research communications
LiNa3(SO4)2·6H2O: a lithium double salt causing trouble in the industrial conversion of Li2SO4 into LiOH
aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Str. 29, D-09596 Freiberg, Germany
*Correspondence e-mail: Dr-Horst.Schmidt@gmx.de, wolfgang.voigt@chemie.tu-freiberg.de
Lithium trisodium bis(sulfate) hexahydrate, LiNa3(SO4)2·6H2O was crystallized from aqueous solution at 298 K and the structure solved at different temperatures between 90 and 293 K. The structure is isomorphic with the corresponding molybdate and selenate double salt hydrate. It belongs to the non-centrosymmetric trigonal R3c (161). The temperature dependence of the lattice parameters has been determined. Further characterization by powder XRD and is reported.
Keywords: crystal structure; lithium sulfate; double salt hydrate; isomorphism.
1. Chemical context
In the presently preferred process of LiOH production for batteries, an aqueous Li2SO4 solution is reacted with NaOH at temperatures well below 273 K (mostly at 268 K) for separating sodium sulfate in the form of its decahydrate (Glauber salt) according to the equation
Li2SO4(aq) + 2 NaOH(aq) → 2 LiOH(aq) + Na2SO4·10H2O(s)
The sodium sulfate hydrate is removed and from the remaining solution, water is evaporated to crystallize LiOH·H2O. However, during cooling the solution from ambient temperature, the solution passes the stability field of LiNa3(SO4)2·6H2O, which extends from 271.3 to 321 K (Sohr et al., 2017). Once formed, it will not disappear on further cooling. Rapid and reliable detection of its presence or absence by means of XRD is important. A powder diffraction pattern is available from the PDF database (Powder Diffraction File 33-1258, International Center for Diffraction Data), but no conclusive comment is attached regarding the conditions under which the material was obtained and prepared for powder XRD. It is known that the material loses its water of crystallization very easily. Therefore, in their careful thermodynamic study of the system Li2SO4–Na2SO4–H2O at 298 K, Filippov & Kalinkin (1989) did not make an attempt to isolate the double salt hydrate because of instability. Ji et al. (2015) include a figure of the PXRD pattern, but only in a mixture with anhydrous LiNaSO4. The growth of crystals under defined conditions and deriving the PXRD pattern from single-crystal structure analysis could resolve doubts about the PXRD pattern.
LiNa3(SO4)2·6H2O was first crystallized by Mitscherlich (1843) and later, preparative conditions were specified (Scacchi, 1867). Early crystallographic characterization is summarized by Groth (1908), where the cited paper of Traube (1894) is of particular interest, since he determined the correct polar 3m for this compound and the isomorphic compounds LiNa3(MO4)2·6H2O with M = S, Se, Mo, Cr. Even a mixed compound LiNa3{(SO4)0.5(CrO4)0.5} was described within this series. A first of the molybdate was published by Klevtsova et al. (1988). Later, Kaminskii and co-workers grew large crystals of the molybdate (Kaminskii et al., 2009) and selenate (Kaminskii et al., 2007) for studies on the non-linear optical effects of the materials, where they also re-determined and refined the crystal structures at ambient temperature, but without discussion of structural details.
2. Structural commentary
Single-crystal R3c H (161). The cell parameters varied continuously with temperature (Table 1 and Fig. 1). Thus, the results confirm the isomorphism to the molybdate LiNa3(MoO4)2·6H2O (Kaminskii et al., 2009) and no structural change within the investigated temperature range. Fig. 2 shows the completed with atoms to visualize the coordination of sodium, lithium and sulfur. There is only one crystallographically distinguishable sodium and lithium position, but two for sulfur. Sodium is surrounded by six oxygen atoms, three belong to water molecules (blue) and the remaining three to sulfate groups. The distance of 2.639 Å between Na1 and O4 is quite long. Also, the angle O1—Na1—O4 of 165° deviates considerably from 180°. However, in a first approximation the environment of sodium atoms can be described as a distorted octahedron. The water molecules with O6 bridge three sodium ions to a trimeric unit as shown in Fig. 3. The trimers look like cyclohexane rings (Fig. 3b) in a chair conformation with the water molecules on the upper three points (Fig. 3c).
was performed at five temperatures between 90 and 293 K. At all temperatures, the structure could be solved in the polarThe lithium cation is coordinated by three water molecules (O5) and the apex (O3) of a sulfate anion containing S1 completes a tetrahedron (Fig. 2). Thus, the trimeric Na3(H2O)3 and the double tetrahedron Li(H2O)3(SO4) form the characteristic structural units of this compound. In Fig. 4, the arrangement of these units is shown within the separately for Na3(H2O)3 (Fig. 4a) and Li(H2O)3(SO4) (Fig. 4b). In Fig. 4b the sulfate anions with S2 are added as darker colored tetrahedra. The repeat unit requires stacking of six such units along the c-axis direction. The uniform orientation of the units underlines the polar character of the c axis.
3. Supramolecular features
The overall structure of the compound is polymeric with water and sulfate anions connecting the cations. The three water molecules coordinated at the lithium cation are at the same time coordinated to three sodium cations, each sodium ion belonging to another trimeric sodium ring forming a water–cation coordination network, as shown in Fig. 5. When including the entire coordination spheres of sodium, one can describe the trimers as edge-bridged octahedra, as illustrated in Fig. 6a and 6b. Thereby, the O4 oxygen from the sulfate anion of S2 represents a common coordination point from below (Fig. 6a). The height of sulfur S1 along the c axis is near that of Na1. Thus, the three corners of this sulfate tetrahedron connect three trimeric units within a sodium ion layer, as shown in Fig. 7 from two viewing angles. As shown in Fig. 6, the sulfate with S2 is positioned with its oxygen atom (O4) at the center below the trimeric units, and thus the other three O1 atoms of this sulfate anion connect three trimeric sodium units from the adjacent layer below (Fig. 8). In this way, the sulfate with S2 acts as a connector between sodium layers and the sulfate with S1 within one layer. Additional interconnections between layers are realized by the sulfate of S1 as part of the double tetrahedron Li(H2O)3(SO4), as illustrated in Fig. 9.
Investigation of the hydrogen-bond network (Table 1) revealed that, interestingly, the water molecules form hydrogen bonds only to the sulfate groups, but not between themselves as is observed in a channel-like arrangement in Li2SO4·H2O (Fig. 10). However, as can be seen from Fig. 11, the hydrogen atoms H1 and H3 share O1 as a common acceptor atom of the sulfate with S1, and H2 and H4 do the same with O2 at the sulfate anion of S2. The bond lengths vary between 1.92 and 2.15 Å. Fig. 12 shows a larger part of the hydrogen-bond network, projected both along the c axis (Fig. 12a) and perpendicular to the c axis (Fig. 12b). From the latter, it can be recognized that the hydrogen bonds contribute to the bonding strength within a layer, but not between the layers. Connections between the layers are established by cation–anion coordination as shown in Figs. 8 and 9.
4. Database survey
In the Inorganic R3c (No. 161) can be found. Most of them belong to the LiNbO3 or Whitlockite type [Whitlockite = MgCa9(PO4)6(HPO4)]. Compounds containing lithium in this numbered 179, of which 148 belong again to LiNbO3 type. The isomorphic molybdate (ICSD col 65006, col 420160) represents a structure type of its own. The isomorphic selenate LiNa3(SeO4)2·6H2O (Kaminskii et al. 2007) could not be found in the ICSD. Interestingly, the mineral chlorartinite, Mg2[Cl(OH)CO3]·2H2O, which forms easily in MgO-based building materials, also crystallizes in the R3c (Sugimoto et al., 2006).
Database (ICSD), only 1164 records with5. Synthesis, crystallization and characterization
Single crystals were grown from about 120 mL of an aqueous solution containing Li2SO4 and Na2SO4 in a molar ratio of approx. 1:1 and an absolute concentration well below the solubility line (Fig. 13). The solution was kept in an desiccator with 50% H2SO4 solution as Over two weeks, a number of crystals with sizes of 1–7 mm were formed that showed the typical trigonal–pyramidal form. Small pieces were cut for XRD measurements. The density of 1.995 g cm−3 calculated from the parameters at 293 K (Table 1) is in excellent agreement with the experimental value of 2.009 g cm−3 as cited in Groth (1908).
Attempts were made to record powder XRD patterns from quickly ground crystals. Large crystals appear stable at least for some minutes on a filter paper. However, when grinding to achieve a crystal powder, dehydration took place. In cases of less intensive grinding, the texture effects were too large for a representative powder XRD pattern. Thus, particularly for powder XRD measurements, a suspension of fine crystals was prepared: To a 2 molar solution of Na2SO4, an equivalent amount of anhydrous Li2SO4 was added. The suspension was stirred two days at 298 K. The supernatant solution was decanted and subsequently some slurry was transferred into the expanded, upper part of a Hilgenberg glass capillary. By means of a centrifuge (30 minutes at 4000 r.p.m.), the crystals were pressed into the capillary. This way the available capillary volume was effectively filled with crystals (Fig. 14). A PXRD pattern obtained under rotation is shown in Fig. 15 in comparison with the one calculated from the crystal structure.
The powder pattern was measured at room temperature on a Bruker D8 Discover diffractometer in Bragg–Brentano geometry with Cu Kα radiation (λ = 1.5406 Å) and a linear detector Våntec-1 (geometry angle 1°). The measurements were made with a Göbel mirror as monochromator with a 1.0 mm slit and a 2.5° primary soller. The generator was set to 40 kV/40 mA. The program TOPAS 5.0 (Bruker, 2009) was used to refine the lattice parameters (Fig. 1). The solved structure from single crystal XRD at 293K was used as starting point of the refinement.
Thermal analyses (Fig. 16) were performed from roughly crushed, large single crystals. Water is released in one step below 353 K. The mass loss of 29.2% is near the theoretical value of 28.7%. In a second experiment, the measured value was 29.1%.
6. Refinement
Crystal data, data collection and structure . Structure solution using and a of the atomic positions with respect to the isotropic displacement parameters led to the positions of the Na, Li, S and O atoms. The positions of the H atoms could be located from residual electron-density maxima after further H atoms were refined isotropically.
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989021008057/ru2076sup1.cif
contains datablocks Na3_Li_2SO4_6H2O-90K, Na3_Li_2SO4_6H2O-180K, Na3_Li_2SO4_6H2O-260K, Na3_Li_2SO4_6H2O-273K, Na3_Li_2SO4_6H2O-293K, Na3_Li_2SO4_6H2O. DOI:Structure factors: contains datablock Na3_Li_2SO4_6H2O-90K. DOI: https://doi.org/10.1107/S2056989021008057/ru2076Na3_Li_2SO4_6H2O-90Ksup2.hkl
Structure factors: contains datablock Na3_Li_2SO4_6H2O-180K. DOI: https://doi.org/10.1107/S2056989021008057/ru2076Na3_Li_2SO4_6H2O-180Ksup3.hkl
Structure factors: contains datablock Na3_Li_2SO4_6H2O-260K. DOI: https://doi.org/10.1107/S2056989021008057/ru2076Na3_Li_2SO4_6H2O-260Ksup4.hkl
Structure factors: contains datablock Na3_Li_2SO4_6H2O-273K. DOI: https://doi.org/10.1107/S2056989021008057/ru2076Na3_Li_2SO4_6H2O-273Ksup5.hkl
Structure factors: contains datablock Na3_Li_2SO4_6H2O-293K. DOI: https://doi.org/10.1107/S2056989021008057/ru2076Na3_Li_2SO4_6H2O-293Ksup6.hkl
For all structures, data collection: X-AREA (Stoe & Cie, 2015); cell
X-AREA (Stoe & Cie, 2015); data reduction: X-RED (Stoe & Cie, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).LiNa3(SO4)2·6H2O | Dx = 2.047 Mg m−3 |
Mr = 376.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2749 reflections |
a = 8.3876 (13) Å | θ = 25.0–27.5° |
c = 30.048 (7) Å | µ = 0.62 mm−1 |
V = 1830.7 (7) Å3 | T = 90 K |
Z = 6 | Needle, colourless |
F(000) = 1152 | 0.3 × 0.15 × 0.1 mm |
Stoe IPDS 2 diffractometer | 1089 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1089 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.027 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.1°, θmin = 3.1° |
rotation method scans | h = −10→11 |
Absorption correction: integration Coppens (1970) | k = −11→11 |
Tmin = 0.924, Tmax = 0.945 | l = −40→40 |
12154 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0238P)2 + 0.6042P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.013 | (Δ/σ)max < 0.001 |
wR(F2) = 0.036 | Δρmax = 0.16 e Å−3 |
S = 1.14 | Δρmin = −0.18 e Å−3 |
1089 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
78 parameters | Extinction coefficient: 0.0037 (7) |
5 restraints | Absolute structure: Flack x determined using 539 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: difference Fourier map | Absolute structure parameter: 0.01 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.666667 | 0.333333 | 0.15432 (13) | 0.0085 (7) | |
Na1 | 0.23426 (7) | 0.26504 (7) | 0.06063 (2) | 0.00705 (14) | |
S1 | 0.666667 | 0.333333 | 0.04323 (2) | 0.00332 (12) | |
S2 | 0.333333 | 0.666667 | 0.12552 (2) | 0.00325 (12) | |
O1 | 0.39254 (13) | 0.53800 (12) | 0.10892 (3) | 0.00609 (18) | |
O2 | 0.51766 (12) | 0.36335 (12) | 0.02615 (3) | 0.00667 (18) | |
O3 | 0.666667 | 0.333333 | 0.09154 (6) | 0.0095 (4) | |
O4 | 0.333333 | 0.666667 | 0.17470 (6) | 0.0067 (3) | |
O5 | 0.14513 (13) | 0.42897 (12) | 0.01016 (3) | 0.00656 (17) | |
H5A | 0.053 (2) | 0.429 (3) | 0.0194 (7) | 0.016 (5)* | |
H5B | 0.106 (3) | 0.363 (3) | −0.0120 (6) | 0.020 (5)* | |
O6 | −0.02932 (13) | 0.20979 (13) | 0.10180 (3) | 0.00744 (19) | |
H6B | −0.007 (3) | 0.316 (2) | 0.1019 (8) | 0.017 (5)* | |
H6A | −0.022 (3) | 0.190 (3) | 0.1279 (5) | 0.017 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0089 (10) | 0.0089 (10) | 0.0078 (16) | 0.0044 (5) | 0.000 | 0.000 |
Na1 | 0.0065 (2) | 0.0076 (2) | 0.0072 (2) | 0.00369 (19) | 0.00175 (17) | 0.00177 (18) |
S1 | 0.00352 (15) | 0.00352 (15) | 0.0029 (2) | 0.00176 (8) | 0.000 | 0.000 |
S2 | 0.00334 (15) | 0.00334 (15) | 0.0031 (2) | 0.00167 (8) | 0.000 | 0.000 |
O1 | 0.0066 (4) | 0.0060 (4) | 0.0074 (4) | 0.0045 (3) | −0.0002 (3) | −0.0015 (3) |
O2 | 0.0057 (4) | 0.0084 (4) | 0.0079 (4) | 0.0050 (3) | −0.0001 (3) | 0.0013 (3) |
O3 | 0.0129 (5) | 0.0129 (5) | 0.0028 (8) | 0.0065 (3) | 0.000 | 0.000 |
O4 | 0.0085 (5) | 0.0085 (5) | 0.0031 (7) | 0.0042 (2) | 0.000 | 0.000 |
O5 | 0.0063 (4) | 0.0067 (4) | 0.0068 (4) | 0.0034 (3) | 0.0010 (3) | −0.0010 (3) |
O6 | 0.0089 (4) | 0.0068 (4) | 0.0064 (4) | 0.0038 (4) | 0.0000 (3) | 0.0003 (3) |
Li1—O3 | 1.886 (4) | Na1—O4v | 2.6330 (14) |
Li1—O5i | 1.9434 (17) | Na1—Na1vi | 3.6475 (10) |
Li1—O5ii | 1.9435 (17) | Na1—Na1iv | 3.6475 (10) |
Li1—O5iii | 1.9435 (17) | S1—O3 | 1.4515 (17) |
Li1—Na1i | 3.748 (2) | S1—O2vii | 1.4844 (9) |
Li1—Na1iii | 3.748 (2) | S1—O2 | 1.4844 (9) |
Li1—Na1ii | 3.748 (2) | S1—O2viii | 1.4844 (9) |
Na1—O2 | 2.3331 (10) | S2—O4 | 1.4777 (17) |
Na1—O6iv | 2.3498 (11) | S2—O1ix | 1.4818 (9) |
Na1—O6 | 2.3682 (11) | S2—O1 | 1.4818 (9) |
Na1—O5 | 2.4036 (11) | S2—O1x | 1.4818 (9) |
Na1—O1 | 2.4638 (10) | ||
O3—Li1—O5i | 110.37 (11) | O1—Na1—Na1vi | 122.28 (3) |
O3—Li1—O5ii | 110.36 (11) | O4v—Na1—Na1vi | 46.16 (3) |
O5i—Li1—O5ii | 108.56 (12) | O2—Na1—Na1iv | 102.41 (3) |
O3—Li1—O5iii | 110.36 (11) | O6iv—Na1—Na1iv | 39.55 (3) |
O5i—Li1—O5iii | 108.56 (12) | O6—Na1—Na1iv | 85.42 (3) |
O5ii—Li1—O5iii | 108.56 (12) | O5—Na1—Na1iv | 123.78 (3) |
O3—Li1—Na1i | 125.81 (5) | O1—Na1—Na1iv | 142.40 (2) |
O5i—Li1—Na1i | 34.21 (6) | O4v—Na1—Na1iv | 46.16 (3) |
O5ii—Li1—Na1i | 74.41 (8) | Na1vi—Na1—Na1iv | 60.0 |
O5iii—Li1—Na1i | 119.02 (15) | O2—Na1—Li1xi | 72.17 (3) |
O3—Li1—Na1iii | 125.81 (5) | O6iv—Na1—Li1xi | 167.14 (3) |
O5i—Li1—Na1iii | 74.40 (8) | O6—Na1—Li1xi | 104.31 (4) |
O5ii—Li1—Na1iii | 119.01 (15) | O5—Na1—Li1xi | 27.04 (3) |
O5iii—Li1—Na1iii | 34.21 (6) | O1—Na1—Li1xi | 74.64 (5) |
Na1i—Li1—Na1iii | 89.23 (7) | O4v—Na1—Li1xi | 98.29 (5) |
O3—Li1—Na1ii | 125.81 (5) | Na1vi—Na1—Li1xi | 105.94 (2) |
O5i—Li1—Na1ii | 119.02 (15) | Na1iv—Na1—Li1xi | 142.95 (5) |
O5ii—Li1—Na1ii | 34.21 (6) | O3—S1—O2vii | 110.23 (4) |
O5iii—Li1—Na1ii | 74.40 (8) | O3—S1—O2 | 110.23 (4) |
Na1i—Li1—Na1ii | 89.23 (7) | O2vii—S1—O2 | 108.71 (5) |
Na1iii—Li1—Na1ii | 89.23 (7) | O3—S1—O2viii | 110.23 (4) |
O2—Na1—O6iv | 95.05 (4) | O2vii—S1—O2viii | 108.70 (5) |
O2—Na1—O6 | 170.96 (4) | O2—S1—O2viii | 108.71 (5) |
O6iv—Na1—O6 | 88.14 (5) | O4—S2—O1ix | 109.66 (4) |
O2—Na1—O5 | 94.07 (4) | O4—S2—O1 | 109.66 (4) |
O6iv—Na1—O5 | 162.69 (4) | O1ix—S2—O1 | 109.28 (4) |
O6—Na1—O5 | 85.10 (4) | O4—S2—O1x | 109.66 (4) |
O2—Na1—O1 | 87.29 (4) | O1ix—S2—O1x | 109.28 (4) |
O6iv—Na1—O1 | 104.11 (4) | O1—S2—O1x | 109.28 (4) |
O6—Na1—O1 | 83.73 (3) | S2—O1—Na1 | 130.83 (5) |
O5—Na1—O1 | 90.99 (3) | S1—O2—Na1 | 125.59 (6) |
O2—Na1—O4v | 103.31 (4) | S1—O3—Li1 | 180.0 |
O6iv—Na1—O4v | 85.71 (4) | S2—O4—Na1xii | 126.89 (4) |
O6—Na1—O4v | 85.34 (4) | S2—O4—Na1xiii | 126.89 (4) |
O5—Na1—O4v | 77.88 (4) | Na1xii—O4—Na1xiii | 87.68 (5) |
O1—Na1—O4v | 165.02 (3) | S2—O4—Na1i | 126.89 (4) |
O2—Na1—Na1vi | 149.40 (3) | Na1xii—O4—Na1i | 87.68 (5) |
O6iv—Na1—Na1vi | 85.68 (3) | Na1xiii—O4—Na1i | 87.68 (5) |
O6—Na1—Na1vi | 39.18 (3) | Li1xi—O5—Na1 | 118.75 (8) |
O5—Na1—Na1vi | 79.01 (3) | Na1vi—O6—Na1 | 101.27 (4) |
Symmetry codes: (i) x+1/3, x−y+2/3, z+1/6; (ii) −y+4/3, −x+2/3, z+1/6; (iii) −x+y+1/3, y−1/3, z+1/6; (iv) −x+y, −x, z; (v) −y+2/3, −x+1/3, z−1/6; (vi) −y, x−y, z; (vii) −x+y+1, −x+1, z; (viii) −y+1, x−y, z; (ix) −y+1, x−y+1, z; (x) −x+y, −x+1, z; (xi) −y+2/3, −x+4/3, z−1/6; (xii) −x+y+1/3, y+2/3, z+1/6; (xiii) −y+1/3, −x+2/3, z+1/6. |
3(Na)Li2(SO4)6(H2O) | Dx = 2.036 Mg m−3 |
Mr = 376.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 7724 reflections |
a = 8.4006 (19) Å | θ = 2.8–30.0° |
c = 30.111 (9) Å | µ = 0.61 mm−1 |
V = 1840.3 (10) Å3 | T = 180 K |
Z = 6 | Needle, colourless |
F(000) = 1152 | 0.3 × 0.15 × 0.1 mm |
Stoe IPDS 2 diffractometer | 1088 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1087 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.035 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.5°, θmin = 3.1° |
rotation method scans | h = −11→11 |
Absorption correction: integration Coppens (1970) | k = −11→11 |
Tmin = 0.682, Tmax = 0.941 | l = −40→40 |
4345 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0413P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max < 0.001 |
wR(F2) = 0.053 | Δρmax = 0.23 e Å−3 |
S = 1.18 | Δρmin = −0.33 e Å−3 |
1088 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
78 parameters | Extinction coefficient: 0.055 (4) |
1 restraint | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
Hydrogen site location: difference Fourier map | Absolute structure parameter: −0.08 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.666667 | 0.333333 | 0.15397 (15) | 0.0112 (7) | |
Na1 | 0.23455 (8) | 0.26585 (8) | 0.06065 (3) | 0.0123 (2) | |
S1 | 0.666667 | 0.333333 | 0.04314 (2) | 0.00567 (18) | |
S2 | 0.333333 | 0.666667 | 0.12563 (2) | 0.00580 (18) | |
O1 | 0.39232 (16) | 0.53835 (14) | 0.10903 (4) | 0.0101 (2) | |
O2 | 0.51801 (14) | 0.36299 (14) | 0.02615 (4) | 0.0116 (2) | |
O3 | 0.666667 | 0.333333 | 0.09124 (10) | 0.0182 (6) | |
O4 | 0.333333 | 0.666667 | 0.17460 (9) | 0.0113 (5) | |
O5 | 0.14543 (15) | 0.42931 (14) | 0.00995 (4) | 0.0107 (2) | |
H5A | 0.057 (4) | 0.431 (3) | 0.0205 (10) | 0.019 (6)* | |
H5B | 0.106 (4) | 0.359 (4) | −0.0106 (11) | 0.021 (5)* | |
O6 | −0.02970 (15) | 0.20921 (15) | 0.10179 (4) | 0.0125 (2) | |
H6B | −0.011 (4) | 0.311 (5) | 0.1015 (12) | 0.029 (8)* | |
H6A | −0.023 (4) | 0.189 (4) | 0.1275 (11) | 0.019 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0125 (11) | 0.0125 (11) | 0.0087 (17) | 0.0062 (5) | 0.000 | 0.000 |
Na1 | 0.0118 (3) | 0.0139 (3) | 0.0119 (3) | 0.0068 (2) | 0.00347 (19) | 0.00357 (19) |
S1 | 0.0068 (2) | 0.0068 (2) | 0.0033 (3) | 0.00342 (11) | 0.000 | 0.000 |
S2 | 0.0064 (2) | 0.0064 (2) | 0.0046 (3) | 0.00320 (11) | 0.000 | 0.000 |
O1 | 0.0119 (4) | 0.0099 (4) | 0.0107 (5) | 0.0073 (3) | −0.0002 (3) | −0.0020 (3) |
O2 | 0.0095 (4) | 0.0153 (5) | 0.0131 (4) | 0.0085 (4) | 0.0002 (3) | 0.0022 (3) |
O3 | 0.0253 (9) | 0.0253 (9) | 0.0039 (11) | 0.0127 (4) | 0.000 | 0.000 |
O4 | 0.0143 (7) | 0.0143 (7) | 0.0054 (11) | 0.0071 (4) | 0.000 | 0.000 |
O5 | 0.0117 (4) | 0.0099 (4) | 0.0103 (5) | 0.0051 (3) | 0.0010 (4) | −0.0011 (3) |
O6 | 0.0150 (5) | 0.0122 (5) | 0.0096 (5) | 0.0064 (4) | 0.0007 (3) | 0.0000 (4) |
Li1—O3 | 1.889 (6) | Na1—O4v | 2.644 (2) |
Li1—O5i | 1.9454 (19) | Na1—Na1iv | 3.6617 (13) |
Li1—O5ii | 1.9455 (19) | Na1—Na1vi | 3.6618 (13) |
Li1—O5iii | 1.9455 (19) | S1—O3 | 1.448 (3) |
Li1—Na1ii | 3.756 (3) | S1—O2 | 1.4813 (11) |
Li1—Na1iii | 3.756 (3) | S1—O2vii | 1.4814 (11) |
Li1—Na1i | 3.756 (3) | S1—O2viii | 1.4814 (11) |
Na1—O2 | 2.3393 (12) | S2—O4 | 1.474 (3) |
Na1—O6iv | 2.3546 (13) | S2—O1 | 1.4804 (11) |
Na1—O6 | 2.3734 (13) | S2—O1ix | 1.4804 (11) |
Na1—O5 | 2.4093 (13) | S2—O1x | 1.4804 (11) |
Na1—O1 | 2.4669 (12) | ||
O3—Li1—O5i | 110.52 (13) | O1—Na1—Na1iv | 142.29 (3) |
O3—Li1—O5ii | 110.52 (13) | O4v—Na1—Na1iv | 46.17 (4) |
O5i—Li1—O5ii | 108.41 (13) | O2—Na1—Na1vi | 149.23 (3) |
O3—Li1—O5iii | 110.52 (13) | O6iv—Na1—Na1vi | 85.51 (3) |
O5i—Li1—O5iii | 108.41 (13) | O6—Na1—Na1vi | 39.06 (3) |
O5ii—Li1—O5iii | 108.40 (13) | O5—Na1—Na1vi | 79.08 (3) |
O3—Li1—Na1ii | 126.01 (6) | O1—Na1—Na1vi | 122.25 (3) |
O5i—Li1—Na1ii | 118.70 (17) | O4v—Na1—Na1vi | 46.17 (4) |
O5ii—Li1—Na1ii | 34.19 (6) | Na1iv—Na1—Na1vi | 60.0 |
O5iii—Li1—Na1ii | 74.26 (9) | O2—Na1—Li1xi | 72.31 (3) |
O3—Li1—Na1iii | 126.01 (6) | O6iv—Na1—Li1xi | 167.18 (4) |
O5i—Li1—Na1iii | 74.26 (9) | O6—Na1—Li1xi | 104.59 (4) |
O5ii—Li1—Na1iii | 118.70 (17) | O5—Na1—Li1xi | 26.99 (3) |
O5iii—Li1—Na1iii | 34.19 (6) | O1—Na1—Li1xi | 74.93 (6) |
Na1ii—Li1—Na1iii | 88.94 (8) | O4v—Na1—Li1xi | 98.14 (7) |
O3—Li1—Na1i | 126.01 (6) | Na1iv—Na1—Li1xi | 142.78 (5) |
O5i—Li1—Na1i | 34.19 (6) | Na1vi—Na1—Li1xi | 105.95 (2) |
O5ii—Li1—Na1i | 74.27 (9) | O3—S1—O2 | 110.20 (6) |
O5iii—Li1—Na1i | 118.70 (17) | O3—S1—O2vii | 110.21 (6) |
Na1ii—Li1—Na1i | 88.94 (8) | O2—S1—O2vii | 108.73 (6) |
Na1iii—Li1—Na1i | 88.94 (8) | O3—S1—O2viii | 110.21 (6) |
O2—Na1—O6iv | 94.92 (4) | O2—S1—O2viii | 108.73 (6) |
O2—Na1—O6 | 171.37 (5) | O2vii—S1—O2viii | 108.73 (6) |
O6iv—Na1—O6 | 87.90 (6) | O4—S2—O1 | 109.74 (6) |
O2—Na1—O5 | 94.13 (4) | O4—S2—O1ix | 109.74 (6) |
O6iv—Na1—O5 | 162.50 (5) | O1—S2—O1ix | 109.20 (6) |
O6—Na1—O5 | 85.35 (5) | O4—S2—O1x | 109.74 (6) |
O2—Na1—O1 | 87.57 (4) | O1—S2—O1x | 109.20 (6) |
O6iv—Na1—O1 | 104.10 (4) | O1ix—S2—O1x | 109.20 (6) |
O6—Na1—O1 | 83.82 (4) | S2—O1—Na1 | 130.92 (7) |
O5—Na1—O1 | 91.21 (4) | S1—O2—Na1 | 125.78 (7) |
O2—Na1—O4v | 103.11 (6) | S1—O3—Li1 | 180.0 |
O6iv—Na1—O4v | 85.59 (5) | S2—O4—Na1xii | 126.90 (6) |
O6—Na1—O4v | 85.22 (5) | S2—O4—Na1xiii | 126.90 (6) |
O5—Na1—O4v | 77.78 (5) | Na1xii—O4—Na1xiii | 87.67 (9) |
O1—Na1—O4v | 165.06 (3) | S2—O4—Na1i | 126.90 (6) |
O2—Na1—Na1iv | 102.10 (4) | Na1xii—O4—Na1i | 87.67 (9) |
O6iv—Na1—Na1iv | 39.43 (3) | Na1xiii—O4—Na1i | 87.67 (9) |
O6—Na1—Na1iv | 85.26 (3) | Li1xi—O5—Na1 | 118.83 (9) |
O5—Na1—Na1iv | 123.70 (3) | Na1vi—O6—Na1 | 101.51 (5) |
Symmetry codes: (i) x+1/3, x−y+2/3, z+1/6; (ii) −y+4/3, −x+2/3, z+1/6; (iii) −x+y+1/3, y−1/3, z+1/6; (iv) −x+y, −x, z; (v) −y+2/3, −x+1/3, z−1/6; (vi) −y, x−y, z; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) −y+2/3, −x+4/3, z−1/6; (xii) −x+y+1/3, y+2/3, z+1/6; (xiii) −y+1/3, −x+2/3, z+1/6. |
3(Na)Li2(SO4)6(H2O) | Dx = 2.018 Mg m−3 |
Mr = 376.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 4304 reflections |
a = 8.426 (2) Å | θ = 2.6–21.0° |
c = 30.197 (4) Å | µ = 0.61 mm−1 |
V = 1856.6 (10) Å3 | T = 260 K |
Z = 6 | Needle, colourless |
F(000) = 1152 | 0.3 × 0.15 × 0.1 mm |
Stoe IPDS 2 diffractometer | 915 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 906 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.034 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.2°, θmin = 3.1° |
rotation method scans | h = −10→10 |
Absorption correction: integration Coppens (1970) | k = −9→10 |
Tmin = 0.864, Tmax = 0.938 | l = −38→38 |
5068 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0254P)2 + 0.5038P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.017 | (Δ/σ)max < 0.001 |
wR(F2) = 0.043 | Δρmax = 0.14 e Å−3 |
S = 1.13 | Δρmin = −0.20 e Å−3 |
915 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
78 parameters | Extinction coefficient: 0.0031 (4) |
1 restraint | Absolute structure: Flack x determined using 437 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: difference Fourier map | Absolute structure parameter: −0.04 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.333333 | 0.666667 | 0.8465 (2) | 0.0164 (12) | |
Na1 | 0.76508 (11) | 0.73321 (11) | 0.93934 (4) | 0.0204 (2) | |
S1 | 0.333333 | 0.666667 | 0.95693 (2) | 0.01085 (19) | |
S2 | 0.666667 | 0.333333 | 0.87429 (2) | 0.01117 (19) | |
O1 | 0.6085 (2) | 0.46143 (19) | 0.89076 (5) | 0.0167 (3) | |
O2 | 0.4815 (2) | 0.6374 (2) | 0.97377 (5) | 0.0188 (3) | |
O3 | 0.333333 | 0.666667 | 0.90900 (9) | 0.0282 (7) | |
O4 | 0.666667 | 0.333333 | 0.82539 (8) | 0.0181 (6) | |
O5 | 0.8541 (2) | 0.56971 (19) | 0.99018 (5) | 0.0172 (3) | |
H5A | 0.949 (5) | 0.569 (4) | 0.9803 (10) | 0.027 (8)* | |
H5B | 0.890 (4) | 0.630 (4) | 1.0103 (11) | 0.027 (8)* | |
O6 | 1.0306 (2) | 0.7917 (2) | 0.89835 (6) | 0.0200 (3) | |
H6B | 1.014 (5) | 0.690 (6) | 0.8961 (11) | 0.045 (10)* | |
H6A | 1.017 (5) | 0.807 (5) | 0.8738 (12) | 0.044 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0178 (17) | 0.0178 (17) | 0.014 (3) | 0.0089 (9) | 0.000 | 0.000 |
Na1 | 0.0190 (4) | 0.0218 (4) | 0.0207 (4) | 0.0104 (4) | 0.0049 (3) | 0.0054 (3) |
S1 | 0.0115 (2) | 0.0115 (2) | 0.0096 (4) | 0.00575 (12) | 0.000 | 0.000 |
S2 | 0.0113 (2) | 0.0113 (2) | 0.0109 (4) | 0.00565 (12) | 0.000 | 0.000 |
O1 | 0.0181 (7) | 0.0165 (7) | 0.0194 (7) | 0.0114 (6) | −0.0007 (5) | −0.0030 (5) |
O2 | 0.0160 (7) | 0.0236 (7) | 0.0222 (7) | 0.0138 (6) | 0.0009 (6) | 0.0032 (6) |
O3 | 0.0384 (11) | 0.0384 (11) | 0.0076 (14) | 0.0192 (6) | 0.000 | 0.000 |
O4 | 0.0221 (9) | 0.0221 (9) | 0.0102 (12) | 0.0110 (4) | 0.000 | 0.000 |
O5 | 0.0184 (7) | 0.0154 (7) | 0.0171 (7) | 0.0079 (6) | 0.0020 (6) | −0.0013 (6) |
O6 | 0.0223 (8) | 0.0196 (8) | 0.0179 (7) | 0.0102 (7) | 0.0005 (6) | −0.0009 (6) |
Li1—O3 | 1.888 (6) | Na1—O4v | 2.656 (2) |
Li1—O5i | 1.948 (3) | Na1—Na1iv | 3.6830 (17) |
Li1—O5ii | 1.948 (3) | Na1—Na1vi | 3.6830 (17) |
Li1—O5iii | 1.948 (3) | S1—O3 | 1.447 (3) |
Li1—Na1iii | 3.770 (4) | S1—O2 | 1.4788 (15) |
Li1—Na1i | 3.770 (4) | S1—O2vii | 1.4788 (15) |
Li1—Na1ii | 3.770 (4) | S1—O2viii | 1.4788 (15) |
Na1—O2 | 2.3478 (17) | S2—O4 | 1.477 (2) |
Na1—O6iv | 2.3584 (18) | S2—O1ix | 1.4769 (14) |
Na1—O6 | 2.3825 (19) | S2—O1x | 1.4769 (14) |
Na1—O5 | 2.4188 (16) | S2—O1 | 1.4769 (14) |
Na1—O1 | 2.4727 (17) | ||
O3—Li1—O5i | 110.85 (17) | O1—Na1—Na1iv | 142.14 (4) |
O3—Li1—O5ii | 110.85 (17) | O4v—Na1—Na1iv | 46.11 (4) |
O5i—Li1—O5ii | 108.06 (18) | O2—Na1—Na1vi | 149.08 (5) |
O3—Li1—O5iii | 110.85 (17) | O6iv—Na1—Na1vi | 85.36 (5) |
O5i—Li1—O5iii | 108.06 (18) | O6—Na1—Na1vi | 38.79 (4) |
O5ii—Li1—O5iii | 108.06 (18) | O5—Na1—Na1vi | 79.18 (5) |
O3—Li1—Na1iii | 126.24 (8) | O1—Na1—Na1vi | 122.10 (5) |
O5i—Li1—Na1iii | 118.2 (2) | O4v—Na1—Na1vi | 46.11 (4) |
O5ii—Li1—Na1iii | 73.96 (12) | Na1iv—Na1—Na1vi | 60.000 (1) |
O5iii—Li1—Na1iii | 34.14 (9) | O2—Na1—Li1xi | 72.52 (5) |
O3—Li1—Na1i | 126.24 (8) | O6iv—Na1—Li1xi | 167.16 (6) |
O5i—Li1—Na1i | 34.14 (9) | O6—Na1—Li1xi | 104.84 (6) |
O5ii—Li1—Na1i | 118.2 (2) | O5—Na1—Li1xi | 26.88 (5) |
O5iii—Li1—Na1i | 73.96 (12) | O1—Na1—Li1xi | 75.28 (8) |
Na1iii—Li1—Na1i | 88.61 (11) | O4v—Na1—Li1xi | 98.04 (8) |
O3—Li1—Na1ii | 126.24 (8) | Na1iv—Na1—Li1xi | 142.58 (7) |
O5i—Li1—Na1ii | 73.96 (12) | Na1vi—Na1—Li1xi | 105.97 (3) |
O5ii—Li1—Na1ii | 34.14 (9) | O3—S1—O2 | 110.11 (7) |
O5iii—Li1—Na1ii | 118.2 (2) | O3—S1—O2vii | 110.12 (7) |
Na1iii—Li1—Na1ii | 88.61 (11) | O2—S1—O2vii | 108.82 (7) |
Na1i—Li1—Na1ii | 88.61 (11) | O3—S1—O2viii | 110.12 (7) |
O2—Na1—O6iv | 94.66 (6) | O2—S1—O2viii | 108.82 (7) |
O2—Na1—O6 | 171.88 (7) | O2vii—S1—O2viii | 108.82 (7) |
O6iv—Na1—O6 | 87.76 (9) | O4—S2—O1ix | 109.68 (7) |
O2—Na1—O5 | 94.30 (6) | O4—S2—O1x | 109.68 (7) |
O6iv—Na1—O5 | 162.39 (7) | O1ix—S2—O1x | 109.26 (7) |
O6—Na1—O5 | 85.48 (7) | O4—S2—O1 | 109.69 (6) |
O2—Na1—O1 | 87.96 (6) | O1ix—S2—O1 | 109.26 (7) |
O6iv—Na1—O1 | 104.13 (6) | O1x—S2—O1 | 109.26 (7) |
O6—Na1—O1 | 83.93 (6) | S2—O1—Na1 | 131.17 (9) |
O5—Na1—O1 | 91.31 (6) | S1—O2—Na1 | 126.11 (9) |
O2—Na1—O4v | 103.01 (6) | S1—O3—Li1 | 180.0 |
O6iv—Na1—O4v | 85.37 (6) | S2—O4—Na1xii | 126.82 (5) |
O6—Na1—O4v | 84.90 (6) | S2—O4—Na1xiii | 126.82 (5) |
O5—Na1—O4v | 77.85 (6) | Na1xii—O4—Na1xiii | 87.78 (7) |
O1—Na1—O4v | 165.00 (5) | S2—O4—Na1iii | 126.82 (5) |
O2—Na1—Na1iv | 101.74 (5) | Na1xii—O4—Na1iii | 87.78 (7) |
O6iv—Na1—Na1iv | 39.26 (5) | Na1xiii—O4—Na1iii | 87.78 (7) |
O6—Na1—Na1iv | 85.03 (4) | Li1xi—O5—Na1 | 118.98 (12) |
O5—Na1—Na1iv | 123.73 (5) | Na1vi—O6—Na1 | 101.95 (7) |
Symmetry codes: (i) −x+y+2/3, y+1/3, z−1/6; (ii) −y+2/3, −x+4/3, z−1/6; (iii) x−1/3, x−y+1/3, z−1/6; (iv) −x+y+1, −x+2, z; (v) −y+4/3, −x+5/3, z+1/6; (vi) −y+2, x−y+1, z; (vii) −y+1, x−y+1, z; (viii) −x+y, −x+1, z; (ix) −x+y+1, −x+1, z; (x) −y+1, x−y, z; (xi) −y+4/3, −x+2/3, z+1/6; (xii) −x+y+2/3, y−2/3, z−1/6; (xiii) −y+5/3, −x+4/3, z−1/6. |
3(Na)Li2(SO4)6(H2O) | Dx = 2.012 Mg m−3 |
Mr = 376.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 10790 reflections |
a = 8.4337 (17) Å | θ = 2.8–27.5° |
c = 30.235 (6) Å | µ = 0.61 mm−1 |
V = 1862.4 (8) Å3 | T = 273 K |
Z = 6 | Needle, colourless |
F(000) = 1152 | 0.3 × 0.15 × 0.1 mm |
Stoe IPDS 2 diffractometer | 1159 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1141 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.035 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.6°, θmin = 3.1° |
rotation method scans | h = −11→11 |
Absorption correction: integration Coppens (1970) | k = −10→11 |
Tmin = 0.773, Tmax = 0.866 | l = −40→40 |
8584 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0212P)2 + 1.6465P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max < 0.001 |
S = 1.28 | Δρmax = 0.19 e Å−3 |
1159 reflections | Δρmin = −0.33 e Å−3 |
77 parameters | Absolute structure: Flack x determined using 551 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.04 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.666667 | 0.333333 | 0.1535 (2) | 0.0180 (12) | |
Na1 | 0.23496 (12) | 0.26693 (13) | 0.06069 (4) | 0.0207 (2) | |
S1 | 0.666667 | 0.333333 | 0.04304 (3) | 0.01061 (16) | |
S2 | 0.333333 | 0.666667 | 0.12574 (3) | 0.01110 (16) | |
O1 | 0.3914 (2) | 0.5385 (2) | 0.10929 (5) | 0.0170 (3) | |
O2 | 0.5185 (2) | 0.3624 (2) | 0.02624 (6) | 0.0193 (3) | |
O3 | 0.666667 | 0.333333 | 0.09098 (10) | 0.0290 (7) | |
O4 | 0.333333 | 0.666667 | 0.17459 (9) | 0.0190 (5) | |
O5 | 0.1459 (2) | 0.4305 (2) | 0.00968 (6) | 0.0174 (3) | |
H5A | 0.047 (6) | 0.434 (5) | 0.0201 (13) | 0.034 (10)* | |
H5B | 0.108 (5) | 0.365 (5) | −0.0120 (13) | 0.030 (9)* | |
O6 | −0.0306 (2) | 0.2082 (2) | 0.10174 (6) | 0.0205 (3) | |
H6B | −0.009 (6) | 0.314 (7) | 0.1031 (13) | 0.043 (11)* | |
H6A | −0.023 (7) | 0.188 (6) | 0.1279 (15) | 0.051 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0190 (18) | 0.0190 (18) | 0.016 (3) | 0.0095 (9) | 0.000 | 0.000 |
Na1 | 0.0189 (4) | 0.0228 (5) | 0.0206 (4) | 0.0107 (4) | 0.0053 (3) | 0.0055 (4) |
S1 | 0.0116 (2) | 0.0116 (2) | 0.0087 (3) | 0.00578 (11) | 0.000 | 0.000 |
S2 | 0.0112 (2) | 0.0112 (2) | 0.0108 (4) | 0.00562 (11) | 0.000 | 0.000 |
O1 | 0.0181 (7) | 0.0173 (7) | 0.0192 (7) | 0.0117 (6) | −0.0011 (6) | −0.0032 (6) |
O2 | 0.0166 (7) | 0.0242 (8) | 0.0224 (7) | 0.0141 (6) | 0.0000 (6) | 0.0033 (6) |
O3 | 0.0393 (12) | 0.0393 (12) | 0.0083 (13) | 0.0196 (6) | 0.000 | 0.000 |
O4 | 0.0230 (8) | 0.0230 (8) | 0.0110 (12) | 0.0115 (4) | 0.000 | 0.000 |
O5 | 0.0186 (7) | 0.0158 (7) | 0.0173 (7) | 0.0083 (6) | 0.0021 (6) | −0.0009 (6) |
O6 | 0.0235 (9) | 0.0193 (8) | 0.0186 (8) | 0.0106 (7) | 0.0004 (6) | −0.0009 (7) |
Li1—O3 | 1.889 (7) | Na1—O4v | 2.661 (2) |
Li1—O5i | 1.948 (3) | Na1—Na1vi | 3.6879 (18) |
Li1—O5ii | 1.948 (3) | Na1—Na1iv | 3.6879 (18) |
Li1—O5iii | 1.948 (3) | S1—O3 | 1.449 (3) |
Li1—Na1i | 3.775 (4) | S1—O2vii | 1.4783 (16) |
Li1—Na1iii | 3.775 (4) | S1—O2 | 1.4783 (16) |
Li1—Na1ii | 3.775 (4) | S1—O2viii | 1.4783 (16) |
Na1—O2 | 2.3509 (19) | S2—O4 | 1.477 (3) |
Na1—O6iv | 2.362 (2) | S2—O1ix | 1.4781 (16) |
Na1—O6 | 2.386 (2) | S2—O1x | 1.4781 (16) |
Na1—O5 | 2.4253 (18) | S2—O1 | 1.4781 (16) |
Na1—O1 | 2.4745 (18) | ||
O3—Li1—O5i | 110.80 (19) | O1—Na1—Na1vi | 122.09 (5) |
O3—Li1—O5ii | 110.80 (19) | O4v—Na1—Na1vi | 46.13 (4) |
O5i—Li1—O5ii | 108.1 (2) | O2—Na1—Na1iv | 101.65 (6) |
O3—Li1—O5iii | 110.80 (19) | O6iv—Na1—Na1iv | 39.26 (5) |
O5i—Li1—O5iii | 108.1 (2) | O6—Na1—Na1iv | 84.99 (5) |
O5ii—Li1—O5iii | 108.1 (2) | O5—Na1—Na1iv | 123.70 (5) |
O3—Li1—Na1i | 126.29 (8) | O1—Na1—Na1iv | 142.09 (4) |
O5i—Li1—Na1i | 34.22 (10) | O4v—Na1—Na1iv | 46.13 (4) |
O5ii—Li1—Na1i | 73.93 (13) | Na1vi—Na1—Na1iv | 60.0 |
O5iii—Li1—Na1i | 118.2 (3) | O2—Na1—Li1xi | 72.56 (5) |
O3—Li1—Na1iii | 126.29 (8) | O6iv—Na1—Li1xi | 167.19 (6) |
O5i—Li1—Na1iii | 73.93 (13) | O6—Na1—Li1xi | 104.94 (7) |
O5ii—Li1—Na1iii | 118.2 (3) | O5—Na1—Li1xi | 26.85 (5) |
O5iii—Li1—Na1iii | 34.22 (10) | O1—Na1—Li1xi | 75.37 (9) |
Na1i—Li1—Na1iii | 88.54 (12) | O4v—Na1—Li1xi | 97.99 (9) |
O3—Li1—Na1ii | 126.29 (8) | Na1vi—Na1—Li1xi | 105.97 (4) |
O5i—Li1—Na1ii | 118.2 (3) | Na1iv—Na1—Li1xi | 142.53 (8) |
O5ii—Li1—Na1ii | 34.22 (10) | O3—S1—O2vii | 110.10 (8) |
O5iii—Li1—Na1ii | 73.93 (13) | O3—S1—O2 | 110.10 (8) |
Na1i—Li1—Na1ii | 88.54 (12) | O2vii—S1—O2 | 108.83 (8) |
Na1iii—Li1—Na1ii | 88.54 (12) | O3—S1—O2viii | 110.10 (8) |
O2—Na1—O6iv | 94.65 (7) | O2vii—S1—O2viii | 108.83 (8) |
O2—Na1—O6 | 171.96 (7) | O2—S1—O2viii | 108.83 (8) |
O6iv—Na1—O6 | 87.63 (9) | O4—S2—O1ix | 109.66 (7) |
O2—Na1—O5 | 94.28 (6) | O4—S2—O1x | 109.66 (7) |
O6iv—Na1—O5 | 162.35 (7) | O1ix—S2—O1x | 109.28 (7) |
O6—Na1—O5 | 85.62 (7) | O4—S2—O1 | 109.66 (7) |
O2—Na1—O1 | 88.05 (7) | O1ix—S2—O1 | 109.28 (7) |
O6iv—Na1—O1 | 104.07 (6) | O1x—S2—O1 | 109.28 (7) |
O6—Na1—O1 | 83.92 (6) | S2—O1—Na1 | 131.18 (9) |
O5—Na1—O1 | 91.41 (6) | S1—O2—Na1 | 126.18 (10) |
O2—Na1—O4v | 102.93 (7) | S1—O3—Li1 | 180.0 |
O6iv—Na1—O4v | 85.39 (6) | S2—O4—Na1xii | 126.84 (6) |
O6—Na1—O4v | 84.92 (6) | S2—O4—Na1xiii | 126.84 (6) |
O5—Na1—O4v | 77.80 (6) | Na1xii—O4—Na1xiii | 87.75 (8) |
O1—Na1—O4v | 165.02 (5) | S2—O4—Na1i | 126.84 (6) |
O2—Na1—Na1vi | 149.02 (5) | Na1xii—O4—Na1i | 87.75 (8) |
O6iv—Na1—Na1vi | 85.31 (5) | Na1xiii—O4—Na1i | 87.75 (8) |
O6—Na1—Na1vi | 38.80 (5) | Li1xi—O5—Na1 | 118.93 (13) |
O5—Na1—Na1vi | 79.22 (5) | Na1vi—O6—Na1 | 101.94 (8) |
Symmetry codes: (i) x+1/3, x−y+2/3, z+1/6; (ii) −y+4/3, −x+2/3, z+1/6; (iii) −x+y+1/3, y−1/3, z+1/6; (iv) −x+y, −x, z; (v) −y+2/3, −x+1/3, z−1/6; (vi) −y, x−y, z; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) −y+2/3, −x+4/3, z−1/6; (xii) −x+y+1/3, y+2/3, z+1/6; (xiii) −y+1/3, −x+2/3, z+1/6. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O2xiii | 0.77 (5) | 2.00 (5) | 2.764 (11) | 170 (5) |
O6—H6B···O1 | 0.83 (4) | 2.15 (4) | 2.937 (7) | 157 (4) |
O5—H5B···O1xiv | 0.79 (4) | 1.92 (4) | 2.694 (7) | 165 (4) |
O5—H5A···O2ix | 0.89 (4) | 1.97 (4) | 2.828 (6) | 163 (3) |
Symmetry codes: (ix) −x+y, −x+1, z; (xiii) −y+1/3, −x+2/3, z+1/6; (xiv) x−1/3, x−y+1/3, z−1/6. |
H12LiNa3O14S2 | Dx = 1.995 Mg m−3 |
Mr = 376.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 5111 reflections |
a = 8.457 (7) Å | θ = 2.9–27.1° |
c = 30.33 (3) Å | µ = 0.60 mm−1 |
V = 1879 (4) Å3 | T = 293 K |
Z = 6 | Needle, colourless |
F(000) = 1152 | 0.3 × 0.15 × 0.1 mm |
Stoe IPDS 2T diffractometer | 730 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 695 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.054 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.1°, θmin = 3.9° |
rotation method scans | h = −9→10 |
Absorption correction: integration Coppens (1970) | k = −6→10 |
Tmin = 0.517, Tmax = 0.844 | l = −38→35 |
1376 measured reflections |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0771P)2 + 1.3675P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.038 | (Δ/σ)max < 0.001 |
wR(F2) = 0.105 | Δρmax = 0.33 e Å−3 |
S = 1.11 | Δρmin = −0.47 e Å−3 |
730 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
78 parameters | Extinction coefficient: 0.0054 (14) |
5 restraints | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
Hydrogen site location: difference Fourier map | Absolute structure parameter: −0.3 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.666667 | 0.333333 | 0.1539 (4) | 0.026 (3) | |
Na1 | 0.2353 (3) | 0.2672 (3) | 0.06061 (9) | 0.0300 (5) | |
S1 | 0.666667 | 0.333333 | 0.04301 (5) | 0.0167 (4) | |
S2 | 0.333333 | 0.666667 | 0.12572 (5) | 0.0169 (4) | |
O1 | 0.3912 (5) | 0.5387 (4) | 0.10917 (11) | 0.0263 (7) | |
O2 | 0.5187 (4) | 0.3622 (5) | 0.02643 (11) | 0.0291 (7) | |
O3 | 0.666667 | 0.333333 | 0.0906 (2) | 0.0365 (18) | |
O4 | 0.333333 | 0.666667 | 0.1745 (2) | 0.0250 (13) | |
O5 | 0.1454 (5) | 0.4298 (4) | 0.00960 (11) | 0.0256 (7) | |
H5A | 0.059 (6) | 0.440 (9) | 0.018 (2) | 0.035 (17)* | |
H5B | 0.096 (9) | 0.354 (8) | −0.0099 (18) | 0.039 (16)* | |
O6 | −0.0302 (5) | 0.2083 (4) | 0.10168 (12) | 0.0290 (7) | |
H6B | −0.001 (11) | 0.317 (3) | 0.101 (3) | 0.05 (2)* | |
H6A | −0.030 (11) | 0.173 (10) | 0.1268 (10) | 0.042 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.027 (4) | 0.027 (4) | 0.025 (7) | 0.014 (2) | 0.000 | 0.000 |
Na1 | 0.0298 (9) | 0.0331 (10) | 0.0285 (9) | 0.0167 (8) | 0.0058 (7) | 0.0065 (7) |
S1 | 0.0188 (6) | 0.0188 (6) | 0.0127 (8) | 0.0094 (3) | 0.000 | 0.000 |
S2 | 0.0173 (6) | 0.0173 (6) | 0.0161 (9) | 0.0087 (3) | 0.000 | 0.000 |
O1 | 0.0312 (17) | 0.0265 (16) | 0.0266 (16) | 0.0185 (14) | −0.0024 (12) | −0.0045 (12) |
O2 | 0.0261 (17) | 0.0360 (17) | 0.0297 (15) | 0.0189 (14) | 0.0011 (12) | 0.0040 (13) |
O3 | 0.048 (3) | 0.048 (3) | 0.013 (3) | 0.0242 (15) | 0.000 | 0.000 |
O4 | 0.029 (2) | 0.029 (2) | 0.017 (3) | 0.0146 (11) | 0.000 | 0.000 |
O5 | 0.0265 (16) | 0.0226 (15) | 0.0271 (14) | 0.0118 (13) | 0.0003 (11) | −0.0005 (10) |
O6 | 0.0351 (19) | 0.0276 (18) | 0.0243 (15) | 0.0156 (16) | 0.0013 (12) | 0.0008 (13) |
Li1—O3 | 1.920 (15) | Na1—O4v | 2.671 (5) |
Li1—O5i | 1.953 (6) | Na1—Na1iv | 3.702 (5) |
Li1—O5ii | 1.953 (6) | Na1—Na1vi | 3.702 (5) |
Li1—O5iii | 1.953 (6) | S1—O3 | 1.443 (6) |
Li1—Na1ii | 3.775 (8) | S1—O2 | 1.477 (3) |
Li1—Na1iii | 3.775 (8) | S1—O2vii | 1.477 (3) |
Li1—Na1i | 3.775 (8) | S1—O2viii | 1.477 (3) |
Na1—O2 | 2.354 (4) | S2—O4 | 1.479 (6) |
Na1—O6iv | 2.372 (4) | S2—O1ix | 1.480 (3) |
Na1—O6 | 2.392 (4) | S2—O1x | 1.480 (3) |
Na1—O5 | 2.431 (4) | S2—O1 | 1.480 (3) |
Na1—O1 | 2.481 (4) | ||
O3—Li1—O5i | 110.3 (4) | O1—Na1—Na1iv | 142.12 (9) |
O3—Li1—O5ii | 110.3 (4) | O4v—Na1—Na1iv | 46.12 (9) |
O5i—Li1—O5ii | 108.6 (4) | O2—Na1—Na1vi | 149.12 (10) |
O3—Li1—O5iii | 110.3 (4) | O6iv—Na1—Na1vi | 85.24 (9) |
O5i—Li1—O5iii | 108.6 (4) | O6—Na1—Na1vi | 38.80 (10) |
O5ii—Li1—O5iii | 108.6 (4) | O5—Na1—Na1vi | 79.04 (11) |
O3—Li1—Na1ii | 126.13 (16) | O1—Na1—Na1vi | 122.00 (10) |
O5i—Li1—Na1ii | 118.8 (5) | O4v—Na1—Na1vi | 46.12 (9) |
O5ii—Li1—Na1ii | 34.45 (19) | Na1iv—Na1—Na1vi | 60.0 |
O5iii—Li1—Na1ii | 74.2 (2) | O2—Na1—Li1xi | 72.81 (11) |
O3—Li1—Na1iii | 126.13 (16) | O6iv—Na1—Li1xi | 167.34 (12) |
O5i—Li1—Na1iii | 74.2 (2) | O6—Na1—Li1xi | 104.87 (13) |
O5ii—Li1—Na1iii | 118.8 (5) | O5—Na1—Li1xi | 27.04 (10) |
O5iii—Li1—Na1iii | 34.45 (19) | O1—Na1—Li1xi | 75.20 (18) |
Na1ii—Li1—Na1iii | 88.8 (2) | O4v—Na1—Li1xi | 98.10 (19) |
O3—Li1—Na1i | 126.13 (16) | Na1iv—Na1—Li1xi | 142.67 (16) |
O5i—Li1—Na1i | 34.45 (19) | Na1vi—Na1—Li1xi | 105.96 (7) |
O5ii—Li1—Na1i | 74.2 (2) | O3—S1—O2 | 109.90 (16) |
O5iii—Li1—Na1i | 118.8 (5) | O3—S1—O2vii | 109.90 (16) |
Na1ii—Li1—Na1i | 88.8 (2) | O2—S1—O2vii | 109.04 (16) |
Na1iii—Li1—Na1i | 88.8 (2) | O3—S1—O2viii | 109.90 (16) |
O2—Na1—O6iv | 94.56 (13) | O2—S1—O2viii | 109.04 (16) |
O2—Na1—O6 | 171.91 (15) | O2vii—S1—O2viii | 109.04 (16) |
O6iv—Na1—O6 | 87.53 (17) | O4—S2—O1ix | 109.82 (15) |
O2—Na1—O5 | 94.58 (13) | O4—S2—O1x | 109.82 (15) |
O6iv—Na1—O5 | 162.10 (14) | O1ix—S2—O1x | 109.13 (15) |
O6—Na1—O5 | 85.57 (14) | O4—S2—O1 | 109.82 (15) |
O2—Na1—O1 | 88.07 (14) | O1ix—S2—O1 | 109.12 (15) |
O6iv—Na1—O1 | 104.17 (14) | O1x—S2—O1 | 109.12 (15) |
O6—Na1—O1 | 83.84 (12) | S2—O1—Na1 | 131.4 (2) |
O5—Na1—O1 | 91.50 (13) | S1—O2—Na1 | 126.6 (2) |
O2—Na1—O4v | 103.02 (15) | S1—O3—Li1 | 180.0 |
O6iv—Na1—O4v | 85.33 (14) | S2—O4—Na1xii | 126.84 (13) |
O6—Na1—O4v | 84.92 (14) | S2—O4—Na1xiii | 126.84 (13) |
O5—Na1—O4v | 77.62 (14) | Na1xii—O4—Na1xiii | 87.75 (19) |
O1—Na1—O4v | 164.92 (11) | S2—O4—Na1i | 126.84 (13) |
O2—Na1—Na1iv | 101.59 (12) | Na1xii—O4—Na1i | 87.75 (19) |
O6iv—Na1—Na1iv | 39.20 (10) | Na1xiii—O4—Na1i | 87.75 (19) |
O6—Na1—Na1iv | 84.96 (9) | Li1xi—O5—Na1 | 118.5 (3) |
O5—Na1—Na1iv | 123.52 (10) | Na1vi—O6—Na1 | 102.00 (15) |
Symmetry codes: (i) x+1/3, x−y+2/3, z+1/6; (ii) −y+4/3, −x+2/3, z+1/6; (iii) −x+y+1/3, y−1/3, z+1/6; (iv) −x+y, −x, z; (v) −y+2/3, −x+1/3, z−1/6; (vi) −y, x−y, z; (vii) −y+1, x−y, z; (viii) −x+y+1, −x+1, z; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) −y+2/3, −x+4/3, z−1/6; (xii) −x+y+1/3, y+2/3, z+1/6; (xiii) −y+1/3, −x+2/3, z+1/6. |
Acknowledgements
Thanks to Regina Mossig for recording the thermal analyses.
References
Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany. Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Filippov, V. K. & Kalinkin, A. M. (1989). Zh. Neorg. Khim. 32, 215–217. Google Scholar
Fugel, M., Malaspina, L. A., Pal, R., Thomas, S. P., Shi, M. W., Spackman, M. A., Sugimoto, K. & Grabowsky, S. (2019). Chem. Eur. J. 25, 6523–6532. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Groth, P. (1908). Chemische Krystallographie – Die Anorganischen Oxo- und Sulfosalze, Vol. 2. Leipzig: Verlag Wilhelm Engelmann. Google Scholar
Ji, Z.-Y., Peng, J.-L., Yuan, J.-S., Li, D.-C. & Zhao, Y.-Y. (2015). Fluid Phase Equilib. 397, 81–86. Web of Science CrossRef CAS Google Scholar
Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Eichler, H. J. & Rhee, H. (2007). Phys. Stat. Sol. 1, R16–R17. CAS Google Scholar
Kaminskii, A. A., Bohatý, L., Becker, P., Held, P., Rhee, H., Eichler, H. J. & Hanuza, J. (2009). Laser Phys. Lett. 6, 335–350. Web of Science CrossRef CAS Google Scholar
Klevtsova, R. F., Glinskaya, L. A. & Klevtsov, P. V. (1988). Kristallografiya, 33, 1380–1386. Google Scholar
Mitscherlich, E. (1843). Ann. Phys. Chem. 134, 468–472. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Scacchi, A. (1867). Atti della Accademia delle Scienze Fisiche e Matematiche di Napoli, 3, 25–31, 636–641. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sohr, J., Voigt, W. & Zeng, D. (2017). J. Phys. Chem. Ref. Data, 46, 1–221. Web of Science CrossRef Google Scholar
Stoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sugimoto, K., Dinnebier, R. E. & Schlecht, T. (2006). J. Appl. Cryst. 39, 739–744. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Traube, H. (1894). N. Jahrb. Mineral. pp. 185–195. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.