research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a heterobimetallic cadmium–sodium complex of 1,3,5-triazine-2,4,6-trione, [CdNa2(C3H2N3O3)4(H2O)8]

crossmark logo

aPG Department and Research Centre in Physics, M.G. College, University of Kerala, Thiruvananthapuram 695004, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 5 July 2021; accepted 8 August 2021; online 17 August 2021)

Heterobimetallic crystals of a cadmium–sodium complex of 1,3,5-triazine-2,4,6-trione, namely, μ-aqua-1:2κ2O:O-hepta­aqua-1κ3O,2κ2O,3κ2O-bis­(μ-4,6-dioxo-1,4,5,6-tetra­hydro-1,3,5-triazin-2-olato)-1:2κ2O2:N1;2:3κ2N1:O2-bis­(4,6-dioxo-1,4,5,6-tetra­hydro-1,3,5-triazin-2-olato)-1κO2,3κO2-2-cadmium-1,3-disodium, [CdNa2(C3H2N3O3)4(H2O)8], were grown by the single gel diffusion technique. The asymmetric unit of the title compound comprises four 1,3,5-triazine-2,4,6-trione ligands, two sodium atoms and one cadmium atom. Of the four ligands, two are monodentately coordinated to two Na atoms. The third ligand is coordinated bidentately to one Na and the Cd atom and the fourth is also coordinated bidentately to the Cd atom and the other Na atom. All the metal atoms are six-coordinate with a distorted octa­hedral geometry. The water mol­ecules bridge the Na atoms, constructing coordination polymer chains along the a axis and hence are linked by two Cd and one Na coordinations through the cyanuric acid ligands present in the coordination polymer chains, generating a two-dimensional coordination polymer in the (110) plane. The polymer formation is further assisted by means of many inter­molecular and intra­molecular N—H⋯O, O—H⋯O and O–H⋯N hydrogen bonds between the water mol­ecules and the ligands.

1. Chemical context

Chelation is considered as the preferred method for the reduction of toxic effects of heavy metals, in which the metals are removed in the form of stable complex chelates. Cadmium, one of the most toxic heavy metals, can accumulate in the human body, leading to renal dysfunction, lung cancer, etc. In addition, chelation reactions are utilized in the determination of cadmium toxicity (Flora & Pachauri, 2010[Flora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. 7, 2745-2788.]) with 1,3,5-triazine-2,4,6-trione, also known as cyanuric acid, being the preferred ligand used for the chelation as it has multiple hydrogen-bond donor centres (Mistri et al., 2014[Mistri, S., Granda, S. G., Sangrando, E. & Manna, S. C. (2014). Indian J. Chem. A53, 135-142.]). 1,3,5-Triazine-2,4,6-trione exists in either the keto or enol form but the most stable isomer is the keto form (Reva, 2015[Reva, I. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 151, 232-236.]). In this work, we report the crystal structure of a heterobimetallic cadmium and sodium complex of 1,3,5-triazine-2,4,6-trione.

2. Structural commentary

The title complex crystallizes in the triclinic space group P[\overline{1}]. Fig. 1[link] shows the asymmetric unit of the crystal, which consists of four cyanuric acid ligands, two sodium atoms (Na1 and Na2) and one cadmium atom. Of the four ligands, two are monodentately coordinated to Na1 and Na2 atoms each. The third ligand is coordinated bidentately to Na1 and Cd1 atoms and the fourth one also coordinated bidentately to Na2 and Cd1 atoms. The sodium atom Na2 is coordinated to oxygen atoms of two cyanuric acid ligands [O5—Na2—O14 = 94.52 (6)°]. The Na1 atom is also coordinated to oxygen atoms of two cyanuric acid ligands [O10—Na1—O13 = 173.39 (7)°]. The Cd1 atom is coordinated to nitro­gen atoms of two cyanuric acid ligands [N1—Cd1—N4 = 174.58 (6)]°. In addition to the ligand coordination, atoms Na1, Na2 and Cd1 are also coordinated by two, three and four water mol­ecules, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

The title compound forms a two dimensional coordination polymer. In the coordination environment of the polymer, the Na1 atom is six-coordinate with the coordination angle varying from 90° [78.82 (6)–90.60 (6)°], forming a distorted octa­hedral geometry. Atom Na2 also exhibits a distorted octa­hedral geometry, with the coordin­ation angles ranging from 77.17 (6) to 91.77 (6)°. The cadmium atom also shows a distorted octa­hedral geometry with coordination angles in the range 87.94 (5) to 95.46 (6)°. A similar geometry is observed for the Cd atom in the heterobimetallic compound tetra­aqua­bis­(malonato)cadmium(II)copper(II) (Dhanya et al., 2014[Dhanya, V. S., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P., Sithambaresan, M., Roy, S. M. & Eapen, S. M. (2014). Inorg. Chim. Acta, 409, 367-371.]). Na1—O bond distances [2.3471 (16) to 2.4195 (18) Å] show a decrease compared to the value reported for a free Na—O bond (2.421 Å; Brown & Shannon, 1973[Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266-282.]). The Na2—O bonds, which vary from 2.3067 (17) to 2.4997 (18) Å, are longer than the reported value for a free Na—O bond. This observed range of Na—O bonds also shows close agreement with values reported for sodium 2-amino­terephthalate where the sodium atom adopts a similar six-coordinate geometry (2.326–2.505 Å; Sienkiewicz-Gromiuk et al., 2012[Sienkiewicz-Gromiuk, J., Mazur, L., Bartyzel, A. & Rzączyńska, Z. (2012). J. Inorg. Organomet. Polym. 22, 1325-1331.]). The Cd1—N4 bond distance [2.3210 (15) Å] is comparable to the reported value in a similar coordinated geometry (2.324 Å; Hashemian & Mangeli, 2017[Hashemian, S. & Mangeli, M. (2017). Eur. J. Chem. 8, 101-104.]). The water mol­ecules are tetra­hedrally coordinated to the cadmium atom, forming bond angles ranging from 81.59 (5) to 111.45 (5)°. Three water mol­ecules are coordinated to Na2, with bond angles ranging from 85.43 (6) to 102.25 (7)°. Two water mol­ecules are coordinated to Na1, forming a bond angle of 170.94 (7)°. The two water mol­ecules coordinated to Na1 bridge adjacent Na1 atoms on both sides, forming a coord­in­ation polymer chain along the a axis. These chains are inter­connected by means of two Cd1 and Na2 coordinations through the cyanuric acid ligands present in the Na1 coordination polymer chain on both sides to build a 2D coordination polymer in the (110) plane.

3. Supra­molecular features

There are 25 intra­molecular and inter­molecular hydrogen-bonding inter­actions involving the ligands and the coordinated water mol­ecules with DA distances ranging from 2.716 (2) to 3.236 (2) Å (Table 1[link]). Two types of ππ inter­actions (Table 2[link]) occur between the cyanurate rings of different units, having centroid–centroid distances of 3.5174 (12) and 3.4893 (11) Å, and two types of C—O⋯π inter­actions (Table 3[link]) with different cyanurate rings with XCg distances of 3.6086 (2) and 3.4783 (2) Å are also present in the complex (Fig. 2[link]). A packing diagram is presented in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N11i 0.98 1.82 2.788 (2) 168
O1—H1B⋯N7ii 0.98 1.89 2.860 (2) 169
N2—H2⋯O15iii 0.86 1.96 2.817 (2) 173
O2—H2A⋯O13iv 0.98 1.77 2.716 (2) 161
O2—H2B⋯N11 0.98 2.53 3.236 (2) 128
O2—H2B⋯O16 0.98 1.79 2.753 (2) 167
N3—H3⋯O11v 0.86 1.92 2.773 (2) 173
O3—H3A⋯O14i 0.98 1.91 2.871 (2) 166
O3—H3B⋯O11ii 0.98 1.87 2.842 (2) 169
N5—H5⋯O16vi 0.86 2.10 2.938 (2) 164
N6—H6⋯O12vi 0.86 2.13 2.979 (2) 168
N10—H10⋯O8vii 0.86 1.94 2.792 (2) 172
N8—H8⋯O7v 0.86 2.02 2.862 (2) 167
N12—H12⋯O6iii 0.86 2.03 2.882 (2) 173
N9—H9⋯O9vii 0.86 2.04 2.885 (2) 169
O20—H20B⋯O6viii 0.98 2.30 2.903 (2) 119
O20—H20A⋯O14ix 0.98 2.14 3.008 (2) 147
O4—H4A⋯O8 0.98 1.88 2.725 (2) 143
O17—H17B⋯O2 0.99 1.87 2.768 (2) 149
O17—H17A⋯O9vii 0.98 1.81 2.790 (2) 171
O18—H18B⋯O12vi 0.98 1.91 2.852 (2) 160
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, -y, -z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y, -z]; (v) [-x+2, -y+1, -z]; (vi) [x, y-1, z]; (vii) x, y+1, z; (viii) [x-1, y-1, z]; (ix) [-x, -y, -z+1].

Table 2
Analysis of π–π inter­actions (Å, °)

α is the dihedral angle between planes I and J. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1–N3/C1–C3, N4–N6/C4–C6, N7–N9/C7–C9 and N10–N12/C10–C12 rings, respectively.

Cg(I)⋯Cg(J) CgCg α
Cg1⋯Cg4i 3.5174 (12) 2.42 (10)
Cg2⋯Cg3ii 3.4893 (11) 2.59 (9)
Symmetry codes: (i) 1 + x, y, z; (ii) 2 − x, −y, −z.

Table 3
Analysis of YXCg (π-ring) inter­actions (Å, °)

YX(I)⋯Cg(J) XCg YXCg YCg
C4—O8⋯Cg3i 3.6086 (2) 68.07 (11) 3.349 (2)
C7—O11⋯Cg2ii 3.4783 (2) 68.37 (11) 3.233 (2)
Symmetry codes: (i) 1 − x, −y, −z; (ii) 2 − x, −y, −z.
[Figure 2]
Figure 2
ππ and C—O⋯π inter­actions present in the complex. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1–N3/C1–C3, N4–N6/C4–C6, N7–N9/C7–C9 and N10–N12/C10–C12 rings, respectively. Symmetry codes: (*) x − 1, y, z; (**) 1 − x, −y, −z; (#) 2 − x, −y, −z.
[Figure 3]
Figure 3
The packing, viewed down the a axis, showing the coordination polyhedra.

4. Synthesis and crystallization

Needle-shaped transparent single crystals were obtained by the single gel diffusion method (Chandran et al., 2017[Chandran, P. R. S., Soumya Mol, U. S., Drisya, R., Sudarsanakumar, M. R. & Kurup, M. R. P. (2017). J. Mol. Struct. 1137, 396-402.]). 1,3,5-Triazine-2,4,6-trione, acetic acid, sodium metasilicate and cadmium chloride hydrate were used for the growth in a single glass test tube of length 20 cm and diameter 2.5 cm. The preparation of silica gel of specific gravity 1.03–1.05 g cm−3 involved dissolution of sodium metasilicate (SMS) in double-distilled water to which 1,3,5-triazine-2,4,6-trione (0.01–0.02 M concentration) was added. The resulting SMS solution was acidified with drops of glacial acetic acid to adjust the pH to within the range 4–7. The test tubes were filled with 30 ml of the above solution for gel setting. Over the set gel, cadmium chloride solution (0.25–1 M) was added carefully along the sides of the test tube to prevent the gel breakage. Finally, the test tube was sealed with a transparent plastic sheet to prevent contamination and kept undisturbed for crystal growth. Crystals formed within the gel after two weeks and growth was completed in a month. A series of trials was undertaken to obtain the optimum conditions to grow well-defined single crystals. 1,3,5-Triazine-2,4,6-trione (0.02 M) was used as inner reactant and cadmium chloride (0.25 M) as the top solution. Well-defined good-quality single crystals suitable for single-crystal XRD studies were grown in a gel medium of pH 6 and density 1.03 g cm−3.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Some reflections truncated by beamstop were omitted. The nitro­gen-bound H atoms were placed in calculated positions (N—H = 0.86 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(N). H atoms attached to water mol­ecules were located from difference-Fourier maps and were refined with isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)].

Table 4
Experimental details

Crystal data
Chemical formula [CdNa2(C3H2N3O3)4(H2O)8]
Mr 814.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.0501 (3), 10.0314 (5), 19.5058 (9)
α, β, γ (°) 101.023 (1), 90.468 (1), 97.233 (1)
V3) 1342.53 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.870, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 52745, 5912, 5460
Rint 0.029
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.20
No. of reflections 5912
No. of parameters 430
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.57
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT andXPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

µ-Aqua-1:2κ2O:O-heptaaqua-1κ3O,2κ2O,3κ2O-bis(µ-4,6-dioxo-1,4,5,6-tetrahydro-1,3,5-triazin-2-olato)-1:2κ2O2:N1;2:3κ2N1:O2-bis(4,6-dioxo-1,4,5,6-tetrahydro-1,3,5-triazin-2-olato)-1κO2,3κO2-2-cadmium-1,3-disodium top
Crystal data top
[CdNa2(C3H2N3O3)4(H2O)8]Z = 2
Mr = 814.81F(000) = 820
Triclinic, P1Dx = 2.016 Mg m3
a = 7.0501 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0314 (5) ÅCell parameters from 9962 reflections
c = 19.5058 (9) Åθ = 3.1–29.6°
α = 101.023 (1)°µ = 0.96 mm1
β = 90.468 (1)°T = 293 K
γ = 97.233 (1)°Block, colourless
V = 1342.53 (11) Å30.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
5912 independent reflections
Radiation source: fine-focus sealed tube5460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 27.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.870, Tmax = 0.901k = 1212
52745 measured reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.9925P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
5912 reflectionsΔρmax = 0.88 e Å3
430 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8025 (3)0.33005 (19)0.28213 (10)0.0172 (4)
C20.8168 (3)0.4798 (2)0.39643 (11)0.0216 (4)
C30.6821 (3)0.24087 (19)0.37866 (10)0.0172 (4)
C40.5623 (3)0.32929 (19)0.20544 (10)0.0160 (4)
C50.6255 (3)0.4699 (2)0.09476 (10)0.0194 (4)
C60.6837 (3)0.22094 (19)0.11527 (10)0.0157 (4)
C70.9520 (3)0.33435 (19)0.20488 (10)0.0157 (4)
C80.8810 (3)0.4855 (2)0.09848 (10)0.0190 (4)
C90.8168 (3)0.23791 (19)0.11439 (10)0.0158 (4)
C100.1780 (3)0.23787 (19)0.37549 (10)0.0166 (4)
C110.3200 (3)0.4760 (2)0.39865 (11)0.0213 (4)
C120.3021 (3)0.3339 (2)0.28316 (10)0.0170 (4)
N10.7207 (2)0.22287 (16)0.30988 (8)0.0169 (3)
N20.7326 (3)0.36898 (17)0.42028 (9)0.0226 (4)
H20.7091600.3789050.4640360.027*
N30.8481 (3)0.45615 (17)0.32672 (9)0.0215 (4)
H30.8996160.5237140.3090380.026*
N40.6247 (2)0.21351 (16)0.18213 (8)0.0152 (3)
N50.5607 (2)0.45516 (16)0.16086 (8)0.0187 (3)
H50.5162920.5277340.1758810.022*
N60.6887 (3)0.35041 (17)0.07445 (8)0.0195 (3)
H60.7349420.3549740.0335330.023*
N70.8839 (2)0.22246 (16)0.17957 (8)0.0172 (3)
N80.9513 (2)0.46392 (16)0.16400 (9)0.0187 (3)
H80.9975480.5338940.1808680.022*
N90.8147 (3)0.36876 (17)0.07555 (9)0.0203 (4)
H90.7688030.3767040.0344710.024*
N100.3519 (3)0.45707 (17)0.32895 (9)0.0215 (4)
H100.4061190.5254520.3124990.026*
N110.2119 (2)0.22607 (17)0.30703 (9)0.0188 (3)
N120.2315 (3)0.36306 (17)0.41995 (9)0.0219 (4)
H120.2073010.3695530.4635170.026*
O10.9770 (2)0.03762 (14)0.20860 (7)0.0215 (3)
H1A1.0653490.0928640.2455510.032*
H1B1.0361610.0472010.2037440.032*
O20.4449 (2)0.06725 (15)0.18140 (8)0.0256 (3)
H2A0.3631980.0146090.1565010.038*
H2B0.3911570.1534160.1968600.038*
O30.8349 (2)0.08797 (15)0.33509 (8)0.0241 (3)
H3A0.9396320.0205040.3588560.036*
H3B0.9017230.1636760.3117680.036*
O40.3757 (2)0.08155 (17)0.30812 (8)0.0290 (3)
H4A0.3690420.1817410.3010030.044*
H4B0.2654420.0575410.2841230.044*
O50.6035 (2)0.14863 (15)0.40559 (8)0.0280 (3)
O60.8599 (3)0.59241 (16)0.43440 (8)0.0368 (4)
O70.8382 (2)0.32046 (15)0.21994 (8)0.0269 (3)
O80.5039 (2)0.32832 (15)0.26519 (8)0.0262 (3)
O90.6280 (3)0.58152 (15)0.05625 (8)0.0312 (4)
O100.7346 (2)0.11970 (15)0.09073 (8)0.0241 (3)
O111.0167 (2)0.32568 (15)0.26437 (8)0.0246 (3)
O120.8765 (3)0.59950 (15)0.06270 (8)0.0308 (4)
O130.7540 (2)0.13948 (15)0.08785 (8)0.0236 (3)
O140.1013 (2)0.14177 (14)0.40139 (8)0.0227 (3)
O150.3689 (3)0.58556 (16)0.43856 (8)0.0353 (4)
O160.3458 (2)0.32703 (15)0.22117 (7)0.0248 (3)
O170.5338 (2)0.13908 (16)0.05424 (9)0.0313 (4)
H17A0.5592280.2391510.0591550.047*
H18A1.0024880.1039670.1204030.047*
O180.9774 (2)0.12084 (16)0.07304 (8)0.0295 (4)
H18B0.9562200.2213240.0799220.044*
H17B0.5456760.1339760.1040270.044*
O190.5872 (2)0.13881 (16)0.44927 (8)0.0299 (3)
H19A0.5372280.2354030.4476930.045*
H19B0.6946980.1332730.4177330.045*
O200.0908 (3)0.14107 (19)0.46154 (10)0.0411 (4)
H20A0.0816180.1293790.5125600.062*
H20B0.1149050.2365940.4465860.062*
Na10.75518 (12)0.00016 (9)0.00173 (4)0.02498 (19)
Na20.34777 (12)0.00440 (9)0.43414 (5)0.02616 (19)
Cd10.66796 (2)0.00416 (2)0.25149 (2)0.01845 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (9)0.0147 (9)0.0163 (9)0.0027 (7)0.0031 (7)0.0031 (7)
C20.0283 (11)0.0171 (10)0.0170 (10)0.0031 (8)0.0054 (8)0.0010 (8)
C30.0177 (9)0.0141 (9)0.0184 (9)0.0006 (7)0.0014 (7)0.0002 (7)
C40.0190 (9)0.0123 (9)0.0156 (9)0.0004 (7)0.0014 (7)0.0015 (7)
C50.0246 (10)0.0157 (9)0.0164 (9)0.0004 (8)0.0038 (8)0.0011 (7)
C60.0175 (9)0.0145 (9)0.0146 (9)0.0003 (7)0.0000 (7)0.0030 (7)
C70.0181 (9)0.0133 (9)0.0154 (9)0.0020 (7)0.0022 (7)0.0017 (7)
C80.0241 (10)0.0162 (9)0.0158 (9)0.0003 (8)0.0036 (7)0.0022 (7)
C90.0173 (9)0.0137 (9)0.0161 (9)0.0006 (7)0.0005 (7)0.0028 (7)
C100.0166 (9)0.0156 (9)0.0173 (9)0.0020 (7)0.0002 (7)0.0023 (7)
C110.0276 (11)0.0175 (10)0.0168 (9)0.0019 (8)0.0051 (8)0.0015 (8)
C120.0190 (9)0.0164 (9)0.0156 (9)0.0033 (7)0.0021 (7)0.0020 (7)
N10.0221 (8)0.0122 (8)0.0150 (8)0.0003 (6)0.0026 (6)0.0011 (6)
N20.0357 (10)0.0150 (8)0.0140 (8)0.0052 (7)0.0074 (7)0.0000 (6)
N30.0335 (10)0.0126 (8)0.0170 (8)0.0037 (7)0.0079 (7)0.0032 (6)
N40.0220 (8)0.0107 (7)0.0120 (7)0.0003 (6)0.0023 (6)0.0011 (6)
N50.0293 (9)0.0099 (7)0.0156 (8)0.0018 (6)0.0069 (7)0.0021 (6)
N60.0301 (9)0.0149 (8)0.0121 (8)0.0006 (7)0.0074 (7)0.0006 (6)
N70.0246 (9)0.0120 (7)0.0151 (8)0.0024 (6)0.0044 (6)0.0028 (6)
N80.0284 (9)0.0109 (7)0.0169 (8)0.0001 (6)0.0072 (7)0.0040 (6)
N90.0307 (9)0.0156 (8)0.0138 (8)0.0006 (7)0.0088 (7)0.0020 (6)
N100.0332 (10)0.0135 (8)0.0159 (8)0.0042 (7)0.0076 (7)0.0028 (6)
N110.0233 (8)0.0152 (8)0.0165 (8)0.0011 (6)0.0017 (6)0.0019 (6)
N120.0335 (10)0.0159 (8)0.0138 (8)0.0046 (7)0.0059 (7)0.0016 (6)
O10.0228 (7)0.0180 (7)0.0211 (7)0.0004 (6)0.0020 (6)0.0010 (6)
O20.0313 (8)0.0192 (7)0.0241 (8)0.0063 (6)0.0049 (6)0.0029 (6)
O30.0274 (8)0.0226 (7)0.0217 (7)0.0048 (6)0.0015 (6)0.0021 (6)
O40.0302 (8)0.0309 (9)0.0235 (8)0.0006 (7)0.0018 (6)0.0020 (7)
O50.0382 (9)0.0185 (7)0.0250 (8)0.0085 (6)0.0073 (7)0.0063 (6)
O60.0630 (12)0.0175 (8)0.0222 (8)0.0136 (8)0.0136 (8)0.0040 (6)
O70.0431 (9)0.0213 (7)0.0149 (7)0.0000 (7)0.0082 (6)0.0028 (6)
O80.0443 (9)0.0171 (7)0.0162 (7)0.0007 (6)0.0125 (6)0.0029 (6)
O90.0558 (11)0.0132 (7)0.0214 (8)0.0006 (7)0.0148 (7)0.0019 (6)
O100.0374 (9)0.0163 (7)0.0186 (7)0.0023 (6)0.0030 (6)0.0071 (6)
O110.0382 (9)0.0175 (7)0.0180 (7)0.0028 (6)0.0128 (6)0.0034 (6)
O120.0530 (10)0.0135 (7)0.0232 (8)0.0003 (7)0.0145 (7)0.0008 (6)
O130.0347 (8)0.0172 (7)0.0190 (7)0.0023 (6)0.0044 (6)0.0071 (6)
O140.0279 (8)0.0171 (7)0.0229 (7)0.0046 (6)0.0026 (6)0.0079 (6)
O150.0595 (11)0.0178 (8)0.0212 (8)0.0124 (7)0.0131 (7)0.0035 (6)
O160.0374 (9)0.0206 (7)0.0155 (7)0.0013 (6)0.0071 (6)0.0025 (6)
O170.0421 (10)0.0223 (8)0.0290 (9)0.0001 (7)0.0074 (7)0.0066 (7)
O180.0414 (9)0.0196 (8)0.0263 (8)0.0002 (7)0.0064 (7)0.0039 (6)
O190.0358 (9)0.0242 (8)0.0292 (8)0.0013 (7)0.0088 (7)0.0051 (6)
O200.0497 (11)0.0333 (10)0.0365 (10)0.0116 (8)0.0067 (8)0.0078 (8)
Na10.0304 (5)0.0240 (4)0.0226 (4)0.0034 (4)0.0040 (4)0.0096 (3)
Na20.0257 (4)0.0243 (4)0.0284 (5)0.0008 (3)0.0033 (3)0.0073 (4)
Cd10.02259 (8)0.01318 (8)0.01772 (8)0.00042 (5)0.00074 (5)0.00040 (5)
Geometric parameters (Å, º) top
C1—O71.229 (2)N6—H60.8600
C1—N11.361 (2)N8—H80.8600
C1—N31.390 (3)N9—H90.8600
C2—O61.227 (3)N10—H100.8600
C2—N21.357 (3)N12—H120.8600
C2—N31.360 (3)O1—Cd12.3478 (14)
C3—O51.225 (2)O1—H1A0.9836
C3—N11.354 (3)O1—H1B0.9829
C3—N21.385 (2)O2—Cd12.2996 (15)
C4—O81.238 (2)O2—H2A0.9828
C4—N41.351 (2)O2—H2B0.9831
C4—N51.388 (2)O3—Cd12.3913 (15)
C5—O91.225 (2)O3—H3A0.9830
C5—N61.357 (3)O3—H3B0.9833
C5—N51.359 (3)O4—Na22.4627 (18)
C6—O101.219 (2)O4—Cd12.4817 (16)
C6—N41.363 (2)O4—H4A0.9830
C6—N61.392 (2)O4—H4B0.9828
C7—O111.242 (2)O5—Na22.3067 (17)
C7—N71.347 (2)O10—Na12.3471 (16)
C7—N81.389 (2)O13—Na12.3824 (16)
C8—O121.224 (2)O14—Na22.4997 (18)
C8—N91.363 (3)O17—Na12.3584 (19)
C8—N81.363 (2)O17—Na1i2.4195 (19)
C9—O131.236 (2)O17—H17A0.9832
C9—N71.348 (2)O17—H17B0.9857
C9—N91.386 (2)O18—Na12.3939 (18)
C10—O141.240 (2)O18—Na1ii2.4192 (19)
C10—N111.344 (3)O18—H18A0.9841
C10—N121.389 (3)O18—H18B0.9830
C11—O151.227 (3)O19—Na22.4009 (19)
C11—N121.361 (3)O19—Na2iii2.4197 (18)
C11—N101.361 (3)O19—H19A0.9830
C12—O161.242 (2)O19—H19B0.9830
C12—N111.347 (3)O20—Na22.3118 (19)
C12—N101.383 (3)O20—H20A0.9831
N1—Cd12.2541 (16)O20—H20B0.9833
N2—H20.8600Na1—Na1ii3.4526 (17)
N3—H30.8600Na1—Na1i3.5988 (17)
N4—Cd12.3210 (15)Na2—Na2iii3.3557 (18)
N5—H50.8600
O7—C1—N1123.25 (18)C10—O14—Na2110.29 (13)
O7—C1—N3118.73 (18)Na1—O17—Na1i97.73 (6)
N1—C1—N3118.01 (17)Na1—O17—H17A119.9
O6—C2—N2122.93 (19)Na1i—O17—H17A124.6
O6—C2—N3122.67 (19)Na1—O17—H17B104.9
N2—C2—N3114.40 (17)Na1i—O17—H17B110.2
O5—C3—N1122.71 (18)H17A—O17—H17B98.3
O5—C3—N2118.59 (18)Na1—O18—Na1ii91.67 (6)
N1—C3—N2118.70 (17)Na1—O18—H18A120.5
O8—C4—N4122.70 (17)Na1ii—O18—H18A107.0
O8—C4—N5117.98 (17)Na1—O18—H18B116.6
N4—C4—N5119.31 (17)Na1ii—O18—H18B118.1
O9—C5—N6122.21 (18)H18A—O18—H18B103.3
O9—C5—N5123.24 (18)Na2—O19—Na2iii88.23 (6)
N6—C5—N5114.55 (17)Na2—O19—H19A114.5
O10—C6—N4122.79 (17)Na2iii—O19—H19A114.5
O10—C6—N6119.38 (17)Na2—O19—H19B114.5
N4—C6—N6117.82 (16)Na2iii—O19—H19B114.5
O11—C7—N7121.84 (17)H19A—O19—H19B109.5
O11—C7—N8118.25 (17)Na2—O20—H20A109.9
N7—C7—N8119.91 (17)Na2—O20—H20B109.5
O12—C8—N9122.17 (18)H20A—O20—H20B104.2
O12—C8—N8123.57 (18)O10—Na1—O1788.93 (6)
N9—C8—N8114.26 (17)O10—Na1—O13173.39 (7)
O13—C9—N7122.52 (18)O17—Na1—O1384.51 (6)
O13—C9—N9118.21 (17)O10—Na1—O18100.11 (6)
N7—C9—N9119.27 (17)O17—Na1—O18170.94 (7)
O14—C10—N11123.13 (18)O13—Na1—O1886.45 (6)
O14—C10—N12117.85 (17)O10—Na1—O17i89.31 (6)
N11—C10—N12119.02 (17)O17—Na1—O17i82.27 (6)
O15—C11—N12123.32 (19)O13—Na1—O17i90.60 (6)
O15—C11—N10122.43 (19)O18—Na1—O17i97.21 (6)
N12—C11—N10114.24 (17)O10—Na1—O18ii78.82 (6)
O16—C12—N11122.52 (18)O17—Na1—O18ii93.97 (6)
O16—C12—N10117.89 (18)O13—Na1—O18ii100.80 (6)
N11—C12—N10119.58 (17)O18—Na1—O18ii88.33 (6)
C3—N1—C1120.31 (16)O17i—Na1—O18ii167.64 (7)
C3—N1—Cd1114.93 (12)O10—Na1—Na1ii89.19 (5)
C1—N1—Cd1124.46 (13)O17—Na1—Na1ii137.16 (6)
C2—N2—C3124.18 (17)O13—Na1—Na1ii95.07 (5)
C2—N2—H2117.9O18—Na1—Na1ii44.46 (4)
C3—N2—H2117.9O17i—Na1—Na1ii140.49 (6)
C2—N3—C1124.38 (17)O18ii—Na1—Na1ii43.88 (4)
C2—N3—H3117.8O10—Na1—Na1i88.84 (5)
C1—N3—H3117.8O17—Na1—Na1i41.77 (4)
C4—N4—C6120.03 (16)O13—Na1—Na1i86.81 (5)
C4—N4—Cd1124.47 (12)O18—Na1—Na1i137.02 (6)
C6—N4—Cd1115.24 (12)O17i—Na1—Na1i40.49 (4)
C5—N5—C4123.55 (16)O18ii—Na1—Na1i134.60 (6)
C5—N5—H5118.2Na1ii—Na1—Na1i177.78 (5)
C4—N5—H5118.2O5—Na2—O20179.41 (8)
C5—N6—C6124.54 (16)O5—Na2—O1983.92 (6)
C5—N6—H6117.7O20—Na2—O1996.15 (7)
C6—N6—H6117.7O5—Na2—O19iii83.78 (6)
C7—N7—C9119.30 (16)O20—Na2—O19iii96.81 (7)
C8—N8—C7123.21 (16)O19—Na2—O19iii91.77 (6)
C8—N8—H8118.4O5—Na2—O477.17 (6)
C7—N8—H8118.4O20—Na2—O4102.25 (7)
C8—N9—C9124.01 (17)O19—Na2—O485.43 (6)
C8—N9—H9118.0O19iii—Na2—O4160.92 (7)
C9—N9—H9118.0O5—Na2—O1494.52 (6)
C11—N10—C12123.56 (17)O20—Na2—O1485.34 (7)
C11—N10—H10118.2O19—Na2—O14172.40 (7)
C12—N10—H10118.2O19iii—Na2—O1495.47 (6)
C10—N11—C12119.66 (17)O4—Na2—O1486.97 (6)
C11—N12—C10123.89 (17)O5—Na2—Na2iii81.14 (5)
C11—N12—H12118.1O20—Na2—Na2iii99.33 (6)
C10—N12—H12118.1O19—Na2—Na2iii46.11 (4)
Cd1—O1—H1A110.2O19iii—Na2—Na2iii45.65 (5)
Cd1—O1—H1B110.1O4—Na2—Na2iii128.64 (6)
H1A—O1—H1B97.0O14—Na2—Na2iii141.06 (6)
Cd1—O2—H2A109.8N1—Cd1—O288.83 (6)
Cd1—O2—H2B119.7N1—Cd1—N4174.58 (6)
H2A—O2—H2B120.2O2—Cd1—N488.80 (5)
Cd1—O3—H3A111.0N1—Cd1—O187.44 (5)
Cd1—O3—H3B110.8O2—Cd1—O1111.45 (5)
H3A—O3—H3B103.1N4—Cd1—O188.89 (5)
Na2—O4—Cd1117.77 (6)N1—Cd1—O395.46 (6)
Na2—O4—H4A107.4O2—Cd1—O3166.49 (5)
Cd1—O4—H4A107.4N4—Cd1—O387.94 (5)
Na2—O4—H4B107.3O1—Cd1—O381.59 (5)
Cd1—O4—H4B107.3N1—Cd1—O4100.77 (6)
H4A—O4—H4B109.5O2—Cd1—O481.82 (6)
C3—O5—Na2155.60 (16)N4—Cd1—O483.72 (5)
C6—O10—Na1152.13 (14)O1—Cd1—O4164.73 (5)
C9—O13—Na1153.27 (14)O3—Cd1—O484.79 (5)
O5—C3—N1—C1177.79 (19)O11—C7—N7—C9179.44 (18)
N2—C3—N1—C11.9 (3)N8—C7—N7—C90.5 (3)
O5—C3—N1—Cd18.2 (3)O13—C9—N7—C7179.33 (19)
N2—C3—N1—Cd1172.08 (14)N9—C9—N7—C71.7 (3)
O7—C1—N1—C3178.84 (19)O12—C8—N8—C7178.5 (2)
N3—C1—N1—C31.4 (3)N9—C8—N8—C71.4 (3)
O7—C1—N1—Cd17.8 (3)O11—C7—N8—C8178.91 (19)
N3—C1—N1—Cd1172.02 (13)N7—C7—N8—C81.2 (3)
O6—C2—N2—C3179.9 (2)O12—C8—N9—C9179.9 (2)
N3—C2—N2—C30.4 (3)N8—C8—N9—C90.0 (3)
O5—C3—N2—C2178.7 (2)O13—C9—N9—C8179.48 (19)
N1—C3—N2—C21.0 (3)N7—C9—N9—C81.5 (3)
O6—C2—N3—C1179.5 (2)O15—C11—N10—C12178.5 (2)
N2—C2—N3—C10.9 (3)N12—C11—N10—C120.8 (3)
O7—C1—N3—C2179.7 (2)O16—C12—N10—C11176.9 (2)
N1—C1—N3—C20.1 (3)N11—C12—N10—C111.9 (3)
O8—C4—N4—C6178.62 (19)O14—C10—N11—C12177.67 (19)
N5—C4—N4—C60.6 (3)N12—C10—N11—C122.1 (3)
O8—C4—N4—Cd17.4 (3)O16—C12—N11—C10176.32 (19)
N5—C4—N4—Cd1173.39 (13)N10—C12—N11—C102.5 (3)
O10—C6—N4—C4177.24 (19)O15—C11—N12—C10179.0 (2)
N6—C6—N4—C44.1 (3)N10—C11—N12—C100.3 (3)
O10—C6—N4—Cd18.3 (2)O14—C10—N12—C11178.8 (2)
N6—C6—N4—Cd1170.42 (13)N11—C10—N12—C111.0 (3)
O9—C5—N5—C4178.2 (2)N1—C3—O5—Na279.6 (4)
N6—C5—N5—C41.6 (3)N2—C3—O5—Na2100.1 (4)
O8—C4—N5—C5178.30 (19)N4—C6—O10—Na1143.5 (2)
N4—C4—N5—C52.5 (3)N6—C6—O10—Na137.8 (4)
O9—C5—N6—C6178.0 (2)N7—C9—O13—Na1118.8 (3)
N5—C5—N6—C62.3 (3)N9—C9—O13—Na162.3 (4)
O10—C6—N6—C5176.13 (19)N11—C10—O14—Na287.6 (2)
N4—C6—N6—C55.1 (3)N12—C10—O14—Na292.13 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N11iv0.981.822.788 (2)168
O1—H1B···N7ii0.981.892.860 (2)169
N2—H2···O15v0.861.962.817 (2)173
O2—H2A···O13i0.981.772.716 (2)161
O2—H2B···N110.982.533.236 (2)128
O2—H2B···O160.981.792.753 (2)167
N3—H3···O11vi0.861.922.773 (2)173
O3—H3A···O14iv0.981.912.871 (2)166
O3—H3B···O11ii0.981.872.842 (2)169
N5—H5···O16vii0.862.102.938 (2)164
N6—H6···O12vii0.862.132.979 (2)168
N10—H10···O8viii0.861.942.792 (2)172
N8—H8···O7vi0.862.022.862 (2)167
N12—H12···O6v0.862.032.882 (2)173
N9—H9···O9viii0.862.042.885 (2)169
O20—H20B···O6ix0.982.302.903 (2)119
O20—H20A···O14x0.982.143.008 (2)147
O4—H4A···O80.981.882.725 (2)143
O17—H17B···O20.991.872.768 (2)149
O17—H17A···O9viii0.981.812.790 (2)171
O18—H18B···O12vii0.981.912.852 (2)160
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x+2, y+1, z; (vii) x, y1, z; (viii) x, y+1, z; (ix) x1, y1, z; (x) x, y, z+1.
Analysis of ππ interactions (Å, °) top
α is the dihedral angle between planes I and J. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1–N3/C1–C3, N4–N6/C4–C6, N7–N9/C7–C9 and N10–N12/C10–C12 rings, respectively.
Cg(I)···Cg(J)Cg···Cgα
Cg1···Cg4i3.5174 (12)2.42 (10)
Cg2···Cg3ii3.4893 (11)2.59 (9)
Symmetry codes: (i) 1 + x, y, z; (ii) 2 - x, -y, -z.
Analysis of YX···Cg (π-ring) interactions (Å, °) top
YX(I)···Cg(J)X···CgYX···CgY···Cg
C4—O8···Cg3i3.6086 (2)68.07 (11)3.349 (2)
C7—O11···Cg2ii3.4783 (2)68.37 (11)3.233 (2)
Symmetry codes: (i) 1 - x, -y, -z; (ii) 2 - x, -y, -z.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the single crystal X-ray diffraction measurements. The authors are thankful to Professor M. R. P. Kurup, Cochin University of Science & Technology, Kochi-22, for the use of DIAMOND software.

Funding information

KRB is grateful to KSCSTE, Govt. of Kerala, India, for the award of an Emeritus Scientist fellowship.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandran, P. R. S., Soumya Mol, U. S., Drisya, R., Sudarsanakumar, M. R. & Kurup, M. R. P. (2017). J. Mol. Struct. 1137, 396–402.  Google Scholar
First citationDhanya, V. S., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P., Sithambaresan, M., Roy, S. M. & Eapen, S. M. (2014). Inorg. Chim. Acta, 409, 367–371.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlora, S. J. S. & Pachauri, V. (2010). Int. J. Environ. Res. 7, 2745–2788.  CAS Google Scholar
First citationHashemian, S. & Mangeli, M. (2017). Eur. J. Chem. 8, 101–104.  CSD CrossRef CAS Google Scholar
First citationMistri, S., Granda, S. G., Sangrando, E. & Manna, S. C. (2014). Indian J. Chem. A53, 135–142.  Google Scholar
First citationReva, I. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 151, 232–236.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSienkiewicz-Gromiuk, J., Mazur, L., Bartyzel, A. & Rzączyńska, Z. (2012). J. Inorg. Organomet. Polym. 22, 1325–1331.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds