research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

LiNa3(SO4)2·6H2O: a lithium double salt causing trouble in the industrial conversion of Li2SO4 into LiOH

crossmark logo

aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Str. 29, D-09596 Freiberg, Germany
*Correspondence e-mail: Dr-Horst.Schmidt@gmx.de, wolfgang.voigt@chemie.tu-freiberg.de

Edited by P. Roussel, ENSCL, France (Received 8 July 2021; accepted 5 August 2021; online 10 August 2021)

Lithium tris­odium bis­(sulfate) hexa­hydrate, LiNa3(SO4)2·6H2O was crystallized from aqueous solution at 298 K and the structure solved at different temperatures between 90 and 293 K. The structure is isomorphic with the corresponding molybdate and selenate double salt hydrate. It belongs to the non-centrosymmetric trigonal space group R3c (161). The temperature dependence of the lattice parameters has been determined. Further characterization by powder XRD and thermal analysis is reported.

1. Chemical context

In the presently preferred process of LiOH production for batteries, an aqueous Li2SO4 solution is reacted with NaOH at temperatures well below 273 K (mostly at 268 K) for separating sodium sulfate in the form of its deca­hydrate (Glauber salt) according to the equation

Li2SO4(aq) + 2 NaOH(aq) → 2 LiOH(aq) + Na2SO4·10H2O(s)

The sodium sulfate hydrate is removed and from the remaining solution, water is evaporated to crystallize LiOH·H2O. However, during cooling the solution from ambient temperature, the solution passes the stability field of LiNa3(SO4)2·6H2O, which extends from 271.3 to 321 K (Sohr et al., 2017[Sohr, J., Voigt, W. & Zeng, D. (2017). J. Phys. Chem. Ref. Data, 46, 1-221.]). Once formed, it will not disappear on further cooling. Rapid and reliable detection of its presence or absence by means of XRD is important. A powder diffraction pattern is available from the PDF database (Powder Diffraction File 33-1258, Inter­national Center for Diffraction Data), but no conclusive comment is attached regarding the conditions under which the material was obtained and prepared for powder XRD. It is known that the material loses its water of crystallization very easily. Therefore, in their careful thermodynamic study of the system Li2SO4–Na2SO4–H2O at 298 K, Filippov & Kalinkin (1989[Filippov, V. K. & Kalinkin, A. M. (1989). Zh. Neorg. Khim. 32, 215-217.]) did not make an attempt to isolate the double salt hydrate because of instability. Ji et al. (2015[Ji, Z.-Y., Peng, J.-L., Yuan, J.-S., Li, D.-C. & Zhao, Y.-Y. (2015). Fluid Phase Equilib. 397, 81-86.]) include a figure of the PXRD pattern, but only in a mixture with anhydrous LiNaSO4. The growth of crystals under defined conditions and deriving the PXRD pattern from single-crystal structure analysis could resolve doubts about the PXRD pattern.

LiNa3(SO4)2·6H2O was first crystallized by Mitscherlich (1843[Mitscherlich, E. (1843). Ann. Phys. Chem. 134, 468-472.]) and later, preparative conditions were specified (Scacchi, 1867[Scacchi, A. (1867). Atti della Accademia delle Scienze Fisiche e Matematiche di Napoli, 3, 25-31, 636-641.]). Early crystallographic characterization is summarized by Groth (1908[Groth, P. (1908). Chemische Krystallographie - Die Anorganischen Oxo- und Sulfosalze, Vol. 2. Leipzig: Verlag Wilhelm Engelmann.]), where the cited paper of Traube (1894[Traube, H. (1894). N. Jahrb. Mineral. pp. 185-195.]) is of particular inter­est, since he determined the correct polar point group 3m for this compound and the isomorphic compounds LiNa3(MO4)2·6H2O with M = S, Se, Mo, Cr. Even a mixed compound LiNa3{(SO4)0.5(CrO4)0.5} was described within this series. A first crystal structure of the molybdate was published by Klevtsova et al. (1988[Klevtsova, R. F., Glinskaya, L. A. & Klevtsov, P. V. (1988). Kristallografiya, 33, 1380-1386.]). Later, Kaminskii and co-workers grew large crystals of the molybdate (Kaminskii et al., 2009[Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Rhee, H., Eichler, H. J. & Hanuza, J. (2009). Laser Phys. Lett. 6, 335-350.]) and selenate (Kaminskii et al., 2007[Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Eichler, H. J. & Rhee, H. (2007). Phys. Stat. Sol. 1, R16-R17.]) for studies on the non-linear optical effects of the materials, where they also re-determined and refined the crystal structures at ambient temperature, but without discussion of structural details.

2. Structural commentary

Single-crystal structure determination was performed at five temperatures between 90 and 293 K. At all temperatures, the structure could be solved in the polar space group R3c H (161). The cell parameters varied continuously with temperature (Table 1[link] and Fig. 1[link]). Thus, the results confirm the isomorphism to the molybdate LiNa3(MoO4)2·6H2O (Kaminskii et al., 2009[Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Rhee, H., Eichler, H. J. & Hanuza, J. (2009). Laser Phys. Lett. 6, 335-350.]) and no structural change within the investigated temperature range. Fig. 2[link] shows the asymmetric unit completed with atoms to visualize the coordination of sodium, lithium and sulfur. There is only one crystallographically distinguishable sodium and lithium position, but two for sulfur. Sodium is surrounded by six oxygen atoms, three belong to water mol­ecules (blue) and the remaining three to sulfate groups. The distance of 2.639 Å between Na1 and O4 is quite long. Also, the angle O1—Na1—O4 of 165° deviates considerably from 180°. However, in a first approximation the environment of sodium atoms can be described as a distorted octa­hedron. The water mol­ecules with O6 bridge three sodium ions to a trimeric unit as shown in Fig. 3[link]. The trimers look like cyclo­hexane rings (Fig. 3[link]b) in a chair conformation with the water mol­ecules on the upper three points (Fig. 3[link]c).

Table 1
Hydrogen-bond geometry (Å, °) at 273 K

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O2i 0.77 (5) 2.00 (5) 2.764 (11) 170 (5)
O6—H6B⋯O1 0.83 (4) 2.15 (4) 2.937 (7) 157 (4)
O5—H5B⋯O1ii 0.79 (4) 1.92 (4) 2.694 (7) 165 (4)
O5—H5A⋯O2iii 0.89 (4) 1.97 (4) 2.828 (6) 163 (3)
Symmetry codes: (i) [-y+{\script{1\over 3}}, -x+{\script{2\over 3}}, z+{\script{1\over 6}}]; (ii) [x-{\script{1\over 3}}, x-y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (iii) [-x+y, -x+1, z].
[Figure 1]
Figure 1
Variation of lattice parameters with temperature; a axis in red, c axis in blue, values divided by four, volume shown in black; circles: from single-crystal measurements, stars: data from powder X-ray measurement: a = 8.4552 (7) Å, c = 30.3032 (3) Å, V = 1876.18 Å.
[Figure 2]
Figure 2
Asymmetric unit plus bonds. Ellipsoids are drawn at the 50% level. Symmetry codes: (I) 1 − y, 1 + x − y, z; (II) −y − y, 1 − x, z; (III) −[{1\over 3}] − x + y, −[{2\over 3}] + y, −1/6 +) ; (IV) −x + y, −x, z; (V) 1 − y, x − y, z; (VI) 1 − x + y, 1 − x, z; (VII) [{1\over 3}] − x + y, −[{1\over 3}] + y, [{1\over 6}] + z; (VIII) 4/3 − y, [{2\over 3}] − x, [{1\over 6}] + z; (IX) [{1\over 3}] + x, [{2\over 3}] + x − y, [{1\over 6}] + z.
[Figure 3]
Figure 3
The trimeric unit Na3(H2O)3 viewing from different directions (a, b and c).

The lithium cation is coordinated by three water mol­ecules (O5) and the apex (O3) of a sulfate anion containing S1 completes a tetra­hedron (Fig. 2[link]). Thus, the trimeric Na3(H2O)3 and the double tetra­hedron Li(H2O)3(SO4) form the characteristic structural units of this compound. In Fig. 4[link], the arrangement of these units is shown within the unit cell separately for Na3(H2O)3 (Fig. 4[link]a) and Li(H2O)3(SO4) (Fig. 4[link]b). In Fig. 4[link]b the sulfate anions with S2 are added as darker colored tetra­hedra. The repeat unit requires stacking of six such units along the c-axis direction. The uniform orientation of the units underlines the polar character of the c axis.

[Figure 4]
Figure 4
Stacking of (a) the trimeric Na3(H2O)3 and (b) the Li(H2O)3(SO4) units along the c axis within a unit cell. Additional SO4 groups with the S2 sulfur atom are shown (dark yellow).

3. Supra­molecular features

The overall structure of the compound is polymeric with water and sulfate anions connecting the cations. The three water mol­ecules coordinated at the lithium cation are at the same time coordinated to three sodium cations, each sodium ion belonging to another trimeric sodium ring forming a water–cation coordination network, as shown in Fig. 5[link]. When including the entire coordination spheres of sodium, one can describe the trimers as edge-bridged octa­hedra, as illustrated in Fig. 6[link]a and 6b. Thereby, the O4 oxygen from the sulfate anion of S2 represents a common coordination point from below (Fig. 6[link]a). The height of sulfur S1 along the c axis is near that of Na1. Thus, the three corners of this sulfate tetra­hedron connect three trimeric units within a sodium ion layer, as shown in Fig. 7[link] from two viewing angles. As shown in Fig. 6[link], the sulfate with S2 is positioned with its oxygen atom (O4) at the center below the trimeric units, and thus the other three O1 atoms of this sulfate anion connect three trimeric sodium units from the adjacent layer below (Fig. 8[link]). In this way, the sulfate with S2 acts as a connector between sodium layers and the sulfate with S1 within one layer. Additional inter­connections between layers are realized by the sulfate of S1 as part of the double tetra­hedron Li(H2O)3(SO4), as illustrated in Fig. 9[link].

[Figure 5]
Figure 5
Cation–water coordination network within the ab plane. Sodium = gray, oxygen = blue, lithium = pink, hydrogen = white.
[Figure 6]
Figure 6
Representation of the sodium ion coordination within a trimeric unit: (a) stick and ball, (b) polyhedrons.
[Figure 7]
Figure 7
Inter­connection of trimeric units within one layer by sulfate tetra­hedra with the S1 sulfur atom viewed from two directions (a and b).
[Figure 8]
Figure 8
Inter­connections of sodium layers by sulfate tetra­hedra with the S2 sulfur atom (dark yellow).
[Figure 9]
Figure 9
Inter­connections of sodium layers by sulfate tetra­hedra with the S2 sulfur atom (dark yellow).

Investigation of the hydrogen-bond network (Table 1[link]) revealed that, inter­estingly, the water mol­ecules form hydrogen bonds only to the sulfate groups, but not between themselves as is observed in a channel-like arrangement in Li2SO4·H2O (Fig. 10[link]). However, as can be seen from Fig. 11[link], the hydrogen atoms H1 and H3 share O1 as a common acceptor atom of the sulfate with S1, and H2 and H4 do the same with O2 at the sulfate anion of S2. The bond lengths vary between 1.92 and 2.15 Å. Fig. 12[link] shows a larger part of the hydrogen-bond network, projected both along the c axis (Fig. 12[link]a) and perpendicular to the c axis (Fig. 12[link]b). From the latter, it can be recognized that the hydrogen bonds contribute to the bonding strength within a layer, but not between the layers. Connections between the layers are established by cation–anion coordination as shown in Figs. 8[link] and 9[link].

[Figure 10]
Figure 10
Hydrogen-bonded (blue bonds) chain of water mol­ecules along the b-axis direction in the structure of Li2SO4·H2O (Fugel et al., 2019[Fugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., Sugimoto, K. & Grabowsky, S. (2019). Chem. Eur. J. 25, 6523-6532.])
[Figure 11]
Figure 11
Hydrogen bonds from water mol­ecules to the S1 and S2 sulfate groups.
[Figure 12]
Figure 12
Larger part of the hydrogen-bond network projected on (a) the ab plane and (b) the ac plane.

4. Database survey

In the Inorganic Crystal Structure Database (ICSD), only 1164 records with space group R3c (No. 161) can be found. Most of them belong to the LiNbO3 or Whitlockite type [Whitlockite = MgCa9(PO4)6(HPO4)]. Compounds containing lithium in this space group numbered 179, of which 148 belong again to LiNbO3 type. The isomorphic molybdate (ICSD col 65006, col 420160) represents a structure type of its own. The isomorphic selenate LiNa3(SeO4)2·6H2O (Kaminskii et al. 2007[Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Eichler, H. J. & Rhee, H. (2007). Phys. Stat. Sol. 1, R16-R17.]) could not be found in the ICSD. Inter­estingly, the mineral chlorartinite, Mg2[Cl(OH)CO3]·2H2O, which forms easily in MgO-based building materials, also crystallizes in the space group R3c (Sugimoto et al., 2006[Sugimoto, K., Dinnebier, R. E. & Schlecht, T. (2006). J. Appl. Cryst. 39, 739-744.]).

5. Synthesis, crystallization and characterization

Single crystals were grown from about 120 mL of an aqueous solution containing Li2SO4 and Na2SO4 in a molar ratio of approx. 1:1 and an absolute concentration well below the solubility line (Fig. 13[link]). The solution was kept in an desiccator with 50% H2SO4 solution as drying agent. Over two weeks, a number of crystals with sizes of 1–7 mm were formed that showed the typical trigonal–pyramidal form. Small pieces were cut for XRD measurements. The density of 1.995 g cm−3 calculated from the parameters at 293 K (Table 1[link]) is in excellent agreement with the experimental value of 2.009 g cm−3 as cited in Groth (1908[Groth, P. (1908). Chemische Krystallographie - Die Anorganischen Oxo- und Sulfosalze, Vol. 2. Leipzig: Verlag Wilhelm Engelmann.]).

[Figure 13]
Figure 13
Solubility data in the system Li2SO4–Na2SO4–H2O at 298 K (Sohr et al., 2017[Sohr, J., Voigt, W. & Zeng, D. (2017). J. Phys. Chem. Ref. Data, 46, 1-221.]). Crystallization points of LiNa3(SO4)2·6H2O are shown in red.

Attempts were made to record powder XRD patterns from quickly ground crystals. Large crystals appear stable at least for some minutes on a filter paper. However, when grinding to achieve a crystal powder, dehydration took place. In cases of less intensive grinding, the texture effects were too large for a representative powder XRD pattern. Thus, particularly for powder XRD measurements, a suspension of fine crystals was prepared: To a 2 molar solution of Na2SO4, an equivalent amount of anhydrous Li2SO4 was added. The suspension was stirred two days at 298 K. The supernatant solution was deca­nted and subsequently some slurry was transferred into the expanded, upper part of a Hilgenberg glass capillary. By means of a centrifuge (30 minutes at 4000 r.p.m.), the crystals were pressed into the capillary. This way the available capillary volume was effectively filled with crystals (Fig. 14[link]). A PXRD pattern obtained under rotation is shown in Fig. 15[link] in comparison with the one calculated from the crystal structure.

[Figure 14]
Figure 14
Image of a Hilgenberg capillary (diameter 0.5 mm) filled with crystals of LiNa3(SO4)2·6H2O by means of centrifugal compaction.
[Figure 15]
Figure 15
Powder XRD pattern of LiNa3(SO4)2·6H2O recorded from a rotating capillary. Scan rate: 20 sec, steps 0.023°. For comparison, the calculated powder pattern from structural data at 293 K is also shown.

The powder pattern was measured at room temperature on a Bruker D8 Discover diffractometer in Bragg–Brentano geometry with Cu Kα radiation (λ = 1.5406 Å) and a linear detector Våntec-1 (geometry angle 1°). The measurements were made with a Göbel mirror as monochromator with a 1.0 mm slit and a 2.5° primary soller. The generator was set to 40 kV/40 mA. The program TOPAS 5.0 (Bruker, 2009[Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.]) was used to refine the lattice parameters (Fig. 1[link]). The solved structure from single crystal XRD at 293K was used as starting point of the refinement.

Thermal analyses (Fig. 16[link]) were performed from roughly crushed, large single crystals. Water is released in one step below 353 K. The mass loss of 29.2% is near the theoretical value of 28.7%. In a second experiment, the measured value was 29.1%.

[Figure 16]
Figure 16
Thermal analysis of LiNa3(SO4)2·6H2O. Heating rate: 5 K min−1; N2 purge: 300 ml min−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Structure solution using direct methods and a refinement of the atomic positions with respect to the isotropic displacement parameters led to the positions of the Na, Li, S and O atoms. The positions of the H atoms could be located from residual electron-density maxima after further refinement. H atoms were refined isotropically.

Table 2
Experimental details

  90 K 180 K 260 K 273 K 293 K
Crystal data
Chemical formula LiNa3(SO4)2·6H2O LiNa3(SO4)2·6H2O LiNa3(SO4)2·6H2O LiNa3(SO4)2·6H2O LiNa3(SO4)2·6H2O
Mr 376.13 376.13 376.13 376.13 376.13
Crystal system, space group Trigonal, R3c:H Trigonal, R3c:H Trigonal, R3c:H Trigonal, R3c:H Trigonal, R3c:H
a, c (Å) 8.3876 (13), 30.048 (7) 8.4006 (19), 30.111 (9) 8.426 (2), 30.197 (4) 8.4337 (17), 30.235 (6) 8.457 (7), 30.33 (3)
V3) 1830.7 (7) 1840.3 (10) 1856.6 (10) 1862.4 (8) 1879 (4)
Z 6 6 6 6 6
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.62 0.61 0.61 0.61 0.60
Crystal size (mm) 0.3 × 0.15 × 0.1 0.3 × 0.15 × 0.1 0.3 × 0.15 × 0.1 0.3 × 0.15 × 0.1 0.3 × 0.15 × 0.1
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2T
Absorption correction Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.924, 0.945 0.682, 0.941 0.864, 0.938 0.773, 0.866 0.517, 0.844
No. of measured, independent and observed [I > 2σ(I)] reflections 12154, 1089, 1089 4345, 1088, 1087 5068, 915, 906 8584, 1159, 1141 1376, 730, 695
Rint 0.027 0.035 0.034 0.035 0.054
(sin θ/λ)max−1) 0.685 0.692 0.643 0.694 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.036, 1.14 0.021, 0.053, 1.18 0.017, 0.043, 1.13 0.019, 0.053, 1.28 0.038, 0.105, 1.11
No. of reflections 1089 1088 915 1159 730
No. of parameters 78 78 78 77 78
No. of restraints 5 1 1 1 5
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.16, −0.18 0.23, −0.33 0.14, −0.20 0.19, −0.33 0.33, −0.47
Absolute structure Flack x determined using 539 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Classical Flack method preferred over Parsons because s.u. lower Flack x determined using 437 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 551 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.01 (3) −0.08 (10) −0.04 (6) 0.04 (4) −0.3 (3)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-RED (Stoe & Cie, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Lithium trisodium bis(sulfate) hexahydrate (Na3_Li_2SO4_6H2O-90K) top
Crystal data top
LiNa3(SO4)2·6H2ODx = 2.047 Mg m3
Mr = 376.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2749 reflections
a = 8.3876 (13) Åθ = 25.0–27.5°
c = 30.048 (7) ŵ = 0.62 mm1
V = 1830.7 (7) Å3T = 90 K
Z = 6Needle, colourless
F(000) = 11520.3 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2
diffractometer
1089 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1089 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.027
Detector resolution: 6.67 pixels mm-1θmax = 29.1°, θmin = 3.1°
rotation method scansh = 1011
Absorption correction: integration
Coppens (1970)
k = 1111
Tmin = 0.924, Tmax = 0.945l = 4040
12154 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0238P)2 + 0.6042P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max < 0.001
wR(F2) = 0.036Δρmax = 0.16 e Å3
S = 1.14Δρmin = 0.18 e Å3
1089 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
78 parametersExtinction coefficient: 0.0037 (7)
5 restraintsAbsolute structure: Flack x determined using 539 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.6666670.3333330.15432 (13)0.0085 (7)
Na10.23426 (7)0.26504 (7)0.06063 (2)0.00705 (14)
S10.6666670.3333330.04323 (2)0.00332 (12)
S20.3333330.6666670.12552 (2)0.00325 (12)
O10.39254 (13)0.53800 (12)0.10892 (3)0.00609 (18)
O20.51766 (12)0.36335 (12)0.02615 (3)0.00667 (18)
O30.6666670.3333330.09154 (6)0.0095 (4)
O40.3333330.6666670.17470 (6)0.0067 (3)
O50.14513 (13)0.42897 (12)0.01016 (3)0.00656 (17)
H5A0.053 (2)0.429 (3)0.0194 (7)0.016 (5)*
H5B0.106 (3)0.363 (3)0.0120 (6)0.020 (5)*
O60.02932 (13)0.20979 (13)0.10180 (3)0.00744 (19)
H6B0.007 (3)0.316 (2)0.1019 (8)0.017 (5)*
H6A0.022 (3)0.190 (3)0.1279 (5)0.017 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0089 (10)0.0089 (10)0.0078 (16)0.0044 (5)0.0000.000
Na10.0065 (2)0.0076 (2)0.0072 (2)0.00369 (19)0.00175 (17)0.00177 (18)
S10.00352 (15)0.00352 (15)0.0029 (2)0.00176 (8)0.0000.000
S20.00334 (15)0.00334 (15)0.0031 (2)0.00167 (8)0.0000.000
O10.0066 (4)0.0060 (4)0.0074 (4)0.0045 (3)0.0002 (3)0.0015 (3)
O20.0057 (4)0.0084 (4)0.0079 (4)0.0050 (3)0.0001 (3)0.0013 (3)
O30.0129 (5)0.0129 (5)0.0028 (8)0.0065 (3)0.0000.000
O40.0085 (5)0.0085 (5)0.0031 (7)0.0042 (2)0.0000.000
O50.0063 (4)0.0067 (4)0.0068 (4)0.0034 (3)0.0010 (3)0.0010 (3)
O60.0089 (4)0.0068 (4)0.0064 (4)0.0038 (4)0.0000 (3)0.0003 (3)
Geometric parameters (Å, º) top
Li1—O31.886 (4)Na1—O4v2.6330 (14)
Li1—O5i1.9434 (17)Na1—Na1vi3.6475 (10)
Li1—O5ii1.9435 (17)Na1—Na1iv3.6475 (10)
Li1—O5iii1.9435 (17)S1—O31.4515 (17)
Li1—Na1i3.748 (2)S1—O2vii1.4844 (9)
Li1—Na1iii3.748 (2)S1—O21.4844 (9)
Li1—Na1ii3.748 (2)S1—O2viii1.4844 (9)
Na1—O22.3331 (10)S2—O41.4777 (17)
Na1—O6iv2.3498 (11)S2—O1ix1.4818 (9)
Na1—O62.3682 (11)S2—O11.4818 (9)
Na1—O52.4036 (11)S2—O1x1.4818 (9)
Na1—O12.4638 (10)
O3—Li1—O5i110.37 (11)O1—Na1—Na1vi122.28 (3)
O3—Li1—O5ii110.36 (11)O4v—Na1—Na1vi46.16 (3)
O5i—Li1—O5ii108.56 (12)O2—Na1—Na1iv102.41 (3)
O3—Li1—O5iii110.36 (11)O6iv—Na1—Na1iv39.55 (3)
O5i—Li1—O5iii108.56 (12)O6—Na1—Na1iv85.42 (3)
O5ii—Li1—O5iii108.56 (12)O5—Na1—Na1iv123.78 (3)
O3—Li1—Na1i125.81 (5)O1—Na1—Na1iv142.40 (2)
O5i—Li1—Na1i34.21 (6)O4v—Na1—Na1iv46.16 (3)
O5ii—Li1—Na1i74.41 (8)Na1vi—Na1—Na1iv60.0
O5iii—Li1—Na1i119.02 (15)O2—Na1—Li1xi72.17 (3)
O3—Li1—Na1iii125.81 (5)O6iv—Na1—Li1xi167.14 (3)
O5i—Li1—Na1iii74.40 (8)O6—Na1—Li1xi104.31 (4)
O5ii—Li1—Na1iii119.01 (15)O5—Na1—Li1xi27.04 (3)
O5iii—Li1—Na1iii34.21 (6)O1—Na1—Li1xi74.64 (5)
Na1i—Li1—Na1iii89.23 (7)O4v—Na1—Li1xi98.29 (5)
O3—Li1—Na1ii125.81 (5)Na1vi—Na1—Li1xi105.94 (2)
O5i—Li1—Na1ii119.02 (15)Na1iv—Na1—Li1xi142.95 (5)
O5ii—Li1—Na1ii34.21 (6)O3—S1—O2vii110.23 (4)
O5iii—Li1—Na1ii74.40 (8)O3—S1—O2110.23 (4)
Na1i—Li1—Na1ii89.23 (7)O2vii—S1—O2108.71 (5)
Na1iii—Li1—Na1ii89.23 (7)O3—S1—O2viii110.23 (4)
O2—Na1—O6iv95.05 (4)O2vii—S1—O2viii108.70 (5)
O2—Na1—O6170.96 (4)O2—S1—O2viii108.71 (5)
O6iv—Na1—O688.14 (5)O4—S2—O1ix109.66 (4)
O2—Na1—O594.07 (4)O4—S2—O1109.66 (4)
O6iv—Na1—O5162.69 (4)O1ix—S2—O1109.28 (4)
O6—Na1—O585.10 (4)O4—S2—O1x109.66 (4)
O2—Na1—O187.29 (4)O1ix—S2—O1x109.28 (4)
O6iv—Na1—O1104.11 (4)O1—S2—O1x109.28 (4)
O6—Na1—O183.73 (3)S2—O1—Na1130.83 (5)
O5—Na1—O190.99 (3)S1—O2—Na1125.59 (6)
O2—Na1—O4v103.31 (4)S1—O3—Li1180.0
O6iv—Na1—O4v85.71 (4)S2—O4—Na1xii126.89 (4)
O6—Na1—O4v85.34 (4)S2—O4—Na1xiii126.89 (4)
O5—Na1—O4v77.88 (4)Na1xii—O4—Na1xiii87.68 (5)
O1—Na1—O4v165.02 (3)S2—O4—Na1i126.89 (4)
O2—Na1—Na1vi149.40 (3)Na1xii—O4—Na1i87.68 (5)
O6iv—Na1—Na1vi85.68 (3)Na1xiii—O4—Na1i87.68 (5)
O6—Na1—Na1vi39.18 (3)Li1xi—O5—Na1118.75 (8)
O5—Na1—Na1vi79.01 (3)Na1vi—O6—Na1101.27 (4)
Symmetry codes: (i) x+1/3, xy+2/3, z+1/6; (ii) y+4/3, x+2/3, z+1/6; (iii) x+y+1/3, y1/3, z+1/6; (iv) x+y, x, z; (v) y+2/3, x+1/3, z1/6; (vi) y, xy, z; (vii) x+y+1, x+1, z; (viii) y+1, xy, z; (ix) y+1, xy+1, z; (x) x+y, x+1, z; (xi) y+2/3, x+4/3, z1/6; (xii) x+y+1/3, y+2/3, z+1/6; (xiii) y+1/3, x+2/3, z+1/6.
Sodium-Lithium-Sulfate-Hexahydrate (Na3_Li_2SO4_6H2O-180K) top
Crystal data top
3(Na)Li2(SO4)6(H2O)Dx = 2.036 Mg m3
Mr = 376.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 7724 reflections
a = 8.4006 (19) Åθ = 2.8–30.0°
c = 30.111 (9) ŵ = 0.61 mm1
V = 1840.3 (10) Å3T = 180 K
Z = 6Needle, colourless
F(000) = 11520.3 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2
diffractometer
1088 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1087 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 29.5°, θmin = 3.1°
rotation method scansh = 1111
Absorption correction: integration
Coppens (1970)
k = 1111
Tmin = 0.682, Tmax = 0.941l = 4040
4345 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.053Δρmax = 0.23 e Å3
S = 1.18Δρmin = 0.33 e Å3
1088 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
78 parametersExtinction coefficient: 0.055 (4)
1 restraintAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.08 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.6666670.3333330.15397 (15)0.0112 (7)
Na10.23455 (8)0.26585 (8)0.06065 (3)0.0123 (2)
S10.6666670.3333330.04314 (2)0.00567 (18)
S20.3333330.6666670.12563 (2)0.00580 (18)
O10.39232 (16)0.53835 (14)0.10903 (4)0.0101 (2)
O20.51801 (14)0.36299 (14)0.02615 (4)0.0116 (2)
O30.6666670.3333330.09124 (10)0.0182 (6)
O40.3333330.6666670.17460 (9)0.0113 (5)
O50.14543 (15)0.42931 (14)0.00995 (4)0.0107 (2)
H5A0.057 (4)0.431 (3)0.0205 (10)0.019 (6)*
H5B0.106 (4)0.359 (4)0.0106 (11)0.021 (5)*
O60.02970 (15)0.20921 (15)0.10179 (4)0.0125 (2)
H6B0.011 (4)0.311 (5)0.1015 (12)0.029 (8)*
H6A0.023 (4)0.189 (4)0.1275 (11)0.019 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0125 (11)0.0125 (11)0.0087 (17)0.0062 (5)0.0000.000
Na10.0118 (3)0.0139 (3)0.0119 (3)0.0068 (2)0.00347 (19)0.00357 (19)
S10.0068 (2)0.0068 (2)0.0033 (3)0.00342 (11)0.0000.000
S20.0064 (2)0.0064 (2)0.0046 (3)0.00320 (11)0.0000.000
O10.0119 (4)0.0099 (4)0.0107 (5)0.0073 (3)0.0002 (3)0.0020 (3)
O20.0095 (4)0.0153 (5)0.0131 (4)0.0085 (4)0.0002 (3)0.0022 (3)
O30.0253 (9)0.0253 (9)0.0039 (11)0.0127 (4)0.0000.000
O40.0143 (7)0.0143 (7)0.0054 (11)0.0071 (4)0.0000.000
O50.0117 (4)0.0099 (4)0.0103 (5)0.0051 (3)0.0010 (4)0.0011 (3)
O60.0150 (5)0.0122 (5)0.0096 (5)0.0064 (4)0.0007 (3)0.0000 (4)
Geometric parameters (Å, º) top
Li1—O31.889 (6)Na1—O4v2.644 (2)
Li1—O5i1.9454 (19)Na1—Na1iv3.6617 (13)
Li1—O5ii1.9455 (19)Na1—Na1vi3.6618 (13)
Li1—O5iii1.9455 (19)S1—O31.448 (3)
Li1—Na1ii3.756 (3)S1—O21.4813 (11)
Li1—Na1iii3.756 (3)S1—O2vii1.4814 (11)
Li1—Na1i3.756 (3)S1—O2viii1.4814 (11)
Na1—O22.3393 (12)S2—O41.474 (3)
Na1—O6iv2.3546 (13)S2—O11.4804 (11)
Na1—O62.3734 (13)S2—O1ix1.4804 (11)
Na1—O52.4093 (13)S2—O1x1.4804 (11)
Na1—O12.4669 (12)
O3—Li1—O5i110.52 (13)O1—Na1—Na1iv142.29 (3)
O3—Li1—O5ii110.52 (13)O4v—Na1—Na1iv46.17 (4)
O5i—Li1—O5ii108.41 (13)O2—Na1—Na1vi149.23 (3)
O3—Li1—O5iii110.52 (13)O6iv—Na1—Na1vi85.51 (3)
O5i—Li1—O5iii108.41 (13)O6—Na1—Na1vi39.06 (3)
O5ii—Li1—O5iii108.40 (13)O5—Na1—Na1vi79.08 (3)
O3—Li1—Na1ii126.01 (6)O1—Na1—Na1vi122.25 (3)
O5i—Li1—Na1ii118.70 (17)O4v—Na1—Na1vi46.17 (4)
O5ii—Li1—Na1ii34.19 (6)Na1iv—Na1—Na1vi60.0
O5iii—Li1—Na1ii74.26 (9)O2—Na1—Li1xi72.31 (3)
O3—Li1—Na1iii126.01 (6)O6iv—Na1—Li1xi167.18 (4)
O5i—Li1—Na1iii74.26 (9)O6—Na1—Li1xi104.59 (4)
O5ii—Li1—Na1iii118.70 (17)O5—Na1—Li1xi26.99 (3)
O5iii—Li1—Na1iii34.19 (6)O1—Na1—Li1xi74.93 (6)
Na1ii—Li1—Na1iii88.94 (8)O4v—Na1—Li1xi98.14 (7)
O3—Li1—Na1i126.01 (6)Na1iv—Na1—Li1xi142.78 (5)
O5i—Li1—Na1i34.19 (6)Na1vi—Na1—Li1xi105.95 (2)
O5ii—Li1—Na1i74.27 (9)O3—S1—O2110.20 (6)
O5iii—Li1—Na1i118.70 (17)O3—S1—O2vii110.21 (6)
Na1ii—Li1—Na1i88.94 (8)O2—S1—O2vii108.73 (6)
Na1iii—Li1—Na1i88.94 (8)O3—S1—O2viii110.21 (6)
O2—Na1—O6iv94.92 (4)O2—S1—O2viii108.73 (6)
O2—Na1—O6171.37 (5)O2vii—S1—O2viii108.73 (6)
O6iv—Na1—O687.90 (6)O4—S2—O1109.74 (6)
O2—Na1—O594.13 (4)O4—S2—O1ix109.74 (6)
O6iv—Na1—O5162.50 (5)O1—S2—O1ix109.20 (6)
O6—Na1—O585.35 (5)O4—S2—O1x109.74 (6)
O2—Na1—O187.57 (4)O1—S2—O1x109.20 (6)
O6iv—Na1—O1104.10 (4)O1ix—S2—O1x109.20 (6)
O6—Na1—O183.82 (4)S2—O1—Na1130.92 (7)
O5—Na1—O191.21 (4)S1—O2—Na1125.78 (7)
O2—Na1—O4v103.11 (6)S1—O3—Li1180.0
O6iv—Na1—O4v85.59 (5)S2—O4—Na1xii126.90 (6)
O6—Na1—O4v85.22 (5)S2—O4—Na1xiii126.90 (6)
O5—Na1—O4v77.78 (5)Na1xii—O4—Na1xiii87.67 (9)
O1—Na1—O4v165.06 (3)S2—O4—Na1i126.90 (6)
O2—Na1—Na1iv102.10 (4)Na1xii—O4—Na1i87.67 (9)
O6iv—Na1—Na1iv39.43 (3)Na1xiii—O4—Na1i87.67 (9)
O6—Na1—Na1iv85.26 (3)Li1xi—O5—Na1118.83 (9)
O5—Na1—Na1iv123.70 (3)Na1vi—O6—Na1101.51 (5)
Symmetry codes: (i) x+1/3, xy+2/3, z+1/6; (ii) y+4/3, x+2/3, z+1/6; (iii) x+y+1/3, y1/3, z+1/6; (iv) x+y, x, z; (v) y+2/3, x+1/3, z1/6; (vi) y, xy, z; (vii) y+1, xy, z; (viii) x+y+1, x+1, z; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) y+2/3, x+4/3, z1/6; (xii) x+y+1/3, y+2/3, z+1/6; (xiii) y+1/3, x+2/3, z+1/6.
Sodium-Lithium-Sulfate-Hexahydrate (Na3_Li_2SO4_6H2O-260K) top
Crystal data top
3(Na)Li2(SO4)6(H2O)Dx = 2.018 Mg m3
Mr = 376.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 4304 reflections
a = 8.426 (2) Åθ = 2.6–21.0°
c = 30.197 (4) ŵ = 0.61 mm1
V = 1856.6 (10) Å3T = 260 K
Z = 6Needle, colourless
F(000) = 11520.3 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2
diffractometer
915 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus906 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.034
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 3.1°
rotation method scansh = 1010
Absorption correction: integration
Coppens (1970)
k = 910
Tmin = 0.864, Tmax = 0.938l = 3838
5068 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0254P)2 + 0.5038P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max < 0.001
wR(F2) = 0.043Δρmax = 0.14 e Å3
S = 1.13Δρmin = 0.20 e Å3
915 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
78 parametersExtinction coefficient: 0.0031 (4)
1 restraintAbsolute structure: Flack x determined using 437 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.04 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3333330.6666670.8465 (2)0.0164 (12)
Na10.76508 (11)0.73321 (11)0.93934 (4)0.0204 (2)
S10.3333330.6666670.95693 (2)0.01085 (19)
S20.6666670.3333330.87429 (2)0.01117 (19)
O10.6085 (2)0.46143 (19)0.89076 (5)0.0167 (3)
O20.4815 (2)0.6374 (2)0.97377 (5)0.0188 (3)
O30.3333330.6666670.90900 (9)0.0282 (7)
O40.6666670.3333330.82539 (8)0.0181 (6)
O50.8541 (2)0.56971 (19)0.99018 (5)0.0172 (3)
H5A0.949 (5)0.569 (4)0.9803 (10)0.027 (8)*
H5B0.890 (4)0.630 (4)1.0103 (11)0.027 (8)*
O61.0306 (2)0.7917 (2)0.89835 (6)0.0200 (3)
H6B1.014 (5)0.690 (6)0.8961 (11)0.045 (10)*
H6A1.017 (5)0.807 (5)0.8738 (12)0.044 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0178 (17)0.0178 (17)0.014 (3)0.0089 (9)0.0000.000
Na10.0190 (4)0.0218 (4)0.0207 (4)0.0104 (4)0.0049 (3)0.0054 (3)
S10.0115 (2)0.0115 (2)0.0096 (4)0.00575 (12)0.0000.000
S20.0113 (2)0.0113 (2)0.0109 (4)0.00565 (12)0.0000.000
O10.0181 (7)0.0165 (7)0.0194 (7)0.0114 (6)0.0007 (5)0.0030 (5)
O20.0160 (7)0.0236 (7)0.0222 (7)0.0138 (6)0.0009 (6)0.0032 (6)
O30.0384 (11)0.0384 (11)0.0076 (14)0.0192 (6)0.0000.000
O40.0221 (9)0.0221 (9)0.0102 (12)0.0110 (4)0.0000.000
O50.0184 (7)0.0154 (7)0.0171 (7)0.0079 (6)0.0020 (6)0.0013 (6)
O60.0223 (8)0.0196 (8)0.0179 (7)0.0102 (7)0.0005 (6)0.0009 (6)
Geometric parameters (Å, º) top
Li1—O31.888 (6)Na1—O4v2.656 (2)
Li1—O5i1.948 (3)Na1—Na1iv3.6830 (17)
Li1—O5ii1.948 (3)Na1—Na1vi3.6830 (17)
Li1—O5iii1.948 (3)S1—O31.447 (3)
Li1—Na1iii3.770 (4)S1—O21.4788 (15)
Li1—Na1i3.770 (4)S1—O2vii1.4788 (15)
Li1—Na1ii3.770 (4)S1—O2viii1.4788 (15)
Na1—O22.3478 (17)S2—O41.477 (2)
Na1—O6iv2.3584 (18)S2—O1ix1.4769 (14)
Na1—O62.3825 (19)S2—O1x1.4769 (14)
Na1—O52.4188 (16)S2—O11.4769 (14)
Na1—O12.4727 (17)
O3—Li1—O5i110.85 (17)O1—Na1—Na1iv142.14 (4)
O3—Li1—O5ii110.85 (17)O4v—Na1—Na1iv46.11 (4)
O5i—Li1—O5ii108.06 (18)O2—Na1—Na1vi149.08 (5)
O3—Li1—O5iii110.85 (17)O6iv—Na1—Na1vi85.36 (5)
O5i—Li1—O5iii108.06 (18)O6—Na1—Na1vi38.79 (4)
O5ii—Li1—O5iii108.06 (18)O5—Na1—Na1vi79.18 (5)
O3—Li1—Na1iii126.24 (8)O1—Na1—Na1vi122.10 (5)
O5i—Li1—Na1iii118.2 (2)O4v—Na1—Na1vi46.11 (4)
O5ii—Li1—Na1iii73.96 (12)Na1iv—Na1—Na1vi60.000 (1)
O5iii—Li1—Na1iii34.14 (9)O2—Na1—Li1xi72.52 (5)
O3—Li1—Na1i126.24 (8)O6iv—Na1—Li1xi167.16 (6)
O5i—Li1—Na1i34.14 (9)O6—Na1—Li1xi104.84 (6)
O5ii—Li1—Na1i118.2 (2)O5—Na1—Li1xi26.88 (5)
O5iii—Li1—Na1i73.96 (12)O1—Na1—Li1xi75.28 (8)
Na1iii—Li1—Na1i88.61 (11)O4v—Na1—Li1xi98.04 (8)
O3—Li1—Na1ii126.24 (8)Na1iv—Na1—Li1xi142.58 (7)
O5i—Li1—Na1ii73.96 (12)Na1vi—Na1—Li1xi105.97 (3)
O5ii—Li1—Na1ii34.14 (9)O3—S1—O2110.11 (7)
O5iii—Li1—Na1ii118.2 (2)O3—S1—O2vii110.12 (7)
Na1iii—Li1—Na1ii88.61 (11)O2—S1—O2vii108.82 (7)
Na1i—Li1—Na1ii88.61 (11)O3—S1—O2viii110.12 (7)
O2—Na1—O6iv94.66 (6)O2—S1—O2viii108.82 (7)
O2—Na1—O6171.88 (7)O2vii—S1—O2viii108.82 (7)
O6iv—Na1—O687.76 (9)O4—S2—O1ix109.68 (7)
O2—Na1—O594.30 (6)O4—S2—O1x109.68 (7)
O6iv—Na1—O5162.39 (7)O1ix—S2—O1x109.26 (7)
O6—Na1—O585.48 (7)O4—S2—O1109.69 (6)
O2—Na1—O187.96 (6)O1ix—S2—O1109.26 (7)
O6iv—Na1—O1104.13 (6)O1x—S2—O1109.26 (7)
O6—Na1—O183.93 (6)S2—O1—Na1131.17 (9)
O5—Na1—O191.31 (6)S1—O2—Na1126.11 (9)
O2—Na1—O4v103.01 (6)S1—O3—Li1180.0
O6iv—Na1—O4v85.37 (6)S2—O4—Na1xii126.82 (5)
O6—Na1—O4v84.90 (6)S2—O4—Na1xiii126.82 (5)
O5—Na1—O4v77.85 (6)Na1xii—O4—Na1xiii87.78 (7)
O1—Na1—O4v165.00 (5)S2—O4—Na1iii126.82 (5)
O2—Na1—Na1iv101.74 (5)Na1xii—O4—Na1iii87.78 (7)
O6iv—Na1—Na1iv39.26 (5)Na1xiii—O4—Na1iii87.78 (7)
O6—Na1—Na1iv85.03 (4)Li1xi—O5—Na1118.98 (12)
O5—Na1—Na1iv123.73 (5)Na1vi—O6—Na1101.95 (7)
Symmetry codes: (i) x+y+2/3, y+1/3, z1/6; (ii) y+2/3, x+4/3, z1/6; (iii) x1/3, xy+1/3, z1/6; (iv) x+y+1, x+2, z; (v) y+4/3, x+5/3, z+1/6; (vi) y+2, xy+1, z; (vii) y+1, xy+1, z; (viii) x+y, x+1, z; (ix) x+y+1, x+1, z; (x) y+1, xy, z; (xi) y+4/3, x+2/3, z+1/6; (xii) x+y+2/3, y2/3, z1/6; (xiii) y+5/3, x+4/3, z1/6.
Sodium-Lithium-Sulfate-Hexahydrate (Na3_Li_2SO4_6H2O-273K) top
Crystal data top
3(Na)Li2(SO4)6(H2O)Dx = 2.012 Mg m3
Mr = 376.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 10790 reflections
a = 8.4337 (17) Åθ = 2.8–27.5°
c = 30.235 (6) ŵ = 0.61 mm1
V = 1862.4 (8) Å3T = 273 K
Z = 6Needle, colourless
F(000) = 11520.3 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2
diffractometer
1159 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1141 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.035
Detector resolution: 6.67 pixels mm-1θmax = 29.6°, θmin = 3.1°
rotation method scansh = 1111
Absorption correction: integration
Coppens (1970)
k = 1011
Tmin = 0.773, Tmax = 0.866l = 4040
8584 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.6465P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max < 0.001
S = 1.28Δρmax = 0.19 e Å3
1159 reflectionsΔρmin = 0.33 e Å3
77 parametersAbsolute structure: Flack x determined using 551 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.04 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.6666670.3333330.1535 (2)0.0180 (12)
Na10.23496 (12)0.26693 (13)0.06069 (4)0.0207 (2)
S10.6666670.3333330.04304 (3)0.01061 (16)
S20.3333330.6666670.12574 (3)0.01110 (16)
O10.3914 (2)0.5385 (2)0.10929 (5)0.0170 (3)
O20.5185 (2)0.3624 (2)0.02624 (6)0.0193 (3)
O30.6666670.3333330.09098 (10)0.0290 (7)
O40.3333330.6666670.17459 (9)0.0190 (5)
O50.1459 (2)0.4305 (2)0.00968 (6)0.0174 (3)
H5A0.047 (6)0.434 (5)0.0201 (13)0.034 (10)*
H5B0.108 (5)0.365 (5)0.0120 (13)0.030 (9)*
O60.0306 (2)0.2082 (2)0.10174 (6)0.0205 (3)
H6B0.009 (6)0.314 (7)0.1031 (13)0.043 (11)*
H6A0.023 (7)0.188 (6)0.1279 (15)0.051 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0190 (18)0.0190 (18)0.016 (3)0.0095 (9)0.0000.000
Na10.0189 (4)0.0228 (5)0.0206 (4)0.0107 (4)0.0053 (3)0.0055 (4)
S10.0116 (2)0.0116 (2)0.0087 (3)0.00578 (11)0.0000.000
S20.0112 (2)0.0112 (2)0.0108 (4)0.00562 (11)0.0000.000
O10.0181 (7)0.0173 (7)0.0192 (7)0.0117 (6)0.0011 (6)0.0032 (6)
O20.0166 (7)0.0242 (8)0.0224 (7)0.0141 (6)0.0000 (6)0.0033 (6)
O30.0393 (12)0.0393 (12)0.0083 (13)0.0196 (6)0.0000.000
O40.0230 (8)0.0230 (8)0.0110 (12)0.0115 (4)0.0000.000
O50.0186 (7)0.0158 (7)0.0173 (7)0.0083 (6)0.0021 (6)0.0009 (6)
O60.0235 (9)0.0193 (8)0.0186 (8)0.0106 (7)0.0004 (6)0.0009 (7)
Geometric parameters (Å, º) top
Li1—O31.889 (7)Na1—O4v2.661 (2)
Li1—O5i1.948 (3)Na1—Na1vi3.6879 (18)
Li1—O5ii1.948 (3)Na1—Na1iv3.6879 (18)
Li1—O5iii1.948 (3)S1—O31.449 (3)
Li1—Na1i3.775 (4)S1—O2vii1.4783 (16)
Li1—Na1iii3.775 (4)S1—O21.4783 (16)
Li1—Na1ii3.775 (4)S1—O2viii1.4783 (16)
Na1—O22.3509 (19)S2—O41.477 (3)
Na1—O6iv2.362 (2)S2—O1ix1.4781 (16)
Na1—O62.386 (2)S2—O1x1.4781 (16)
Na1—O52.4253 (18)S2—O11.4781 (16)
Na1—O12.4745 (18)
O3—Li1—O5i110.80 (19)O1—Na1—Na1vi122.09 (5)
O3—Li1—O5ii110.80 (19)O4v—Na1—Na1vi46.13 (4)
O5i—Li1—O5ii108.1 (2)O2—Na1—Na1iv101.65 (6)
O3—Li1—O5iii110.80 (19)O6iv—Na1—Na1iv39.26 (5)
O5i—Li1—O5iii108.1 (2)O6—Na1—Na1iv84.99 (5)
O5ii—Li1—O5iii108.1 (2)O5—Na1—Na1iv123.70 (5)
O3—Li1—Na1i126.29 (8)O1—Na1—Na1iv142.09 (4)
O5i—Li1—Na1i34.22 (10)O4v—Na1—Na1iv46.13 (4)
O5ii—Li1—Na1i73.93 (13)Na1vi—Na1—Na1iv60.0
O5iii—Li1—Na1i118.2 (3)O2—Na1—Li1xi72.56 (5)
O3—Li1—Na1iii126.29 (8)O6iv—Na1—Li1xi167.19 (6)
O5i—Li1—Na1iii73.93 (13)O6—Na1—Li1xi104.94 (7)
O5ii—Li1—Na1iii118.2 (3)O5—Na1—Li1xi26.85 (5)
O5iii—Li1—Na1iii34.22 (10)O1—Na1—Li1xi75.37 (9)
Na1i—Li1—Na1iii88.54 (12)O4v—Na1—Li1xi97.99 (9)
O3—Li1—Na1ii126.29 (8)Na1vi—Na1—Li1xi105.97 (4)
O5i—Li1—Na1ii118.2 (3)Na1iv—Na1—Li1xi142.53 (8)
O5ii—Li1—Na1ii34.22 (10)O3—S1—O2vii110.10 (8)
O5iii—Li1—Na1ii73.93 (13)O3—S1—O2110.10 (8)
Na1i—Li1—Na1ii88.54 (12)O2vii—S1—O2108.83 (8)
Na1iii—Li1—Na1ii88.54 (12)O3—S1—O2viii110.10 (8)
O2—Na1—O6iv94.65 (7)O2vii—S1—O2viii108.83 (8)
O2—Na1—O6171.96 (7)O2—S1—O2viii108.83 (8)
O6iv—Na1—O687.63 (9)O4—S2—O1ix109.66 (7)
O2—Na1—O594.28 (6)O4—S2—O1x109.66 (7)
O6iv—Na1—O5162.35 (7)O1ix—S2—O1x109.28 (7)
O6—Na1—O585.62 (7)O4—S2—O1109.66 (7)
O2—Na1—O188.05 (7)O1ix—S2—O1109.28 (7)
O6iv—Na1—O1104.07 (6)O1x—S2—O1109.28 (7)
O6—Na1—O183.92 (6)S2—O1—Na1131.18 (9)
O5—Na1—O191.41 (6)S1—O2—Na1126.18 (10)
O2—Na1—O4v102.93 (7)S1—O3—Li1180.0
O6iv—Na1—O4v85.39 (6)S2—O4—Na1xii126.84 (6)
O6—Na1—O4v84.92 (6)S2—O4—Na1xiii126.84 (6)
O5—Na1—O4v77.80 (6)Na1xii—O4—Na1xiii87.75 (8)
O1—Na1—O4v165.02 (5)S2—O4—Na1i126.84 (6)
O2—Na1—Na1vi149.02 (5)Na1xii—O4—Na1i87.75 (8)
O6iv—Na1—Na1vi85.31 (5)Na1xiii—O4—Na1i87.75 (8)
O6—Na1—Na1vi38.80 (5)Li1xi—O5—Na1118.93 (13)
O5—Na1—Na1vi79.22 (5)Na1vi—O6—Na1101.94 (8)
Symmetry codes: (i) x+1/3, xy+2/3, z+1/6; (ii) y+4/3, x+2/3, z+1/6; (iii) x+y+1/3, y1/3, z+1/6; (iv) x+y, x, z; (v) y+2/3, x+1/3, z1/6; (vi) y, xy, z; (vii) y+1, xy, z; (viii) x+y+1, x+1, z; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) y+2/3, x+4/3, z1/6; (xii) x+y+1/3, y+2/3, z+1/6; (xiii) y+1/3, x+2/3, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O2xiii0.77 (5)2.00 (5)2.764 (11)170 (5)
O6—H6B···O10.83 (4)2.15 (4)2.937 (7)157 (4)
O5—H5B···O1xiv0.79 (4)1.92 (4)2.694 (7)165 (4)
O5—H5A···O2ix0.89 (4)1.97 (4)2.828 (6)163 (3)
Symmetry codes: (ix) x+y, x+1, z; (xiii) y+1/3, x+2/3, z+1/6; (xiv) x1/3, xy+1/3, z1/6.
(Na3_Li_2SO4_6H2O-293K) top
Crystal data top
H12LiNa3O14S2Dx = 1.995 Mg m3
Mr = 376.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 5111 reflections
a = 8.457 (7) Åθ = 2.9–27.1°
c = 30.33 (3) ŵ = 0.60 mm1
V = 1879 (4) Å3T = 293 K
Z = 6Needle, colourless
F(000) = 11520.3 × 0.15 × 0.1 mm
Data collection top
Stoe IPDS 2T
diffractometer
730 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus695 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.054
Detector resolution: 6.67 pixels mm-1θmax = 27.1°, θmin = 3.9°
rotation method scansh = 910
Absorption correction: integration
Coppens (1970)
k = 610
Tmin = 0.517, Tmax = 0.844l = 3835
1376 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0771P)2 + 1.3675P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.105Δρmax = 0.33 e Å3
S = 1.11Δρmin = 0.47 e Å3
730 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
78 parametersExtinction coefficient: 0.0054 (14)
5 restraintsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.6666670.3333330.1539 (4)0.026 (3)
Na10.2353 (3)0.2672 (3)0.06061 (9)0.0300 (5)
S10.6666670.3333330.04301 (5)0.0167 (4)
S20.3333330.6666670.12572 (5)0.0169 (4)
O10.3912 (5)0.5387 (4)0.10917 (11)0.0263 (7)
O20.5187 (4)0.3622 (5)0.02643 (11)0.0291 (7)
O30.6666670.3333330.0906 (2)0.0365 (18)
O40.3333330.6666670.1745 (2)0.0250 (13)
O50.1454 (5)0.4298 (4)0.00960 (11)0.0256 (7)
H5A0.059 (6)0.440 (9)0.018 (2)0.035 (17)*
H5B0.096 (9)0.354 (8)0.0099 (18)0.039 (16)*
O60.0302 (5)0.2083 (4)0.10168 (12)0.0290 (7)
H6B0.001 (11)0.317 (3)0.101 (3)0.05 (2)*
H6A0.030 (11)0.173 (10)0.1268 (10)0.042 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.027 (4)0.027 (4)0.025 (7)0.014 (2)0.0000.000
Na10.0298 (9)0.0331 (10)0.0285 (9)0.0167 (8)0.0058 (7)0.0065 (7)
S10.0188 (6)0.0188 (6)0.0127 (8)0.0094 (3)0.0000.000
S20.0173 (6)0.0173 (6)0.0161 (9)0.0087 (3)0.0000.000
O10.0312 (17)0.0265 (16)0.0266 (16)0.0185 (14)0.0024 (12)0.0045 (12)
O20.0261 (17)0.0360 (17)0.0297 (15)0.0189 (14)0.0011 (12)0.0040 (13)
O30.048 (3)0.048 (3)0.013 (3)0.0242 (15)0.0000.000
O40.029 (2)0.029 (2)0.017 (3)0.0146 (11)0.0000.000
O50.0265 (16)0.0226 (15)0.0271 (14)0.0118 (13)0.0003 (11)0.0005 (10)
O60.0351 (19)0.0276 (18)0.0243 (15)0.0156 (16)0.0013 (12)0.0008 (13)
Geometric parameters (Å, º) top
Li1—O31.920 (15)Na1—O4v2.671 (5)
Li1—O5i1.953 (6)Na1—Na1iv3.702 (5)
Li1—O5ii1.953 (6)Na1—Na1vi3.702 (5)
Li1—O5iii1.953 (6)S1—O31.443 (6)
Li1—Na1ii3.775 (8)S1—O21.477 (3)
Li1—Na1iii3.775 (8)S1—O2vii1.477 (3)
Li1—Na1i3.775 (8)S1—O2viii1.477 (3)
Na1—O22.354 (4)S2—O41.479 (6)
Na1—O6iv2.372 (4)S2—O1ix1.480 (3)
Na1—O62.392 (4)S2—O1x1.480 (3)
Na1—O52.431 (4)S2—O11.480 (3)
Na1—O12.481 (4)
O3—Li1—O5i110.3 (4)O1—Na1—Na1iv142.12 (9)
O3—Li1—O5ii110.3 (4)O4v—Na1—Na1iv46.12 (9)
O5i—Li1—O5ii108.6 (4)O2—Na1—Na1vi149.12 (10)
O3—Li1—O5iii110.3 (4)O6iv—Na1—Na1vi85.24 (9)
O5i—Li1—O5iii108.6 (4)O6—Na1—Na1vi38.80 (10)
O5ii—Li1—O5iii108.6 (4)O5—Na1—Na1vi79.04 (11)
O3—Li1—Na1ii126.13 (16)O1—Na1—Na1vi122.00 (10)
O5i—Li1—Na1ii118.8 (5)O4v—Na1—Na1vi46.12 (9)
O5ii—Li1—Na1ii34.45 (19)Na1iv—Na1—Na1vi60.0
O5iii—Li1—Na1ii74.2 (2)O2—Na1—Li1xi72.81 (11)
O3—Li1—Na1iii126.13 (16)O6iv—Na1—Li1xi167.34 (12)
O5i—Li1—Na1iii74.2 (2)O6—Na1—Li1xi104.87 (13)
O5ii—Li1—Na1iii118.8 (5)O5—Na1—Li1xi27.04 (10)
O5iii—Li1—Na1iii34.45 (19)O1—Na1—Li1xi75.20 (18)
Na1ii—Li1—Na1iii88.8 (2)O4v—Na1—Li1xi98.10 (19)
O3—Li1—Na1i126.13 (16)Na1iv—Na1—Li1xi142.67 (16)
O5i—Li1—Na1i34.45 (19)Na1vi—Na1—Li1xi105.96 (7)
O5ii—Li1—Na1i74.2 (2)O3—S1—O2109.90 (16)
O5iii—Li1—Na1i118.8 (5)O3—S1—O2vii109.90 (16)
Na1ii—Li1—Na1i88.8 (2)O2—S1—O2vii109.04 (16)
Na1iii—Li1—Na1i88.8 (2)O3—S1—O2viii109.90 (16)
O2—Na1—O6iv94.56 (13)O2—S1—O2viii109.04 (16)
O2—Na1—O6171.91 (15)O2vii—S1—O2viii109.04 (16)
O6iv—Na1—O687.53 (17)O4—S2—O1ix109.82 (15)
O2—Na1—O594.58 (13)O4—S2—O1x109.82 (15)
O6iv—Na1—O5162.10 (14)O1ix—S2—O1x109.13 (15)
O6—Na1—O585.57 (14)O4—S2—O1109.82 (15)
O2—Na1—O188.07 (14)O1ix—S2—O1109.12 (15)
O6iv—Na1—O1104.17 (14)O1x—S2—O1109.12 (15)
O6—Na1—O183.84 (12)S2—O1—Na1131.4 (2)
O5—Na1—O191.50 (13)S1—O2—Na1126.6 (2)
O2—Na1—O4v103.02 (15)S1—O3—Li1180.0
O6iv—Na1—O4v85.33 (14)S2—O4—Na1xii126.84 (13)
O6—Na1—O4v84.92 (14)S2—O4—Na1xiii126.84 (13)
O5—Na1—O4v77.62 (14)Na1xii—O4—Na1xiii87.75 (19)
O1—Na1—O4v164.92 (11)S2—O4—Na1i126.84 (13)
O2—Na1—Na1iv101.59 (12)Na1xii—O4—Na1i87.75 (19)
O6iv—Na1—Na1iv39.20 (10)Na1xiii—O4—Na1i87.75 (19)
O6—Na1—Na1iv84.96 (9)Li1xi—O5—Na1118.5 (3)
O5—Na1—Na1iv123.52 (10)Na1vi—O6—Na1102.00 (15)
Symmetry codes: (i) x+1/3, xy+2/3, z+1/6; (ii) y+4/3, x+2/3, z+1/6; (iii) x+y+1/3, y1/3, z+1/6; (iv) x+y, x, z; (v) y+2/3, x+1/3, z1/6; (vi) y, xy, z; (vii) y+1, xy, z; (viii) x+y+1, x+1, z; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) y+2/3, x+4/3, z1/6; (xii) x+y+1/3, y+2/3, z+1/6; (xiii) y+1/3, x+2/3, z+1/6.
 

Acknowledgements

Thanks to Regina Mossig for recording the thermal analyses.

References

First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationFilippov, V. K. & Kalinkin, A. M. (1989). Zh. Neorg. Khim. 32, 215–217.  Google Scholar
First citationFugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., Sugimoto, K. & Grabowsky, S. (2019). Chem. Eur. J. 25, 6523–6532.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationGroth, P. (1908). Chemische Krystallographie – Die Anorganischen Oxo- und Sulfosalze, Vol. 2. Leipzig: Verlag Wilhelm Engelmann.  Google Scholar
First citationJi, Z.-Y., Peng, J.-L., Yuan, J.-S., Li, D.-C. & Zhao, Y.-Y. (2015). Fluid Phase Equilib. 397, 81–86.  Web of Science CrossRef CAS Google Scholar
First citationKaminskii, A. A., Bohatý, L., Becker, P., Held, P., Eichler, H. J. & Rhee, H. (2007). Phys. Stat. Sol. 1, R16–R17.  CAS Google Scholar
First citationKaminskii, A. A., Bohatý, L., Becker, P., Held, P., Rhee, H., Eichler, H. J. & Hanuza, J. (2009). Laser Phys. Lett. 6, 335–350.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A. & Klevtsov, P. V. (1988). Kristallografiya, 33, 1380–1386.  Google Scholar
First citationMitscherlich, E. (1843). Ann. Phys. Chem. 134, 468–472.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScacchi, A. (1867). Atti della Accademia delle Scienze Fisiche e Matematiche di Napoli, 3, 25–31, 636–641.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSohr, J., Voigt, W. & Zeng, D. (2017). J. Phys. Chem. Ref. Data, 46, 1–221.  Web of Science CrossRef Google Scholar
First citationStoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSugimoto, K., Dinnebier, R. E. & Schlecht, T. (2006). J. Appl. Cryst. 39, 739–744.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTraube, H. (1894). N. Jahrb. Mineral. pp. 185–195.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds