), Vol. 37 (Phosphorus Chemistry: Catalysis and Material Science Applications), edited by M. Peruzzini & L. Gonsalvi, pp. 121–149. Germany: Springer Verlag Google Scholar
Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310. Web of Science CSD CrossRef CAS Google Scholar
Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279. CrossRef CAS PubMed Google Scholar
Romanov, A. S., Shapovalov, A. V., Angles, G. F., Timofeeva, T. V., Corsini, M., Fusi, S. & Fabrizi de Biani, F. (2015). CrystEngComm, 17, 7564–7573. CrossRef CAS Google Scholar
Schaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742–753. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Štěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446–456. Google Scholar
Wieczorek, A., Błauż, A., Zakrzewski, J., Rychlik, B. & Plażuk, D. (2016). ACS Med. Chem. Lett. 7, 612–617. CrossRef CAS PubMed Google Scholar
Ye, K.-Y., Wang, X., Daniliuc, C. G., Kehr, G. & Erker, G. (2017). Eur. J. Inorg. Chem. pp. 368–371. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.