research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of catena-poly[[hexa­aqua{μ3-2-[bis­­(carboxyl­atometh­yl)amino]­terephthalato}dicobalt(II)] penta­hydrate] containing water tapes and penta­mers

crossmark logo

aCollege of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People's Republic of China
*Correspondence e-mail: jiemacn@163.com

Edited by A. M. Chippindale, University of Reading, England (Received 28 July 2021; accepted 11 August 2021; online 20 August 2021)

The title coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O}n, was crystallized at room temperature from an aqueous solution of 2-aminodi­acetic terephthalic acid (H4adtp) and cobalt(II) nitrate. The asymmetric unit consists of one adtp4− ligand, one and two half CoII ions, six water ligands coordinated to CoII ions and five uncoordinated water mol­ecules. Two of the cobalt cations lie on centres of inversion and are coordinated in octa­hedral O2(OH2)4 environments, whereas the other adopts a slightly distorted octa­hedral NO3(OH2)2 environment. The crystal structure contains parallel stacked, one-dimensional zigzag chains, {[Co2(C12H7NO8)(H2O)6]}n, which assemble into a three-dimensional supra­molecular architecture via networks of hydrogen bonds involving the coordinated and free water mol­ecules. One-dimensional `water tapes' are formed, containing alternating six-membered and twelve-membered rings of water mol­ecules, together with water penta­mers, in which a central uncoordinated water mol­ecule is hydrogen bonded to two coordinated and two free water mol­ecules in a tetra­hedral arrangement.

1. Chemical context

Water clusters, which are aggregations of water mol­ecules assembled via hydrogen bonding, are often observed in organic and organic–inorganic hybrid crystal structures. To date, a number of discrete water clusters of different sizes and conformations have been identified, including tetra­mers (Thakur et al., 2021[Thakur, S., Frontera, A. & Chattopadhyay, S. (2021). Inorg. Chim. Acta, 515, 120057.]; Ahmed et al., 2018[Ahmed, F., Datta, J., Sarkar, S., Dutta, B., Jana, A. D., Ray, P. P. & Mir, M. H. (2018). ChemistrySelect 3, 6985-6991.]), penta­mers (Ghosh & Bharadwaj, 2006[Ghosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685-1689.]), hexa­mers (Zhao et al., 2015[Zhao, Y., Lu, H., Yang, L. & Luo, G.-G. (2015). J. Mol. Struct. 1088, 155-160.]; Li et al., 2020[Li, S.-D., Su, F., Zhu, M.-L. & Lu, L.-P. (2020). Acta Cryst. C76, 863-868.]), hepta­mers (He et al., 2012[He, W.-J., Luo, G.-G., Wu, D.-L., Liu, L., Xia, J.-X., Li, D.-X., Dai, J.-C. & Xiao, Z.-J. (2012). Inorg. Chem. Commun. 18, 4-7.]; Hedayetullah Mir & Vittal, 2008[Hedayetullah Mir, M. & Vittal, J. J. (2008). Cryst. Growth Des. 8, 1478-1480.]), octa­mers (Hao et al., 2013[Hao, H.-Q., Li, J.-X., Chen, M.-H. & Li, L. (2013). Inorg. Chem. Commun. 37, 7-11.]; Wei et al., 2009[Wei, W., Jiang, F. L., Wu, M. Y., Gao, Q., Zhang, Q. F., Yan, C. F., Li, N. & Hong, M. C. (2009). Inorg. Chem. Commun. 12, 290-292.]; Ghosh & Bharadwaj, 2006[Ghosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685-1689.]), deca­mers (Mukhopadhyay & Bernal, 2006[Mukhopadhyay, U. & Bernal, I. (2006). Cryst. Growth Des. 6, 363-365.]), and other higher member clusters (Liu et al., 2018[Liu, L., Zhang, Y., Wang, X.-L., Luo, G.-G., Xiao, Z.-J., Cheng, L. & Dai, J.-C. (2018). Cryst. Growth Des. 18, 1629-1635.]; Chen et al., 2020[Chen, Y., Liu, S., Lin, J., Liu, S. & Ruan, Z. (2020). Z. Anorg. Allg. Chem. 646, 1-6.]). In addition, examples of infinite water clusters consisting of one-dimensional water chains or `tapes' (Gacki et al., 2020[Gacki, M., Kafarska, K., Pietrzak, A., Korona-Głowniak, I. & Wolf, W. (2020). Crystals, 10, 97.]; Zhao et al., 2019[Zhao, F.-H., Li, Z.-L., He, Y.-C., Huang, L.-W., Jia, X.-M., Yan, X.-Q., Wang, Y.-F. & You, J.-M. (2019). J. Solid State Chem. 271, 309-313.]; Saraei et al., 2019[Saraei, N., Hietsoi, O., Frye, B. C., Gupta, A. J., Mashuta, M. S., Gupta, G., Buchanan, R. M. & Grapperhaus, C. A. (2019). Inorg. Chim. Acta, 492, 268-274.]; Han et al., 2019[Han, S.-G., Zhang, Y.-X., Cheng, J.-T., Wu, X.-T. & Zhu, Q.-L. (2019). Chem. Asian J. 14, 3590-3596.]; Liu et al., 2020[Liu, G.-L., Song, J.-B., Qiu, Q.-M. & Li, H. (2020). CrystEngComm, 22, 1321-1329.]; Saraei et al., 2018[Saraei, N., Hietsoi, O., Mullins, C. S., Gupta, A. J., Frye, B. C., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2018). CrystEngComm, 20, 7071-7081.]), two-dimensional water layers (Mei et al., 2016[Mei, H.-X., Zhang, T., Huang, H.-Q., Huang, R.-B. & Zheng, L.-S. (2016). J. Mol. Struct. 1108, 126-133.]) and three-dimensional water frameworks (Huang et al., 2007[Huang, Y.-G., Gong, Y.-Q., Jiang, F.-L., Yuan, D.-Q., Wu, M.-Y., Gao, Q., Wei, & Hong, M.-C. (2007). Cryst. Growth Des. 7, 1385-1387.], 2019[Huang, R.-K., Wang, S.-S., Liu, D.-X., Li, X., Song, J.-M., Xia, Y.-H., Zhou, D.-D., Huang, J., Zhang, W.-X. & Chen, X.-M. (2019). J. Am. Chem. Soc. 141, 5645-5649.]; Wu et al., 2013[Wu, B., Wang, S., Wang, R., Xu, J., Yuan, D. & Hou, H. (2013). Cryst. Growth Des. 13, 518-525.]) have also been reported recently. Water clusters are often held in the cavities of the host structures as guest mol­ecules, which can enhance the stability of the structure. Water clusters, when hydrogen bonded to the host structures, play a vital role in assembling organic and organic–inorganic complex mol­ecules into three-dimensional architectures (Thakur et al., 2021[Thakur, S., Frontera, A. & Chattopadhyay, S. (2021). Inorg. Chim. Acta, 515, 120057.]; Zia et al., 2020[Zia, M., Khalid, M., Hameed, S., Irran, E. & Naseer, M. M. (2020). J. Mol. Struct. 1207, 127811.]; Huang et al., 2019[Huang, R.-K., Wang, S.-S., Liu, D.-X., Li, X., Song, J.-M., Xia, Y.-H., Zhou, D.-D., Huang, J., Zhang, W.-X. & Chen, X.-M. (2019). J. Am. Chem. Soc. 141, 5645-5649.]; Liu et al., 2018[Liu, L., Zhang, Y., Wang, X.-L., Luo, G.-G., Xiao, Z.-J., Cheng, L. & Dai, J.-C. (2018). Cryst. Growth Des. 18, 1629-1635.]). Our work focuses on the construction of metal complexes using semi-rigid multi­carb­oxy­lic acids containing aminodi­acetate moieties, and analysing the affects of weak hydrogen-bonding inter­actions on their supra­molecular assemblies (Ma et al., 2015a[Ma, J., Jiang, F.-L., Chen, L., Wu, M.-Y., Zhou, K., Yi, W.-T., Xiong, J. & Hong, M.-C. (2015a). Inorg. Chem. Commun. 58, 43-47.]). We have previously reported the synthesis of two CuII complexes based on 2-(carb­oxy­phen­yl)-iminodi­acetic acid (H3cpida) and 1,10-phenanthroline (phen), and discussed the influence of hydrogen bonding on the resulting structures (Ma et al., 2015b[Ma, J., Jiang, F.-L., Zhou, K., Chen, L., Wu, M.-Y. & Hong, M.-C. (2015b). Z. Anorg. Allg. Chem. 641, 1998-2004.]). Herein we report the synthesis and structural characterization of a CoII coordination polymer, {[Co2(C12H7NO8)(H2O)6]·5H2O}n (I), based on 2-aminodi­acetic terephthalic acid (H4adtp). The hydrogen-bonding inter­actions in (I), which result in the formation of one-dimensional water tapes and isolated water penta­mers, are discussed in detail.

[Scheme 1]

2. Structural commentary

Compound (I) crystallizes in the triclinic space group Pī. The asymmetric unit comprises three crystallographically distinct CoII ions, one adtp4− ligand, six coordinated water ligands and five free water mol­ecules. Regarding the adtp4− ligand, the carboxyl­ate groups of the aminodi­acetate moiety and that in the meta-position adopt monodentate coordination modes on bonding to cobalt, whereas the carboxyl­ate group in the ortho-position coordinates in a synanti bidentate bridging fashion (see Scheme). As shown in Fig. 1[link], Co2 is located in a distorted octa­hedral N1O5 environment. The adip4− ion chelates to Co2 via the amino nitro­gen atom (N1), two acetate oxygen atoms (O6 and O8) and the ortho-position carboxyl­ate oxygen atom (O4). The remaining two cis-related sites around Co2 are ligated by oxygen atoms (O9 and O14) of terminal water mol­ecules. Co1 and Co3 both lie on inversion centres and are located in octa­hedral O6 environments. In each case, a pair of trans-related coordination sites are bonded to equivalent carboxyl­ate oxygen atoms (O2, O2i for Co1; O3, O3ii for Co3). The remaining trans-related sites of Co1 and Co3 are ligated by two pairs of equivalent oxygen atoms from terminal water mol­ecules (O12, O12i and O13, O13i for Co1; O10, O10ii and O11, O11ii for Co3, respectively). The length of the Co2—N1 bond is 2.1712 (18) Å and the Co—O distances lie in the range 2.0128 (15)–2.1330 (15) Å, all of which are reasonable values. The adtp4− ligand links the Co1 and Co3 atoms via the ortho- and meta-position carboxyl­ate groups and a zigzag chain is formed by inversion operations with the closest Co1⋯Co3 and Co2⋯Co3 distances being 10.657 (1) and 5.194 (1) Å, respectively (Fig. 2[link]).

[Figure 1]
Figure 1
Coordination environments of the CoII ions in (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 − x, −y, 2 − z; (ii) 1 − x, 2 − y, 1 − z.] Please label C atoms
[Figure 2]
Figure 2
The one-dimensional zigzag coordination chain found in (I).

3. Supra­molecular features

The zigzag chains are arranged parallel to each other and inter­molecular hydrogen bonds (Table 1[link]) between adjacent chains play a significant role in assembling the three-dimensional supra­molecular architecture. As shown in Fig. 3[link], one zigzag chain, highlighted in yellow, associates directly via hydrogen bonds with three pairs of nearby chains, which are highlighted in green, red and blue. The inter­molecular hydrogen bonds between two adjacent chains can be classified into three groups: (I)[link] inter­molecular hydrogen bonds involving O11—H11D⋯O1ii, O12i—H12Bi⋯O6 and O13ii—H13Aii⋯O5 (Fig. 4[link]a); (II) inter­molecular hydrogen bonds involving O9—H9B⋯O6i and equivalent O9i—H9Bi⋯O6 (Fig. 5[link]a) and (III) inter­molecular hydrogen bonds involving O12i—H12Ai⋯O8 and O14—H14A⋯O1i (Fig. 6[link]a). The yellow zigzag chain connects with two neighbouring green chains via the group I inter­molecular hydrogen bonds, resulting in a two-dimensional supra­molecular layer (Fig. 4[link]b). The yellow chain also connects with the red and blue chains, assembling into two-dimensional supra­molecular layers via the inter­molecular hydrogen bonds of groups II (Fig. 5[link]b) and III (Fig. 6[link]b), respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14A⋯O1i 0.87 1.87 2.723 (2) 166
O14—H14B⋯O19 0.87 1.92 2.743 (2) 158
O9—H9A⋯O15ii 0.87 1.84 2.702 (2) 168
O9—H9B⋯O6iii 0.87 1.87 2.742 (2) 175
O13—H13A⋯O5iv 0.87 1.88 2.727 (2) 162
O13—H13B⋯O1v 0.87 1.98 2.759 (2) 148
O18—H18A⋯O5vi 0.87 1.93 2.752 (2) 158
O18—H18B⋯O7i 0.87 1.88 2.750 (2) 177
O15—H15A⋯O19 0.87 1.87 2.738 (2) 177
O15—H15B⋯O16 0.87 1.85 2.692 (3) 162
O15—H15B⋯O16A 0.87 2.02 2.833 (7) 156
O11—H11C⋯O15vii 0.87 1.82 2.686 (2) 172
O11—H11D⋯O1iv 0.87 1.95 2.786 (2) 161
O10—H10A⋯O17viii 0.87 1.88 2.705 (2) 158
O10—H10B⋯O4 0.87 2.11 2.740 (2) 129
O12—H12A⋯O8i 0.87 1.92 2.773 (2) 166
O12—H12B⋯O6ix 0.87 1.98 2.846 (2) 172
O19—H19A⋯O18 0.87 1.85 2.719 (2) 175
O19—H19B⋯O11viii 0.87 1.94 2.786 (2) 165
O17—H17A⋯O7x 0.87 1.88 2.702 (2) 157
O17—H17B⋯O18 0.87 1.95 2.804 (2) 166
O16A—H16C⋯O17xi 0.87 2.11 2.861 (8) 144
O16—H16A⋯O17xi 0.87 2.10 2.921 (4) 156
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+2, -y+2, -z+1]; (iii) [-x+2, -y+2, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y, -z+2]; (vi) x, y, z+1; (vii) [x-1, y, z]; (viii) [-x+1, -y+2, -z+1]; (ix) [x, y-1, z+1]; (x) [x-1, y, z+1]; (xi) x+1, y, z.
[Figure 3]
Figure 3
The three-dimensional supra­molecular architecture of (I) composed of zigzag coordination chains linked via inter­molecular hydrogen bonds shown as dashed red lines. One zigzag chain, highlighted in yellow, associates directly with three pairs of neighbouring chains, which are highlighted in green, red and blue.
[Figure 4]
Figure 4
(a) Inter­molecular hydrogen bonds of group I shown as red dashed lines and (b) the two-dimensional supra­molecular layer generated using the yellow and green chains highlighted in Fig. 3[link] linked by the group I hydrogen bonds. [Symmetry codes: (i) x, 1 + y, −1 + z; (ii) 1 − x, 1 − y, 1 − z.]
[Figure 5]
Figure 5
(a) Inter­molecular hydrogen bonds of group II shown as red dashed lines and (b) the two-dimensional supra­molecular layer generated using the yellow and red chains highlighted in Fig. 3[link] linked by the group II hydrogen bonds. [Symmetry code: (i) 2 − x, 2 − y, −z.]
[Figure 6]
Figure 6
(a) Inter­molecular hydrogen bonds of group III shown as red dashed lines and (b) the two-dimensional supra­molecular layer generated using the yellow and blue chains highlighted in Fig. 3[link] linked by the group III hydrogen bonds. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z.]

In addition, there are a number of other hydrogen-bonding inter­actions within the structure. The free water mol­ecule H2O19 forms four hydrogen bonds, two with coordinated water mol­ecules H2O11 and H2O14, and two with free water mol­ecules H2O15 and H2O18 (Fig. 7[link]a), generating a tetra­hedral water penta­mer. Similar penta­mers have been observed previously (Saraei et al., 2018[Saraei, N., Hietsoi, O., Mullins, C. S., Gupta, A. J., Frye, B. C., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2018). CrystEngComm, 20, 7071-7081.]; Liu et al., 2020[Liu, G.-L., Song, J.-B., Qiu, Q.-M. & Li, H. (2020). CrystEngComm, 22, 1321-1329.]). In addition, the five free water mol­ecules H2O15, H2O16 (which is disordered over two positions, H2O16 and H2O16A), H2O17, H2O18 and H2O19 are linked into a one-dimensional water chain via hydrogen bonds (Fig. 7[link]b). The water chains are then further connected into a hydrogen-bonded supra­molecular layer via the coordinated water mol­ecule, H2O11, and the carboxyl­ate oxygen atom, O7 (Fig. 7[link]c). The resulting water layer contains alternating six- and twelve-membered oxygen rings and can be viewed as a one-dimensional T6 (3)12 (3) water tape. Similar water tapes have been reported previously (Han et al., 2019[Han, S.-G., Zhang, Y.-X., Cheng, J.-T., Wu, X.-T. & Zhu, Q.-L. (2019). Chem. Asian J. 14, 3590-3596.]; Liu et al., 2012a[Liu, F.-J., Hao, H.-J., Sun, C.-J., Lin, X.-H., Chen, H.-P., Huang, R.-B. & Zheng, L.-S. (2012a). Cryst. Growth Des. 12, 2004-2012.]; Zhao et al., 2019[Zhao, F.-H., Li, Z.-L., He, Y.-C., Huang, L.-W., Jia, X.-M., Yan, X.-Q., Wang, Y.-F. & You, J.-M. (2019). J. Solid State Chem. 271, 309-313.], Hao et al., 2013[Hao, H.-Q., Li, J.-X., Chen, M.-H. & Li, L. (2013). Inorg. Chem. Commun. 37, 7-11.]).

[Figure 7]
Figure 7
(a) A tetra­hedral water penta­mer with hydrogen bonds shown as red dashed lines [symmetry code: (i) 1 − x, 2 − y, 1 − z], (b) a one-dimensional water chain generated from the uncoordinated water mol­ecules [symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z] and (c) a one-dimensional water tape formed from hydrogen-bonded alternating six- and twelve-membered rings [symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z; (iii) 1 − x, 2 − y, 1 − z; (iv) 2 − x, 1 − y, 1 − z; (v) −1 + x, y, 1 + z; (vi) 2 − x, 2 − y, 1 − z].

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.42, May 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals 19 structures containing H4adtp, three of which are CoII complexes, including one two-dimensional coordination polymer (refcode CUFDIS; Ma et al., 2021[Ma, J., Zhang, W.-Z., Liu, Y. & Yi, W.-T. (2021). Acta Cryst. E77, 939-943.]) and two discrete coordination complexes (RAXJUX and RAXKEI; Liu et al., 2012b[Liu, M.-L., Wang, Y.-X., Shi, W. & Cui, J.-Z. (2012b). J. Coord. Chem. 65, 1915-1925.]). No structures containing H4adtp with similar cell parameters to those of the title compound have been reported.

5. Synthesis and crystallization

H4adtp was synthesized using a method based on that described in the literature (Xu et al., 2006[Xu, Y. Q., Yuan, D. Q., Wu, B. L., Han, L., Wu, M. Y., Jiang, F. L. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1168-1174.]). The other chemicals were purchased from commercial sources and used without further purification. A mixture of Co(NO3)2·6H2O (0.2910 g, 1 mmol), H4adtp (0.0594 g, 0.2 mmol) and hexa­methyl­ene­tetra­mine (0.0701 g, 0.5 mmol) was dissolved in 6 mL of water. The solvent was allowed to evaporate slowly at room temperature. Crystals in the form of light-pink blocks were grown after one week, collected by filtration and dried in air. A 62% yield based on H4adtp was obtained. Analysis calculated (%) for C12H29N1O19Co2 (Mr = 609.22): C 23.66, H 4.80, N 2.30; found: C 23.66, H 4.77, N 2.33. Selected IR data (KBr pellet, cm−1): 3449 (s), 1901 (w), 1615 (m), 1568(m), 1386 (m), 1191 (w), 1092 (w), 787 (w), 733 (w).

The phase purity of (I) was demonstrated by powder X-ray diffraction analysis (PXRD; Fig. S1 in the supporting information). The peak positions of the experimental PXRD pattern match well with those simulated from the single-crystal X-ray data, indicating that the pure phase was synthesized.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. During the refinement of (I), O16 was found to be disordered over two sites (O16 and O16A) with occupancies of 0.704 (5) and 0.296 (5). The hydrogen atoms of the water mol­ecules were found in electron-density maps and refined as riding, with Uiso(H) = 1.5 Ueq(O). Other hydrogen atoms were placed at geometrically calculated positions and treated as riding, with Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C12H7NO8)(H2O)6]·5H2O
Mr 609.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.7653 (15), 11.725 (2), 11.8191 (15)
α, β, γ (°) 64.882 (5), 71.276 (7), 86.692 (8)
V3) 1155.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku Saturn724+ (2x2 bin mode)
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.844, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10193, 4052, 3498
Rint 0.029
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.02
No. of reflections 4052
No. of parameters 348
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.45
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[hexaaqua{µ3-2-[bis(carboxylatomethyl)amino]terephthalato}dicobalt(II)] pentahydrate] top
Crystal data top
[Co2(C12H7NO8)(H2O)6]·5H2OZ = 2
Mr = 609.22F(000) = 628
Triclinic, P1Dx = 1.751 Mg m3
a = 9.7653 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.725 (2) ÅCell parameters from 3650 reflections
c = 11.8191 (15) Åθ = 2.0–27.5°
α = 64.882 (5)°µ = 1.53 mm1
β = 71.276 (7)°T = 293 K
γ = 86.692 (8)°Block, clear light red
V = 1155.6 (3) Å30.2 × 0.2 × 0.2 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
4052 independent reflections
Radiation source: Sealed Tube, Rotating Anode3498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.1°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1313
Tmin = 0.844, Tmax = 1.000l = 1414
10193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4052 reflectionsΔρmax = 0.97 e Å3
348 parametersΔρmin = 0.45 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5000000.0000001.0000000.01013 (11)
O10.71506 (15)0.16282 (13)0.67122 (14)0.0116 (3)
C10.6534 (2)0.36754 (19)0.6586 (2)0.0097 (4)
Co20.92914 (3)0.81788 (3)0.25427 (3)0.00926 (9)
O20.53599 (15)0.17746 (13)0.83918 (14)0.0128 (3)
C20.7374 (2)0.43193 (19)0.5263 (2)0.0097 (4)
H20.7876930.3858820.4810280.012*
Co30.5000001.0000000.5000000.00977 (11)
O30.53886 (16)0.81035 (13)0.52932 (14)0.0142 (3)
O140.99581 (16)0.76339 (14)0.42109 (14)0.0152 (3)
H14A1.0840050.7965850.3965110.023*
H14B0.9434740.7967730.4722020.023*
C30.7484 (2)0.56273 (19)0.4598 (2)0.0090 (4)
O40.72895 (16)0.84545 (13)0.35178 (15)0.0158 (3)
O91.00200 (19)1.00342 (14)0.17472 (15)0.0207 (4)
H9A0.9713541.0539170.2123910.031*
H9B1.0390111.0534780.0909610.031*
C40.6636 (2)0.63255 (19)0.5254 (2)0.0098 (4)
O50.78350 (17)0.73838 (14)0.00522 (15)0.0163 (3)
C50.5863 (2)0.5667 (2)0.6599 (2)0.0113 (5)
H50.5356470.6118720.7061170.014*
O60.86627 (16)0.84612 (13)0.08939 (14)0.0128 (3)
C60.5822 (2)0.43705 (19)0.7268 (2)0.0111 (5)
H60.5320110.3964040.8170330.013*
O71.19306 (16)0.59855 (14)0.11284 (15)0.0188 (4)
O130.36628 (16)0.07573 (13)1.12298 (15)0.0137 (3)
H13A0.3058860.1216481.0854720.021*
H13B0.3105590.0146791.1948820.021*
C70.6342 (2)0.22445 (19)0.7282 (2)0.0102 (5)
O180.69274 (18)0.62405 (15)0.87758 (17)0.0216 (4)
H18A0.7223160.6395560.9321590.032*
H18B0.7308700.5549950.8780600.032*
O81.11592 (15)0.75971 (13)0.16099 (14)0.0126 (3)
C80.6440 (2)0.77274 (19)0.4638 (2)0.0099 (5)
C90.9740 (2)0.55842 (19)0.2918 (2)0.0123 (5)
H9C0.9504280.4925890.2700570.015*
H9D1.0016290.5179390.3707680.015*
C101.1036 (2)0.6459 (2)0.1777 (2)0.0108 (5)
O151.07588 (17)0.85972 (15)0.68317 (17)0.0201 (4)
H15A0.9999170.8399960.6690560.030*
H15B1.1166760.7893360.7075570.030*
C110.7564 (2)0.6353 (2)0.2337 (2)0.0124 (5)
H11A0.6557830.6420550.2777160.015*
H11B0.7603800.5578850.2222090.015*
C120.8078 (2)0.74643 (19)0.0985 (2)0.0113 (5)
O110.30500 (16)0.97725 (13)0.46413 (15)0.0140 (3)
H11C0.2367230.9370540.5393370.021*
H11D0.3171230.9273250.4251170.021*
O100.60855 (18)1.07131 (14)0.30338 (15)0.0183 (4)
H10A0.5858721.1335800.2407980.027*
H10B0.6555761.0245570.2656900.027*
N10.84205 (18)0.62558 (16)0.32063 (17)0.0089 (4)
O120.68118 (15)0.04542 (14)1.04035 (14)0.0140 (3)
H12A0.7334140.1112140.9719050.021*
H12B0.7384420.0152151.0481180.021*
O190.83677 (17)0.80778 (15)0.63399 (16)0.0190 (4)
H19A0.7863590.7495320.7107130.028*
H19B0.7797730.8681100.6168780.028*
O170.41401 (19)0.69892 (17)0.88122 (16)0.0286 (4)
H17A0.3536100.6811770.9601270.043*
H17B0.4963660.6760690.8934760.043*
O161.2542 (3)0.6732 (2)0.7213 (3)0.0262 (8)0.704 (5)
H16A1.2793120.6671570.7879020.039*0.704 (5)
H16B1.3328800.7050610.6533510.039*0.704 (5)
O16A1.1659 (10)0.6285 (7)0.8383 (9)0.048 (3)0.296 (5)
H16C1.2106970.6645270.8690320.071*0.296 (5)
H16D1.1170750.5616970.9072550.071*0.296 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0094 (2)0.0072 (2)0.0088 (2)0.00013 (16)0.00000 (18)0.00093 (17)
O10.0127 (8)0.0080 (7)0.0114 (8)0.0007 (6)0.0014 (7)0.0037 (6)
C10.0082 (11)0.0080 (11)0.0119 (11)0.0000 (8)0.0045 (9)0.0024 (9)
Co20.00941 (17)0.00736 (16)0.00848 (16)0.00012 (12)0.00072 (13)0.00260 (12)
O20.0119 (8)0.0074 (8)0.0098 (8)0.0006 (6)0.0021 (7)0.0008 (6)
C20.0097 (11)0.0101 (11)0.0098 (11)0.0021 (9)0.0027 (9)0.0054 (9)
Co30.0105 (2)0.0074 (2)0.0096 (2)0.00172 (16)0.00197 (18)0.00311 (17)
O30.0135 (8)0.0097 (8)0.0136 (8)0.0030 (6)0.0013 (7)0.0043 (7)
O140.0111 (8)0.0197 (8)0.0139 (8)0.0006 (7)0.0018 (7)0.0079 (7)
C30.0073 (11)0.0099 (11)0.0080 (11)0.0009 (8)0.0019 (9)0.0024 (9)
O40.0135 (8)0.0086 (8)0.0137 (8)0.0024 (6)0.0030 (7)0.0000 (7)
O90.0336 (10)0.0086 (8)0.0113 (8)0.0064 (7)0.0039 (8)0.0036 (7)
C40.0090 (11)0.0085 (11)0.0113 (11)0.0008 (8)0.0038 (9)0.0032 (9)
O50.0231 (9)0.0142 (8)0.0133 (8)0.0020 (7)0.0090 (7)0.0054 (7)
C50.0094 (11)0.0120 (11)0.0138 (11)0.0011 (9)0.0025 (9)0.0076 (9)
O60.0163 (8)0.0089 (8)0.0110 (8)0.0011 (6)0.0045 (7)0.0020 (6)
C60.0094 (11)0.0124 (11)0.0075 (11)0.0025 (9)0.0005 (9)0.0018 (9)
O70.0154 (9)0.0161 (8)0.0184 (9)0.0019 (7)0.0033 (7)0.0080 (7)
O130.0148 (8)0.0093 (8)0.0117 (8)0.0009 (6)0.0022 (7)0.0012 (6)
C70.0093 (11)0.0090 (11)0.0121 (11)0.0009 (9)0.0064 (10)0.0022 (9)
O180.0274 (10)0.0159 (9)0.0283 (10)0.0056 (7)0.0134 (8)0.0131 (8)
O80.0103 (8)0.0100 (8)0.0133 (8)0.0001 (6)0.0001 (7)0.0040 (6)
C80.0101 (11)0.0104 (11)0.0122 (11)0.0011 (9)0.0056 (10)0.0061 (9)
C90.0126 (12)0.0105 (11)0.0120 (11)0.0024 (9)0.0023 (10)0.0045 (9)
C100.0095 (11)0.0119 (11)0.0104 (11)0.0029 (9)0.0051 (9)0.0032 (9)
O150.0164 (9)0.0221 (9)0.0240 (9)0.0002 (7)0.0039 (8)0.0138 (8)
C110.0104 (11)0.0131 (11)0.0127 (11)0.0010 (9)0.0031 (10)0.0049 (9)
C120.0073 (11)0.0130 (12)0.0136 (12)0.0051 (9)0.0039 (9)0.0060 (9)
O110.0135 (8)0.0141 (8)0.0146 (8)0.0006 (6)0.0027 (7)0.0078 (7)
O100.0257 (10)0.0135 (8)0.0118 (8)0.0076 (7)0.0017 (7)0.0058 (7)
N10.0080 (9)0.0086 (9)0.0061 (9)0.0007 (7)0.0001 (8)0.0012 (7)
O120.0116 (8)0.0103 (8)0.0139 (8)0.0001 (6)0.0009 (7)0.0019 (7)
O190.0179 (9)0.0206 (9)0.0185 (9)0.0059 (7)0.0065 (8)0.0087 (7)
O170.0254 (10)0.0326 (11)0.0146 (9)0.0077 (8)0.0009 (8)0.0030 (8)
O160.0289 (16)0.0194 (14)0.0251 (18)0.0011 (12)0.0017 (13)0.0095 (13)
O16A0.059 (6)0.033 (4)0.074 (7)0.018 (4)0.044 (6)0.029 (4)
Geometric parameters (Å, º) top
Co1—O2i2.0890 (14)O5—C121.240 (3)
Co1—O22.0890 (14)C5—H50.9300
Co1—O13i2.0856 (15)C5—C61.380 (3)
Co1—O132.0856 (15)O6—C121.279 (3)
Co1—O12i2.1231 (15)C6—H60.9300
Co1—O122.1231 (15)O7—C101.239 (3)
O1—C71.267 (3)O13—H13A0.8734
C1—C21.391 (3)O13—H13B0.8731
C1—C61.389 (3)O18—H18A0.8706
C1—C71.514 (3)O18—H18B0.8700
Co2—O142.1039 (15)O8—C101.270 (3)
Co2—O42.0128 (15)C9—H9C0.9700
Co2—O92.0336 (15)C9—H9D0.9700
Co2—O62.1168 (15)C9—C101.534 (3)
Co2—O82.0521 (15)C9—N11.492 (3)
Co2—N12.1712 (18)O15—H15A0.8738
O2—C71.259 (2)O15—H15B0.8699
C2—H20.9300C11—H11A0.9700
C2—C31.387 (3)C11—H11B0.9700
Co3—O32.1311 (14)C11—C121.516 (3)
Co3—O3ii2.1311 (14)C11—N11.486 (3)
Co3—O112.1330 (14)O11—H11C0.8700
Co3—O11ii2.1330 (15)O11—H11D0.8692
Co3—O10ii2.0234 (15)O10—H10A0.8702
Co3—O102.0235 (15)O10—H10B0.8699
O3—C81.255 (3)O12—H12A0.8720
O14—H14A0.8716O12—H12B0.8707
O14—H14B0.8710O19—H19A0.8703
C3—C41.416 (3)O19—H19B0.8698
C3—N11.472 (3)O17—H17A0.8702
O4—C81.260 (2)O17—H17B0.8697
O9—H9A0.8696O16—H16A0.8710
O9—H9B0.8699O16—H16B0.8700
C4—C51.395 (3)O16A—H16C0.8695
C4—C81.518 (3)O16A—H16D0.8699
O2i—Co1—O2180.0Co2—O9—H9B126.4
O2i—Co1—O12i89.84 (6)H9A—O9—H9B104.6
O2—Co1—O12i90.16 (6)C3—C4—C8126.71 (19)
O2—Co1—O1289.84 (6)C5—C4—C3117.58 (18)
O2i—Co1—O1290.16 (6)C5—C4—C8115.68 (18)
O13—Co1—O289.80 (6)C4—C5—H5118.8
O13i—Co1—O2i89.80 (6)C6—C5—C4122.4 (2)
O13—Co1—O2i90.20 (6)C6—C5—H5118.8
O13i—Co1—O290.20 (6)C12—O6—Co2114.05 (13)
O13i—Co1—O13180.0C1—C6—H6120.2
O13i—Co1—O12i89.48 (6)C5—C6—C1119.66 (19)
O13—Co1—O12i90.52 (6)C5—C6—H6120.2
O13—Co1—O1289.48 (6)Co1—O13—H13A109.5
O13i—Co1—O1290.52 (6)Co1—O13—H13B109.4
O12—Co1—O12i180.0H13A—O13—H13B104.3
C2—C1—C7121.71 (19)O1—C7—C1118.59 (18)
C6—C1—C2118.73 (19)O2—C7—O1125.81 (19)
C6—C1—C7119.54 (19)O2—C7—C1115.60 (18)
O14—Co2—O6171.86 (6)H18A—O18—H18B104.5
O14—Co2—N191.18 (6)C10—O8—Co2114.07 (13)
O4—Co2—O1492.18 (6)O3—C8—O4122.76 (19)
O4—Co2—O993.01 (7)O3—C8—C4116.55 (18)
O4—Co2—O691.31 (6)O4—C8—C4120.68 (18)
O4—Co2—O8169.72 (6)H9C—C9—H9D107.7
O4—Co2—N186.41 (6)C10—C9—H9C108.9
O9—Co2—O1495.30 (6)C10—C9—H9D108.9
O9—Co2—O691.86 (6)N1—C9—H9C108.9
O9—Co2—O896.83 (6)N1—C9—H9D108.9
O9—Co2—N1173.51 (7)N1—C9—C10113.37 (16)
O6—Co2—N181.70 (6)O7—C10—O8124.6 (2)
O8—Co2—O1489.88 (6)O7—C10—C9117.42 (18)
O8—Co2—O685.42 (6)O8—C10—C9117.84 (18)
O8—Co2—N183.48 (6)H15A—O15—H15B103.9
C7—O2—Co1132.21 (13)H11A—C11—H11B107.6
C1—C2—H2119.0C12—C11—H11A108.7
C3—C2—C1121.99 (19)C12—C11—H11B108.7
C3—C2—H2119.0N1—C11—H11A108.7
O3—Co3—O3ii180.0N1—C11—H11B108.7
O3ii—Co3—O1190.75 (6)N1—C11—C12114.38 (17)
O3ii—Co3—O11ii89.25 (6)O5—C12—O6123.83 (19)
O3—Co3—O1189.25 (6)O5—C12—C11118.53 (19)
O3—Co3—O11ii90.75 (6)O6—C12—C11117.50 (18)
O11—Co3—O11ii180.00 (8)Co3—O11—H11C109.3
O10—Co3—O393.04 (6)Co3—O11—H11D109.3
O10—Co3—O3ii86.96 (6)H11C—O11—H11D104.5
O10ii—Co3—O3ii93.04 (6)Co3—O10—H10A127.0
O10ii—Co3—O386.96 (6)Co3—O10—H10B122.3
O10ii—Co3—O1190.32 (6)H10A—O10—H10B104.5
O10ii—Co3—O11ii89.68 (6)C3—N1—Co2115.69 (12)
O10—Co3—O1189.68 (6)C3—N1—C9112.36 (16)
O10—Co3—O11ii90.32 (6)C3—N1—C11109.16 (16)
O10ii—Co3—O10180.0C9—N1—Co2103.66 (12)
C8—O3—Co3127.99 (13)C11—N1—Co2105.14 (12)
Co2—O14—H14A109.5C11—N1—C9110.49 (16)
Co2—O14—H14B109.4Co1—O12—H12A109.4
H14A—O14—H14B104.4Co1—O12—H12B109.4
C2—C3—C4119.14 (19)H12A—O12—H12B104.5
C2—C3—N1119.40 (18)H19A—O19—H19B104.5
C4—C3—N1121.39 (18)H17A—O17—H17B104.5
C8—O4—Co2128.55 (13)H16A—O16—H16B104.4
Co2—O9—H9A124.8H16C—O16A—H16D104.6
Co1—O2—C7—O121.8 (3)C4—C3—N1—C9148.70 (19)
Co1—O2—C7—C1158.96 (13)C4—C3—N1—C1188.4 (2)
C1—C2—C3—C44.6 (3)C4—C5—C6—C12.0 (3)
C1—C2—C3—N1178.43 (18)C5—C4—C8—O315.1 (3)
Co2—O4—C8—O3161.71 (15)C5—C4—C8—O4165.91 (19)
Co2—O4—C8—C419.4 (3)C6—C1—C2—C32.0 (3)
Co2—O6—C12—O5168.82 (16)C6—C1—C7—O1170.27 (19)
Co2—O6—C12—C1115.5 (2)C6—C1—C7—O210.5 (3)
Co2—O8—C10—O7166.73 (17)C7—C1—C2—C3176.06 (19)
Co2—O8—C10—C917.3 (2)C7—C1—C6—C5172.81 (18)
C2—C1—C6—C55.3 (3)C8—C4—C5—C6173.80 (19)
C2—C1—C7—O111.7 (3)C10—C9—N1—Co226.61 (19)
C2—C1—C7—O2167.56 (19)C10—C9—N1—C3152.23 (17)
C2—C3—C4—C57.8 (3)C10—C9—N1—C1185.6 (2)
C2—C3—C4—C8170.45 (19)C12—C11—N1—Co227.1 (2)
C2—C3—N1—Co2153.20 (15)C12—C11—N1—C3151.78 (17)
C2—C3—N1—C934.4 (3)C12—C11—N1—C984.2 (2)
C2—C3—N1—C1188.5 (2)N1—C3—C4—C5175.36 (18)
Co3—O3—C8—O415.4 (3)N1—C3—C4—C86.4 (3)
Co3—O3—C8—C4165.66 (13)N1—C9—C10—O7152.01 (19)
C3—C4—C5—C64.6 (3)N1—C9—C10—O831.7 (3)
C3—C4—C8—O3163.1 (2)N1—C11—C12—O5153.61 (19)
C3—C4—C8—O415.9 (3)N1—C11—C12—O630.4 (3)
C4—C3—N1—Co229.9 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14A···O1iii0.871.872.723 (2)166
O14—H14B···O190.871.922.743 (2)158
O9—H9A···O15iv0.871.842.702 (2)168
O9—H9B···O6v0.871.872.742 (2)175
O13—H13A···O5vi0.871.882.727 (2)162
O13—H13B···O1i0.871.982.759 (2)148
O18—H18A···O5vii0.871.932.752 (2)158
O18—H18B···O7iii0.871.882.750 (2)177
O15—H15A···O190.871.872.738 (2)177
O15—H15B···O160.871.852.692 (3)162
O15—H15B···O16A0.872.022.833 (7)156
O11—H11C···O15viii0.871.822.686 (2)172
O11—H11D···O1vi0.871.952.786 (2)161
O10—H10A···O17ii0.871.882.705 (2)158
O10—H10B···O40.872.112.740 (2)129
O12—H12A···O8iii0.871.922.773 (2)166
O12—H12B···O6ix0.871.982.846 (2)172
O19—H19A···O180.871.852.719 (2)175
O19—H19B···O11ii0.871.942.786 (2)165
O17—H17A···O7x0.871.882.702 (2)157
O17—H17B···O180.871.952.804 (2)166
O16A—H16C···O17xi0.872.112.861 (8)144
O16—H16A···O17xi0.872.102.921 (4)156
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1; (v) x+2, y+2, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1; (viii) x1, y, z; (ix) x, y1, z+1; (x) x1, y, z+1; (xi) x+1, y, z.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Shandong Province (grant No. ZR2019QB013); National Natural Science Foundation of China (grant No. 21401164).

References

First citationAhmed, F., Datta, J., Sarkar, S., Dutta, B., Jana, A. D., Ray, P. P. & Mir, M. H. (2018). ChemistrySelect 3, 6985–6991.  CSD CrossRef CAS Google Scholar
First citationChen, Y., Liu, S., Lin, J., Liu, S. & Ruan, Z. (2020). Z. Anorg. Allg. Chem. 646, 1–6.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGacki, M., Kafarska, K., Pietrzak, A., Korona-Głowniak, I. & Wolf, W. (2020). Crystals, 10, 97.  CSD CrossRef Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2006). Inorg. Chim. Acta, 359, 1685–1689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, S.-G., Zhang, Y.-X., Cheng, J.-T., Wu, X.-T. & Zhu, Q.-L. (2019). Chem. Asian J. 14, 3590–3596.  CSD CrossRef CAS PubMed Google Scholar
First citationHao, H.-Q., Li, J.-X., Chen, M.-H. & Li, L. (2013). Inorg. Chem. Commun. 37, 7–11.  CSD CrossRef CAS Google Scholar
First citationHe, W.-J., Luo, G.-G., Wu, D.-L., Liu, L., Xia, J.-X., Li, D.-X., Dai, J.-C. & Xiao, Z.-J. (2012). Inorg. Chem. Commun. 18, 4–7.  CSD CrossRef CAS Google Scholar
First citationHedayetullah Mir, M. & Vittal, J. J. (2008). Cryst. Growth Des. 8, 1478–1480.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, R.-K., Wang, S.-S., Liu, D.-X., Li, X., Song, J.-M., Xia, Y.-H., Zhou, D.-D., Huang, J., Zhang, W.-X. & Chen, X.-M. (2019). J. Am. Chem. Soc. 141, 5645–5649.  CSD CrossRef CAS PubMed Google Scholar
First citationHuang, Y.-G., Gong, Y.-Q., Jiang, F.-L., Yuan, D.-Q., Wu, M.-Y., Gao, Q., Wei, & Hong, M.-C. (2007). Cryst. Growth Des. 7, 1385–1387.  Google Scholar
First citationLi, S.-D., Su, F., Zhu, M.-L. & Lu, L.-P. (2020). Acta Cryst. C76, 863–868.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-J., Hao, H.-J., Sun, C.-J., Lin, X.-H., Chen, H.-P., Huang, R.-B. & Zheng, L.-S. (2012a). Cryst. Growth Des. 12, 2004–2012.  CSD CrossRef CAS Google Scholar
First citationLiu, G.-L., Song, J.-B., Qiu, Q.-M. & Li, H. (2020). CrystEngComm, 22, 1321–1329.  CSD CrossRef CAS Google Scholar
First citationLiu, L., Zhang, Y., Wang, X.-L., Luo, G.-G., Xiao, Z.-J., Cheng, L. & Dai, J.-C. (2018). Cryst. Growth Des. 18, 1629–1635.  CSD CrossRef CAS Google Scholar
First citationLiu, M.-L., Wang, Y.-X., Shi, W. & Cui, J.-Z. (2012b). J. Coord. Chem. 65, 1915–1925.  CSD CrossRef CAS Google Scholar
First citationMa, J., Zhang, W.-Z., Liu, Y. & Yi, W.-T. (2021). Acta Cryst. E77, 939–943.  CrossRef IUCr Journals Google Scholar
First citationMa, J., Jiang, F.-L., Chen, L., Wu, M.-Y., Zhou, K., Yi, W.-T., Xiong, J. & Hong, M.-C. (2015a). Inorg. Chem. Commun. 58, 43–47.  CSD CrossRef CAS Google Scholar
First citationMa, J., Jiang, F.-L., Zhou, K., Chen, L., Wu, M.-Y. & Hong, M.-C. (2015b). Z. Anorg. Allg. Chem. 641, 1998–2004.  CSD CrossRef CAS Google Scholar
First citationMei, H.-X., Zhang, T., Huang, H.-Q., Huang, R.-B. & Zheng, L.-S. (2016). J. Mol. Struct. 1108, 126–133.  CSD CrossRef CAS Google Scholar
First citationMukhopadhyay, U. & Bernal, I. (2006). Cryst. Growth Des. 6, 363–365.  CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaraei, N., Hietsoi, O., Frye, B. C., Gupta, A. J., Mashuta, M. S., Gupta, G., Buchanan, R. M. & Grapperhaus, C. A. (2019). Inorg. Chim. Acta, 492, 268–274.  CSD CrossRef CAS Google Scholar
First citationSaraei, N., Hietsoi, O., Mullins, C. S., Gupta, A. J., Frye, B. C., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2018). CrystEngComm, 20, 7071–7081.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakur, S., Frontera, A. & Chattopadhyay, S. (2021). Inorg. Chim. Acta, 515, 120057.  CSD CrossRef Google Scholar
First citationWei, W., Jiang, F. L., Wu, M. Y., Gao, Q., Zhang, Q. F., Yan, C. F., Li, N. & Hong, M. C. (2009). Inorg. Chem. Commun. 12, 290–292.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, B., Wang, S., Wang, R., Xu, J., Yuan, D. & Hou, H. (2013). Cryst. Growth Des. 13, 518–525.  CSD CrossRef CAS Google Scholar
First citationXu, Y. Q., Yuan, D. Q., Wu, B. L., Han, L., Wu, M. Y., Jiang, F. L. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1168–1174.  CSD CrossRef CAS Google Scholar
First citationZhao, F.-H., Li, Z.-L., He, Y.-C., Huang, L.-W., Jia, X.-M., Yan, X.-Q., Wang, Y.-F. & You, J.-M. (2019). J. Solid State Chem. 271, 309–313.  CSD CrossRef CAS Google Scholar
First citationZhao, Y., Lu, H., Yang, L. & Luo, G.-G. (2015). J. Mol. Struct. 1088, 155–160.  CSD CrossRef CAS Google Scholar
First citationZia, M., Khalid, M., Hameed, S., Irran, E. & Naseer, M. M. (2020). J. Mol. Struct. 1207, 127811.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds