research communications
Synthesis and catena-poly[[hexaaqua{μ3-2-[bis(carboxylatomethyl)amino]terephthalato}dicobalt(II)] pentahydrate] containing water tapes and pentamers
ofaCollege of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People's Republic of China
*Correspondence e-mail: jiemacn@163.com
The title coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O}n, was crystallized at room temperature from an aqueous solution of 2-aminodiacetic terephthalic acid (H4adtp) and cobalt(II) nitrate. The consists of one adtp4− ligand, one and two half CoII ions, six water ligands coordinated to CoII ions and five uncoordinated water molecules. Two of the cobalt cations lie on centres of inversion and are coordinated in octahedral O2(OH2)4 environments, whereas the other adopts a slightly distorted octahedral NO3(OH2)2 environment. The contains parallel stacked, one-dimensional zigzag chains, {[Co2(C12H7NO8)(H2O)6]}n, which assemble into a three-dimensional supramolecular architecture via networks of hydrogen bonds involving the coordinated and free water molecules. One-dimensional `water tapes' are formed, containing alternating six-membered and twelve-membered rings of water molecules, together with water pentamers, in which a central uncoordinated water molecule is hydrogen bonded to two coordinated and two free water molecules in a tetrahedral arrangement.
Keywords: crystal structure; 2-aminodiacetic terephthalic acid; hydrogen bonds; water tape; water pentamer.
CCDC reference: 2063370
1. Chemical context
Water clusters, which are aggregations of water molecules assembled via hydrogen bonding, are often observed in organic and organic–inorganic hybrid crystal structures. To date, a number of discrete water clusters of different sizes and conformations have been identified, including tetramers (Thakur et al., 2021; Ahmed et al., 2018), pentamers (Ghosh & Bharadwaj, 2006), hexamers (Zhao et al., 2015; Li et al., 2020), heptamers (He et al., 2012; Hedayetullah Mir & Vittal, 2008), octamers (Hao et al., 2013; Wei et al., 2009; Ghosh & Bharadwaj, 2006), decamers (Mukhopadhyay & Bernal, 2006), and other higher member clusters (Liu et al., 2018; Chen et al., 2020). In addition, examples of infinite water clusters consisting of one-dimensional water chains or `tapes' (Gacki et al., 2020; Zhao et al., 2019; Saraei et al., 2019; Han et al., 2019; Liu et al., 2020; Saraei et al., 2018), two-dimensional water layers (Mei et al., 2016) and three-dimensional water frameworks (Huang et al., 2007, 2019; Wu et al., 2013) have also been reported recently. Water clusters are often held in the cavities of the host structures as guest molecules, which can enhance the stability of the structure. Water clusters, when hydrogen bonded to the host structures, play a vital role in assembling organic and organic–inorganic complex molecules into three-dimensional architectures (Thakur et al., 2021; Zia et al., 2020; Huang et al., 2019; Liu et al., 2018). Our work focuses on the construction of metal complexes using semi-rigid multicarboxylic acids containing aminodiacetate moieties, and analysing the affects of weak hydrogen-bonding interactions on their supramolecular assemblies (Ma et al., 2015a). We have previously reported the synthesis of two CuII complexes based on 2-(carboxyphenyl)-iminodiacetic acid (H3cpida) and 1,10-phenanthroline (phen), and discussed the influence of hydrogen bonding on the resulting structures (Ma et al., 2015b). Herein we report the synthesis and structural characterization of a CoII coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O}n (I), based on 2-aminodiacetic terephthalic acid (H4adtp). The hydrogen-bonding interactions in (I), which result in the formation of one-dimensional water tapes and isolated water pentamers, are discussed in detail.
2. Structural commentary
Compound (I) crystallizes in the triclinic Pī. The comprises three crystallographically distinct CoII ions, one adtp4− ligand, six coordinated water ligands and five free water molecules. Regarding the adtp4− ligand, the carboxylate groups of the aminodiacetate moiety and that in the meta-position adopt monodentate coordination modes on bonding to cobalt, whereas the carboxylate group in the ortho-position coordinates in a syn–anti bidentate bridging fashion (see Scheme). As shown in Fig. 1, Co2 is located in a distorted octahedral N1O5 environment. The adip4− ion chelates to Co2 via the amino nitrogen atom (N1), two acetate oxygen atoms (O6 and O8) and the ortho-position carboxylate oxygen atom (O4). The remaining two cis-related sites around Co2 are ligated by oxygen atoms (O9 and O14) of terminal water molecules. Co1 and Co3 both lie on inversion centres and are located in octahedral O6 environments. In each case, a pair of trans-related coordination sites are bonded to equivalent carboxylate oxygen atoms (O2, O2i for Co1; O3, O3ii for Co3). The remaining trans-related sites of Co1 and Co3 are ligated by two pairs of equivalent oxygen atoms from terminal water molecules (O12, O12i and O13, O13i for Co1; O10, O10ii and O11, O11ii for Co3, respectively). The length of the Co2—N1 bond is 2.1712 (18) Å and the Co—O distances lie in the range 2.0128 (15)–2.1330 (15) Å, all of which are reasonable values. The adtp4− ligand links the Co1 and Co3 atoms via the ortho- and meta-position carboxylate groups and a zigzag chain is formed by inversion operations with the closest Co1⋯Co3 and Co2⋯Co3 distances being 10.657 (1) and 5.194 (1) Å, respectively (Fig. 2).
3. Supramolecular features
The zigzag chains are arranged parallel to each other and intermolecular hydrogen bonds (Table 1) between adjacent chains play a significant role in assembling the three-dimensional supramolecular architecture. As shown in Fig. 3, one zigzag chain, highlighted in yellow, associates directly via hydrogen bonds with three pairs of nearby chains, which are highlighted in green, red and blue. The intermolecular hydrogen bonds between two adjacent chains can be classified into three groups: (I) intermolecular hydrogen bonds involving O11—H11D⋯O1ii, O12i—H12Bi⋯O6 and O13ii—H13Aii⋯O5 (Fig. 4a); (II) intermolecular hydrogen bonds involving O9—H9B⋯O6i and equivalent O9i—H9Bi⋯O6 (Fig. 5a) and (III) intermolecular hydrogen bonds involving O12i—H12Ai⋯O8 and O14—H14A⋯O1i (Fig. 6a). The yellow zigzag chain connects with two neighbouring green chains via the group I intermolecular hydrogen bonds, resulting in a two-dimensional supramolecular layer (Fig. 4b). The yellow chain also connects with the red and blue chains, assembling into two-dimensional supramolecular layers via the intermolecular hydrogen bonds of groups II (Fig. 5b) and III (Fig. 6b), respectively.
In addition, there are a number of other hydrogen-bonding interactions within the structure. The free water molecule H2O19 forms four hydrogen bonds, two with coordinated water molecules H2O11 and H2O14, and two with free water molecules H2O15 and H2O18 (Fig. 7a), generating a tetrahedral water pentamer. Similar pentamers have been observed previously (Saraei et al., 2018; Liu et al., 2020). In addition, the five free water molecules H2O15, H2O16 (which is disordered over two positions, H2O16 and H2O16A), H2O17, H2O18 and H2O19 are linked into a one-dimensional water chain via hydrogen bonds (Fig. 7b). The water chains are then further connected into a hydrogen-bonded supramolecular layer via the coordinated water molecule, H2O11, and the carboxylate oxygen atom, O7 (Fig. 7c). The resulting water layer contains alternating six- and twelve-membered oxygen rings and can be viewed as a one-dimensional T6 (3)12 (3) water tape. Similar water tapes have been reported previously (Han et al., 2019; Liu et al., 2012a; Zhao et al., 2019, Hao et al., 2013).
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.42, May 2021 update; Groom et al., 2016) reveals 19 structures containing H4adtp, three of which are CoII complexes, including one two-dimensional coordination polymer (refcode CUFDIS; Ma et al., 2021) and two discrete coordination complexes (RAXJUX and RAXKEI; Liu et al., 2012b). No structures containing H4adtp with similar cell parameters to those of the title compound have been reported.
5. Synthesis and crystallization
H4adtp was synthesized using a method based on that described in the literature (Xu et al., 2006). The other chemicals were purchased from commercial sources and used without further purification. A mixture of Co(NO3)2·6H2O (0.2910 g, 1 mmol), H4adtp (0.0594 g, 0.2 mmol) and hexamethylenetetramine (0.0701 g, 0.5 mmol) was dissolved in 6 mL of water. The solvent was allowed to evaporate slowly at room temperature. Crystals in the form of light-pink blocks were grown after one week, collected by filtration and dried in air. A 62% yield based on H4adtp was obtained. Analysis calculated (%) for C12H29N1O19Co2 (Mr = 609.22): C 23.66, H 4.80, N 2.30; found: C 23.66, H 4.77, N 2.33. Selected IR data (KBr pellet, cm−1): 3449 (s), 1901 (w), 1615 (m), 1568(m), 1386 (m), 1191 (w), 1092 (w), 787 (w), 733 (w).
The phase purity of (I) was demonstrated by powder X-ray (PXRD; Fig. S1 in the supporting information). The peak positions of the experimental PXRD pattern match well with those simulated from the single-crystal X-ray data, indicating that the pure phase was synthesized.
6. Refinement
Crystal data, data collection and structure . During the of (I), O16 was found to be disordered over two sites (O16 and O16A) with occupancies of 0.704 (5) and 0.296 (5). The hydrogen atoms of the water molecules were found in electron-density maps and refined as riding, with Uiso(H) = 1.5 Ueq(O). Other hydrogen atoms were placed at geometrically calculated positions and treated as riding, with Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2063370
https://doi.org/10.1107/S2056989021008343/cq2045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021008343/cq2045Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021008343/cq2045Isup3.cdx
Figure S1. The simulated and experimental PXRD patterns for (I). DOI: https://doi.org/10.1107/S2056989021008343/cq2045sup4.tif
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Co2(C12H7NO8)(H2O)6]·5H2O | Z = 2 |
Mr = 609.22 | F(000) = 628 |
Triclinic, P1 | Dx = 1.751 Mg m−3 |
a = 9.7653 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.725 (2) Å | Cell parameters from 3650 reflections |
c = 11.8191 (15) Å | θ = 2.0–27.5° |
α = 64.882 (5)° | µ = 1.53 mm−1 |
β = 71.276 (7)° | T = 293 K |
γ = 86.692 (8)° | Block, clear light red |
V = 1155.6 (3) Å3 | 0.2 × 0.2 × 0.2 mm |
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 4052 independent reflections |
Radiation source: Sealed Tube, Rotating Anode | 3498 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 25.0°, θmin = 2.1° |
CCD_Profile_fitting scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | k = −13→13 |
Tmin = 0.844, Tmax = 1.000 | l = −14→14 |
10193 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0373P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4052 reflections | Δρmax = 0.97 e Å−3 |
348 parameters | Δρmin = −0.45 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.500000 | 0.000000 | 1.000000 | 0.01013 (11) | |
O1 | 0.71506 (15) | 0.16282 (13) | 0.67122 (14) | 0.0116 (3) | |
C1 | 0.6534 (2) | 0.36754 (19) | 0.6586 (2) | 0.0097 (4) | |
Co2 | 0.92914 (3) | 0.81788 (3) | 0.25427 (3) | 0.00926 (9) | |
O2 | 0.53599 (15) | 0.17746 (13) | 0.83918 (14) | 0.0128 (3) | |
C2 | 0.7374 (2) | 0.43193 (19) | 0.5263 (2) | 0.0097 (4) | |
H2 | 0.787693 | 0.385882 | 0.481028 | 0.012* | |
Co3 | 0.500000 | 1.000000 | 0.500000 | 0.00977 (11) | |
O3 | 0.53886 (16) | 0.81035 (13) | 0.52932 (14) | 0.0142 (3) | |
O14 | 0.99581 (16) | 0.76339 (14) | 0.42109 (14) | 0.0152 (3) | |
H14A | 1.084005 | 0.796585 | 0.396511 | 0.023* | |
H14B | 0.943474 | 0.796773 | 0.472202 | 0.023* | |
C3 | 0.7484 (2) | 0.56273 (19) | 0.4598 (2) | 0.0090 (4) | |
O4 | 0.72895 (16) | 0.84545 (13) | 0.35178 (15) | 0.0158 (3) | |
O9 | 1.00200 (19) | 1.00342 (14) | 0.17472 (15) | 0.0207 (4) | |
H9A | 0.971354 | 1.053917 | 0.212391 | 0.031* | |
H9B | 1.039011 | 1.053478 | 0.090961 | 0.031* | |
C4 | 0.6636 (2) | 0.63255 (19) | 0.5254 (2) | 0.0098 (4) | |
O5 | 0.78350 (17) | 0.73838 (14) | 0.00522 (15) | 0.0163 (3) | |
C5 | 0.5863 (2) | 0.5667 (2) | 0.6599 (2) | 0.0113 (5) | |
H5 | 0.535647 | 0.611872 | 0.706117 | 0.014* | |
O6 | 0.86627 (16) | 0.84612 (13) | 0.08939 (14) | 0.0128 (3) | |
C6 | 0.5822 (2) | 0.43705 (19) | 0.7268 (2) | 0.0111 (5) | |
H6 | 0.532011 | 0.396404 | 0.817033 | 0.013* | |
O7 | 1.19306 (16) | 0.59855 (14) | 0.11284 (15) | 0.0188 (4) | |
O13 | 0.36628 (16) | 0.07573 (13) | 1.12298 (15) | 0.0137 (3) | |
H13A | 0.305886 | 0.121648 | 1.085472 | 0.021* | |
H13B | 0.310559 | 0.014679 | 1.194882 | 0.021* | |
C7 | 0.6342 (2) | 0.22445 (19) | 0.7282 (2) | 0.0102 (5) | |
O18 | 0.69274 (18) | 0.62405 (15) | 0.87758 (17) | 0.0216 (4) | |
H18A | 0.722316 | 0.639556 | 0.932159 | 0.032* | |
H18B | 0.730870 | 0.554995 | 0.878060 | 0.032* | |
O8 | 1.11592 (15) | 0.75971 (13) | 0.16099 (14) | 0.0126 (3) | |
C8 | 0.6440 (2) | 0.77274 (19) | 0.4638 (2) | 0.0099 (5) | |
C9 | 0.9740 (2) | 0.55842 (19) | 0.2918 (2) | 0.0123 (5) | |
H9C | 0.950428 | 0.492589 | 0.270057 | 0.015* | |
H9D | 1.001629 | 0.517939 | 0.370768 | 0.015* | |
C10 | 1.1036 (2) | 0.6459 (2) | 0.1777 (2) | 0.0108 (5) | |
O15 | 1.07588 (17) | 0.85972 (15) | 0.68317 (17) | 0.0201 (4) | |
H15A | 0.999917 | 0.839996 | 0.669056 | 0.030* | |
H15B | 1.116676 | 0.789336 | 0.707557 | 0.030* | |
C11 | 0.7564 (2) | 0.6353 (2) | 0.2337 (2) | 0.0124 (5) | |
H11A | 0.655783 | 0.642055 | 0.277716 | 0.015* | |
H11B | 0.760380 | 0.557885 | 0.222209 | 0.015* | |
C12 | 0.8078 (2) | 0.74643 (19) | 0.0985 (2) | 0.0113 (5) | |
O11 | 0.30500 (16) | 0.97725 (13) | 0.46413 (15) | 0.0140 (3) | |
H11C | 0.236723 | 0.937054 | 0.539337 | 0.021* | |
H11D | 0.317123 | 0.927325 | 0.425117 | 0.021* | |
O10 | 0.60855 (18) | 1.07131 (14) | 0.30338 (15) | 0.0183 (4) | |
H10A | 0.585872 | 1.133580 | 0.240798 | 0.027* | |
H10B | 0.655576 | 1.024557 | 0.265690 | 0.027* | |
N1 | 0.84205 (18) | 0.62558 (16) | 0.32063 (17) | 0.0089 (4) | |
O12 | 0.68118 (15) | 0.04542 (14) | 1.04035 (14) | 0.0140 (3) | |
H12A | 0.733414 | 0.111214 | 0.971905 | 0.021* | |
H12B | 0.738442 | −0.015215 | 1.048118 | 0.021* | |
O19 | 0.83677 (17) | 0.80778 (15) | 0.63399 (16) | 0.0190 (4) | |
H19A | 0.786359 | 0.749532 | 0.710713 | 0.028* | |
H19B | 0.779773 | 0.868110 | 0.616878 | 0.028* | |
O17 | 0.41401 (19) | 0.69892 (17) | 0.88122 (16) | 0.0286 (4) | |
H17A | 0.353610 | 0.681177 | 0.960127 | 0.043* | |
H17B | 0.496366 | 0.676069 | 0.893476 | 0.043* | |
O16 | 1.2542 (3) | 0.6732 (2) | 0.7213 (3) | 0.0262 (8) | 0.704 (5) |
H16A | 1.279312 | 0.667157 | 0.787902 | 0.039* | 0.704 (5) |
H16B | 1.332880 | 0.705061 | 0.653351 | 0.039* | 0.704 (5) |
O16A | 1.1659 (10) | 0.6285 (7) | 0.8383 (9) | 0.048 (3) | 0.296 (5) |
H16C | 1.210697 | 0.664527 | 0.869032 | 0.071* | 0.296 (5) |
H16D | 1.117075 | 0.561697 | 0.907255 | 0.071* | 0.296 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0094 (2) | 0.0072 (2) | 0.0088 (2) | −0.00013 (16) | 0.00000 (18) | −0.00093 (17) |
O1 | 0.0127 (8) | 0.0080 (7) | 0.0114 (8) | 0.0007 (6) | −0.0014 (7) | −0.0037 (6) |
C1 | 0.0082 (11) | 0.0080 (11) | 0.0119 (11) | 0.0000 (8) | −0.0045 (9) | −0.0024 (9) |
Co2 | 0.00941 (17) | 0.00736 (16) | 0.00848 (16) | −0.00012 (12) | −0.00072 (13) | −0.00260 (12) |
O2 | 0.0119 (8) | 0.0074 (8) | 0.0098 (8) | −0.0006 (6) | 0.0021 (7) | 0.0008 (6) |
C2 | 0.0097 (11) | 0.0101 (11) | 0.0098 (11) | 0.0021 (9) | −0.0027 (9) | −0.0054 (9) |
Co3 | 0.0105 (2) | 0.0074 (2) | 0.0096 (2) | 0.00172 (16) | −0.00197 (18) | −0.00311 (17) |
O3 | 0.0135 (8) | 0.0097 (8) | 0.0136 (8) | 0.0030 (6) | 0.0013 (7) | −0.0043 (7) |
O14 | 0.0111 (8) | 0.0197 (8) | 0.0139 (8) | −0.0006 (7) | −0.0018 (7) | −0.0079 (7) |
C3 | 0.0073 (11) | 0.0099 (11) | 0.0080 (11) | −0.0009 (8) | −0.0019 (9) | −0.0024 (9) |
O4 | 0.0135 (8) | 0.0086 (8) | 0.0137 (8) | 0.0024 (6) | 0.0030 (7) | 0.0000 (7) |
O9 | 0.0336 (10) | 0.0086 (8) | 0.0113 (8) | −0.0064 (7) | 0.0039 (8) | −0.0036 (7) |
C4 | 0.0090 (11) | 0.0085 (11) | 0.0113 (11) | −0.0008 (8) | −0.0038 (9) | −0.0032 (9) |
O5 | 0.0231 (9) | 0.0142 (8) | 0.0133 (8) | 0.0020 (7) | −0.0090 (7) | −0.0054 (7) |
C5 | 0.0094 (11) | 0.0120 (11) | 0.0138 (11) | 0.0011 (9) | −0.0025 (9) | −0.0076 (9) |
O6 | 0.0163 (8) | 0.0089 (8) | 0.0110 (8) | −0.0011 (6) | −0.0045 (7) | −0.0020 (6) |
C6 | 0.0094 (11) | 0.0124 (11) | 0.0075 (11) | −0.0025 (9) | −0.0005 (9) | −0.0018 (9) |
O7 | 0.0154 (9) | 0.0161 (8) | 0.0184 (9) | 0.0019 (7) | 0.0033 (7) | −0.0080 (7) |
O13 | 0.0148 (8) | 0.0093 (8) | 0.0117 (8) | 0.0009 (6) | −0.0022 (7) | −0.0012 (6) |
C7 | 0.0093 (11) | 0.0090 (11) | 0.0121 (11) | 0.0009 (9) | −0.0064 (10) | −0.0022 (9) |
O18 | 0.0274 (10) | 0.0159 (9) | 0.0283 (10) | 0.0056 (7) | −0.0134 (8) | −0.0131 (8) |
O8 | 0.0103 (8) | 0.0100 (8) | 0.0133 (8) | −0.0001 (6) | 0.0001 (7) | −0.0040 (6) |
C8 | 0.0101 (11) | 0.0104 (11) | 0.0122 (11) | 0.0011 (9) | −0.0056 (10) | −0.0061 (9) |
C9 | 0.0126 (12) | 0.0105 (11) | 0.0120 (11) | 0.0024 (9) | −0.0023 (10) | −0.0045 (9) |
C10 | 0.0095 (11) | 0.0119 (11) | 0.0104 (11) | 0.0029 (9) | −0.0051 (9) | −0.0032 (9) |
O15 | 0.0164 (9) | 0.0221 (9) | 0.0240 (9) | −0.0002 (7) | −0.0039 (8) | −0.0138 (8) |
C11 | 0.0104 (11) | 0.0131 (11) | 0.0127 (11) | −0.0010 (9) | −0.0031 (10) | −0.0049 (9) |
C12 | 0.0073 (11) | 0.0130 (12) | 0.0136 (12) | 0.0051 (9) | −0.0039 (9) | −0.0060 (9) |
O11 | 0.0135 (8) | 0.0141 (8) | 0.0146 (8) | 0.0006 (6) | −0.0027 (7) | −0.0078 (7) |
O10 | 0.0257 (10) | 0.0135 (8) | 0.0118 (8) | 0.0076 (7) | −0.0017 (7) | −0.0058 (7) |
N1 | 0.0080 (9) | 0.0086 (9) | 0.0061 (9) | 0.0007 (7) | −0.0001 (8) | −0.0012 (7) |
O12 | 0.0116 (8) | 0.0103 (8) | 0.0139 (8) | 0.0001 (6) | −0.0009 (7) | −0.0019 (7) |
O19 | 0.0179 (9) | 0.0206 (9) | 0.0185 (9) | 0.0059 (7) | −0.0065 (8) | −0.0087 (7) |
O17 | 0.0254 (10) | 0.0326 (11) | 0.0146 (9) | 0.0077 (8) | −0.0009 (8) | −0.0030 (8) |
O16 | 0.0289 (16) | 0.0194 (14) | 0.0251 (18) | −0.0011 (12) | −0.0017 (13) | −0.0095 (13) |
O16A | 0.059 (6) | 0.033 (4) | 0.074 (7) | 0.018 (4) | −0.044 (6) | −0.029 (4) |
Co1—O2i | 2.0890 (14) | O5—C12 | 1.240 (3) |
Co1—O2 | 2.0890 (14) | C5—H5 | 0.9300 |
Co1—O13i | 2.0856 (15) | C5—C6 | 1.380 (3) |
Co1—O13 | 2.0856 (15) | O6—C12 | 1.279 (3) |
Co1—O12i | 2.1231 (15) | C6—H6 | 0.9300 |
Co1—O12 | 2.1231 (15) | O7—C10 | 1.239 (3) |
O1—C7 | 1.267 (3) | O13—H13A | 0.8734 |
C1—C2 | 1.391 (3) | O13—H13B | 0.8731 |
C1—C6 | 1.389 (3) | O18—H18A | 0.8706 |
C1—C7 | 1.514 (3) | O18—H18B | 0.8700 |
Co2—O14 | 2.1039 (15) | O8—C10 | 1.270 (3) |
Co2—O4 | 2.0128 (15) | C9—H9C | 0.9700 |
Co2—O9 | 2.0336 (15) | C9—H9D | 0.9700 |
Co2—O6 | 2.1168 (15) | C9—C10 | 1.534 (3) |
Co2—O8 | 2.0521 (15) | C9—N1 | 1.492 (3) |
Co2—N1 | 2.1712 (18) | O15—H15A | 0.8738 |
O2—C7 | 1.259 (2) | O15—H15B | 0.8699 |
C2—H2 | 0.9300 | C11—H11A | 0.9700 |
C2—C3 | 1.387 (3) | C11—H11B | 0.9700 |
Co3—O3 | 2.1311 (14) | C11—C12 | 1.516 (3) |
Co3—O3ii | 2.1311 (14) | C11—N1 | 1.486 (3) |
Co3—O11 | 2.1330 (14) | O11—H11C | 0.8700 |
Co3—O11ii | 2.1330 (15) | O11—H11D | 0.8692 |
Co3—O10ii | 2.0234 (15) | O10—H10A | 0.8702 |
Co3—O10 | 2.0235 (15) | O10—H10B | 0.8699 |
O3—C8 | 1.255 (3) | O12—H12A | 0.8720 |
O14—H14A | 0.8716 | O12—H12B | 0.8707 |
O14—H14B | 0.8710 | O19—H19A | 0.8703 |
C3—C4 | 1.416 (3) | O19—H19B | 0.8698 |
C3—N1 | 1.472 (3) | O17—H17A | 0.8702 |
O4—C8 | 1.260 (2) | O17—H17B | 0.8697 |
O9—H9A | 0.8696 | O16—H16A | 0.8710 |
O9—H9B | 0.8699 | O16—H16B | 0.8700 |
C4—C5 | 1.395 (3) | O16A—H16C | 0.8695 |
C4—C8 | 1.518 (3) | O16A—H16D | 0.8699 |
O2i—Co1—O2 | 180.0 | Co2—O9—H9B | 126.4 |
O2i—Co1—O12i | 89.84 (6) | H9A—O9—H9B | 104.6 |
O2—Co1—O12i | 90.16 (6) | C3—C4—C8 | 126.71 (19) |
O2—Co1—O12 | 89.84 (6) | C5—C4—C3 | 117.58 (18) |
O2i—Co1—O12 | 90.16 (6) | C5—C4—C8 | 115.68 (18) |
O13—Co1—O2 | 89.80 (6) | C4—C5—H5 | 118.8 |
O13i—Co1—O2i | 89.80 (6) | C6—C5—C4 | 122.4 (2) |
O13—Co1—O2i | 90.20 (6) | C6—C5—H5 | 118.8 |
O13i—Co1—O2 | 90.20 (6) | C12—O6—Co2 | 114.05 (13) |
O13i—Co1—O13 | 180.0 | C1—C6—H6 | 120.2 |
O13i—Co1—O12i | 89.48 (6) | C5—C6—C1 | 119.66 (19) |
O13—Co1—O12i | 90.52 (6) | C5—C6—H6 | 120.2 |
O13—Co1—O12 | 89.48 (6) | Co1—O13—H13A | 109.5 |
O13i—Co1—O12 | 90.52 (6) | Co1—O13—H13B | 109.4 |
O12—Co1—O12i | 180.0 | H13A—O13—H13B | 104.3 |
C2—C1—C7 | 121.71 (19) | O1—C7—C1 | 118.59 (18) |
C6—C1—C2 | 118.73 (19) | O2—C7—O1 | 125.81 (19) |
C6—C1—C7 | 119.54 (19) | O2—C7—C1 | 115.60 (18) |
O14—Co2—O6 | 171.86 (6) | H18A—O18—H18B | 104.5 |
O14—Co2—N1 | 91.18 (6) | C10—O8—Co2 | 114.07 (13) |
O4—Co2—O14 | 92.18 (6) | O3—C8—O4 | 122.76 (19) |
O4—Co2—O9 | 93.01 (7) | O3—C8—C4 | 116.55 (18) |
O4—Co2—O6 | 91.31 (6) | O4—C8—C4 | 120.68 (18) |
O4—Co2—O8 | 169.72 (6) | H9C—C9—H9D | 107.7 |
O4—Co2—N1 | 86.41 (6) | C10—C9—H9C | 108.9 |
O9—Co2—O14 | 95.30 (6) | C10—C9—H9D | 108.9 |
O9—Co2—O6 | 91.86 (6) | N1—C9—H9C | 108.9 |
O9—Co2—O8 | 96.83 (6) | N1—C9—H9D | 108.9 |
O9—Co2—N1 | 173.51 (7) | N1—C9—C10 | 113.37 (16) |
O6—Co2—N1 | 81.70 (6) | O7—C10—O8 | 124.6 (2) |
O8—Co2—O14 | 89.88 (6) | O7—C10—C9 | 117.42 (18) |
O8—Co2—O6 | 85.42 (6) | O8—C10—C9 | 117.84 (18) |
O8—Co2—N1 | 83.48 (6) | H15A—O15—H15B | 103.9 |
C7—O2—Co1 | 132.21 (13) | H11A—C11—H11B | 107.6 |
C1—C2—H2 | 119.0 | C12—C11—H11A | 108.7 |
C3—C2—C1 | 121.99 (19) | C12—C11—H11B | 108.7 |
C3—C2—H2 | 119.0 | N1—C11—H11A | 108.7 |
O3—Co3—O3ii | 180.0 | N1—C11—H11B | 108.7 |
O3ii—Co3—O11 | 90.75 (6) | N1—C11—C12 | 114.38 (17) |
O3ii—Co3—O11ii | 89.25 (6) | O5—C12—O6 | 123.83 (19) |
O3—Co3—O11 | 89.25 (6) | O5—C12—C11 | 118.53 (19) |
O3—Co3—O11ii | 90.75 (6) | O6—C12—C11 | 117.50 (18) |
O11—Co3—O11ii | 180.00 (8) | Co3—O11—H11C | 109.3 |
O10—Co3—O3 | 93.04 (6) | Co3—O11—H11D | 109.3 |
O10—Co3—O3ii | 86.96 (6) | H11C—O11—H11D | 104.5 |
O10ii—Co3—O3ii | 93.04 (6) | Co3—O10—H10A | 127.0 |
O10ii—Co3—O3 | 86.96 (6) | Co3—O10—H10B | 122.3 |
O10ii—Co3—O11 | 90.32 (6) | H10A—O10—H10B | 104.5 |
O10ii—Co3—O11ii | 89.68 (6) | C3—N1—Co2 | 115.69 (12) |
O10—Co3—O11 | 89.68 (6) | C3—N1—C9 | 112.36 (16) |
O10—Co3—O11ii | 90.32 (6) | C3—N1—C11 | 109.16 (16) |
O10ii—Co3—O10 | 180.0 | C9—N1—Co2 | 103.66 (12) |
C8—O3—Co3 | 127.99 (13) | C11—N1—Co2 | 105.14 (12) |
Co2—O14—H14A | 109.5 | C11—N1—C9 | 110.49 (16) |
Co2—O14—H14B | 109.4 | Co1—O12—H12A | 109.4 |
H14A—O14—H14B | 104.4 | Co1—O12—H12B | 109.4 |
C2—C3—C4 | 119.14 (19) | H12A—O12—H12B | 104.5 |
C2—C3—N1 | 119.40 (18) | H19A—O19—H19B | 104.5 |
C4—C3—N1 | 121.39 (18) | H17A—O17—H17B | 104.5 |
C8—O4—Co2 | 128.55 (13) | H16A—O16—H16B | 104.4 |
Co2—O9—H9A | 124.8 | H16C—O16A—H16D | 104.6 |
Co1—O2—C7—O1 | 21.8 (3) | C4—C3—N1—C9 | 148.70 (19) |
Co1—O2—C7—C1 | −158.96 (13) | C4—C3—N1—C11 | −88.4 (2) |
C1—C2—C3—C4 | −4.6 (3) | C4—C5—C6—C1 | −2.0 (3) |
C1—C2—C3—N1 | 178.43 (18) | C5—C4—C8—O3 | −15.1 (3) |
Co2—O4—C8—O3 | 161.71 (15) | C5—C4—C8—O4 | 165.91 (19) |
Co2—O4—C8—C4 | −19.4 (3) | C6—C1—C2—C3 | −2.0 (3) |
Co2—O6—C12—O5 | −168.82 (16) | C6—C1—C7—O1 | −170.27 (19) |
Co2—O6—C12—C11 | 15.5 (2) | C6—C1—C7—O2 | 10.5 (3) |
Co2—O8—C10—O7 | 166.73 (17) | C7—C1—C2—C3 | 176.06 (19) |
Co2—O8—C10—C9 | −17.3 (2) | C7—C1—C6—C5 | −172.81 (18) |
C2—C1—C6—C5 | 5.3 (3) | C8—C4—C5—C6 | 173.80 (19) |
C2—C1—C7—O1 | 11.7 (3) | C10—C9—N1—Co2 | −26.61 (19) |
C2—C1—C7—O2 | −167.56 (19) | C10—C9—N1—C3 | −152.23 (17) |
C2—C3—C4—C5 | 7.8 (3) | C10—C9—N1—C11 | 85.6 (2) |
C2—C3—C4—C8 | −170.45 (19) | C12—C11—N1—Co2 | 27.1 (2) |
C2—C3—N1—Co2 | −153.20 (15) | C12—C11—N1—C3 | 151.78 (17) |
C2—C3—N1—C9 | −34.4 (3) | C12—C11—N1—C9 | −84.2 (2) |
C2—C3—N1—C11 | 88.5 (2) | N1—C3—C4—C5 | −175.36 (18) |
Co3—O3—C8—O4 | −15.4 (3) | N1—C3—C4—C8 | 6.4 (3) |
Co3—O3—C8—C4 | 165.66 (13) | N1—C9—C10—O7 | −152.01 (19) |
C3—C4—C5—C6 | −4.6 (3) | N1—C9—C10—O8 | 31.7 (3) |
C3—C4—C8—O3 | 163.1 (2) | N1—C11—C12—O5 | 153.61 (19) |
C3—C4—C8—O4 | −15.9 (3) | N1—C11—C12—O6 | −30.4 (3) |
C4—C3—N1—Co2 | 29.9 (2) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H14A···O1iii | 0.87 | 1.87 | 2.723 (2) | 166 |
O14—H14B···O19 | 0.87 | 1.92 | 2.743 (2) | 158 |
O9—H9A···O15iv | 0.87 | 1.84 | 2.702 (2) | 168 |
O9—H9B···O6v | 0.87 | 1.87 | 2.742 (2) | 175 |
O13—H13A···O5vi | 0.87 | 1.88 | 2.727 (2) | 162 |
O13—H13B···O1i | 0.87 | 1.98 | 2.759 (2) | 148 |
O18—H18A···O5vii | 0.87 | 1.93 | 2.752 (2) | 158 |
O18—H18B···O7iii | 0.87 | 1.88 | 2.750 (2) | 177 |
O15—H15A···O19 | 0.87 | 1.87 | 2.738 (2) | 177 |
O15—H15B···O16 | 0.87 | 1.85 | 2.692 (3) | 162 |
O15—H15B···O16A | 0.87 | 2.02 | 2.833 (7) | 156 |
O11—H11C···O15viii | 0.87 | 1.82 | 2.686 (2) | 172 |
O11—H11D···O1vi | 0.87 | 1.95 | 2.786 (2) | 161 |
O10—H10A···O17ii | 0.87 | 1.88 | 2.705 (2) | 158 |
O10—H10B···O4 | 0.87 | 2.11 | 2.740 (2) | 129 |
O12—H12A···O8iii | 0.87 | 1.92 | 2.773 (2) | 166 |
O12—H12B···O6ix | 0.87 | 1.98 | 2.846 (2) | 172 |
O19—H19A···O18 | 0.87 | 1.85 | 2.719 (2) | 175 |
O19—H19B···O11ii | 0.87 | 1.94 | 2.786 (2) | 165 |
O17—H17A···O7x | 0.87 | 1.88 | 2.702 (2) | 157 |
O17—H17B···O18 | 0.87 | 1.95 | 2.804 (2) | 166 |
O16A—H16C···O17xi | 0.87 | 2.11 | 2.861 (8) | 144 |
O16—H16A···O17xi | 0.87 | 2.10 | 2.921 (4) | 156 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y+2, −z+1; (v) −x+2, −y+2, −z; (vi) −x+1, −y+1, −z+1; (vii) x, y, z+1; (viii) x−1, y, z; (ix) x, y−1, z+1; (x) x−1, y, z+1; (xi) x+1, y, z. |
Funding information
Funding for this research was provided by: Natural Science Foundation of Shandong Province (grant No. ZR2019QB013); National Natural Science Foundation of China (grant No. 21401164).
References
Ahmed, F., Datta, J., Sarkar, S., Dutta, B., Jana, A. D., Ray, P. P. & Mir, M. H. (2018). ChemistrySelect 3, 6985–6991. CSD CrossRef CAS Google Scholar
Chen, Y., Liu, S., Lin, J., Liu, S. & Ruan, Z. (2020). Z. Anorg. Allg. Chem. 646, 1–6. CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gacki, M., Kafarska, K., Pietrzak, A., Korona-Głowniak, I. & Wolf, W. (2020). Crystals, 10, 97. CSD CrossRef Google Scholar
Ghosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685–1689. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, S.-G., Zhang, Y.-X., Cheng, J.-T., Wu, X.-T. & Zhu, Q.-L. (2019). Chem. Asian J. 14, 3590–3596. CSD CrossRef CAS PubMed Google Scholar
Hao, H.-Q., Li, J.-X., Chen, M.-H. & Li, L. (2013). Inorg. Chem. Commun. 37, 7–11. CSD CrossRef CAS Google Scholar
He, W.-J., Luo, G.-G., Wu, D.-L., Liu, L., Xia, J.-X., Li, D.-X., Dai, J.-C. & Xiao, Z.-J. (2012). Inorg. Chem. Commun. 18, 4–7. CSD CrossRef CAS Google Scholar
Hedayetullah Mir, M. & Vittal, J. J. (2008). Cryst. Growth Des. 8, 1478–1480. Web of Science CSD CrossRef CAS Google Scholar
Huang, R.-K., Wang, S.-S., Liu, D.-X., Li, X., Song, J.-M., Xia, Y.-H., Zhou, D.-D., Huang, J., Zhang, W.-X. & Chen, X.-M. (2019). J. Am. Chem. Soc. 141, 5645–5649. CSD CrossRef CAS PubMed Google Scholar
Huang, Y.-G., Gong, Y.-Q., Jiang, F.-L., Yuan, D.-Q., Wu, M.-Y., Gao, Q., Wei, & Hong, M.-C. (2007). Cryst. Growth Des. 7, 1385–1387. Google Scholar
Li, S.-D., Su, F., Zhu, M.-L. & Lu, L.-P. (2020). Acta Cryst. C76, 863–868. CSD CrossRef IUCr Journals Google Scholar
Liu, F.-J., Hao, H.-J., Sun, C.-J., Lin, X.-H., Chen, H.-P., Huang, R.-B. & Zheng, L.-S. (2012a). Cryst. Growth Des. 12, 2004–2012. CSD CrossRef CAS Google Scholar
Liu, G.-L., Song, J.-B., Qiu, Q.-M. & Li, H. (2020). CrystEngComm, 22, 1321–1329. CSD CrossRef CAS Google Scholar
Liu, L., Zhang, Y., Wang, X.-L., Luo, G.-G., Xiao, Z.-J., Cheng, L. & Dai, J.-C. (2018). Cryst. Growth Des. 18, 1629–1635. CSD CrossRef CAS Google Scholar
Liu, M.-L., Wang, Y.-X., Shi, W. & Cui, J.-Z. (2012b). J. Coord. Chem. 65, 1915–1925. CSD CrossRef CAS Google Scholar
Ma, J., Zhang, W.-Z., Liu, Y. & Yi, W.-T. (2021). Acta Cryst. E77, 939–943. CrossRef IUCr Journals Google Scholar
Ma, J., Jiang, F.-L., Chen, L., Wu, M.-Y., Zhou, K., Yi, W.-T., Xiong, J. & Hong, M.-C. (2015a). Inorg. Chem. Commun. 58, 43–47. CSD CrossRef CAS Google Scholar
Ma, J., Jiang, F.-L., Zhou, K., Chen, L., Wu, M.-Y. & Hong, M.-C. (2015b). Z. Anorg. Allg. Chem. 641, 1998–2004. CSD CrossRef CAS Google Scholar
Mei, H.-X., Zhang, T., Huang, H.-Q., Huang, R.-B. & Zheng, L.-S. (2016). J. Mol. Struct. 1108, 126–133. CSD CrossRef CAS Google Scholar
Mukhopadhyay, U. & Bernal, I. (2006). Cryst. Growth Des. 6, 363–365. CSD CrossRef CAS Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Saraei, N., Hietsoi, O., Frye, B. C., Gupta, A. J., Mashuta, M. S., Gupta, G., Buchanan, R. M. & Grapperhaus, C. A. (2019). Inorg. Chim. Acta, 492, 268–274. CSD CrossRef CAS Google Scholar
Saraei, N., Hietsoi, O., Mullins, C. S., Gupta, A. J., Frye, B. C., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2018). CrystEngComm, 20, 7071–7081. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thakur, S., Frontera, A. & Chattopadhyay, S. (2021). Inorg. Chim. Acta, 515, 120057. CSD CrossRef Google Scholar
Wei, W., Jiang, F. L., Wu, M. Y., Gao, Q., Zhang, Q. F., Yan, C. F., Li, N. & Hong, M. C. (2009). Inorg. Chem. Commun. 12, 290–292. Web of Science CSD CrossRef CAS Google Scholar
Wu, B., Wang, S., Wang, R., Xu, J., Yuan, D. & Hou, H. (2013). Cryst. Growth Des. 13, 518–525. CSD CrossRef CAS Google Scholar
Xu, Y. Q., Yuan, D. Q., Wu, B. L., Han, L., Wu, M. Y., Jiang, F. L. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1168–1174. CSD CrossRef CAS Google Scholar
Zhao, F.-H., Li, Z.-L., He, Y.-C., Huang, L.-W., Jia, X.-M., Yan, X.-Q., Wang, Y.-F. & You, J.-M. (2019). J. Solid State Chem. 271, 309–313. CSD CrossRef CAS Google Scholar
Zhao, Y., Lu, H., Yang, L. & Luo, G.-G. (2015). J. Mol. Struct. 1088, 155–160. CSD CrossRef CAS Google Scholar
Zia, M., Khalid, M., Hameed, S., Irran, E. & Naseer, M. M. (2020). J. Mol. Struct. 1207, 127811. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.