research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of phosphine-supported (η5-cyclo­penta­dien­yl)molybdenum(II) propionyl complexes

crossmark logo
Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 5 July 2021; accepted 3 August 2021; online 10 August 2021)

Three cyclo­penta­dienylmolybdenum(II) propionyl complexes featuring tri­aryl­phosphine ligands with different para substituents, namely, dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl(tri­phenyl­phosphane-κP)molybdenum(II), [Mo(C5H5)(C3H5O)(C18H15P)(CO)2], (1), dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl[tris­(4-fluoro­phen­yl)phosphane-κP]molybdenum(II), [Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2], (2), and dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl[tris­(4-meth­oxy­phen­yl)phosphane-κP]molybdenum(II) dichloromethane solvate, [Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2, (3), have been prepared from the corresponding ethyl complexes via phosphine-induced migratory insertion. These complexes exhibit four-legged piano-stool geom­etries with mol­ecular structures quite similar to each other and to related acetyl complexes. The extended structures of the three complexes differ somewhat, with the para substituent of the tri­aryl­phosphine of (2) (fluoro) or (3) (meth­oxy) engaging in non-classical C—H⋯F or C—H⋯O hydrogen-bonding inter­actions. The structure of (3) exhibits modest disorder in the position of one Cl atom of the di­chloro­methane solvent, which was modeled with two sites showing approximately equivalent occupancies [0.532 (15) and 0.478 (15)].

1. Chemical context

Cyclo­penta­dienylmolybdenum(II) complexes featuring carbonyl ligands commonly adopt `four-legged piano-stool' geometries (Barnett & Slocum, 1972[Barnett, K. W. & Slocum, D. W. (1972). J. Organomet. Chem. 44, 1-37.]; Kubacek et al., 1982[Kubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180-188.]), and those featuring alkyl co-ligands readily undergo migratory insertion to afford MoII acyl complexes upon exposure to phosphines (Barnett & Treichel, 1967[Barnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294-299.]; Butler et al., 1967[Butler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074-2079.]). The effect of changing phosphine substituents on this reaction is well established, with bulkier phosphines enhancing the rates of subsequent deinsertion from the acyl complexes, a net deca­rbonylation (Barnett, 1969[Barnett, K. W. (1969). Inorg. Chem. 8, 2009-2011.]; Barnett & Pollmann, 1974[Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413-421.]). Most complexes of the type Mo(C5H5)(CO)2(PR3)(COR) feature acetyl ligands, though there are limited examples of other acyl complexes that have been structurally characterized (Michelini-Rodriguez et al., 1993[Michelini-Rodriquez, I., Romero, A. L., Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221-1224.]; Murshid et al., 2016[Murshid, N., Rahman, M. A. & Wang, X. (2016). J. Organomet. Chem. 819, 109-114.]).

We have previously reported synthetic details and solid-state structures for a number of MoII acetyl complexes of the type described above (Whited & Hofmeister, 2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]; Whited et al., 2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.], 2014[Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216-220.]), examining the effect of changing phosphine substituents on local and supra­molecular features. Consistent with reports on deca­rbonylation reactivity, we have found that the primary impact on mol­ecular structure is observed in the Mo—P bond lengths, with some changes in P—Mo—C bond angles as a result of sterics. Use of tri(2-fur­yl)phosphine, which features heteroatoms as potential hydrogen-bond acceptors, leads to an unusual structure with the acetyl oriented down, away from the cyclo­penta­dienyl ring rather than up toward it as observed in other cases (Whited et al., 2013[Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475-m476.]), and a similar effect was observed by incorporation of a Lewis-acidic manganese unit to inter­act with the acetyl ligand (Adatia et al., 1986[Adatia, T., Henrick, K., Horton, A. D., Mays, M. J. & McPartlin, M. (1986). J. Chem. Soc. Chem. Commun. pp. 1206-1208.]). Recent use of other potentially hydrogen-bonding phosphine ligands did not lead to the same solid-state effect (Anstey et al., 2020[Anstey, M. R., Bost, J. L., Grumman, A. S., Kennedy, N. D. & Whited, M. T. (2020). Acta Cryst. E76, 547-551.]).

[Scheme 1]

We were inter­ested in extending earlier studies to higher-order alkyl groups at molybdenum, and in this report we describe the synthesis and solid-state structures of related MoII propionyl complexes derived from an ethyl precursor and supported by tri­aryl­phosphine ligands differing in their para substitution (–H, –F, and –OCH3). Although substitution of phosphine aryl groups with electron-withdrawing or -donating groups minimally affects local structure, the supra­molecular organization is substanti­ally affected by non-classical hydrogen-bonding to the fluoro and meth­oxy groups in (2) and (3), respectively.

2. Structural commentary

The mol­ecular structures of (1), (2), and (3) are illustrated in Figs. 1[link]–3[link][link]. All complexes exhibit an overall structure common for CpMo acetyl complexes of this type, with trans-disposed carbonyl ligands. As previously observed for most related acetyl complexes, the acyl C=O points up toward the Cp ring. In the case of (1), this phenomenon could be rationalized by presence of short C4—H4A⋯O1 (2.672 Å) and C4—H4B⋯O2 (2.639 Å) contacts involving the carbonyl ligands that are enabled when the acyl points up. However, the variation of the Mo1—C3—C4—C5 torsion angle across the series [175.31 (12)° for (1), 172.61 (18)° for (2), and 137.17 (10)° for (3)] argues against the general importance of such an inter­action.

[Figure 1]
Figure 1
Mol­ecular structure of (1) with ellipsoids at 50% probability.
[Figure 2]
Figure 2
Mol­ecular structure of (2) with ellipsoids at 50% probability.
[Figure 3]
Figure 3
Mol­ecular structure of (3) with ellipsoids at 50% probability.

Selected geometric parameters for (1), (2), and (3) are presented in Tables 1[link]–3[link][link]. Complex (2) crystallized with two nearly equivalent mol­ecules in the asymmetric unit, so geometric parameters are presented for both. In general, the three complexes are nearly identical, as might be expected based on the dominant role of sterics in determining structure and the fact that the steric profiles of the three tri­aryl­phosphine ligands are identical. The Mo—P bond length in (2) [2.4692 (4) Å (avg)] is slightly shorter than in (1) or (3) [2.4816 (4) and 2.4745 (3) Å, respectively], which may be related to stronger π-backbonding to the tris­(4-fluoro­phen­yl)phosphine ligand. Stronger backbonding is supported by the observation by infrared spectroscopy of slightly higher-energy carbonyl stretching vibrations for (2) [ν(CO)avg = 1897 cm−1] compared with (1) and (3) [ν(CO)avg = 1893 cm−1 for (1), 1890 cm−1 for (3)]. Geometric parameters for all complexes are quite similar to those for the related tri­phenyl­phosphine-supported CpMo acetyl complex (Churchill & Fennessey, 1968[Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.]).

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Mo1—P1 2.4816 (4) Mo1—C2 1.9662 (15)
Mo1—C1 1.9640 (13) Mo1—C3 2.2794 (14)
       
C1—Mo1—C2 107.83 (6) C1—Mo1—P1 79.34 (4)
C1—Mo1—C3 74.37 (5) C2—Mo1—P1 78.28 (4)
C2—Mo1—C3 72.47 (5) C3—Mo1—P1 131.76 (4)
       
Mo1—C3—C4—C5 175.31 (12)    

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Mo1—P1 2.4730 (6) Mo2—C29 1.962 (2)
Mo1—C1 1.966 (2) Mo2—C30 1.964 (3)
Mo1—C2 1.965 (2) Mo2—C31 2.286 (2)
Mo1—C3 2.265 (2) Mo2—P2 2.4654 (6)
       
C1—Mo1—C2 109.77 (10) C29—Mo2—C30 107.12 (10)
C1—Mo1—C3 77.34 (9) C29—Mo2—C31 74.64 (9)
C2—Mo1—C3 70.93 (9) C30—Mo2—C31 73.89 (9)
C1—Mo1—P1 80.12 (7) C29—Mo2—P2 78.59 (7)
C2—Mo1—P1 79.50 (7) C30—Mo2—P2 78.48 (7)
C3—Mo1—P1 133.55 (6) C31—Mo2—P2 133.28 (6)
       
Mo1—C3—C4—C5 172.61 (18) Mo2—C31—C32—C33 173.63 (19)

Table 3
Selected geometric parameters (Å, °) for (3)[link]

Mo1—P1 2.4745 (3) Mo1—C2 1.9658 (12)
Mo1—C1 1.9675 (12) Mo1—C3 2.2564 (11)
       
C1—Mo1—C2 106.36 (5) C1—Mo1—P1 79.97 (3)
C1—Mo1—C3 72.49 (4) C2—Mo1—P1 79.79 (3)
C2—Mo1—C3 74.79 (4) C3—Mo1—P1 134.90 (3)
       
Mo1—C3—C4—C5 137.17 (10)    

3. Supra­molecular features

In spite of the similarities among (1), (2), and (3) in their mol­ecular structures, the para substituent of the tri­aryl­phosphine ligand [H for (1), F for (2), OCH3 for (3)] plays an important role in determining the extended structure. The extended structure of (1) is dominated by non-classical C—H⋯O inter­actions involving its carbonyl ligands. A short C—H⋯O inter­action between O2 and H12 of a phenyl ring (2.36 Å) joins mol­ecules of (1) into centrosymmetrical dimers that are organized into chains along [010] by inter­molecular C15—H15⋯Cg4 (2.952 Å, where Cg4 represents the centroid of the C23–C28 ring) and intra­molecular O2⋯Cg4 (3.295 Å) inter­actions (Fig. 4[link], Table 4[link]). These chains are linked into sheets parallel to (10[\overline{1}]) through another set of non-classical C—H⋯O inter­actions (2.60 Å) between O1 of the other carbonyl ligand and H6 from a cyclo­penta­dienyl ligand (Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.36 3.1188 (18) 137
C6—H6⋯O1ii 1.00 2.60 3.545 (2) 158
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z].
[Figure 4]
Figure 4
Chains of (1) along [010], viewed along [3[\overline{1}]0].
[Figure 5]
Figure 5
Sheets of (1) formed by C—H⋯O inter­actions, viewed perpendicular to (10[\overline{1}]).

The tris­(4-fluoro­phen­yl)phosphine-supported derivative (2) features two nearly equivalent mol­ecules in the asymmetric unit exhibiting a non-classical C—H⋯O inter­action between O6 of a propionyl ligand and H15 from a phenyl ring (2.59 Å) and a C—H⋯F close contact between F3 and H53 (2.60 Å). These pairs of mol­ecules are joined into chains along [001] by C34—H34⋯O1 hydrogen bonding (2.38 Å, Fig. 6[link], Table 5[link])). The mol­ecules are further organized parallel to (010) by C—H⋯F close contacts between F4 and H49 (2.55 Å) and C—H⋯O inter­actions between O3 and H55 (2.53 Å) (Fig. 7[link]), then further joined along [010] by C—F⋯π inter­actions (F5⋯Cg4 = 3.17 Å, where Cg4 represents the centroid of the C23–C38 ring).

Table 5
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O6 0.95 2.59 3.371 (4) 139
C49—H49⋯F4i 0.95 2.55 3.344 (3) 141
C55—H55⋯O3ii 0.95 2.53 3.450 (3) 164
C34—H34⋯O1iii 1.00 2.38 3.237 (3) 143
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Chains along [001] of the two nearly identical mol­ecules of (2) in the asymmetric unit, with their C—H⋯O and C—H⋯F inter­actions, viewed along [010].
[Figure 7]
Figure 7
Sheets of (2) parallel to (010), viewed perpendicular to (010).

Like complex (1), complex (3) is joined into centrosymmetrical dimers by a C—H⋯O inter­action involving a carbonyl ligand (C8—H8⋯O1, Table 6[link]), and these are linked into chains along [110] through an additional C—H⋯O inter­action between the propionyl oxygen and a cyclo­penta­dienyl ligand (Fig. 8[link]). Additional C31—H31B⋯O5 inter­actions along [110], involving a meth­oxy group from the phosphine ligand, join the mol­ecules into a network parallel to (001). This further set of inter­actions involving meth­oxy groups, as well as important close contacts involving the di­chloro­methane solvent, are depicted in Fig. 9[link].

Table 6
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31B⋯O5i 0.98 2.58 3.4880 (16) 155
C6—H6⋯O3ii 1.00 2.57 3.4555 (16) 148
C8—H8⋯O1iii 1.00 2.45 3.2714 (16) 139
C32—H32B⋯O2iv 0.99 2.63 3.418 (2) 137
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, -y, -z]; (iii) [-x+1, -y+1, -z]; (iv) [x-1, y, z].
[Figure 8]
Figure 8
Chains of (3) along [010], viewed perpendicular to (001).
[Figure 9]
Figure 9
Network of complex (3) formed by inter­actions featuring meth­oxy groups and di­chloro­methane solvent, viewed along [100].

4. Database survey

The current version of the Cambridge Structural Database (Version 5.41, updated August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has fourteen entries corresponding to molybdenum acyl complexes of the general form Mo(C5H5)(CO)2(PR3)(COR). The trans-dicarbonyl structure, as observed for (1)–(3), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991[Adams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247-258.]; Mercier et al., 1993[Mercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98-103.]; Yan et al., 2009[Yan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827-6830.]).

5. Synthesis and crystallization

CpMo(CO)3(CH2CH3). This compound was prepared by modification of the method used of Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]), as previously reported by Whited & Hofmeister (2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]) and Anstey et al. (2020[Anstey, M. R., Bost, J. L., Grumman, A. S., Kennedy, N. D. & Whited, M. T. (2020). Acta Cryst. E76, 547-551.]). In a 20 ml scintillation vial equipped with a flea-sized stir bar, [CpMo(CO)3]2 (0.1908 g, 0.39 mmol) was dissolved in THF (10 ml). Sodium tri­ethyl­borohydride (0.87 mL of 1.0 M solution in THF, 0.87 mmol) was added dropwise by syringe with vigorous stirring, leading to an immediate color change from purple to green–yellow with evolution of H2 gas. The reaction was allowed to proceed with stirring for 20 min, and an excess of iodo­ethane (0.098 ml, 1.2 mmol) was added dropwise with stirring and the reaction was allowed to proceed for 6 h. Volatiles were removed in vacuo to afford a yellow–brown film that was stored at 238 K for 1 week. The solid was extracted with pentane (4 × 10 ml) and filtered through a 1 cm pad of activated alumina to afford a yellow solution, and removal of solvent in vacuo afforded CpMo(CO)3(CH2CH3) as a pure yellow powder (0.131 g, 61%). 1H NMR (400 MHz, CDCl3): δ 5.28 (s, 5H, Cp ring), 1.72 (q, 3JHH = 7.4 Hz, 2H, –CH2CH3), 1.45 (t, 3JHH = 7.4 Hz, 3H, –CH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 239.9 (Mo—CO), 227.8 (Mo—CO), 93.0 (Cp ring), 20.4 (Mo—CH2CH3) −3.7 (Mo—CH2CH3). IR (CH2Cl2, NaCl, cm−1) ν(CO): 2015, 1921 (split).

CpMo(CO)2(PPh3)(COCH2CH3) (1). In an inert-atmos­phere glove box, CpMo(CO)3(CH2CH3) (0.0803 g, 0.293 mmol) and tri­phenyl­phosphine (0.115 g, 0.440 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 ml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, during which time a bright-yellow precip­itate formed. The yellow solid was isolated by filtration and washed with pentane (2 × 5 ml), then dried in vacuo to afford pure 1. Yellow crystals of 1 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.50–7.30 (m, 15H, PPh3), 5.00 (d, J = 1.2 Hz, 5H, C5H5), 3.03 (q, 3JHH = 7.2 Hz, 2H, C(O)CH2CH3), 0.90 (t, 3JHH = 7.2 Hz, 3H, C(O)CH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 267.7 (d, 2JCP = 11 Hz, Mo—COEt), 238.8 (d, 2JCP = 24 Hz, Mo—CO), 135.7 (d, 1JCP = 44 Hz, ipso-C of PPh3), 133.2 (d, 2JCP = 11 Hz, ortho-C of PPh3), 130.5 (d, 4JCP = 2 Hz, para-C of PPh3), 128.6 (d, 3JCP = 11 Hz, meta-C of PPh3), 96.7 (Cp ring), 58.1 (Mo—COCH2CH3), 10.1 (Mo—COCH2CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 68.4 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1935, 1851, 1614 (acet­yl).

CpMo(CO)2(P(4-FPh)3)(COCH2CH3) (2). In an inert-atmosphere glove box, CpMo(CO)3(CH2CH3) (0.0997 g, 0.36 mmol) and tris­(4-fluoro­phen­yl)phosphine (0.17 g, 0.55 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 ml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, causing a color change to orange, but without formation of any precipitate. Solvent was removed in vacuo, causing precipitation of a yellow solid that was isolated by filtration and washed with pentane (2 × 3 ml) to afford the desired product 2 (0.12 g, 56%). Yellow crystals of 2 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.41–7.30 (br m, 6H, ortho-C–H of phosphine), 7.14 (td, 3JHH3JHF = 8.6 Hz, 4JHP = 1.5 Hz, 6H, meta-C—H of phosphine), 4.90 (d, J = 1.2 Hz, 5H, C5H5), 2.99 (q, 3JHH = 7.2 Hz, 2H, C(O)CH2CH3), 0.90 (t, 3JHH = 7.2 Hz, 3H, C(O)CH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 265.4 (d, 2JCP = 11 Hz, Mo—COEt), 238.2 (d, 2JCP = 24 Hz, Mo—CO), 164.0 (dd, 1JCF = 253 Hz, 4JCP = 2 Hz, C—F of phosphine), 135.0 (dd, 2JCP = 13 Hz, 3JCF = 8 Hz, ortho-C of phosphine), 131.3 (dd, 1JCP = 46 Hz, 4JCF = 4 Hz, ipso-C of phosphine), 116.0 (dd, 2JCF = 21 Hz, 3JCP = 11 Hz, meta-C of phosphine), 96.5 (Cp ring), 58.2 (Mo—COCH2CH3), 10.9 (Mo—COCH2CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 68.5 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1938, 1856, 1620 (acet­yl).

CpMo(CO)2(P(4-MeOPh)3)(COCH2CH3) (3). In an inert-atmosphere glove box, CpMo(CO)3(CH2CH3) (0.113 g, 0.41 mmol) and tris­(4-meth­oxy­phen­yl)phosphine (0.218 g, 0.61 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 nml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, causing precipitation of 3 as a pure yellow powder that was isolated by filtration. Crystals of 3 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.37–7.23 (br m, 6H, ortho-C–H of phosphine), 7.14 (dd, 3JHH = 8.8 Hz, 4JHP = 1.7 Hz, meta-C—H of phosphine), 4.99 (d, J = 1.2 Hz, 5H, C5H5), 3.03 (q, 3JHH = 7.2 Hz, 2H, C(O)CH2CH3), 0.89 (t, 3JHH = 7.2 Hz, 3H, C(O)CH2CH3). 13C{1H} NMR (101 MHz, CDCl3): δ 268.6 (d, 2JCP = 11 Hz, Mo–COEt), 239.2 (d, 2JCP = 24 Hz, Mo—CO), 161.1 (C—OCH3 of phosphine), 134.6 (d, 2JCP = 12 Hz, ortho-C of phosphine), 127.4 (d, 1JCP = 50 Hz, ipso-C of phosphine), 114.0 (d, 3JCP = 11 Hz, meta-C of phosphine), 96.6 (Cp ring), 58.0 (Mo—COCH2CH3), 10.1 (Mo—COCH2CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 62.3 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1933, 1847, 1605 (acet­yl).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. H atoms were placed in calculated positions and refined in the riding-model approximation with distances of C—H = 0.95, 0.98, 0.99, and 1.00 Å for the phenyl, methyl, methyl­ene, and cyclo­penta­dienyl groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for cyclo­penta­dienyl, phenyl, and methyl­ene groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.

Table 7
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula [Mo(C5H5)(C3H5O)(C18H15P)(CO)2] [Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2] [Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2
Mr 536.39 590.36 711.39
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 170 170 170
a, b, c (Å) 9.1719 (5), 11.7493 (7), 12.6049 (7) 11.7991 (4), 18.6907 (8), 22.4744 (8) 10.5308 (6), 12.1305 (7), 13.6154 (8)
α, β, γ (°) 113.083 (2), 99.148 (2), 99.380 (2) 90, 97.256 (2), 90 97.660 (2), 104.759 (2), 107.081 (2)
V3) 1195.14 (12) 4916.7 (3) 1566.43 (16)
Z 2 8 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.64 0.65 0.68
Crystal size (mm) 0.16 × 0.16 × 0.06 0.05 × 0.05 × 0.05 0.23 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST ECO Bruker D8 QUEST ECO Bruker D8 QUEST ECO
Absorption correction Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.96 0.86, 0.97 0.84, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 49481, 5939, 5674 73758, 10047, 8547 81820, 9578, 9053
Rint 0.025 0.042 0.029
(sin θ/λ)max−1) 0.667 0.625 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.07 0.029, 0.063, 1.07 0.020, 0.054, 1.06
No. of reflections 5939 10047 9578
No. of parameters 299 651 393
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.40 0.37, −0.39 0.40, −0.48
Computer programs: BIS and SAINT (Bruker, 2019[Bruker (2019). BIS and SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A small number of intense low-angle reflections [three for (1); seven for (2); five for (3)] are missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias has been introduced.

The structure of (3) exhibits modest disorder in the position of Cl1 of the di­chloro­methane solvent, which was modeled with two sites showing approximately equivalent occupancies [0.532 (15) for Cl1A, 0.468 (15) for Cl1B].

Supporting information


Computing details top

For all structures, data collection: BIS (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) top
Crystal data top
[Mo(C5H5)(C3H5O)(C18H15P)(CO)2]Z = 2
Mr = 536.39F(000) = 548
Triclinic, P1Dx = 1.491 Mg m3
a = 9.1719 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7493 (7) ÅCell parameters from 9085 reflections
c = 12.6049 (7) Åθ = 2.6–33.1°
α = 113.083 (2)°µ = 0.64 mm1
β = 99.148 (2)°T = 170 K
γ = 99.380 (2)°Prism, yellow
V = 1195.14 (12) Å30.16 × 0.16 × 0.06 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
5939 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C5674 reflections with I > 2σ(I)
Curved Graphite monochromatorRint = 0.025
Detector resolution: 7.3910 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1212
Absorption correction: multi-scan
(Krause et al., 2015)
k = 1515
Tmin = 0.89, Tmax = 0.96l = 1616
49481 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.022P)2 + 0.6108P]
where P = (Fo2 + 2Fc2)/3
5939 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.21851 (2)0.45813 (2)0.23960 (2)0.01978 (4)
P10.32246 (3)0.69322 (3)0.33370 (3)0.01786 (6)
O10.22653 (14)0.50413 (11)0.01296 (9)0.0343 (2)
O20.54687 (13)0.48265 (11)0.37404 (11)0.0391 (3)
O30.23712 (16)0.18616 (11)0.08762 (12)0.0459 (3)
C10.22950 (15)0.48927 (12)0.09861 (11)0.0233 (2)
C20.42735 (17)0.47555 (13)0.32222 (12)0.0267 (3)
C30.30515 (18)0.29556 (13)0.11888 (12)0.0288 (3)
C40.4478 (2)0.32080 (16)0.07449 (15)0.0390 (4)
H4A0.4286320.3667180.0245550.047*
H4B0.5330490.377870.1440960.047*
C50.4970 (2)0.20261 (19)0.00328 (17)0.0504 (5)
H5A0.4202880.1513280.0720250.076*
H5B0.5075340.152040.0488240.076*
H5C0.5951540.2279720.0130450.076*
C60.05044 (17)0.42011 (17)0.21381 (16)0.0377 (4)
H60.1219880.4445250.1626970.045*
C70.01630 (18)0.49182 (16)0.33645 (15)0.0356 (3)
H70.001080.5769330.3870330.043*
C80.09701 (19)0.41922 (16)0.37808 (14)0.0348 (3)
H80.1464530.4428920.4630050.042*
C90.08355 (19)0.30236 (15)0.28055 (15)0.0354 (3)
H90.1185820.2276140.2847120.042*
C100.00792 (19)0.30284 (16)0.17850 (15)0.0369 (3)
H100.0473080.2285570.0985220.044*
C110.29484 (14)0.77386 (12)0.48373 (11)0.0209 (2)
C120.32519 (18)0.71890 (14)0.56225 (12)0.0296 (3)
H120.3608210.6433240.5373060.035*
C130.30390 (19)0.77344 (15)0.67645 (13)0.0337 (3)
H130.3257270.7355960.7294060.04*
C140.25087 (18)0.88295 (15)0.71309 (13)0.0329 (3)
H140.2352380.9199630.7909070.039*
C150.22073 (17)0.93831 (14)0.63604 (13)0.0309 (3)
H150.18441.0135250.6612210.037*
C160.24327 (15)0.88454 (12)0.52163 (12)0.0238 (2)
H160.2233160.9236960.469530.029*
C170.25504 (14)0.78737 (12)0.25929 (11)0.0190 (2)
C180.10476 (15)0.74751 (13)0.19178 (12)0.0240 (2)
H180.0411750.6693420.1807610.029*
C190.04765 (17)0.82174 (14)0.14056 (13)0.0302 (3)
H190.0555230.7951830.0964350.036*
C200.14075 (18)0.93438 (14)0.15365 (13)0.0305 (3)
H200.1015940.9847070.1182670.037*
C210.29082 (18)0.97327 (13)0.21836 (13)0.0287 (3)
H210.3551991.0496020.2261510.034*
C220.34774 (15)0.90100 (12)0.27206 (12)0.0242 (3)
H220.4502980.9291180.3176960.029*
C230.52909 (14)0.73720 (12)0.35437 (11)0.0207 (2)
C240.58606 (15)0.69609 (13)0.25280 (12)0.0258 (3)
H240.51770.6566190.1761740.031*
C250.74111 (16)0.71250 (15)0.26317 (14)0.0319 (3)
H250.7790180.684060.19380.038*
C260.84183 (16)0.77070 (15)0.37523 (15)0.0331 (3)
H260.9483490.7810570.3822430.04*
C270.78743 (16)0.81325 (14)0.47583 (13)0.0310 (3)
H270.8565150.8538590.5521620.037*
C280.63068 (16)0.79681 (13)0.46591 (12)0.0264 (3)
H280.5934380.8264420.535530.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02476 (6)0.01872 (6)0.01856 (6)0.00571 (4)0.00643 (4)0.01018 (4)
P10.01821 (14)0.01985 (14)0.01678 (14)0.00582 (11)0.00409 (11)0.00879 (11)
O10.0494 (6)0.0349 (6)0.0221 (5)0.0107 (5)0.0090 (4)0.0155 (4)
O20.0397 (6)0.0413 (6)0.0407 (6)0.0187 (5)0.0014 (5)0.0220 (5)
O30.0611 (8)0.0230 (5)0.0525 (7)0.0117 (5)0.0214 (6)0.0118 (5)
C10.0263 (6)0.0203 (6)0.0214 (6)0.0053 (5)0.0048 (5)0.0078 (5)
C20.0368 (7)0.0246 (6)0.0237 (6)0.0131 (5)0.0088 (5)0.0129 (5)
C30.0399 (8)0.0254 (6)0.0231 (6)0.0133 (6)0.0073 (6)0.0105 (5)
C40.0481 (9)0.0354 (8)0.0361 (8)0.0188 (7)0.0199 (7)0.0112 (7)
C50.0631 (12)0.0475 (10)0.0411 (9)0.0299 (9)0.0218 (9)0.0097 (8)
C60.0248 (7)0.0488 (9)0.0495 (9)0.0041 (6)0.0104 (6)0.0327 (8)
C70.0338 (8)0.0335 (8)0.0460 (9)0.0091 (6)0.0235 (7)0.0183 (7)
C80.0409 (8)0.0411 (8)0.0281 (7)0.0056 (7)0.0165 (6)0.0194 (6)
C90.0462 (9)0.0290 (7)0.0416 (8)0.0071 (6)0.0193 (7)0.0236 (7)
C100.0378 (8)0.0338 (8)0.0336 (8)0.0071 (6)0.0109 (6)0.0142 (6)
C110.0198 (5)0.0229 (6)0.0189 (5)0.0043 (5)0.0048 (4)0.0083 (5)
C120.0393 (8)0.0309 (7)0.0231 (6)0.0137 (6)0.0095 (6)0.0136 (6)
C130.0438 (8)0.0366 (8)0.0220 (6)0.0064 (6)0.0086 (6)0.0149 (6)
C140.0375 (8)0.0317 (7)0.0217 (6)0.0000 (6)0.0117 (6)0.0052 (5)
C150.0332 (7)0.0243 (6)0.0296 (7)0.0057 (5)0.0120 (6)0.0050 (5)
C160.0231 (6)0.0221 (6)0.0238 (6)0.0034 (5)0.0054 (5)0.0085 (5)
C170.0209 (5)0.0210 (6)0.0176 (5)0.0069 (4)0.0057 (4)0.0096 (5)
C180.0217 (6)0.0248 (6)0.0265 (6)0.0047 (5)0.0041 (5)0.0130 (5)
C190.0272 (7)0.0330 (7)0.0308 (7)0.0092 (6)0.0002 (5)0.0163 (6)
C200.0430 (8)0.0266 (7)0.0270 (7)0.0144 (6)0.0060 (6)0.0153 (6)
C210.0382 (7)0.0215 (6)0.0279 (7)0.0054 (5)0.0083 (6)0.0127 (5)
C220.0244 (6)0.0226 (6)0.0245 (6)0.0033 (5)0.0041 (5)0.0107 (5)
C230.0192 (5)0.0212 (6)0.0223 (6)0.0064 (4)0.0043 (5)0.0096 (5)
C240.0218 (6)0.0286 (7)0.0229 (6)0.0043 (5)0.0043 (5)0.0080 (5)
C250.0255 (7)0.0342 (7)0.0335 (7)0.0090 (6)0.0119 (6)0.0097 (6)
C260.0187 (6)0.0348 (7)0.0442 (8)0.0079 (5)0.0050 (6)0.0158 (7)
C270.0250 (6)0.0325 (7)0.0302 (7)0.0037 (5)0.0029 (5)0.0132 (6)
C280.0254 (6)0.0281 (6)0.0231 (6)0.0063 (5)0.0029 (5)0.0096 (5)
Geometric parameters (Å, º) top
Mo1—P12.4816 (4)C11—C121.3951 (18)
Mo1—C11.9640 (13)C12—C131.388 (2)
Mo1—C21.9662 (15)C12—H120.95
Mo1—C32.2794 (14)C13—C141.384 (2)
Mo1—C92.3138 (14)C13—H130.95
Mo1—C102.3216 (15)C14—C151.382 (2)
Mo1—C82.3612 (14)C14—H140.95
Mo1—C62.3795 (15)C15—C161.3945 (19)
Mo1—C72.3805 (15)C15—H150.95
P1—C171.8270 (12)C16—H160.95
P1—C231.8289 (13)C17—C181.3956 (17)
P1—C111.8341 (13)C17—C221.3961 (18)
O1—C11.1563 (17)C18—C191.3910 (18)
O2—C21.1555 (18)C18—H180.95
O3—C31.2083 (19)C19—C201.387 (2)
C3—C41.533 (2)C19—H190.95
C4—C51.514 (2)C20—C211.384 (2)
C4—H4A0.99C20—H200.95
C4—H4B0.99C21—C221.3909 (19)
C5—H5A0.98C21—H210.95
C5—H5B0.98C22—H220.95
C5—H5C0.98C23—C281.3907 (18)
C6—C71.408 (2)C23—C241.3984 (18)
C6—C101.414 (3)C24—C251.3814 (19)
C6—H61.0C24—H240.95
C7—C81.409 (2)C25—C261.392 (2)
C7—H71.0C25—H250.95
C8—C91.409 (2)C26—C271.376 (2)
C8—H81.0C26—H260.95
C9—C101.422 (2)C27—C281.398 (2)
C9—H91.0C27—H270.95
C10—H101.0C28—H280.95
C11—C161.3886 (18)
C1—Mo1—C2107.83 (6)C7—C8—Mo173.47 (8)
C1—Mo1—C374.37 (5)C9—C8—Mo170.63 (8)
C2—Mo1—C372.47 (5)C7—C8—H8125.9
C1—Mo1—C9136.85 (6)C9—C8—H8125.9
C2—Mo1—C9100.67 (6)Mo1—C8—H8125.9
C3—Mo1—C984.47 (6)C8—C9—C10107.75 (14)
C1—Mo1—C10103.82 (6)C8—C9—Mo174.31 (8)
C2—Mo1—C10133.28 (6)C10—C9—Mo172.43 (8)
C3—Mo1—C1084.30 (6)C8—C9—H9125.8
C9—Mo1—C1035.73 (6)C10—C9—H9125.8
C1—Mo1—C8155.48 (6)Mo1—C9—H9125.8
C2—Mo1—C896.57 (6)C6—C10—C9108.10 (15)
C3—Mo1—C8116.63 (6)C6—C10—Mo174.76 (9)
C9—Mo1—C835.06 (6)C9—C10—Mo171.83 (9)
C10—Mo1—C858.45 (6)C6—C10—H10125.7
C1—Mo1—C697.82 (6)C9—C10—H10125.7
C2—Mo1—C6154.34 (6)Mo1—C10—H10125.7
C3—Mo1—C6116.12 (6)C16—C11—C12118.96 (12)
C9—Mo1—C658.55 (6)C16—C11—P1123.40 (10)
C10—Mo1—C634.97 (6)C12—C11—P1117.64 (10)
C8—Mo1—C657.79 (6)C13—C12—C11120.73 (14)
C1—Mo1—C7123.06 (6)C13—C12—H12119.6
C2—Mo1—C7123.54 (6)C11—C12—H12119.6
C3—Mo1—C7140.20 (6)C14—C13—C12119.95 (14)
C9—Mo1—C758.03 (6)C14—C13—H13120.0
C10—Mo1—C757.85 (6)C12—C13—H13120.0
C8—Mo1—C734.56 (6)C15—C14—C13119.77 (13)
C6—Mo1—C734.42 (6)C15—C14—H14120.1
C1—Mo1—P179.34 (4)C13—C14—H14120.1
C2—Mo1—P178.28 (4)C14—C15—C16120.48 (14)
C3—Mo1—P1131.76 (4)C14—C15—H15119.8
C9—Mo1—P1139.01 (4)C16—C15—H15119.8
C10—Mo1—P1141.74 (5)C11—C16—C15120.10 (13)
C8—Mo1—P1103.97 (4)C11—C16—H16119.9
C6—Mo1—P1106.91 (4)C15—C16—H16119.9
C7—Mo1—P188.01 (4)C18—C17—C22118.98 (12)
C17—P1—C23102.95 (6)C18—C17—P1119.14 (9)
C17—P1—C11102.96 (6)C22—C17—P1121.83 (10)
C23—P1—C11103.95 (6)C19—C18—C17120.29 (12)
C17—P1—Mo1119.32 (4)C19—C18—H18119.9
C23—P1—Mo1111.87 (4)C17—C18—H18119.9
C11—P1—Mo1114.09 (4)C20—C19—C18120.26 (13)
O1—C1—Mo1175.81 (12)C20—C19—H19119.9
O2—C2—Mo1176.43 (13)C18—C19—H19119.9
O3—C3—C4118.46 (14)C21—C20—C19119.83 (13)
O3—C3—Mo1119.78 (12)C21—C20—H20120.1
C4—C3—Mo1121.76 (10)C19—C20—H20120.1
C5—C4—C3115.02 (15)C20—C21—C22120.23 (13)
C5—C4—H4A108.5C20—C21—H21119.9
C3—C4—H4A108.5C22—C21—H21119.9
C5—C4—H4B108.5C21—C22—C17120.39 (12)
C3—C4—H4B108.5C21—C22—H22119.8
H4A—C4—H4B107.5C17—C22—H22119.8
C4—C5—H5A109.5C28—C23—C24119.14 (12)
C4—C5—H5B109.5C28—C23—P1122.88 (10)
H5A—C5—H5B109.5C24—C23—P1117.61 (10)
C4—C5—H5C109.5C25—C24—C23120.42 (13)
H5A—C5—H5C109.5C25—C24—H24119.8
H5B—C5—H5C109.5C23—C24—H24119.8
C7—C6—C10107.44 (14)C24—C25—C26120.02 (14)
C7—C6—Mo172.83 (9)C24—C25—H25120.0
C10—C6—Mo170.27 (9)C26—C25—H25120.0
C7—C6—H6126.2C27—C26—C25120.14 (13)
C10—C6—H6126.2C27—C26—H26119.9
Mo1—C6—H6126.2C25—C26—H26119.9
C6—C7—C8108.81 (15)C26—C27—C28120.10 (13)
C6—C7—Mo172.75 (9)C26—C27—H27120.0
C8—C7—Mo171.97 (8)C28—C27—H27120.0
C6—C7—H7125.5C23—C28—C27120.16 (13)
C8—C7—H7125.5C23—C28—H28119.9
Mo1—C7—H7125.5C27—C28—H28119.9
C7—C8—C9107.89 (14)
O3—C3—C4—C55.3 (2)C14—C15—C16—C110.7 (2)
Mo1—C3—C4—C5175.31 (12)C23—P1—C17—C18157.21 (10)
C10—C6—C7—C81.24 (17)C11—P1—C17—C1894.93 (11)
Mo1—C6—C7—C863.38 (11)Mo1—P1—C17—C1832.63 (12)
C10—C6—C7—Mo162.13 (10)C23—P1—C17—C2225.50 (12)
C6—C7—C8—C91.22 (17)C11—P1—C17—C2282.36 (11)
Mo1—C7—C8—C962.66 (10)Mo1—P1—C17—C22150.08 (9)
C6—C7—C8—Mo163.88 (11)C22—C17—C18—C191.5 (2)
C7—C8—C9—C100.72 (17)P1—C17—C18—C19175.84 (11)
Mo1—C8—C9—C1065.22 (10)C17—C18—C19—C201.6 (2)
C7—C8—C9—Mo164.51 (11)C18—C19—C20—C210.3 (2)
C7—C6—C10—C90.79 (17)C19—C20—C21—C221.2 (2)
Mo1—C6—C10—C964.59 (11)C20—C21—C22—C171.3 (2)
C7—C6—C10—Mo163.80 (10)C18—C17—C22—C210.1 (2)
C8—C9—C10—C60.05 (17)P1—C17—C22—C21177.21 (10)
Mo1—C9—C10—C666.52 (10)C17—P1—C23—C28118.22 (11)
C8—C9—C10—Mo166.48 (11)C11—P1—C23—C2811.11 (13)
C17—P1—C11—C163.65 (12)Mo1—P1—C23—C28112.46 (11)
C23—P1—C11—C16103.45 (12)C17—P1—C23—C2468.86 (11)
Mo1—P1—C11—C16134.44 (10)C11—P1—C23—C24175.97 (10)
C17—P1—C11—C12175.23 (11)Mo1—P1—C23—C2460.46 (11)
C23—P1—C11—C1277.66 (12)C28—C23—C24—C251.1 (2)
Mo1—P1—C11—C1244.44 (12)P1—C23—C24—C25172.08 (11)
C16—C11—C12—C130.2 (2)C23—C24—C25—C260.2 (2)
P1—C11—C12—C13178.74 (12)C24—C25—C26—C270.7 (2)
C11—C12—C13—C140.5 (2)C25—C26—C27—C280.8 (2)
C12—C13—C14—C150.6 (2)C24—C23—C28—C271.1 (2)
C13—C14—C15—C160.0 (2)P1—C23—C28—C27171.76 (11)
C12—C11—C16—C150.8 (2)C26—C27—C28—C230.1 (2)
P1—C11—C16—C15178.09 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.363.1188 (18)137
C6—H6···O1ii1.002.603.545 (2)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) top
Crystal data top
[Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2]F(000) = 2384
Mr = 590.36Dx = 1.595 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7991 (4) ÅCell parameters from 9718 reflections
b = 18.6907 (8) Åθ = 2.3–30.5°
c = 22.4744 (8) ŵ = 0.65 mm1
β = 97.256 (2)°T = 170 K
V = 4916.7 (3) Å3Prism, yellow
Z = 80.05 × 0.05 × 0.05 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
10047 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C8547 reflections with I > 2σ(I)
Curved Graphite monochromatorRint = 0.042
Detector resolution: 7.3910 pixels mm-1θmax = 26.4°, θmin = 2.3°
φ and ω scansh = 1414
Absorption correction: multi-scan
(Krause et al., 2015)
k = 2323
Tmin = 0.86, Tmax = 0.97l = 2827
73758 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0211P)2 + 4.4865P]
where P = (Fo2 + 2Fc2)/3
10047 reflections(Δ/σ)max = 0.002
651 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.68359 (2)0.16744 (2)0.31097 (2)0.01937 (5)
P10.50728 (5)0.18602 (3)0.35791 (3)0.01993 (12)
F10.54908 (16)0.08511 (12)0.61078 (7)0.0637 (6)
F20.08121 (14)0.03649 (10)0.25717 (8)0.0533 (5)
F30.36509 (14)0.49064 (7)0.35239 (8)0.0441 (4)
O10.51071 (16)0.18266 (10)0.19490 (8)0.0399 (5)
O20.74633 (16)0.31199 (10)0.37628 (8)0.0361 (4)
O30.88132 (15)0.22239 (10)0.24695 (8)0.0333 (4)
C10.5734 (2)0.18193 (12)0.23876 (11)0.0256 (5)
C20.71837 (19)0.25955 (13)0.35133 (10)0.0243 (5)
C30.7827 (2)0.23663 (13)0.25283 (10)0.0248 (5)
C40.7294 (2)0.30324 (14)0.22084 (12)0.0346 (6)
H4A0.666050.287860.1904030.041*
H4B0.6961170.3332040.2505470.041*
C50.8111 (3)0.34882 (15)0.19021 (13)0.0409 (7)
H5A0.842510.320370.1595380.061*
H5B0.8734250.3653920.2199770.061*
H5C0.770080.39020.1713160.061*
C60.6987 (3)0.04365 (14)0.29401 (13)0.0414 (7)
H60.6474290.0147150.2644040.05*
C70.6872 (2)0.05233 (13)0.35502 (13)0.0345 (6)
H70.6252730.0311560.3760220.041*
C80.7818 (2)0.09086 (14)0.38260 (12)0.0345 (6)
H80.7997910.1007970.4265020.041*
C90.8523 (2)0.10673 (15)0.33829 (12)0.0368 (6)
H90.9301010.1287420.3455010.044*
C100.8008 (3)0.07731 (15)0.28325 (13)0.0421 (7)
H100.8358350.0751890.2450320.05*
C110.5180 (2)0.15457 (12)0.43586 (10)0.0236 (5)
C120.6089 (2)0.17724 (15)0.47718 (12)0.0350 (6)
H120.6645620.2086460.4645970.042*
C130.6194 (2)0.15470 (18)0.53629 (12)0.0435 (7)
H130.6805340.1710270.5646160.052*
C140.5390 (2)0.10810 (17)0.55288 (12)0.0408 (7)
C150.4497 (2)0.08329 (14)0.51394 (12)0.0354 (6)
H150.3959960.0506780.5268120.043*
C160.4392 (2)0.10706 (13)0.45480 (11)0.0278 (5)
H160.3774060.0905950.4269870.033*
C170.3749 (2)0.14313 (12)0.32379 (10)0.0238 (5)
C180.3798 (2)0.07402 (13)0.30120 (11)0.0312 (6)
H180.4518680.0516390.3004930.037*
C190.2808 (2)0.03741 (15)0.27971 (12)0.0363 (6)
H190.2840220.0104240.2657310.044*
C200.1781 (2)0.07191 (16)0.27914 (12)0.0360 (6)
C210.1688 (2)0.14034 (15)0.29969 (11)0.0321 (6)
H210.0964690.1631620.2978310.039*
C220.2682 (2)0.17545 (13)0.32338 (11)0.0275 (5)
H220.2634470.2221640.339530.033*
C230.46301 (18)0.27942 (12)0.36021 (10)0.0212 (5)
C240.4234 (2)0.31163 (12)0.30539 (11)0.0270 (5)
H240.4210850.2847220.2694010.032*
C250.3877 (2)0.38197 (13)0.30282 (12)0.0318 (6)
H250.3580320.4032620.2657230.038*
C260.3961 (2)0.42019 (12)0.35498 (13)0.0308 (6)
C270.4348 (2)0.39122 (13)0.40983 (12)0.0306 (6)
H270.4391610.4192330.4453180.037*
C280.4673 (2)0.31977 (13)0.41208 (11)0.0255 (5)
H280.4929080.2983220.4497120.031*
Mo20.13778 (2)0.20503 (2)0.57103 (2)0.01918 (5)
P20.07626 (5)0.32692 (3)0.53987 (3)0.01888 (12)
F40.41095 (12)0.38483 (9)0.56536 (7)0.0443 (4)
F50.36489 (13)0.55112 (8)0.67019 (7)0.0405 (4)
F60.08738 (15)0.40659 (9)0.28469 (7)0.0483 (4)
O40.11576 (15)0.17823 (10)0.51826 (9)0.0389 (4)
O50.28370 (16)0.23246 (10)0.46697 (9)0.0408 (5)
O60.1843 (2)0.04766 (10)0.54648 (9)0.0584 (6)
C290.0209 (2)0.18824 (12)0.53604 (11)0.0250 (5)
C300.2268 (2)0.22200 (12)0.50419 (11)0.0261 (5)
C310.1403 (2)0.09868 (12)0.52100 (11)0.0265 (5)
C320.0920 (3)0.08959 (15)0.45594 (12)0.0392 (7)
H32A0.0085420.0979430.4521910.047*
H32B0.1251780.1270640.432240.047*
C330.1125 (3)0.01792 (15)0.42855 (13)0.0441 (7)
H33A0.0733110.0162080.3874390.066*
H33B0.0827770.020030.4523930.066*
H33C0.1946570.0109480.4280050.066*
C340.2910 (2)0.21959 (17)0.64802 (12)0.0412 (7)
H340.3657230.2430550.643730.049*
C350.1968 (3)0.25274 (16)0.66799 (11)0.0433 (7)
H350.1923590.304240.6795360.052*
C360.1135 (3)0.20086 (17)0.67425 (11)0.0408 (7)
H360.0403670.2085620.6914830.049*
C370.1563 (2)0.13425 (15)0.65645 (11)0.0373 (6)
H370.1201010.0863960.6604550.045*
C380.2670 (2)0.14677 (15)0.64067 (11)0.0358 (6)
H380.3224230.1090880.6314530.043*
C390.07161 (19)0.35126 (12)0.54894 (10)0.0202 (5)
C400.1144 (2)0.33622 (13)0.60274 (11)0.0293 (5)
H400.0649870.316910.635460.035*
C410.2281 (2)0.34908 (14)0.60907 (11)0.0314 (6)
H410.2566140.3399320.6460110.038*
C420.2982 (2)0.37531 (13)0.56070 (12)0.0290 (5)
C430.2598 (2)0.39207 (14)0.50748 (11)0.0314 (6)
H430.3099780.4115340.4751530.038*
C440.1453 (2)0.37987 (13)0.50190 (11)0.0264 (5)
H440.117090.3913150.4652960.032*
C450.16211 (19)0.39779 (12)0.57976 (10)0.0221 (5)
C460.1136 (2)0.45612 (12)0.60505 (10)0.0243 (5)
H460.0327840.4601510.6019140.029*
C470.1819 (2)0.50884 (13)0.63496 (11)0.0279 (5)
H470.1488810.5489620.6522040.034*
C480.2979 (2)0.50132 (13)0.63887 (11)0.0285 (5)
C490.3500 (2)0.44497 (13)0.61377 (11)0.0298 (6)
H490.4308470.441860.6167140.036*
C500.2813 (2)0.39324 (13)0.58426 (11)0.0274 (5)
H500.3154410.353790.5666510.033*
C510.08310 (18)0.35142 (12)0.46138 (10)0.0204 (5)
C520.1267 (2)0.41698 (12)0.44605 (11)0.0250 (5)
H520.1555340.4494720.4767960.03*
C530.1287 (2)0.43575 (14)0.38613 (11)0.0297 (5)
H530.1589180.4804550.3756370.036*
C540.0860 (2)0.38815 (15)0.34296 (11)0.0316 (6)
C550.0410 (2)0.32290 (14)0.35584 (11)0.0322 (6)
H550.0112640.2911740.3246970.039*
C560.0404 (2)0.30477 (13)0.41563 (11)0.0269 (5)
H560.0102570.2597990.4255520.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02038 (10)0.01882 (10)0.01827 (10)0.00364 (8)0.00004 (7)0.00050 (7)
P10.0203 (3)0.0190 (3)0.0200 (3)0.0007 (2)0.0005 (2)0.0010 (2)
F10.0570 (12)0.1040 (16)0.0297 (9)0.0035 (11)0.0034 (8)0.0313 (10)
F20.0360 (9)0.0682 (12)0.0554 (11)0.0274 (9)0.0049 (8)0.0178 (9)
F30.0454 (10)0.0205 (7)0.0669 (11)0.0049 (7)0.0087 (8)0.0037 (7)
O10.0374 (11)0.0506 (12)0.0284 (10)0.0065 (9)0.0093 (8)0.0035 (9)
O20.0375 (10)0.0331 (10)0.0377 (10)0.0074 (8)0.0049 (8)0.0128 (8)
O30.0276 (9)0.0392 (10)0.0341 (10)0.0025 (8)0.0079 (8)0.0000 (8)
C10.0268 (12)0.0247 (12)0.0254 (12)0.0038 (10)0.0037 (10)0.0031 (10)
C20.0199 (11)0.0290 (13)0.0243 (12)0.0001 (10)0.0042 (9)0.0002 (10)
C30.0287 (13)0.0271 (12)0.0183 (11)0.0015 (10)0.0015 (10)0.0039 (9)
C40.0399 (15)0.0330 (14)0.0316 (14)0.0057 (12)0.0075 (12)0.0039 (11)
C50.0494 (17)0.0356 (15)0.0381 (16)0.0021 (13)0.0073 (13)0.0064 (12)
C60.0561 (19)0.0191 (12)0.0470 (17)0.0114 (12)0.0009 (14)0.0039 (12)
C70.0371 (15)0.0207 (12)0.0456 (16)0.0074 (11)0.0049 (12)0.0096 (11)
C80.0336 (14)0.0354 (14)0.0326 (14)0.0134 (12)0.0024 (11)0.0123 (12)
C90.0254 (13)0.0428 (15)0.0415 (16)0.0161 (12)0.0012 (12)0.0133 (13)
C100.0544 (18)0.0326 (14)0.0414 (16)0.0265 (14)0.0146 (14)0.0023 (12)
C110.0242 (12)0.0254 (12)0.0216 (11)0.0050 (10)0.0042 (9)0.0033 (9)
C120.0266 (13)0.0496 (16)0.0284 (13)0.0042 (12)0.0019 (11)0.0058 (12)
C130.0318 (15)0.071 (2)0.0255 (14)0.0025 (14)0.0042 (11)0.0077 (14)
C140.0394 (16)0.0586 (19)0.0249 (14)0.0102 (14)0.0065 (12)0.0149 (13)
C150.0370 (15)0.0355 (14)0.0356 (15)0.0022 (12)0.0118 (12)0.0130 (12)
C160.0280 (13)0.0244 (12)0.0311 (13)0.0041 (10)0.0048 (10)0.0020 (10)
C170.0244 (12)0.0249 (12)0.0215 (12)0.0048 (10)0.0007 (9)0.0028 (9)
C180.0315 (14)0.0293 (13)0.0322 (14)0.0013 (11)0.0019 (11)0.0038 (11)
C190.0417 (16)0.0345 (14)0.0324 (14)0.0108 (12)0.0038 (12)0.0077 (12)
C200.0312 (14)0.0508 (17)0.0261 (13)0.0182 (13)0.0040 (11)0.0026 (12)
C210.0244 (13)0.0432 (15)0.0292 (14)0.0054 (11)0.0052 (10)0.0013 (12)
C220.0278 (13)0.0289 (13)0.0260 (12)0.0027 (10)0.0040 (10)0.0026 (10)
C230.0159 (10)0.0212 (11)0.0263 (12)0.0006 (9)0.0014 (9)0.0002 (9)
C240.0317 (13)0.0225 (12)0.0260 (12)0.0020 (10)0.0004 (10)0.0006 (10)
C250.0342 (14)0.0243 (12)0.0355 (14)0.0018 (11)0.0012 (11)0.0053 (11)
C260.0216 (12)0.0187 (11)0.0526 (17)0.0007 (10)0.0071 (11)0.0025 (11)
C270.0273 (13)0.0311 (13)0.0345 (14)0.0038 (11)0.0084 (11)0.0106 (11)
C280.0223 (12)0.0289 (12)0.0255 (12)0.0004 (10)0.0039 (10)0.0013 (10)
Mo20.01832 (10)0.02103 (10)0.01787 (10)0.00077 (8)0.00110 (7)0.00333 (8)
P20.0180 (3)0.0205 (3)0.0182 (3)0.0014 (2)0.0026 (2)0.0011 (2)
F40.0207 (7)0.0672 (11)0.0468 (10)0.0075 (7)0.0113 (7)0.0050 (8)
F50.0333 (8)0.0364 (8)0.0515 (10)0.0146 (7)0.0046 (7)0.0119 (7)
F60.0641 (11)0.0604 (11)0.0221 (8)0.0108 (9)0.0129 (8)0.0110 (7)
O40.0235 (10)0.0388 (11)0.0529 (12)0.0036 (8)0.0007 (9)0.0067 (9)
O50.0381 (11)0.0421 (11)0.0470 (12)0.0118 (9)0.0244 (9)0.0136 (9)
O60.0987 (19)0.0270 (10)0.0434 (12)0.0110 (11)0.0143 (12)0.0041 (9)
C290.0267 (13)0.0209 (11)0.0277 (12)0.0018 (10)0.0050 (10)0.0014 (10)
C300.0238 (12)0.0227 (12)0.0314 (13)0.0052 (10)0.0019 (11)0.0025 (10)
C310.0251 (12)0.0227 (12)0.0316 (13)0.0020 (10)0.0035 (10)0.0035 (10)
C320.0474 (17)0.0379 (15)0.0309 (14)0.0088 (13)0.0011 (12)0.0035 (12)
C330.0590 (19)0.0355 (15)0.0383 (16)0.0063 (14)0.0078 (14)0.0056 (13)
C340.0361 (15)0.0618 (19)0.0225 (13)0.0127 (14)0.0090 (11)0.0028 (13)
C350.073 (2)0.0383 (15)0.0160 (12)0.0004 (15)0.0068 (13)0.0004 (11)
C360.0420 (16)0.0634 (19)0.0181 (12)0.0140 (15)0.0072 (11)0.0112 (13)
C370.0483 (17)0.0379 (15)0.0239 (13)0.0049 (13)0.0024 (12)0.0147 (11)
C380.0373 (15)0.0450 (16)0.0229 (13)0.0143 (13)0.0048 (11)0.0066 (11)
C390.0201 (11)0.0202 (11)0.0200 (11)0.0019 (9)0.0009 (9)0.0004 (9)
C400.0292 (13)0.0348 (14)0.0243 (12)0.0049 (11)0.0045 (10)0.0052 (11)
C410.0308 (13)0.0384 (14)0.0274 (13)0.0050 (11)0.0123 (11)0.0046 (11)
C420.0196 (12)0.0323 (13)0.0363 (14)0.0009 (10)0.0082 (10)0.0070 (11)
C430.0233 (12)0.0424 (15)0.0276 (13)0.0074 (11)0.0004 (10)0.0001 (11)
C440.0233 (12)0.0347 (13)0.0216 (12)0.0027 (10)0.0044 (10)0.0017 (10)
C450.0236 (12)0.0235 (11)0.0189 (11)0.0017 (9)0.0010 (9)0.0028 (9)
C460.0210 (11)0.0263 (12)0.0248 (12)0.0019 (10)0.0005 (9)0.0010 (10)
C470.0299 (13)0.0233 (12)0.0311 (13)0.0022 (10)0.0057 (11)0.0022 (10)
C480.0283 (13)0.0256 (12)0.0305 (13)0.0086 (10)0.0003 (10)0.0010 (10)
C490.0208 (12)0.0305 (13)0.0383 (15)0.0027 (10)0.0046 (11)0.0028 (11)
C500.0223 (12)0.0277 (12)0.0329 (13)0.0021 (10)0.0063 (10)0.0027 (10)
C510.0187 (11)0.0242 (11)0.0183 (11)0.0051 (9)0.0029 (9)0.0011 (9)
C520.0250 (12)0.0252 (12)0.0254 (12)0.0026 (10)0.0053 (10)0.0015 (10)
C530.0299 (13)0.0314 (13)0.0295 (13)0.0052 (11)0.0109 (11)0.0076 (11)
C540.0319 (14)0.0434 (15)0.0215 (12)0.0143 (12)0.0115 (10)0.0088 (11)
C550.0360 (14)0.0364 (14)0.0232 (12)0.0096 (12)0.0001 (11)0.0033 (11)
C560.0307 (13)0.0244 (12)0.0253 (12)0.0033 (10)0.0023 (10)0.0014 (10)
Geometric parameters (Å, º) top
Mo1—P12.4730 (6)Mo2—C291.962 (2)
Mo1—C11.966 (2)Mo2—C301.964 (3)
Mo1—C21.965 (2)Mo2—C312.286 (2)
Mo1—C32.265 (2)Mo2—C382.315 (2)
Mo1—C92.306 (2)Mo2—C372.319 (2)
Mo1—C102.314 (2)Mo2—C342.355 (3)
Mo1—C82.348 (2)Mo2—C362.374 (3)
Mo1—C62.355 (3)Mo2—C352.376 (3)
Mo1—C72.366 (2)Mo2—P22.4654 (6)
P1—C231.825 (2)P2—C451.832 (2)
P1—C171.835 (2)P2—C511.834 (2)
P1—C111.837 (2)P2—C391.839 (2)
F1—C141.361 (3)F4—C421.359 (3)
F2—C201.359 (3)F5—C481.359 (3)
F3—C261.366 (3)F6—C541.356 (3)
O1—C11.155 (3)O4—C291.155 (3)
O2—C21.156 (3)O5—C301.154 (3)
O3—C31.218 (3)O6—C311.196 (3)
C3—C41.532 (3)C31—C321.511 (3)
C4—C51.515 (4)C32—C331.506 (4)
C4—H4A0.99C32—H32A0.99
C4—H4B0.99C32—H32B0.99
C5—H5A0.98C33—H33A0.98
C5—H5B0.98C33—H33B0.98
C5—H5C0.98C33—H33C0.98
C6—C71.404 (4)C34—C351.396 (4)
C6—C101.406 (4)C34—C381.396 (4)
C6—H61.0C34—H341.0
C7—C81.405 (4)C35—C361.400 (4)
C7—H71.0C35—H351.0
C8—C91.408 (4)C36—C371.420 (4)
C8—H81.0C36—H361.0
C9—C101.419 (4)C37—C381.416 (4)
C9—H91.0C37—H371.0
C10—H101.0C38—H381.0
C11—C161.391 (3)C39—C441.388 (3)
C11—C121.393 (3)C39—C401.397 (3)
C12—C131.384 (4)C40—C411.388 (3)
C12—H120.95C40—H400.95
C13—C141.373 (4)C41—C421.371 (4)
C13—H130.95C41—H410.95
C14—C151.364 (4)C42—C431.368 (3)
C15—C161.392 (3)C43—C441.391 (3)
C15—H150.95C43—H430.95
C16—H160.95C44—H440.95
C17—C181.392 (3)C45—C461.386 (3)
C17—C221.395 (3)C45—C501.400 (3)
C18—C191.387 (4)C46—C471.391 (3)
C18—H180.95C46—H460.95
C19—C201.371 (4)C47—C481.367 (3)
C19—H190.95C47—H470.95
C20—C211.369 (4)C48—C491.376 (3)
C21—C221.390 (3)C49—C501.376 (3)
C21—H210.95C49—H490.95
C22—H220.95C50—H500.95
C23—C281.384 (3)C51—C521.389 (3)
C23—C241.398 (3)C51—C561.393 (3)
C24—C251.379 (3)C52—C531.395 (3)
C24—H240.95C52—H520.95
C25—C261.366 (4)C53—C541.365 (4)
C25—H250.95C53—H530.95
C26—C271.371 (4)C54—C551.375 (4)
C27—C281.389 (3)C55—C561.387 (3)
C27—H270.95C55—H550.95
C28—H280.95C56—H560.95
C1—Mo1—C2109.77 (10)C29—Mo2—C30107.12 (10)
C1—Mo1—C377.34 (9)C29—Mo2—C3174.64 (9)
C2—Mo1—C370.93 (9)C30—Mo2—C3173.89 (9)
C2—Mo1—C9100.67 (10)C29—Mo2—C38135.20 (10)
C1—Mo1—C9138.27 (10)C30—Mo2—C38102.87 (10)
C3—Mo1—C986.76 (9)C31—Mo2—C3882.81 (9)
C2—Mo1—C10131.68 (11)C29—Mo2—C37103.05 (10)
C1—Mo1—C10103.50 (10)C30—Mo2—C37136.20 (10)
C3—Mo1—C1083.74 (10)C31—Mo2—C3784.57 (9)
C9—Mo1—C1035.76 (10)C38—Mo2—C3735.59 (10)
C2—Mo1—C899.28 (10)C29—Mo2—C34156.64 (10)
C1—Mo1—C8150.20 (10)C30—Mo2—C3496.22 (10)
C3—Mo1—C8119.84 (9)C31—Mo2—C34113.90 (10)
C9—Mo1—C835.20 (9)C38—Mo2—C3434.77 (10)
C10—Mo1—C858.73 (10)C37—Mo2—C3458.30 (10)
C2—Mo1—C6156.88 (10)C29—Mo2—C3699.19 (10)
C1—Mo1—C693.30 (10)C30—Mo2—C36153.46 (10)
C3—Mo1—C6114.34 (10)C31—Mo2—C36117.57 (10)
C9—Mo1—C658.62 (11)C38—Mo2—C3658.30 (10)
C10—Mo1—C635.04 (10)C37—Mo2—C3635.19 (10)
C8—Mo1—C658.07 (10)C34—Mo2—C3657.46 (10)
C2—Mo1—C7127.71 (10)C29—Mo2—C35125.58 (11)
C1—Mo1—C7116.47 (10)C30—Mo2—C35121.19 (11)
C3—Mo1—C7140.99 (9)C31—Mo2—C35139.20 (9)
C9—Mo1—C758.14 (10)C38—Mo2—C3557.64 (10)
C10—Mo1—C758.07 (10)C37—Mo2—C3557.91 (10)
C8—Mo1—C734.68 (9)C34—Mo2—C3534.31 (10)
C6—Mo1—C734.61 (10)C36—Mo2—C3534.28 (10)
C1—Mo1—P180.12 (7)C29—Mo2—P278.59 (7)
C2—Mo1—P179.50 (7)C30—Mo2—P278.48 (7)
C3—Mo1—P1133.55 (6)C31—Mo2—P2133.28 (6)
C9—Mo1—P1134.42 (7)C38—Mo2—P2140.53 (7)
C10—Mo1—P1141.31 (8)C37—Mo2—P2139.10 (7)
C8—Mo1—P199.33 (7)C34—Mo2—P2105.85 (8)
C6—Mo1—P1106.98 (8)C36—Mo2—P2103.91 (7)
C7—Mo1—P185.46 (7)C35—Mo2—P287.44 (7)
C23—P1—C17101.43 (10)C45—P2—C51101.62 (10)
C23—P1—C11105.34 (11)C45—P2—C39103.92 (10)
C17—P1—C11102.19 (11)C51—P2—C39101.68 (10)
C23—P1—Mo1113.94 (7)C45—P2—Mo2113.86 (7)
C17—P1—Mo1118.55 (8)C51—P2—Mo2117.18 (7)
C11—P1—Mo1113.67 (8)C39—P2—Mo2116.52 (7)
O1—C1—Mo1172.5 (2)O4—C29—Mo2176.6 (2)
O2—C2—Mo1175.3 (2)O5—C30—Mo2176.6 (2)
O3—C3—C4117.9 (2)O6—C31—C32117.5 (2)
O3—C3—Mo1120.52 (18)O6—C31—Mo2119.32 (19)
C4—C3—Mo1121.58 (17)C32—C31—Mo2123.17 (17)
C5—C4—C3115.1 (2)C33—C32—C31115.8 (2)
C5—C4—H4A108.5C33—C32—H32A108.3
C3—C4—H4A108.5C31—C32—H32A108.3
C5—C4—H4B108.5C33—C32—H32B108.3
C3—C4—H4B108.5C31—C32—H32B108.3
H4A—C4—H4B107.5H32A—C32—H32B107.4
C4—C5—H5A109.5C32—C33—H33A109.5
C4—C5—H5B109.5C32—C33—H33B109.5
H5A—C5—H5B109.5H33A—C33—H33B109.5
C4—C5—H5C109.5C32—C33—H33C109.5
H5A—C5—H5C109.5H33A—C33—H33C109.5
H5B—C5—H5C109.5H33B—C33—H33C109.5
C7—C6—C10107.9 (3)C35—C34—C38108.2 (3)
C7—C6—Mo173.13 (14)C35—C34—Mo273.66 (16)
C10—C6—Mo170.88 (15)C38—C34—Mo271.04 (14)
C7—C6—H6125.9C35—C34—H34125.7
C10—C6—H6125.9C38—C34—H34125.7
Mo1—C6—H6125.9Mo2—C34—H34125.7
C6—C7—C8108.7 (3)C34—C35—C36108.8 (3)
C6—C7—Mo172.26 (14)C34—C35—Mo272.03 (15)
C8—C7—Mo171.94 (14)C36—C35—Mo272.80 (15)
C6—C7—H7125.6C34—C35—H35125.5
C8—C7—H7125.6C36—C35—H35125.5
Mo1—C7—H7125.6Mo2—C35—H35125.5
C7—C8—C9107.7 (3)C35—C36—C37107.5 (3)
C7—C8—Mo173.38 (14)C35—C36—Mo272.92 (15)
C9—C8—Mo170.80 (14)C37—C36—Mo270.28 (14)
C7—C8—H8126.0C35—C36—H36126.2
C9—C8—H8126.0C37—C36—H36126.2
Mo1—C8—H8126.0Mo2—C36—H36126.2
C8—C9—C10108.0 (3)C38—C37—C36107.3 (3)
C8—C9—Mo174.01 (14)C38—C37—Mo272.04 (14)
C10—C9—Mo172.42 (14)C36—C37—Mo274.53 (14)
C8—C9—H9125.8C38—C37—H37126.0
C10—C9—H9125.8C36—C37—H37126.0
Mo1—C9—H9125.8Mo2—C37—H37126.0
C6—C10—C9107.8 (3)C34—C38—C37108.1 (3)
C6—C10—Mo174.08 (15)C34—C38—Mo274.19 (15)
C9—C10—Mo171.82 (14)C37—C38—Mo272.36 (14)
C6—C10—H10125.9C34—C38—H38125.7
C9—C10—H10125.9C37—C38—H38125.7
Mo1—C10—H10125.9Mo2—C38—H38125.7
C16—C11—C12118.6 (2)C44—C39—C40118.5 (2)
C16—C11—P1121.88 (18)C44—C39—P2121.51 (17)
C12—C11—P1119.53 (18)C40—C39—P2119.86 (17)
C13—C12—C11121.0 (2)C41—C40—C39120.9 (2)
C13—C12—H12119.5C41—C40—H40119.5
C11—C12—H12119.5C39—C40—H40119.5
C14—C13—C12118.2 (3)C42—C41—C40118.4 (2)
C14—C13—H13120.9C42—C41—H41120.8
C12—C13—H13120.9C40—C41—H41120.8
F1—C14—C15118.2 (3)F4—C42—C43118.2 (2)
F1—C14—C13118.7 (3)F4—C42—C41119.0 (2)
C15—C14—C13123.1 (2)C43—C42—C41122.8 (2)
C14—C15—C16118.2 (2)C42—C43—C44118.3 (2)
C14—C15—H15120.9C42—C43—H43120.8
C16—C15—H15120.9C44—C43—H43120.8
C11—C16—C15121.0 (2)C39—C44—C43121.1 (2)
C11—C16—H16119.5C39—C44—H44119.5
C15—C16—H16119.5C43—C44—H44119.5
C18—C17—C22118.6 (2)C46—C45—C50118.8 (2)
C18—C17—P1119.04 (18)C46—C45—P2122.54 (18)
C22—C17—P1122.22 (18)C50—C45—P2118.68 (18)
C19—C18—C17120.9 (2)C45—C46—C47120.7 (2)
C19—C18—H18119.6C45—C46—H46119.6
C17—C18—H18119.6C47—C46—H46119.6
C20—C19—C18118.4 (2)C48—C47—C46118.2 (2)
C20—C19—H19120.8C48—C47—H47120.9
C18—C19—H19120.8C46—C47—H47120.9
F2—C20—C21118.6 (3)F5—C48—C47118.4 (2)
F2—C20—C19118.4 (3)F5—C48—C49118.4 (2)
C21—C20—C19123.0 (2)C47—C48—C49123.2 (2)
C20—C21—C22118.1 (2)C48—C49—C50118.0 (2)
C20—C21—H21121.0C48—C49—H49121.0
C22—C21—H21121.0C50—C49—H49121.0
C21—C22—C17121.0 (2)C49—C50—C45121.1 (2)
C21—C22—H22119.5C49—C50—H50119.4
C17—C22—H22119.5C45—C50—H50119.4
C28—C23—C24118.7 (2)C52—C51—C56118.7 (2)
C28—C23—P1124.40 (18)C52—C51—P2121.43 (17)
C24—C23—P1116.89 (17)C56—C51—P2119.85 (17)
C25—C24—C23120.9 (2)C51—C52—C53120.9 (2)
C25—C24—H24119.5C51—C52—H52119.6
C23—C24—H24119.5C53—C52—H52119.6
C26—C25—C24118.3 (2)C54—C53—C52118.2 (2)
C26—C25—H25120.9C54—C53—H53120.9
C24—C25—H25120.9C52—C53—H53120.9
C25—C26—F3118.5 (2)F6—C54—C53118.2 (2)
C25—C26—C27123.0 (2)F6—C54—C55118.7 (2)
F3—C26—C27118.4 (2)C53—C54—C55123.1 (2)
C26—C27—C28118.1 (2)C54—C55—C56118.0 (2)
C26—C27—H27120.9C54—C55—H55121.0
C28—C27—H27120.9C56—C55—H55121.0
C23—C28—C27120.8 (2)C55—C56—C51121.1 (2)
C23—C28—H28119.6C55—C56—H56119.4
C27—C28—H28119.6C51—C56—H56119.4
O3—C3—C4—C56.1 (3)O6—C31—C32—C334.5 (4)
Mo1—C3—C4—C5172.61 (18)Mo2—C31—C32—C33173.63 (19)
C10—C6—C7—C80.4 (3)C38—C34—C35—C360.9 (3)
Mo1—C6—C7—C863.15 (17)Mo2—C34—C35—C3663.96 (19)
C10—C6—C7—Mo162.78 (18)C38—C34—C35—Mo263.05 (18)
C6—C7—C8—C90.4 (3)C34—C35—C36—C371.3 (3)
Mo1—C7—C8—C962.91 (17)Mo2—C35—C36—C3762.17 (18)
C6—C7—C8—Mo163.36 (18)C34—C35—C36—Mo263.47 (18)
C7—C8—C9—C100.4 (3)C35—C36—C37—C381.2 (3)
Mo1—C8—C9—C1064.96 (17)Mo2—C36—C37—C3865.08 (17)
C7—C8—C9—Mo164.60 (17)C35—C36—C37—Mo263.90 (18)
C7—C6—C10—C90.1 (3)C35—C34—C38—C370.2 (3)
Mo1—C6—C10—C964.39 (17)Mo2—C34—C38—C3764.91 (17)
C7—C6—C10—Mo164.24 (18)C35—C34—C38—Mo264.75 (19)
C8—C9—C10—C60.1 (3)C36—C37—C38—C340.6 (3)
Mo1—C9—C10—C665.88 (18)Mo2—C37—C38—C3466.12 (18)
C8—C9—C10—Mo166.01 (18)C36—C37—C38—Mo266.75 (17)
C23—P1—C11—C16108.3 (2)C45—P2—C39—C44105.6 (2)
C17—P1—C11—C162.7 (2)C51—P2—C39—C440.4 (2)
Mo1—P1—C11—C16126.24 (18)Mo2—P2—C39—C44128.27 (18)
C23—P1—C11—C1273.3 (2)C45—P2—C39—C4079.0 (2)
C17—P1—C11—C12178.9 (2)C51—P2—C39—C40175.70 (19)
Mo1—P1—C11—C1252.1 (2)Mo2—P2—C39—C4047.1 (2)
C16—C11—C12—C131.7 (4)C44—C39—C40—C410.4 (4)
P1—C11—C12—C13179.8 (2)P2—C39—C40—C41175.1 (2)
C11—C12—C13—C141.4 (4)C39—C40—C41—C421.6 (4)
C12—C13—C14—F1179.4 (3)C40—C41—C42—F4176.8 (2)
C12—C13—C14—C150.1 (5)C40—C41—C42—C432.8 (4)
F1—C14—C15—C16179.8 (2)F4—C42—C43—C44177.7 (2)
C13—C14—C15—C160.7 (4)C41—C42—C43—C441.9 (4)
C12—C11—C16—C150.9 (4)C40—C39—C44—C431.3 (4)
P1—C11—C16—C15179.29 (19)P2—C39—C44—C43174.10 (19)
C14—C15—C16—C110.3 (4)C42—C43—C44—C390.2 (4)
C23—P1—C17—C18164.88 (19)C51—P2—C45—C46101.2 (2)
C11—P1—C17—C1886.5 (2)C39—P2—C45—C464.1 (2)
Mo1—P1—C17—C1839.3 (2)Mo2—P2—C45—C46131.89 (18)
C23—P1—C17—C2219.6 (2)C51—P2—C45—C5078.1 (2)
C11—P1—C17—C2289.0 (2)C39—P2—C45—C50176.65 (19)
Mo1—P1—C17—C22145.17 (17)Mo2—P2—C45—C5048.9 (2)
C22—C17—C18—C191.2 (4)C50—C45—C46—C470.7 (3)
P1—C17—C18—C19174.5 (2)P2—C45—C46—C47179.96 (18)
C17—C18—C19—C202.4 (4)C45—C46—C47—C480.2 (4)
C18—C19—C20—F2178.9 (2)C46—C47—C48—F5177.3 (2)
C18—C19—C20—C211.1 (4)C46—C47—C48—C491.2 (4)
F2—C20—C21—C22178.5 (2)F5—C48—C49—C50177.4 (2)
C19—C20—C21—C221.5 (4)C47—C48—C49—C501.2 (4)
C20—C21—C22—C172.8 (4)C48—C49—C50—C450.1 (4)
C18—C17—C22—C211.5 (4)C46—C45—C50—C490.8 (4)
P1—C17—C22—C21176.99 (19)P2—C45—C50—C49179.95 (19)
C17—P1—C23—C28121.0 (2)C45—P2—C51—C5210.9 (2)
C11—P1—C23—C2814.8 (2)C39—P2—C51—C5296.2 (2)
Mo1—P1—C23—C28110.42 (19)Mo2—P2—C51—C52135.61 (17)
C17—P1—C23—C2459.7 (2)C45—P2—C51—C56171.36 (19)
C11—P1—C23—C24165.84 (18)C39—P2—C51—C5681.6 (2)
Mo1—P1—C23—C2468.90 (19)Mo2—P2—C51—C5646.6 (2)
C28—C23—C24—C250.9 (4)C56—C51—C52—C530.5 (3)
P1—C23—C24—C25179.73 (19)P2—C51—C52—C53178.30 (18)
C23—C24—C25—C262.5 (4)C51—C52—C53—C540.4 (4)
C24—C25—C26—F3177.5 (2)C52—C53—C54—F6179.7 (2)
C24—C25—C26—C272.2 (4)C52—C53—C54—C550.2 (4)
C25—C26—C27—C280.4 (4)F6—C54—C55—C56179.9 (2)
F3—C26—C27—C28179.3 (2)C53—C54—C55—C560.6 (4)
C24—C23—C28—C271.0 (3)C54—C55—C56—C510.5 (4)
P1—C23—C28—C27178.31 (18)C52—C51—C56—C550.1 (3)
C26—C27—C28—C231.3 (4)P2—C51—C56—C55177.88 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O60.952.593.371 (4)139
C49—H49···F4i0.952.553.344 (3)141
C55—H55···O3ii0.952.533.450 (3)164
C34—H34···O1iii1.002.383.237 (3)143
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.
Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) top
Crystal data top
[Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2Z = 2
Mr = 711.39F(000) = 728
Triclinic, P1Dx = 1.508 Mg m3
a = 10.5308 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1305 (7) ÅCell parameters from 9554 reflections
c = 13.6154 (8) Åθ = 3.0–36.3°
α = 97.660 (2)°µ = 0.68 mm1
β = 104.759 (2)°T = 170 K
γ = 107.081 (2)°Block, pale yellow
V = 1566.43 (16) Å30.23 × 0.21 × 0.12 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
9578 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C9053 reflections with I > 2σ(I)
Curved Graphite monochromatorRint = 0.029
Detector resolution: 7.3910 pixels mm-1θmax = 30.5°, θmin = 2.3°
φ and ω scansh = 1515
Absorption correction: multi-scan
(Krause et al., 2015)
k = 1717
Tmin = 0.84, Tmax = 0.92l = 1919
81820 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.7135P]
where P = (Fo2 + 2Fc2)/3
9578 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.52042 (2)0.25393 (2)0.09427 (2)0.01619 (3)
P10.51816 (3)0.35557 (2)0.26360 (2)0.01580 (5)
O10.68635 (12)0.51311 (8)0.09342 (8)0.0368 (2)
O20.71687 (11)0.15626 (9)0.24292 (8)0.0355 (2)
O30.65766 (10)0.19845 (9)0.07044 (7)0.0330 (2)
O40.07178 (10)0.57231 (9)0.24125 (8)0.0335 (2)
O50.41490 (10)0.06671 (8)0.57748 (7)0.03008 (19)
O61.00779 (9)0.78117 (8)0.52048 (7)0.03004 (19)
C10.62823 (12)0.41791 (10)0.09761 (9)0.0227 (2)
C20.64709 (12)0.19679 (10)0.19028 (8)0.0220 (2)
C30.68821 (12)0.24759 (10)0.02074 (9)0.0233 (2)
C40.84445 (13)0.30859 (12)0.07936 (10)0.0301 (2)
H4A0.8785970.3834960.0573670.036*
H4B0.8574530.3286550.1549860.036*
C50.93197 (15)0.23248 (14)0.06042 (13)0.0385 (3)
H5A0.9094370.1644040.0923540.058*
H5B1.0313990.279630.0914790.058*
H5C0.9113230.2044890.014740.058*
C60.32457 (13)0.07480 (10)0.03752 (10)0.0266 (2)
H60.3135970.00470.0699650.032*
C70.27424 (12)0.16854 (10)0.05911 (9)0.0246 (2)
H70.2223450.1762650.1103020.03*
C80.29947 (13)0.24425 (11)0.00983 (10)0.0272 (2)
H80.2662020.3128210.0171440.033*
C90.36793 (14)0.19845 (12)0.07342 (9)0.0309 (3)
H90.3886320.2275390.134930.037*
C100.38374 (14)0.09369 (11)0.04378 (10)0.0306 (3)
H100.4185010.0374490.0806070.037*
C110.37443 (11)0.41395 (9)0.25087 (8)0.01780 (18)
C120.35998 (12)0.49063 (10)0.18422 (9)0.0226 (2)
H120.4197370.5056770.1421030.027*
C130.26014 (12)0.54555 (11)0.17798 (9)0.0237 (2)
H130.2525610.5981570.1327470.028*
C140.17141 (12)0.52242 (10)0.23893 (9)0.0227 (2)
C150.18237 (12)0.44423 (11)0.30402 (9)0.0248 (2)
H150.1202630.4269330.3441560.03*
C160.28358 (12)0.39144 (10)0.31053 (9)0.02147 (19)
H160.2912520.3392710.3561770.026*
C170.05341 (16)0.65233 (14)0.17571 (14)0.0397 (3)
H17A0.1415820.7180940.1920160.06*
H17B0.0189960.6831730.1874150.06*
H17C0.0250130.6107820.1025940.06*
C180.49824 (11)0.26789 (9)0.36153 (8)0.01745 (17)
C190.40076 (12)0.15263 (10)0.33211 (9)0.0235 (2)
H190.3517720.1182270.260370.028*
C200.37468 (13)0.08818 (10)0.40562 (9)0.0253 (2)
H200.3061010.0112060.3843560.03*
C210.44904 (12)0.13610 (10)0.51117 (8)0.02071 (19)
C220.54956 (12)0.24834 (10)0.54166 (8)0.02109 (19)
H220.6027480.2804720.6129870.025*
C230.57210 (11)0.31379 (10)0.46696 (8)0.02006 (19)
H230.6393380.3913880.4885360.024*
C240.48069 (19)0.11574 (13)0.68676 (10)0.0395 (3)
H24A0.4437490.0585450.7258020.059*
H24B0.4616230.1886170.70610.059*
H24C0.5817920.1336540.7032740.059*
C250.66885 (11)0.48601 (9)0.33776 (8)0.01716 (17)
C260.65268 (12)0.58564 (10)0.39084 (9)0.0221 (2)
H260.5613470.5867070.385490.027*
C270.76725 (12)0.68248 (10)0.45087 (9)0.0241 (2)
H270.754090.7494830.4857840.029*
C280.90179 (12)0.68197 (10)0.46023 (8)0.02111 (19)
C290.92037 (12)0.58325 (11)0.40946 (9)0.0246 (2)
H291.0118510.5815420.4165950.03*
C300.80430 (12)0.48711 (10)0.34821 (9)0.0231 (2)
H300.8177020.4206180.3126570.028*
C311.14412 (14)0.79549 (14)0.51248 (11)0.0366 (3)
H31A1.1789820.7378710.544210.055*
H31B1.2073790.8758050.5488910.055*
H31C1.1395050.7826240.4388670.055*
C320.0396 (2)0.01902 (17)0.26603 (16)0.0533 (4)
H32A0.0176430.1010220.3052430.064*0.532 (15)
H32B0.1332290.0189940.228010.064*0.532 (15)
H32C0.1174750.0434730.2297750.064*0.468 (15)
H32D0.0300370.0884350.3196290.064*0.468 (15)
Cl1A0.0560 (9)0.0707 (4)0.3518 (4)0.0661 (11)0.532 (15)
Cl1B0.1046 (5)0.0962 (5)0.3280 (3)0.0714 (6)0.468 (15)
Cl20.03837 (4)0.02605 (4)0.17571 (4)0.05013 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01913 (4)0.01478 (4)0.01330 (4)0.00475 (3)0.00476 (3)0.00160 (3)
P10.01702 (11)0.01515 (11)0.01494 (11)0.00486 (9)0.00573 (9)0.00235 (8)
O10.0471 (6)0.0231 (4)0.0411 (5)0.0065 (4)0.0188 (5)0.0125 (4)
O20.0443 (6)0.0374 (5)0.0274 (4)0.0239 (5)0.0040 (4)0.0076 (4)
O30.0351 (5)0.0415 (5)0.0210 (4)0.0113 (4)0.0121 (4)0.0003 (4)
O40.0338 (5)0.0424 (5)0.0407 (5)0.0255 (4)0.0204 (4)0.0176 (4)
O50.0403 (5)0.0263 (4)0.0217 (4)0.0052 (4)0.0110 (4)0.0102 (3)
O60.0227 (4)0.0239 (4)0.0318 (5)0.0006 (3)0.0043 (3)0.0042 (3)
C10.0274 (5)0.0218 (5)0.0199 (5)0.0083 (4)0.0093 (4)0.0050 (4)
C20.0271 (5)0.0193 (5)0.0183 (4)0.0080 (4)0.0068 (4)0.0005 (4)
C30.0272 (5)0.0224 (5)0.0216 (5)0.0083 (4)0.0104 (4)0.0039 (4)
C40.0255 (6)0.0321 (6)0.0292 (6)0.0057 (5)0.0119 (5)0.0018 (5)
C50.0319 (7)0.0378 (7)0.0445 (8)0.0145 (6)0.0096 (6)0.0034 (6)
C60.0246 (5)0.0185 (5)0.0283 (6)0.0014 (4)0.0026 (4)0.0013 (4)
C70.0198 (5)0.0247 (5)0.0238 (5)0.0035 (4)0.0037 (4)0.0029 (4)
C80.0242 (5)0.0274 (6)0.0249 (5)0.0074 (4)0.0003 (4)0.0068 (4)
C90.0310 (6)0.0369 (7)0.0157 (5)0.0044 (5)0.0017 (4)0.0027 (4)
C100.0311 (6)0.0263 (6)0.0237 (5)0.0042 (5)0.0037 (5)0.0077 (4)
C110.0175 (4)0.0184 (4)0.0171 (4)0.0056 (4)0.0060 (3)0.0027 (3)
C120.0228 (5)0.0263 (5)0.0234 (5)0.0101 (4)0.0114 (4)0.0094 (4)
C130.0248 (5)0.0258 (5)0.0250 (5)0.0113 (4)0.0102 (4)0.0097 (4)
C140.0203 (5)0.0247 (5)0.0244 (5)0.0098 (4)0.0076 (4)0.0038 (4)
C150.0238 (5)0.0309 (6)0.0254 (5)0.0115 (4)0.0133 (4)0.0091 (4)
C160.0219 (5)0.0245 (5)0.0206 (5)0.0084 (4)0.0093 (4)0.0075 (4)
C170.0368 (7)0.0399 (7)0.0557 (9)0.0245 (6)0.0182 (7)0.0213 (7)
C180.0190 (4)0.0173 (4)0.0168 (4)0.0065 (4)0.0064 (3)0.0038 (3)
C190.0270 (5)0.0197 (5)0.0178 (5)0.0029 (4)0.0035 (4)0.0027 (4)
C200.0289 (6)0.0189 (5)0.0222 (5)0.0017 (4)0.0056 (4)0.0044 (4)
C210.0249 (5)0.0210 (5)0.0202 (5)0.0098 (4)0.0099 (4)0.0073 (4)
C220.0241 (5)0.0226 (5)0.0157 (4)0.0074 (4)0.0059 (4)0.0035 (4)
C230.0213 (5)0.0188 (4)0.0181 (4)0.0046 (4)0.0062 (4)0.0029 (4)
C240.0615 (10)0.0355 (7)0.0211 (6)0.0107 (7)0.0169 (6)0.0103 (5)
C250.0182 (4)0.0158 (4)0.0169 (4)0.0044 (3)0.0069 (3)0.0020 (3)
C260.0199 (5)0.0195 (5)0.0263 (5)0.0069 (4)0.0085 (4)0.0001 (4)
C270.0245 (5)0.0179 (5)0.0276 (5)0.0066 (4)0.0082 (4)0.0013 (4)
C280.0214 (5)0.0192 (5)0.0187 (4)0.0026 (4)0.0057 (4)0.0020 (4)
C290.0182 (5)0.0273 (5)0.0252 (5)0.0062 (4)0.0068 (4)0.0010 (4)
C300.0206 (5)0.0224 (5)0.0244 (5)0.0077 (4)0.0073 (4)0.0028 (4)
C310.0217 (6)0.0409 (7)0.0324 (6)0.0034 (5)0.0045 (5)0.0004 (5)
C320.0701 (12)0.0490 (10)0.0572 (11)0.0328 (9)0.0283 (9)0.0210 (8)
Cl1A0.104 (3)0.0631 (13)0.0563 (13)0.0427 (15)0.0394 (16)0.0343 (11)
Cl1B0.0648 (14)0.0990 (17)0.0501 (10)0.0193 (13)0.0146 (10)0.0415 (9)
Cl20.03877 (19)0.0537 (2)0.0484 (2)0.00556 (17)0.01330 (16)0.00379 (18)
Geometric parameters (Å, º) top
Mo1—P12.4745 (3)C13—C141.3942 (16)
Mo1—C11.9675 (12)C13—H130.95
Mo1—C21.9658 (12)C14—C151.3908 (16)
Mo1—C32.2564 (11)C15—C161.3863 (16)
Mo1—C92.3092 (12)C15—H150.95
Mo1—C102.3210 (12)C16—H160.95
Mo1—C82.3562 (12)C17—H17A0.98
Mo1—C62.3833 (12)C17—H17B0.98
Mo1—C72.3835 (11)C17—H17C0.98
P1—C251.8232 (11)C18—C231.3925 (14)
P1—C181.8283 (11)C18—C191.4026 (15)
P1—C111.8307 (11)C19—C201.3823 (16)
O1—C11.1540 (15)C19—H190.95
O2—C21.1547 (15)C20—C211.3974 (16)
O3—C31.2192 (14)C20—H200.95
O4—C141.3612 (14)C21—C221.3876 (15)
O4—C171.4246 (17)C22—C231.3959 (15)
O5—C211.3576 (13)C22—H220.95
O5—C241.4298 (16)C23—H230.95
O6—C281.3595 (13)C24—H24A0.98
O6—C311.4287 (16)C24—H24B0.98
C3—C41.5329 (17)C24—H24C0.98
C4—C51.5251 (19)C25—C301.3928 (15)
C4—H4A0.99C25—C261.4009 (14)
C4—H4B0.99C26—C271.3830 (15)
C5—H5A0.98C26—H260.95
C5—H5B0.98C27—C281.3917 (16)
C5—H5C0.98C27—H270.95
C6—C101.4146 (18)C28—C291.3914 (16)
C6—C71.4159 (17)C29—C301.3905 (16)
C6—H61.0C29—H290.95
C7—C81.4172 (17)C30—H300.95
C7—H71.0C31—H31A0.98
C8—C91.4153 (19)C31—H31B0.98
C8—H81.0C31—H31C0.98
C9—C101.426 (2)C32—Cl1A1.705 (3)
C9—H91.0C32—Cl21.7561 (19)
C10—H101.0C32—Cl1B1.783 (4)
C11—C121.3963 (15)C32—H32A0.99
C11—C161.3970 (14)C32—H32B0.99
C12—C131.3920 (15)C32—H32C0.99
C12—H120.95C32—H32D0.99
C1—Mo1—C2106.36 (5)C9—C10—Mo171.62 (7)
C1—Mo1—C372.49 (4)C6—C10—H10125.7
C2—Mo1—C374.79 (4)C9—C10—H10125.7
C2—Mo1—C9140.57 (5)Mo1—C10—H10125.7
C1—Mo1—C9100.33 (5)C12—C11—C16118.13 (10)
C3—Mo1—C986.50 (5)C12—C11—P1119.07 (8)
C2—Mo1—C10106.27 (5)C16—C11—P1122.64 (8)
C1—Mo1—C10131.51 (5)C13—C12—C11121.61 (10)
C3—Mo1—C1082.71 (5)C13—C12—H12119.2
C9—Mo1—C1035.86 (5)C11—C12—H12119.2
C2—Mo1—C8153.82 (5)C12—C13—C14119.18 (10)
C1—Mo1—C899.03 (5)C12—C13—H13120.4
C3—Mo1—C8120.03 (4)C14—C13—H13120.4
C9—Mo1—C835.30 (5)O4—C14—C15115.39 (10)
C10—Mo1—C858.80 (5)O4—C14—C13124.68 (11)
C2—Mo1—C696.95 (5)C15—C14—C13119.93 (10)
C1—Mo1—C6156.61 (5)C16—C15—C14120.25 (10)
C3—Mo1—C6112.97 (4)C16—C15—H15119.9
C9—Mo1—C658.69 (5)C14—C15—H15119.9
C10—Mo1—C634.97 (5)C15—C16—C11120.87 (10)
C8—Mo1—C658.10 (4)C15—C16—H16119.6
C2—Mo1—C7119.76 (5)C11—C16—H16119.6
C1—Mo1—C7127.63 (5)O4—C17—H17A109.5
C3—Mo1—C7140.20 (4)O4—C17—H17B109.5
C9—Mo1—C758.32 (4)H17A—C17—H17B109.5
C10—Mo1—C758.06 (4)O4—C17—H17C109.5
C8—Mo1—C734.79 (4)H17A—C17—H17C109.5
C6—Mo1—C734.56 (4)H17B—C17—H17C109.5
C1—Mo1—P179.97 (3)C23—C18—C19117.86 (10)
C2—Mo1—P179.79 (3)C23—C18—P1122.10 (8)
C3—Mo1—P1134.90 (3)C19—C18—P1119.96 (8)
C9—Mo1—P1133.97 (4)C20—C19—C18121.19 (10)
C10—Mo1—P1140.75 (3)C20—C19—H19119.4
C8—Mo1—P198.76 (3)C18—C19—H19119.4
C6—Mo1—P1106.54 (3)C19—C20—C21120.10 (10)
C7—Mo1—P184.85 (3)C19—C20—H20120.0
C25—P1—C18102.11 (5)C21—C20—H20120.0
C25—P1—C11101.79 (5)O5—C21—C22124.58 (10)
C18—P1—C11102.80 (5)O5—C21—C20115.76 (10)
C25—P1—Mo1117.73 (3)C22—C21—C20119.66 (10)
C18—P1—Mo1117.30 (3)C21—C22—C23119.65 (10)
C11—P1—Mo1112.88 (3)C21—C22—H22120.2
C14—O4—C17118.55 (10)C23—C22—H22120.2
C21—O5—C24117.63 (10)C18—C23—C22121.48 (10)
C28—O6—C31117.18 (10)C18—C23—H23119.3
O1—C1—Mo1175.82 (11)C22—C23—H23119.3
O2—C2—Mo1175.76 (10)O5—C24—H24A109.5
O3—C3—C4116.42 (11)O5—C24—H24B109.5
O3—C3—Mo1120.75 (9)H24A—C24—H24B109.5
C4—C3—Mo1122.76 (8)O5—C24—H24C109.5
C5—C4—C3113.12 (11)H24A—C24—H24C109.5
C5—C4—H4A109.0H24B—C24—H24C109.5
C3—C4—H4A109.0C30—C25—C26117.80 (10)
C5—C4—H4B109.0C30—C25—P1120.87 (8)
C3—C4—H4B109.0C26—C25—P1121.23 (8)
H4A—C4—H4B107.8C27—C26—C25121.21 (10)
C4—C5—H5A109.5C27—C26—H26119.4
C4—C5—H5B109.5C25—C26—H26119.4
H5A—C5—H5B109.5C26—C27—C28120.13 (10)
C4—C5—H5C109.5C26—C27—H27119.9
H5A—C5—H5C109.5C28—C27—H27119.9
H5B—C5—H5C109.5O6—C28—C29124.40 (10)
C10—C6—C7107.57 (11)O6—C28—C27115.94 (10)
C10—C6—Mo170.11 (7)C29—C28—C27119.66 (10)
C7—C6—Mo172.73 (7)C30—C29—C28119.63 (10)
C10—C6—H6126.1C30—C29—H29120.2
C7—C6—H6126.1C28—C29—H29120.2
Mo1—C6—H6126.1C29—C30—C25121.55 (10)
C6—C7—C8108.64 (11)C29—C30—H30119.2
C6—C7—Mo172.71 (7)C25—C30—H30119.2
C8—C7—Mo171.55 (7)O6—C31—H31A109.5
C6—C7—H7125.6O6—C31—H31B109.5
C8—C7—H7125.6H31A—C31—H31B109.5
Mo1—C7—H7125.6O6—C31—H31C109.5
C9—C8—C7107.71 (11)H31A—C31—H31C109.5
C9—C8—Mo170.54 (7)H31B—C31—H31C109.5
C7—C8—Mo173.66 (7)Cl1A—C32—Cl2112.38 (13)
C9—C8—H8126.0Cl2—C32—Cl1B111.88 (16)
C7—C8—H8126.0Cl1A—C32—H32A109.1
Mo1—C8—H8126.0Cl2—C32—H32A109.1
C8—C9—C10107.85 (11)Cl1A—C32—H32B109.1
C8—C9—Mo174.16 (7)Cl2—C32—H32B109.1
C10—C9—Mo172.52 (7)H32A—C32—H32B107.9
C8—C9—H9125.8Cl2—C32—H32C109.2
C10—C9—H9125.8Cl1B—C32—H32C109.2
Mo1—C9—H9125.8Cl2—C32—H32D109.2
C6—C10—C9108.20 (11)Cl1B—C32—H32D109.2
C6—C10—Mo174.93 (7)H32C—C32—H32D107.9
O3—C3—C4—C545.68 (17)C11—P1—C18—C2394.92 (9)
Mo1—C3—C4—C5137.17 (10)Mo1—P1—C18—C23140.61 (8)
C10—C6—C7—C81.13 (13)C25—P1—C18—C19173.09 (9)
Mo1—C6—C7—C862.95 (8)C11—P1—C18—C1981.66 (10)
C10—C6—C7—Mo161.82 (8)Mo1—P1—C18—C1942.82 (10)
C6—C7—C8—C90.97 (13)C23—C18—C19—C202.47 (17)
Mo1—C7—C8—C962.73 (8)P1—C18—C19—C20174.25 (10)
C6—C7—C8—Mo163.70 (8)C18—C19—C20—C212.02 (19)
C7—C8—C9—C100.43 (14)C24—O5—C21—C224.22 (18)
Mo1—C8—C9—C1065.20 (9)C24—O5—C21—C20175.32 (12)
C7—C8—C9—Mo164.78 (8)C19—C20—C21—O5179.25 (11)
C7—C6—C10—C90.86 (14)C19—C20—C21—C220.32 (18)
Mo1—C6—C10—C964.38 (8)O5—C21—C22—C23177.41 (11)
C7—C6—C10—Mo163.52 (8)C20—C21—C22—C232.11 (17)
C8—C9—C10—C60.27 (14)C19—C18—C23—C220.64 (16)
Mo1—C9—C10—C666.56 (9)P1—C18—C23—C22176.00 (8)
C8—C9—C10—Mo166.29 (9)C21—C22—C23—C181.63 (17)
C25—P1—C11—C1271.91 (9)C18—P1—C25—C3086.31 (10)
C18—P1—C11—C12177.41 (9)C11—P1—C25—C30167.65 (9)
Mo1—P1—C11—C1255.25 (9)Mo1—P1—C25—C3043.70 (10)
C25—P1—C11—C16103.61 (10)C18—P1—C25—C2690.06 (10)
C18—P1—C11—C161.89 (10)C11—P1—C25—C2615.98 (10)
Mo1—P1—C11—C16129.22 (8)Mo1—P1—C25—C26139.94 (8)
C16—C11—C12—C131.21 (17)C30—C25—C26—C270.61 (17)
P1—C11—C12—C13174.52 (9)P1—C25—C26—C27177.08 (9)
C11—C12—C13—C140.71 (18)C25—C26—C27—C280.54 (18)
C17—O4—C14—C15179.30 (12)C31—O6—C28—C2914.43 (17)
C17—O4—C14—C131.31 (19)C31—O6—C28—C27165.75 (12)
C12—C13—C14—O4178.64 (11)C26—C27—C28—O6179.75 (11)
C12—C13—C14—C150.72 (18)C26—C27—C28—C290.42 (18)
O4—C14—C15—C16177.78 (11)O6—C28—C29—C30178.90 (11)
C13—C14—C15—C161.64 (18)C27—C28—C29—C301.28 (18)
C14—C15—C16—C111.13 (18)C28—C29—C30—C251.22 (19)
C12—C11—C16—C150.28 (17)C26—C25—C30—C290.27 (17)
P1—C11—C16—C15175.28 (9)P1—C25—C30—C29176.21 (9)
C25—P1—C18—C2310.34 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31B···O5i0.982.583.4880 (16)155
C6—H6···O3ii1.002.573.4555 (16)148
C8—H8···O1iii1.002.453.2714 (16)139
C32—H32B···O2iv0.992.633.418 (2)137
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z.
 

Acknowledgements

Carleton College is acknowledged for partial funding to support purchase of the Bruker D8 Quest ECO diffractometer used to perform this work.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1552591 to M. T. Whited); Camille and Henry Dreyfus Foundation (award No. TH-16-035 to M. T. Whited).

References

First citationAdams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationAdatia, T., Henrick, K., Horton, A. D., Mays, M. J. & McPartlin, M. (1986). J. Chem. Soc. Chem. Commun. pp. 1206–1208.  CrossRef Web of Science Google Scholar
First citationAnstey, M. R., Bost, J. L., Grumman, A. S., Kennedy, N. D. & Whited, M. T. (2020). Acta Cryst. E76, 547–551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarnett, K. W. (1969). Inorg. Chem. 8, 2009–2011.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413–421.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Slocum, D. W. (1972). J. Organomet. Chem. 44, 1–37.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294–299.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2019). BIS and SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074–2079.  CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953–959.  CSD CrossRef CAS Web of Science Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180–188.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98–103.  CSD CrossRef CAS Web of Science Google Scholar
First citationMichelini-Rodriquez, I., Romero, A. L., Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221–1224.  CAS Google Scholar
First citationMurshid, N., Rahman, M. A. & Wang, X. (2016). J. Organomet. Chem. 819, 109–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053.  Web of Science CrossRef CAS Google Scholar
First citationWhited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216–220.  CSD CrossRef IUCr Journals Google Scholar
First citationYan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827–6830.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds