research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface and photo­physical analysis of 2-nitro-3-phenyl-9H-carbazole

crossmark logo

aDepartment of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
*Correspondence e-mail: hrpark@chonnam.ac.kr, leespy@chonnam.ac.kr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 20 July 2021; accepted 28 July 2021; online 3 August 2021)

The title compound, C18H12N2O2, was synthesized from a di­nitro­biphenyl­benzene derivative using a novel modification of the Cadogan reaction. The reaction has several possible ring-closed products and the title compound was separated as the major product. The X-ray crystallographic study revealed that the carbazole compound crystallizes in the monoclinic P[\overline{1}] space group and possesses a single closed Cadogan ring. There are two independent mol­ecules in the asymmetric unit. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonding.

1. Chemical context

Carbazole consists of two benzene ring fused on either side of a central pyrrole ring and is also known as dibenzo­pyrrole or di­phenyl­enimine. This N-containing heterocyclic compound was discovered by Graebe and Glaser in 1872 (Collin et al., 2006[Collin, G., Höke, H. & Talbiersky, J. (2006). Carbazole. In Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). Carbazoles represent an important class of heterocycles with several advantages. By the introduction of substituents in the carbazole fragment at the nitro­gen atom and the aromatic framework at positions 3 and 6, the photophysical properties can be modified (Srivastava & Chakrabarti, 2017[Srivastava, A. & Chakrabarti, P. (2017). Appl. Phys. A, 123, 784.]; Sun et al., 2015[Sun, D., Ren, Z., Bryce, M. R. & Yan, S. (2015). J. Mater. Chem. C. 3, 9496-9508.]). The high stability and redox potential property of carbazole-based polymers compared with other conducting polymers has attracted a great attention (Nandy et al., 2014[Nandy, B. C., Gupta, A., Mittal, A. & Vyas, V. (2014). J. Biomed. Pharm. Res, 3, 42-48.]; Bashir et al., 2015[Bashir, M., Bano, A., Ijaz, A. S. & Chaudhary, B. A. (2015). Molecules, 20, 13496-13517.]; Sutanto et al., 2021[Sutanto, A. A., Joseph, V., Igci, C., Syzgantseva, O. A., Syzgantseva, M. A., Jankauskas, V., Rakstys, K., Queloz, V. I., Huang, P.-Y., Ni, J.-S., Kinge, S., Asiri, A. M., Chen, M. & Nazeeruddin, M. K. (2021). Chem. Mater. 33, 3286-3296.]; Niu et al., 2021[Niu, P., Huang, H., Zhao, L., Zhang, C., Shen, Z. & Li, M. (2021). J. Electroanal. Chem. 894, 115352.]). Carbazole-based ligands exhibit high hole-transporting mobility and strong absorption in the UV–visible spectroscopic region, and therefore show good electro- and photoactive properties (Yavuz et al., 2001[Yavuz, Ö., Sezer, E. & Saraç, A. S. (2001). Polym. Int. 50, 271-276.]). Polycyclic compounds containing two pyrrole rings have become widely used because of their good charge-transfer properties and the feasibility of tuning the electronic levels in the compound for different types of applications (Wakim et al., 2008[Wakim, S., Aïch, B. R., Tao, Y. & Leclerc, M. (2008). Polym. Rev. 48, 432-462.]; Reig et al., 2015[Reig, M., Puigdollers, J. & Velasco, D. (2015). J. Mater. Chem. C. 3, 506-513.]; Xiang et al., 2018[Xiang, S., Lv, X., Sun, S., Zhang, Q., Huang, Z., Guo, R., Gu, H., Liu, S. & Wang, L. (2018). J. Mater. Chem. C. 6, 5812-5820.]; Zhang et al., 2018[Zhang, D., Song, X., Cai, M., Kaji, H. & Duan, L. (2018). Adv. Mater. 30, 1705406.]; Szafraniec-Gorol et al., 2021[Szafraniec-Gorol, G., Slodek, A., Zych, D., Vasylieva, M., Siwy, M., Sulowska, K., Maćkowski, S., Taydakov, I., Goriachiy, D. & Schab-Balcerzak, E. (2021). J. Mater. Chem. C. 9, 7351-7362.]), These types of compounds are therefore excellent candidates for applications such as OLEDs (organic light-emitting diodes; Svetlichnyi et al., 2010[Svetlichnyi, V. M., Alexandrova, E. L., Miagkova, L. A., Matushina, N. V., Nekrasova, T. N., Tameev, A. R., Stepanenko, S. N., Vannikov, A. V. & Kudryavtsev, V. V. (2010). Semiconductors, 44, 1581-1587.]; Oda et al., 2021[Oda, S., Kumano, W., Hama, T., Kawasumi, R., Yoshiura, K. & Hatakeyama, T. (2021). Angew. Chem. 133, 2918-2922.]; Zhou et al., 2021[Zhou, H., Yin, M., Zhao, Z., Miao, Y., Jin, X., Huang, J., Gao, Z., Wang, H., Su, J. & Tian, H. (2021). J. Mater. Chem. C. 9, 5899-5907.]; Bao et al., 2020[Bao, L., Zhu, J., Song, W., Zhou, H., Huang, J., Mu, H. & Su, J. (2020). Org. Electron. 83, 105672.]), DSSCs (dye-sensitized solar cells; Zhang et al., 2009[Zhang, X.-H., Wang, Z.-S., Cui, Y., Koumura, N., Furube, A. & Hara, K. (2009). J. Phys. Chem. C, 113, 13409-13415.]; Li et al., 2018[Li, M., Wang, Z., Liang, M., Liu, L., Wang, X., Sun, Z. & Xue, S. (2018). J. Phys. Chem. C, 122, 24014-24024.]; Lokhande et al., 2019[Lokhande, P. K. M., Sonigara, K. K., Jadhav, M. M., Patil, D. S., Soni, S. S. & Sekar, N. (2019). ChemistrySelect 4, 4044-4056.]), OPV (organic photovoltaics; Chan et al., 2013[Chan, L.-H., Lin, L.-C., Yao, C.-H., Liu, Y.-R., Jiang, Z.-J. & Cho, T.-Y. (2013). Thin Solid Films, 544, 386-391.]; Yang et al., 2020[Yang, J., Devillers, C. H., Fleurat-Lessard, P., Jiang, H., Wang, S., Gros, C. P., Gupta, G., Sharma, G. D. & Xu, H. (2020). Dalton Trans. 49, 5606-5617.]) and OFETs (organic field-effect transistors; Reig et al., 2015[Reig, M., Puigdollers, J. & Velasco, D. (2015). J. Mater. Chem. C. 3, 506-513.]; Chen et al., 2020[Chen, C.-H., Wang, Y., Michinobu, T., Chang, S.-W., Chiu, Y.-C., Ke, C.-Y. & Liou, G.-S. (2020). Appl. Mater. Interfaces, 12, 6144-6150.]; Koli et al., 2020[Koli, M. R., Labiod, A., Chakraborty, S., Kumar, M., Lévêque, P., Ulrich, G., Leclerc, N., Jacquemin, D. & Mula, S. (2020). ChemPhotoChem 4, 729-741.]).

The title compound was isolated as an inter­mediate in the middle of the synthetic route for the synthesis of double Cadogan-fused carbazoles. The reaction between 1,3-di­nitro­diphenyl­benzene and tri­phenyl­phosphine using the solvent o-di­chloro­benzene resulted in a mixture of single- and double-Cadogen ring-closure products. First, a di­nitro compound was obtained by a nitration reaction and in the second step, performing double Suzuki coupling reaction on 1,5-di­bromo-2,4-di­nitro­benzene and benzene­boronic acid gave a terphenyl compound. Then, in the final step, a single Cadogan ring closure was performed to obtain the title compound, 1.

[Scheme 1]

2. Structural commentary

Structural analysis confirmed the formation of a single Cadogan ring major product, i.e. carbazole with a nitro group at the 2-position, and a phenyl group at the 3-position. The mol­ecular structure of compound 1 is shown in Fig. 1[link]. There are two independent mol­ecules in the asymmetric unit in which the dihedral angles between the carbazole ring system (r.m.s. deviations of 0.001 and 0.002 Å for the N1-carbazole and N3-carbazole units, respectively) and the attached phenyl rings are 55.54 (6) and 43.46 (7)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the two mol­ecules are linked into [110] chains by N—H⋯O and N—H⋯N hydrogen bonds involving the carbazole N atom of one independent mol­ecule and the nitro group of the other (Table 1[link]), as shown in Fig. 2[link]. In addition, ππ stacking inter­actions occur along the c-axis direction [Cg1⋯Cg1(1 − x, −y, 1 − z) = 3.3963 (9) Å and Cg8⋯Cg8(1 − x, −y, −z) = 3.3982 (10) Å where Cg1 and Cg8 are the centroids of the N1/C1/C6/C7/C12 and N3/C19/C24/C25/C30 rings, respectively] with adjacent carbazole rings within the stacks being almost parallel. The combination of hydrogen bonding and π-stacked carbazole ring systems results in the formation of a three-dimensional inter­action.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 2.33 (1) 3.1825 (16) 162 (1)
N1—H1⋯O4i 0.88 (1) 2.38 (1) 3.1331 (17) 143 (1)
N1—H1⋯N4i 0.88 (1) 2.59 (1) 3.4610 (17) 168 (1)
N3—H3A⋯O1ii 0.88 (1) 2.26 (1) 3.1079 (18) 162 (1)
N3—H3A⋯O2ii 0.88 (1) 2.45 (1) 3.2039 (19) 143 (1)
N3—H3A⋯N2ii 0.88 (1) 2.60 (1) 3.4700 (19) 170 (1)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
A plot showing (a) the inter­molecular N—H⋯O, C—H⋯O hydrogen bonds and (b) ππ inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, November 2020; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a fragment composed of carbazole with a nitro group gave only one hit, which did not have much in common with the title compound. The most similar reported compound is ABEPON (9-ethyl-3-methyl-1,6-di­nitro­carbazole; Asker et al., 2004[Asker, E. & Masnovi, J. (2004). Acta Cryst. E60, o1613-o1615.]), whose main component consists of a nitro group on the carbazole ring. Examples of carbazole compounds substituted in the 3-position include ABAFOA (9-p-tolyl-9H-carbazole-3-carbo­nitrile; Ramathilagam et al., 2011[Ramathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.]), ADALOH [3,6-di­bromo-9-(4-tolyl­sulfon­yl)-9H-carbazole; Li et al., 2006[Li, N., Huang, P.-M., Xiong, X.-L., Xu, X.-D. & Shao, Z.-J. (2006). Acta Cryst. E62, o1805-o1806.]], ANUWUD (dimethyl 9H-carbazole-1,3-dicarboxalate; Verma et al., 2015[Verma, A. K., Danodia, A. K., Saunthwal, R. K., Patel, M. & Choudhary, D. (2015). Org. Lett. 17, 3658-3661.]) and ATAWEZ [3,6-dimeth­oxy-9-(2-tri­fluoro­meth­yl)phenyl-9H-carbazole; Matsubara et al., 2016[Matsubara, R., Shimada, T., Kobori, Y., Yabuta, T., Osakai, T. & Hayashi, M. (2016). Chem. Asian J. 11, 2006-2010.]].

5. Hirshfeld surface analysis

A Hirshfeld surface analysis (McKinnon et al.,2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of compound 1 was performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net]) to give an insight into the inter­molecular inter­actions. The Hirsfeld surface was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue) as shown in Fig. 3[link]. The red spots indicate short contacts, i.e. negative dnorm values on the surface, which highlight the hydrogen-bonding inter­actions.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnormto visualize the inter­molecular inter­actions.

The 2D finger plots shown in Fig. 3[link] indicate that the most important contributions to the overall surface are from H⋯H (36.3%), C⋯H/H⋯C (30.2%) and O⋯H/H⋯O (24%) inter­actions whereas the contribution of N⋯H/H⋯N inter­actions is almost negligible at 0.9%.

6. Photophysical study

The absorption and emission spectra of compound 1 were measured in dilute CH2Cl2 solution at room temperature, as shown in Fig. 4[link]. Compound 1 exhibits an absorption band at 260 nm to 410 nm, which can be assigned to the carbazole moieties. The broad absorption bands at the lower energy peak around 350 nm suggest the formation of the carbazole dimer excimer from the carbazole groups. The PL spectrum of compound 1 excited at 350 nm shows a dominant blue–violet broad peak at 400 nm associated with the emission from the carbazole excimer.

[Figure 4]
Figure 4
Absorption and emission spectra of the title compound 1 in DCM. The emission spectrum was excited at 350 nm.

7. Synthesis and crystallization

The synthesis of the title compound is shown in Fig. 5[link]. The reaction yielded single and double Cadogan ring-closure products. First we prepared di­nitro compound a by a nitration reaction and then we synthesized terphenyl compound b by performing double Suzuki-coupling reaction on 1,5-di­bromo-2,4-di­nitro­benzene and benzene­boronic acid. A two-necked flask fitted with a condenser was charged with 1,3-di­nitro-4,6-diphenyl benzene (b) (0.320 g, 1 mmol) and 0.655 g (2.5 mmol) of tri­phenyl­phosphine. 8 mL of the solvent o-di­chloro­benzene were added o the reaction mixture. The resulting reaction mixture was stirred at 473 K under nitro­gen for 24 h. The solvent was removed under reduced pressure at 333 K and the crude product was purified by column chromatography (silica gel, 10% EA in hexa­nes as eluent) to provide 0.230 g of the title product as a beige solid (yield: 86%). 1H NMR (500 MHz, CDCl3): δ 8.39 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 9.9 Hz, 2H), 7.56–7.51 (m, 2H), 7.48–7.38 (m, 5H), 7.32 (ddd, J = 8.0, 6.4, 1.7 Hz, 1H).

[Figure 5]
Figure 5
Reaction scheme.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N). C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C18H12N2O2
Mr 288.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.2660 (3), 12.9590 (4), 13.1010 (4)
α, β, γ (°) 96.2487 (15), 109.1813 (15), 106.1061 (14)
V3) 1392.39 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.1 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.628, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 17357, 5277, 4470
Rint 0.026
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.08
No. of reflections 5277
No. of parameters 398
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Nitro-3-phenyl-9H-carbazole top
Crystal data top
C18H12N2O2Z = 4
Mr = 288.30F(000) = 600
Triclinic, P1Dx = 1.375 Mg m3
a = 9.2660 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9590 (4) ÅCell parameters from 8081 reflections
c = 13.1010 (4) Åθ = 2.6–25.7°
α = 96.2487 (15)°µ = 0.09 mm1
β = 109.1813 (15)°T = 100 K
γ = 106.1061 (14)°Block, white
V = 1392.39 (8) Å30.1 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
4470 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.7°, θmin = 1.7°
Tmin = 0.628, Tmax = 0.745h = 1111
17357 measured reflectionsk = 1515
5277 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2853P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.40 e Å3
5277 reflectionsΔρmin = 0.31 e Å3
398 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.026 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.07827 (13)0.32279 (9)0.71767 (9)0.0379 (3)
O21.11420 (15)0.18678 (11)0.79164 (10)0.0523 (3)
N10.58804 (14)0.11853 (9)0.53169 (10)0.0267 (3)
H10.58080.14870.58760.032*
N21.04678 (14)0.22353 (11)0.71390 (10)0.0324 (3)
C10.48711 (16)0.16207 (11)0.42177 (12)0.0258 (3)
C20.35659 (17)0.26036 (11)0.37438 (13)0.0312 (3)
H20.32350.30830.41850.037*
C30.27777 (17)0.28488 (12)0.26075 (13)0.0339 (3)
H30.18940.35170.22610.041*
C40.32410 (17)0.21428 (12)0.19502 (13)0.0338 (3)
H40.26630.23340.11710.041*
C50.45313 (17)0.11701 (12)0.24236 (12)0.0306 (3)
H50.48440.06910.19770.037*
C60.53657 (16)0.09055 (11)0.35684 (11)0.0253 (3)
C70.67397 (15)0.00101 (11)0.43280 (11)0.0241 (3)
C80.77372 (16)0.09677 (11)0.41936 (11)0.0250 (3)
H80.75340.11170.34750.030*
C90.90234 (16)0.17073 (11)0.50954 (11)0.0248 (3)
C100.92260 (16)0.14514 (11)0.61431 (11)0.0257 (3)
C110.82673 (16)0.05185 (11)0.63224 (11)0.0263 (3)
H110.84570.03800.70440.032*
C120.70141 (16)0.02055 (11)0.53961 (11)0.0240 (3)
C131.01868 (16)0.26510 (11)0.49125 (11)0.0255 (3)
C140.96555 (18)0.33925 (12)0.43259 (12)0.0314 (3)
H140.85370.33140.40590.038*
C151.0741 (2)0.42439 (12)0.41272 (14)0.0377 (4)
H151.03630.47470.37280.045*
C161.2368 (2)0.43656 (12)0.45059 (14)0.0389 (4)
H161.31100.49490.43660.047*
C171.29147 (18)0.36317 (12)0.50921 (13)0.0355 (4)
H171.40350.37160.53590.043*
C181.18363 (17)0.27788 (12)0.52902 (12)0.0297 (3)
H181.22190.22750.56860.036*
O30.39259 (13)0.17339 (8)0.23420 (9)0.0372 (3)
O40.54564 (13)0.31480 (10)0.36730 (9)0.0424 (3)
N30.55743 (14)0.60781 (9)0.13124 (10)0.0289 (3)
H3A0.66070.64250.17170.035*
N40.44465 (14)0.27322 (10)0.27258 (10)0.0302 (3)
C190.46298 (17)0.64286 (11)0.04645 (12)0.0273 (3)
C200.50540 (19)0.73722 (11)0.00593 (13)0.0320 (3)
H200.61340.78720.03480.038*
C210.3850 (2)0.75518 (12)0.07728 (13)0.0345 (4)
H210.41030.81990.10500.041*
C220.22615 (19)0.68083 (12)0.12246 (13)0.0345 (3)
H220.14600.69560.18020.041*
C230.18495 (18)0.58607 (12)0.08380 (12)0.0307 (3)
H230.07760.53510.11530.037*
C240.30359 (16)0.56668 (11)0.00213 (12)0.0263 (3)
C250.30496 (16)0.48076 (11)0.06358 (11)0.0250 (3)
C260.18845 (16)0.38326 (11)0.05811 (11)0.0253 (3)
H260.08070.36460.00620.030*
C270.22709 (16)0.31273 (11)0.12733 (11)0.0248 (3)
C280.38882 (16)0.34634 (11)0.20367 (11)0.0255 (3)
C290.50785 (16)0.44388 (11)0.21468 (11)0.0269 (3)
H290.61410.46420.26920.032*
C300.46465 (16)0.51022 (11)0.14253 (11)0.0254 (3)
C310.09599 (16)0.21235 (11)0.12135 (12)0.0260 (3)
C320.01531 (18)0.14815 (11)0.01888 (13)0.0328 (3)
H320.00240.16550.04690.039*
C330.1454 (2)0.05885 (12)0.01173 (16)0.0446 (4)
H330.22190.01620.05870.054*
C340.1634 (2)0.03214 (13)0.10686 (18)0.0467 (5)
H340.25240.02880.10210.056*
C350.0517 (2)0.09420 (13)0.20895 (16)0.0413 (4)
H350.06280.07460.27450.050*
C360.07586 (18)0.18444 (12)0.21679 (13)0.0319 (3)
H360.15030.22780.28760.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (6)0.0313 (6)0.0382 (6)0.0010 (5)0.0118 (5)0.0041 (5)
O20.0430 (7)0.0552 (8)0.0326 (6)0.0003 (6)0.0058 (5)0.0137 (5)
N10.0263 (6)0.0246 (6)0.0297 (6)0.0080 (5)0.0110 (5)0.0083 (5)
N20.0245 (6)0.0380 (7)0.0276 (7)0.0035 (5)0.0081 (5)0.0029 (5)
C10.0225 (6)0.0235 (7)0.0321 (8)0.0106 (5)0.0095 (6)0.0029 (5)
C20.0268 (7)0.0229 (7)0.0428 (9)0.0080 (6)0.0129 (7)0.0047 (6)
C30.0251 (7)0.0255 (7)0.0429 (9)0.0057 (6)0.0084 (7)0.0036 (6)
C40.0282 (7)0.0353 (8)0.0307 (8)0.0097 (6)0.0067 (6)0.0046 (6)
C50.0287 (7)0.0330 (8)0.0290 (8)0.0098 (6)0.0113 (6)0.0023 (6)
C60.0224 (7)0.0242 (7)0.0292 (7)0.0090 (5)0.0099 (6)0.0021 (5)
C70.0214 (6)0.0257 (7)0.0259 (7)0.0089 (5)0.0097 (6)0.0032 (5)
C80.0231 (7)0.0276 (7)0.0253 (7)0.0088 (5)0.0101 (6)0.0058 (5)
C90.0214 (6)0.0251 (7)0.0288 (7)0.0086 (5)0.0102 (6)0.0048 (5)
C100.0204 (6)0.0280 (7)0.0258 (7)0.0071 (5)0.0068 (6)0.0022 (5)
C110.0254 (7)0.0300 (7)0.0245 (7)0.0109 (6)0.0091 (6)0.0069 (6)
C120.0220 (6)0.0229 (6)0.0296 (7)0.0096 (5)0.0109 (6)0.0058 (5)
C130.0244 (7)0.0233 (7)0.0266 (7)0.0051 (5)0.0104 (6)0.0013 (5)
C140.0280 (7)0.0295 (7)0.0344 (8)0.0087 (6)0.0099 (6)0.0057 (6)
C150.0440 (9)0.0245 (7)0.0432 (9)0.0093 (7)0.0159 (8)0.0088 (6)
C160.0394 (9)0.0221 (7)0.0489 (10)0.0014 (6)0.0201 (8)0.0025 (6)
C170.0251 (7)0.0303 (8)0.0446 (9)0.0017 (6)0.0134 (7)0.0005 (6)
C180.0264 (7)0.0273 (7)0.0337 (8)0.0078 (6)0.0111 (6)0.0043 (6)
O30.0402 (6)0.0291 (6)0.0455 (7)0.0135 (5)0.0174 (5)0.0120 (5)
O40.0354 (6)0.0493 (7)0.0313 (6)0.0086 (5)0.0023 (5)0.0123 (5)
N30.0229 (6)0.0228 (6)0.0330 (7)0.0011 (5)0.0077 (5)0.0008 (5)
N40.0258 (6)0.0343 (7)0.0316 (7)0.0090 (5)0.0122 (5)0.0096 (5)
C190.0285 (7)0.0231 (7)0.0295 (7)0.0068 (6)0.0131 (6)0.0003 (5)
C200.0357 (8)0.0222 (7)0.0390 (8)0.0057 (6)0.0196 (7)0.0026 (6)
C210.0465 (9)0.0258 (7)0.0399 (9)0.0143 (7)0.0244 (7)0.0099 (6)
C220.0418 (9)0.0341 (8)0.0337 (8)0.0191 (7)0.0159 (7)0.0092 (6)
C230.0295 (7)0.0288 (7)0.0328 (8)0.0098 (6)0.0114 (6)0.0039 (6)
C240.0270 (7)0.0217 (7)0.0300 (7)0.0069 (5)0.0129 (6)0.0016 (5)
C250.0244 (7)0.0229 (7)0.0256 (7)0.0069 (5)0.0094 (6)0.0004 (5)
C260.0211 (6)0.0239 (7)0.0264 (7)0.0046 (5)0.0072 (6)0.0013 (5)
C270.0243 (7)0.0233 (7)0.0249 (7)0.0056 (5)0.0102 (6)0.0006 (5)
C280.0261 (7)0.0268 (7)0.0243 (7)0.0091 (6)0.0104 (6)0.0047 (5)
C290.0220 (7)0.0278 (7)0.0254 (7)0.0057 (6)0.0059 (6)0.0001 (5)
C300.0231 (7)0.0219 (6)0.0279 (7)0.0036 (5)0.0104 (6)0.0004 (5)
C310.0237 (7)0.0211 (6)0.0346 (8)0.0080 (5)0.0126 (6)0.0051 (5)
C320.0307 (8)0.0245 (7)0.0386 (8)0.0079 (6)0.0101 (7)0.0019 (6)
C330.0321 (8)0.0230 (8)0.0640 (12)0.0033 (6)0.0085 (8)0.0033 (7)
C340.0356 (9)0.0224 (8)0.0860 (14)0.0069 (7)0.0295 (10)0.0132 (8)
C350.0458 (9)0.0322 (8)0.0674 (12)0.0200 (7)0.0387 (9)0.0226 (8)
C360.0335 (8)0.0287 (7)0.0408 (9)0.0136 (6)0.0199 (7)0.0097 (6)
Geometric parameters (Å, º) top
O1—N21.2291 (17)O3—N41.2296 (16)
O2—N21.2275 (17)O4—N41.2319 (16)
N1—H10.8800N3—H3A0.8800
N1—C11.3829 (18)N3—C191.3776 (19)
N1—C121.3734 (17)N3—C301.3716 (17)
N2—C101.4610 (18)N4—C281.4600 (18)
C1—C21.3966 (19)C19—C201.394 (2)
C1—C61.409 (2)C19—C241.4128 (19)
C2—H20.9500C20—H200.9500
C2—C31.380 (2)C20—C211.374 (2)
C3—H30.9500C21—H210.9500
C3—C41.400 (2)C21—C221.401 (2)
C4—H40.9500C22—H220.9500
C4—C51.382 (2)C22—C231.383 (2)
C5—H50.9500C23—H230.9500
C5—C61.394 (2)C23—C241.393 (2)
C6—C71.4462 (18)C24—C251.4437 (19)
C7—C81.3940 (19)C25—C261.3928 (18)
C7—C121.4113 (19)C25—C301.4142 (19)
C8—H80.9500C26—H260.9500
C8—C91.3890 (19)C26—C271.3909 (19)
C9—C101.412 (2)C27—C281.4120 (19)
C9—C131.4890 (19)C27—C311.4875 (18)
C10—C111.3817 (19)C28—C291.3846 (19)
C11—H110.9500C29—H290.9500
C11—C121.3867 (19)C29—C301.383 (2)
C13—C141.390 (2)C31—C321.389 (2)
C13—C181.3975 (19)C31—C361.394 (2)
C14—H140.9500C32—H320.9500
C14—C151.384 (2)C32—C331.389 (2)
C15—H150.9500C33—H330.9500
C15—C161.380 (2)C33—C341.378 (3)
C16—H160.9500C34—H340.9500
C16—C171.386 (2)C34—C351.379 (3)
C17—H170.9500C35—H350.9500
C17—C181.381 (2)C35—C361.379 (2)
C18—H180.9500C36—H360.9500
C1—N1—H1125.5C19—N3—H3A125.5
C12—N1—H1125.5C30—N3—H3A125.5
C12—N1—C1109.05 (11)C30—N3—C19109.05 (11)
O1—N2—C10119.42 (12)O3—N4—O4122.28 (12)
O2—N2—O1122.57 (13)O3—N4—C28119.53 (12)
O2—N2—C10118.00 (13)O4—N4—C28118.17 (12)
N1—C1—C2129.30 (13)N3—C19—C20129.19 (13)
N1—C1—C6109.00 (12)N3—C19—C24109.16 (12)
C2—C1—C6121.70 (13)C20—C19—C24121.64 (14)
C1—C2—H2121.4C19—C20—H20121.3
C3—C2—C1117.14 (14)C21—C20—C19117.45 (14)
C3—C2—H2121.4C21—C20—H20121.3
C2—C3—H3119.0C20—C21—H21119.1
C2—C3—C4121.97 (13)C20—C21—C22121.89 (14)
C4—C3—H3119.0C22—C21—H21119.1
C3—C4—H4119.7C21—C22—H22119.7
C5—C4—C3120.65 (14)C23—C22—C21120.61 (15)
C5—C4—H4119.7C23—C22—H22119.7
C4—C5—H5120.6C22—C23—H23120.6
C4—C5—C6118.76 (14)C22—C23—C24118.85 (14)
C6—C5—H5120.6C24—C23—H23120.6
C1—C6—C7106.36 (12)C19—C24—C25106.21 (12)
C5—C6—C1119.77 (13)C23—C24—C19119.53 (13)
C5—C6—C7133.86 (14)C23—C24—C25134.26 (13)
C8—C7—C6133.64 (13)C26—C25—C24133.90 (13)
C8—C7—C12119.83 (12)C26—C25—C30119.64 (13)
C12—C7—C6106.53 (12)C30—C25—C24106.46 (12)
C7—C8—H8119.5C25—C26—H26119.4
C9—C8—C7120.95 (13)C27—C26—C25121.17 (12)
C9—C8—H8119.5C27—C26—H26119.4
C8—C9—C10116.54 (12)C26—C27—C28116.44 (12)
C8—C9—C13119.74 (12)C26—C27—C31118.77 (12)
C10—C9—C13123.46 (12)C28—C27—C31124.67 (12)
C9—C10—N2119.60 (12)C27—C28—N4120.38 (12)
C11—C10—N2115.52 (12)C29—C28—N4114.84 (12)
C11—C10—C9124.79 (12)C29—C28—C27124.63 (13)
C10—C11—H11121.7C28—C29—H29121.6
C10—C11—C12116.66 (13)C30—C29—C28116.83 (12)
C12—C11—H11121.7C30—C29—H29121.6
N1—C12—C7109.05 (12)N3—C30—C25109.12 (12)
N1—C12—C11129.75 (13)N3—C30—C29129.64 (12)
C11—C12—C7121.20 (12)C29—C30—C25121.24 (12)
C14—C13—C9121.11 (12)C32—C31—C27119.84 (13)
C14—C13—C18118.63 (13)C32—C31—C36118.71 (13)
C18—C13—C9120.21 (12)C36—C31—C27121.33 (13)
C13—C14—H14119.7C31—C32—H32119.7
C15—C14—C13120.60 (14)C33—C32—C31120.58 (15)
C15—C14—H14119.7C33—C32—H32119.7
C14—C15—H15119.8C32—C33—H33120.0
C16—C15—C14120.38 (15)C34—C33—C32120.01 (16)
C16—C15—H15119.8C34—C33—H33120.0
C15—C16—H16120.2C33—C34—H34120.1
C15—C16—C17119.61 (14)C33—C34—C35119.77 (15)
C17—C16—H16120.2C35—C34—H34120.1
C16—C17—H17119.9C34—C35—H35119.7
C18—C17—C16120.26 (14)C34—C35—C36120.60 (16)
C18—C17—H17119.9C36—C35—H35119.7
C13—C18—H18119.7C31—C36—H36119.8
C17—C18—C13120.52 (14)C35—C36—C31120.31 (15)
C17—C18—H18119.7C35—C36—H36119.8
O1—N2—C10—C933.96 (18)O3—N4—C28—C2735.93 (18)
O1—N2—C10—C11142.78 (13)O3—N4—C28—C29139.86 (13)
O2—N2—C10—C9147.07 (14)O4—N4—C28—C27145.47 (13)
O2—N2—C10—C1136.19 (18)O4—N4—C28—C2938.74 (17)
N1—C1—C2—C3178.83 (13)N3—C19—C20—C21177.36 (13)
N1—C1—C6—C5179.82 (11)N3—C19—C24—C23178.82 (12)
N1—C1—C6—C70.43 (14)N3—C19—C24—C250.84 (15)
N2—C10—C11—C12176.07 (11)N4—C28—C29—C30173.21 (11)
C1—N1—C12—C70.29 (14)C19—N3—C30—C250.34 (15)
C1—N1—C12—C11179.86 (13)C19—N3—C30—C29178.60 (13)
C1—C2—C3—C40.8 (2)C19—C20—C21—C221.6 (2)
C1—C6—C7—C8179.68 (13)C19—C24—C25—C26178.57 (14)
C1—C6—C7—C120.60 (14)C19—C24—C25—C300.62 (14)
C2—C1—C6—C50.67 (19)C20—C19—C24—C230.4 (2)
C2—C1—C6—C7179.58 (12)C20—C19—C24—C25179.97 (12)
C2—C3—C4—C50.7 (2)C20—C21—C22—C230.3 (2)
C3—C4—C5—C60.1 (2)C21—C22—C23—C241.0 (2)
C4—C5—C6—C10.78 (19)C22—C23—C24—C191.0 (2)
C4—C5—C6—C7179.56 (14)C22—C23—C24—C25178.56 (14)
C5—C6—C7—C80.0 (3)C23—C24—C25—C261.8 (3)
C5—C6—C7—C12179.70 (14)C23—C24—C25—C30178.97 (15)
C6—C1—C2—C30.13 (19)C24—C19—C20—C211.7 (2)
C6—C7—C8—C9178.43 (13)C24—C25—C26—C27177.60 (13)
C6—C7—C12—N10.56 (14)C24—C25—C30—N30.18 (14)
C6—C7—C12—C11179.58 (11)C24—C25—C30—C29179.23 (12)
C7—C8—C9—C101.82 (18)C25—C26—C27—C280.96 (19)
C7—C8—C9—C13172.60 (12)C25—C26—C27—C31177.21 (12)
C8—C7—C12—N1179.68 (11)C26—C25—C30—N3179.14 (11)
C8—C7—C12—C110.18 (19)C26—C25—C30—C290.09 (19)
C8—C9—C10—N2174.94 (11)C26—C27—C28—N4174.31 (12)
C8—C9—C10—C111.5 (2)C26—C27—C28—C291.0 (2)
C8—C9—C13—C1455.80 (18)C26—C27—C31—C3244.14 (18)
C8—C9—C13—C18121.42 (14)C26—C27—C31—C36131.90 (14)
C9—C10—C11—C120.5 (2)C27—C28—C29—C302.4 (2)
C9—C13—C14—C15177.70 (13)C27—C31—C32—C33175.23 (13)
C9—C13—C18—C17177.90 (13)C27—C31—C36—C35176.57 (13)
C10—C9—C13—C14130.18 (14)C28—C27—C31—C32139.94 (14)
C10—C9—C13—C1852.60 (18)C28—C27—C31—C3644.02 (19)
C10—C11—C12—N1179.96 (12)C28—C29—C30—N3177.09 (13)
C10—C11—C12—C70.20 (18)C28—C29—C30—C251.75 (19)
C12—N1—C1—C2179.16 (13)C30—N3—C19—C20179.86 (13)
C12—N1—C1—C60.10 (14)C30—N3—C19—C240.75 (15)
C12—C7—C8—C91.25 (19)C30—C25—C26—C271.50 (19)
C13—C9—C10—N210.87 (19)C31—C27—C28—N49.68 (19)
C13—C9—C10—C11172.72 (12)C31—C27—C28—C29174.96 (12)
C13—C14—C15—C160.3 (2)C31—C32—C33—C341.1 (2)
C14—C13—C18—C170.6 (2)C32—C31—C36—C350.5 (2)
C14—C15—C16—C170.3 (2)C32—C33—C34—C350.1 (2)
C15—C16—C17—C180.4 (2)C33—C34—C35—C361.5 (2)
C16—C17—C18—C130.6 (2)C34—C35—C36—C311.7 (2)
C18—C13—C14—C150.4 (2)C36—C31—C32—C330.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (1)2.33 (1)3.1825 (16)162 (1)
N1—H1···O4i0.88 (1)2.38 (1)3.1331 (17)143 (1)
N1—H1···N4i0.88 (1)2.59 (1)3.4610 (17)168 (1)
N3—H3A···O1ii0.88 (1)2.26 (1)3.1079 (18)162 (1)
N3—H3A···O2ii0.88 (1)2.45 (1)3.2039 (19)143 (1)
N3—H3A···N2ii0.88 (1)2.60 (1)3.4700 (19)170 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: National Research Foundation of Korea (grant No. 2019R1A2C1001989).

References

First citationAsker, E. & Masnovi, J. (2004). Acta Cryst. E60, o1613–o1615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, L., Zhu, J., Song, W., Zhou, H., Huang, J., Mu, H. & Su, J. (2020). Org. Electron. 83, 105672.  Web of Science CrossRef Google Scholar
First citationBashir, M., Bano, A., Ijaz, A. S. & Chaudhary, B. A. (2015). Molecules, 20, 13496–13517.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2 SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, L.-H., Lin, L.-C., Yao, C.-H., Liu, Y.-R., Jiang, Z.-J. & Cho, T.-Y. (2013). Thin Solid Films, 544, 386–391.  Web of Science CrossRef CAS Google Scholar
First citationChen, C.-H., Wang, Y., Michinobu, T., Chang, S.-W., Chiu, Y.-C., Ke, C.-Y. & Liou, G.-S. (2020). Appl. Mater. Interfaces, 12, 6144–6150.  Web of Science CrossRef CAS Google Scholar
First citationCollin, G., Höke, H. & Talbiersky, J. (2006). Carbazole. In Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoli, M. R., Labiod, A., Chakraborty, S., Kumar, M., Lévêque, P., Ulrich, G., Leclerc, N., Jacquemin, D. & Mula, S. (2020). ChemPhotoChem 4, 729-741.  CAS Google Scholar
First citationLi, M., Wang, Z., Liang, M., Liu, L., Wang, X., Sun, Z. & Xue, S. (2018). J. Phys. Chem. C, 122, 24014–24024.  Web of Science CrossRef CAS Google Scholar
First citationLi, N., Huang, P.-M., Xiong, X.-L., Xu, X.-D. & Shao, Z.-J. (2006). Acta Cryst. E62, o1805–o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLokhande, P. K. M., Sonigara, K. K., Jadhav, M. M., Patil, D. S., Soni, S. S. & Sekar, N. (2019). ChemistrySelect 4, 4044–4056.  Web of Science CrossRef CAS Google Scholar
First citationMatsubara, R., Shimada, T., Kobori, Y., Yabuta, T., Osakai, T. & Hayashi, M. (2016). Chem. Asian J. 11, 2006–2010.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNandy, B. C., Gupta, A., Mittal, A. & Vyas, V. (2014). J. Biomed. Pharm. Res, 3, 42–48.  CAS Google Scholar
First citationNiu, P., Huang, H., Zhao, L., Zhang, C., Shen, Z. & Li, M. (2021). J. Electroanal. Chem. 894, 115352.  Web of Science CrossRef Google Scholar
First citationOda, S., Kumano, W., Hama, T., Kawasumi, R., Yoshiura, K. & Hatakeyama, T. (2021). Angew. Chem. 133, 2918–2922.  CrossRef Google Scholar
First citationRamathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReig, M., Puigdollers, J. & Velasco, D. (2015). J. Mater. Chem. C. 3, 506–513.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSrivastava, A. & Chakrabarti, P. (2017). Appl. Phys. A, 123, 784.  Web of Science CrossRef Google Scholar
First citationSun, D., Ren, Z., Bryce, M. R. & Yan, S. (2015). J. Mater. Chem. C. 3, 9496–9508.  Web of Science CrossRef CAS Google Scholar
First citationSutanto, A. A., Joseph, V., Igci, C., Syzgantseva, O. A., Syzgantseva, M. A., Jankauskas, V., Rakstys, K., Queloz, V. I., Huang, P.-Y., Ni, J.-S., Kinge, S., Asiri, A. M., Chen, M. & Nazeeruddin, M. K. (2021). Chem. Mater. 33, 3286–3296.  Web of Science CrossRef CAS Google Scholar
First citationSvetlichnyi, V. M., Alexandrova, E. L., Miagkova, L. A., Matushina, N. V., Nekrasova, T. N., Tameev, A. R., Stepanenko, S. N., Vannikov, A. V. & Kudryavtsev, V. V. (2010). Semiconductors, 44, 1581-1587.  Web of Science CrossRef CAS Google Scholar
First citationSzafraniec-Gorol, G., Slodek, A., Zych, D., Vasylieva, M., Siwy, M., Sulowska, K., Maćkowski, S., Taydakov, I., Goriachiy, D. & Schab-Balcerzak, E. (2021). J. Mater. Chem. C. 9, 7351–7362.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net  Google Scholar
First citationVerma, A. K., Danodia, A. K., Saunthwal, R. K., Patel, M. & Choudhary, D. (2015). Org. Lett. 17, 3658–3661.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWakim, S., Aïch, B. R., Tao, Y. & Leclerc, M. (2008). Polym. Rev. 48, 432–462.  Web of Science CrossRef CAS Google Scholar
First citationXiang, S., Lv, X., Sun, S., Zhang, Q., Huang, Z., Guo, R., Gu, H., Liu, S. & Wang, L. (2018). J. Mater. Chem. C. 6, 5812–5820.  Web of Science CrossRef CAS Google Scholar
First citationYang, J., Devillers, C. H., Fleurat-Lessard, P., Jiang, H., Wang, S., Gros, C. P., Gupta, G., Sharma, G. D. & Xu, H. (2020). Dalton Trans. 49, 5606–5617.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYavuz, Ö., Sezer, E. & Saraç, A. S. (2001). Polym. Int. 50, 271–276.  Web of Science CrossRef CAS Google Scholar
First citationZhang, D., Song, X., Cai, M., Kaji, H. & Duan, L. (2018). Adv. Mater. 30, 1705406.  Web of Science CSD CrossRef Google Scholar
First citationZhang, X.-H., Wang, Z.-S., Cui, Y., Koumura, N., Furube, A. & Hara, K. (2009). J. Phys. Chem. C, 113, 13409–13415.  Web of Science CrossRef CAS Google Scholar
First citationZhou, H., Yin, M., Zhao, Z., Miao, Y., Jin, X., Huang, J., Gao, Z., Wang, H., Su, J. & Tian, H. (2021). J. Mater. Chem. C. 9, 5899–5907.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds