research communications
Z)-7-methoxy-3-(2-phenylhydrazinylidene)-1-benzofuran-2(3H)-one
and Hirshfeld surface analysis of (3aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C15H12N2O3, pairs of molecules are linked into dimers by N—H⋯O hydrogen bonds, forming an R22(12) ring motif, with the dimers stacked along the a axis. These dimers are connected through π–π stacking interactions between the centroids of the benzene and furan rings of their 2,3-dihydro-1-benzofuran ring systems. Furthermore, there exists a C—H⋯π interaction that consolidates the crystal packing. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (40.7%), O⋯H/H⋯O (24.7%), C⋯H/H⋯C (16.1%) and C⋯C (8.8%).
Keywords: crystal structure; 2,3-dihydro-1-benzofuran ring system; dimers; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 1984938
1. Chemical context
et al., 2017a,b; Viswanathan et al., 2019). Moreover, metal complexes of hydrazone ligands have been successfully applied as catalysts in organic synthesis (Gurbanov et al., 2018). The properties of metal-hydrazonates can be regulated by the design of ligands through the involvement of non-covalent-bond donor or acceptor substituents (Ma et al., 2020, 2021; Mahmudov et al., 2013). Supramolecular networks of all dimensions in the crystal structures of hydrazone compounds or metal-hydrazonates, resulting from extensive hydrogen-bonding and other types of intermolecular interactions, have been reported (Gurbanov et al., 2020a; Kopylovich et al., 2011). Thus, the attachment of suitable substituents or synthons to hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020a,b; Khalilov et al., 2018a,b; Maharramov et al., 2018; Shihkaliyev et al., 2019; Shixaliyev et al., 2014).
are a versatile class of organic ligands that have extensive applications in synthetic transformations, the synthesis of bioactive compounds, the design of materials and in coordination chemistry (MaIn a continuation of our work in this context (Atioğlu et al., 2020, 2021), we have synthesized a new hydrazone compound, (3Z)-7-methoxy-3-(2-phenylhydrazinylidene)-1-benzofuran-2(3H)-one, which shows multiple intermolecular non-covalent interactions.
2. Structural commentary
In the title compound, the molecular conformation is stabilized by an intramolecular N2—H1⋯O2 hydrogen bond, forming an S(6) ring motif (Table 1, Fig. 1; Bernstein et al., 1995). The 2,3-dihydro-1-benzofuran ring system (O1/C1–C8) is essentially planar [maximum deviation of 0.016 (2) Å for O1] and subtends a dihedral angle of 5.32 (14)° with the phenyl ring (C10–C15).
3. Supramolecular features
In the crystal, pairs of molecules are linked into dimers by intermolecular N—H⋯O hydrogen bonds, forming an (12) ring motif (Table 1). These dimers are stacked along the a axis and connected by π–π stacking interactions between the centroids of the benzene and furan rings of their 2,3-dihydro-1-benzofuran ring systems [Cg1⋯Cg2(1 − x, − y, 1 − z) = 3.5316 (19) Å, slippage = 0.352 Å, where Cg1 and Cg2 are the centroids of the benzene (C3–C8) and furan (O1/C1–C3/C8) rings, respectively] (Figs. 2, 3 and 4). Furthermore, there exists a C—H⋯π interaction between the H9C atom of the methyl group C9 and the centroid of the phenyl ring (C10–C15).
4. Hirshfeld surface analysis
Crystal Explorer 17.5 (Turner et al., 2017) was used to calculate the Hirshfeld surfaces and generate the two-dimensional fingerprint plots. Hirshfeld surfaces allow for the display of intermolecular interactions by using distinct colours and intensities to indicate short and long contacts, as well as the relative strength of the interactions. The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1718 to 1.3843 a.u. is shown in Fig. 5. The N2—H1⋯O2 interactions, which play a key role in the molecular packing of the title compound, are responsible for the red spot that occurs around O2. The bright-red spots appearing near O2 and hydrogen atom H1 indicate their roles as donors and/or acceptors in hydrogen-bonding; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) shown in Fig. 6. Here the blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
The overall two-dimensional fingerprint plot for the title compound is given in Fig. 7a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are shown in Fig. 7b–e, while numerical details of the different contacts are given in Table 2. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H (Fig. 7b; 40.7%), O⋯H/H⋯O (Fig. 7c; 24.7%), C⋯H/H⋯C (Fig. 7d; 16.1%) and C⋯C (Fig. 7e; 8.8%). Other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (3.8%), N⋯H/H⋯N (3.5%), O⋯C/C⋯O (1.9%), O⋯N/N⋯O (0.4%) and O⋯O (0.2%) contacts.
|
5. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016) gave 763 hits for structures with a hydrazone moiety. Five structures that are closely related to the title compound are: 2-(4-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (TODMEH; Oliveira et al., 2019); 2-(2-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (TODMIL; Oliveira et al., 2019); 2-(4-nitro-1H-imidazol-1-yl)-N′-[phenyl(pyridin-2-yl)methylidene]acetohydrazide (TODMOR; Oliveira et al., 2019); 2-(4-nitro-1H-imidazol-1-yl)-N′-[phenyl(pyridin-2-yl)methylidene]acetohydrazide (TODMUX; Oliveira et al., 2019) and 1,1′-[1,3-phenylenebis(2,2-dichloroethene-1,1-diyl)]bis(phenyldiazene) (EXIWOA; Shikhaliyev et al., 2021).
TODMEH and TODMOR crystallize in the monoclinic P21/c with Z = 4. TODMIL crystallizes in the monoclinic I2/a with Z = 8 and TODMUX crystallizes in the triclinic P with Z = 2. EXIWOA crystallizes in the monoclinic P21/c with Z = 4. The E conformation in TODMEH, TODMIL and TODMUX is stabilized by a strong intermolecular N—H⋯O interaction. These interactions lead to the formation of dimeric structural arrangements. In the crystal packing of TODMOR, an intermolecular N—H⋯N interaction results in a zigzag structural arrangement, with the formation of chains along the crystallographic b axis. Non-classical intermolecular C—H⋯N and C—H⋯O interactions are also observed in the crystal structures of TODMEH, TODMIL, TODMOR and TODMUX. In EXIWOA, molecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H interactions, forming a three-dimensional supramolecular network.
6. Synthesis and crystallization
A 20 ml screw-neck vial was charged with dimethyl sulfoxide (DMSO; 10 ml), (E)-2-{[2-(3,5-dimethylphenyl)hydrazineylidene]methyl}phenol (240 mg, 1 mmol), tetramethylethyl-enediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2-3), and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (v/v = 3/1–1/1). Colourless solid (yield 65%); m.p. 475 K. Analysis calculated for C15H12N2O3 (M = 268.27): C 67.16, H 4.51, N 10.44; found: C 67.11, H 4.47, N 10.35%. 1H NMR (300 MHz, CDCl3) δ 12.13 (s, 1H, NH), 6.91–7.43 (8H, Ar), 3.99 (s, 3H, OCH3). 13C NMR (75 MHz,CDCl3) δ 186.20, 161.87, 150.65, 141.76, 129.60, 125.09, 124.44, 123.87, 114.90, 112.74, 111.44, 108.76, 56.46. ESI–MS: m/z: 269.26 [M + H]+. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution.
7. details
Crystal data, data collection and structure . The H atom of the NH group was located in a difference-Fourier map and refined freely [N2—H1 = 0.92 (4) Å]. H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic or 1.5Ueq(C) for methyl H atoms. Owing to poor agreement between observed and calculated intensities, seven outliers, ( 7 1), ( 6 13), (13 7 0), ( 5 19), ( 5 20), ( 5 12) and (0 6 16), were omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 1984938
https://doi.org/10.1107/S2056989021007891/wm5614sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007891/wm5614Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007891/wm5614Isup3.cml
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C15H12N2O3 | F(000) = 1120 |
Mr = 268.27 | Dx = 1.387 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.436 (2) Å | Cell parameters from 2240 reflections |
b = 7.2485 (7) Å | θ = 2.4–26.3° |
c = 20.595 (2) Å | µ = 0.10 mm−1 |
β = 99.181 (4)° | T = 296 K |
V = 2569.6 (5) Å3 | Prism, colourless |
Z = 8 | 0.49 × 0.15 × 0.06 mm |
Bruker APEXII CCD diffractometer | 1463 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.085 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.0°, θmin = 2.0° |
Tmin = 0.629, Tmax = 0.745 | h = −21→21 |
12800 measured reflections | k = −8→8 |
2427 independent reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0517P)2 + 2.9831P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2427 reflections | Δρmax = 0.18 e Å−3 |
187 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0015 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42001 (12) | 0.2382 (3) | 0.41831 (10) | 0.0546 (6) | |
O2 | 0.31175 (13) | 0.3077 (4) | 0.45997 (10) | 0.0648 (7) | |
O3 | 0.53382 (14) | 0.1359 (4) | 0.34426 (11) | 0.0728 (8) | |
N1 | 0.42389 (15) | 0.3396 (4) | 0.58811 (12) | 0.0477 (7) | |
N2 | 0.35184 (16) | 0.3699 (4) | 0.59750 (13) | 0.0500 (7) | |
C1 | 0.38107 (19) | 0.2841 (5) | 0.46932 (14) | 0.0483 (8) | |
C2 | 0.43742 (17) | 0.2955 (4) | 0.52959 (13) | 0.0434 (8) | |
C3 | 0.51208 (17) | 0.2536 (4) | 0.51198 (14) | 0.0450 (8) | |
C4 | 0.58718 (18) | 0.2419 (5) | 0.54600 (16) | 0.0591 (10) | |
H4A | 0.598100 | 0.265759 | 0.590895 | 0.071* | |
C5 | 0.64493 (19) | 0.1937 (5) | 0.51096 (18) | 0.0653 (10) | |
H5A | 0.695811 | 0.185900 | 0.532762 | 0.078* | |
C6 | 0.6297 (2) | 0.1564 (5) | 0.44427 (17) | 0.0615 (10) | |
H6A | 0.670362 | 0.122386 | 0.422508 | 0.074* | |
C7 | 0.55574 (19) | 0.1688 (5) | 0.40953 (15) | 0.0521 (9) | |
C8 | 0.49847 (17) | 0.2183 (4) | 0.44538 (14) | 0.0466 (8) | |
C9 | 0.5936 (2) | 0.0804 (6) | 0.30818 (17) | 0.0778 (12) | |
H9A | 0.571774 | 0.063916 | 0.262729 | 0.117* | |
H9B | 0.615969 | −0.033713 | 0.325700 | 0.117* | |
H9C | 0.633113 | 0.173711 | 0.311913 | 0.117* | |
C10 | 0.33773 (18) | 0.4270 (4) | 0.65966 (14) | 0.0467 (8) | |
C11 | 0.3957 (2) | 0.4326 (5) | 0.71354 (14) | 0.0594 (10) | |
H11A | 0.445790 | 0.395598 | 0.709579 | 0.071* | |
C12 | 0.3796 (2) | 0.4926 (5) | 0.77285 (16) | 0.0671 (11) | |
H12A | 0.419310 | 0.497293 | 0.808808 | 0.081* | |
C13 | 0.3062 (2) | 0.5458 (5) | 0.78029 (16) | 0.0640 (10) | |
H13A | 0.295701 | 0.585028 | 0.820967 | 0.077* | |
C14 | 0.2482 (2) | 0.5402 (5) | 0.72659 (16) | 0.0604 (10) | |
H14A | 0.198194 | 0.577300 | 0.730814 | 0.073* | |
C15 | 0.26373 (19) | 0.4799 (5) | 0.66640 (15) | 0.0538 (9) | |
H15A | 0.224071 | 0.475136 | 0.630425 | 0.065* | |
H1 | 0.313 (2) | 0.352 (5) | 0.5627 (17) | 0.082 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0484 (13) | 0.0750 (18) | 0.0406 (11) | −0.0036 (12) | 0.0072 (10) | −0.0031 (11) |
O2 | 0.0484 (15) | 0.092 (2) | 0.0533 (14) | −0.0061 (13) | 0.0049 (11) | −0.0059 (12) |
O3 | 0.0659 (16) | 0.103 (2) | 0.0527 (14) | 0.0041 (14) | 0.0200 (12) | −0.0074 (14) |
N1 | 0.0488 (16) | 0.0505 (18) | 0.0441 (14) | −0.0068 (13) | 0.0082 (12) | 0.0010 (12) |
N2 | 0.0471 (17) | 0.060 (2) | 0.0427 (15) | −0.0017 (14) | 0.0062 (13) | −0.0044 (13) |
C1 | 0.049 (2) | 0.054 (2) | 0.0428 (17) | −0.0112 (17) | 0.0118 (15) | 0.0010 (15) |
C2 | 0.0476 (18) | 0.044 (2) | 0.0375 (16) | −0.0077 (15) | 0.0050 (14) | 0.0020 (14) |
C3 | 0.0498 (19) | 0.042 (2) | 0.0431 (16) | −0.0085 (15) | 0.0082 (14) | 0.0052 (14) |
C4 | 0.053 (2) | 0.073 (3) | 0.0489 (18) | −0.0091 (18) | 0.0014 (16) | 0.0038 (17) |
C5 | 0.044 (2) | 0.083 (3) | 0.068 (2) | −0.0021 (18) | 0.0070 (18) | 0.012 (2) |
C6 | 0.054 (2) | 0.067 (3) | 0.067 (2) | −0.0014 (18) | 0.0194 (18) | 0.0100 (19) |
C7 | 0.058 (2) | 0.051 (2) | 0.0499 (19) | −0.0049 (17) | 0.0159 (17) | 0.0025 (16) |
C8 | 0.0481 (19) | 0.047 (2) | 0.0447 (17) | −0.0073 (15) | 0.0070 (15) | 0.0063 (15) |
C9 | 0.092 (3) | 0.084 (3) | 0.066 (2) | 0.011 (2) | 0.038 (2) | −0.006 (2) |
C10 | 0.052 (2) | 0.047 (2) | 0.0404 (16) | −0.0068 (15) | 0.0080 (15) | −0.0010 (15) |
C11 | 0.055 (2) | 0.076 (3) | 0.0456 (18) | 0.0031 (18) | 0.0016 (16) | −0.0101 (17) |
C12 | 0.074 (3) | 0.080 (3) | 0.0446 (19) | 0.003 (2) | 0.0019 (18) | −0.0106 (18) |
C13 | 0.078 (3) | 0.069 (3) | 0.047 (2) | −0.002 (2) | 0.0174 (19) | −0.0081 (17) |
C14 | 0.060 (2) | 0.061 (3) | 0.065 (2) | 0.0041 (18) | 0.0248 (19) | 0.0021 (18) |
C15 | 0.050 (2) | 0.060 (2) | 0.0511 (19) | −0.0028 (17) | 0.0061 (16) | 0.0037 (16) |
O1—C1 | 1.380 (3) | C6—C7 | 1.375 (5) |
O1—C8 | 1.400 (3) | C6—H6A | 0.9300 |
O2—C1 | 1.205 (3) | C7—C8 | 1.381 (4) |
O3—C7 | 1.359 (4) | C9—H9A | 0.9600 |
O3—C9 | 1.431 (4) | C9—H9B | 0.9600 |
N1—C2 | 1.304 (3) | C9—H9C | 0.9600 |
N1—N2 | 1.320 (3) | C10—C15 | 1.374 (4) |
N2—C10 | 1.404 (4) | C10—C11 | 1.377 (4) |
N2—H1 | 0.92 (4) | C11—C12 | 1.367 (4) |
C1—C2 | 1.457 (4) | C11—H11A | 0.9300 |
C2—C3 | 1.438 (4) | C12—C13 | 1.369 (5) |
C3—C8 | 1.378 (4) | C12—H12A | 0.9300 |
C3—C4 | 1.386 (4) | C13—C14 | 1.375 (5) |
C4—C5 | 1.374 (4) | C13—H13A | 0.9300 |
C4—H4A | 0.9300 | C14—C15 | 1.381 (4) |
C5—C6 | 1.383 (5) | C14—H14A | 0.9300 |
C5—H5A | 0.9300 | C15—H15A | 0.9300 |
C1—O1—C8 | 106.9 (2) | C3—C8—C7 | 123.8 (3) |
C7—O3—C9 | 116.7 (3) | C3—C8—O1 | 112.3 (3) |
C2—N1—N2 | 119.5 (3) | C7—C8—O1 | 123.9 (3) |
N1—N2—C10 | 119.5 (3) | O3—C9—H9A | 109.5 |
N1—N2—H1 | 118 (2) | O3—C9—H9B | 109.5 |
C10—N2—H1 | 123 (2) | H9A—C9—H9B | 109.5 |
O2—C1—O1 | 121.0 (3) | O3—C9—H9C | 109.5 |
O2—C1—C2 | 130.6 (3) | H9A—C9—H9C | 109.5 |
O1—C1—C2 | 108.4 (3) | H9B—C9—H9C | 109.5 |
N1—C2—C3 | 126.1 (3) | C15—C10—C11 | 119.4 (3) |
N1—C2—C1 | 127.2 (3) | C15—C10—N2 | 118.6 (3) |
C3—C2—C1 | 106.7 (2) | C11—C10—N2 | 122.1 (3) |
C8—C3—C4 | 119.4 (3) | C12—C11—C10 | 120.1 (3) |
C8—C3—C2 | 105.7 (3) | C12—C11—H11A | 120.0 |
C4—C3—C2 | 134.9 (3) | C10—C11—H11A | 120.0 |
C5—C4—C3 | 117.6 (3) | C11—C12—C13 | 121.2 (3) |
C5—C4—H4A | 121.2 | C11—C12—H12A | 119.4 |
C3—C4—H4A | 121.2 | C13—C12—H12A | 119.4 |
C4—C5—C6 | 122.1 (3) | C12—C13—C14 | 118.8 (3) |
C4—C5—H5A | 119.0 | C12—C13—H13A | 120.6 |
C6—C5—H5A | 119.0 | C14—C13—H13A | 120.6 |
C7—C6—C5 | 121.3 (3) | C13—C14—C15 | 120.5 (3) |
C7—C6—H6A | 119.4 | C13—C14—H14A | 119.8 |
C5—C6—H6A | 119.4 | C15—C14—H14A | 119.8 |
O3—C7—C6 | 126.6 (3) | C10—C15—C14 | 120.0 (3) |
O3—C7—C8 | 117.5 (3) | C10—C15—H15A | 120.0 |
C6—C7—C8 | 115.9 (3) | C14—C15—H15A | 120.0 |
C2—N1—N2—C10 | −176.6 (3) | C4—C3—C8—C7 | 0.8 (5) |
C8—O1—C1—O2 | −179.2 (3) | C2—C3—C8—C7 | −178.7 (3) |
C8—O1—C1—C2 | 0.8 (3) | C4—C3—C8—O1 | −179.3 (3) |
N2—N1—C2—C3 | −178.2 (3) | C2—C3—C8—O1 | 1.2 (4) |
N2—N1—C2—C1 | 3.7 (5) | O3—C7—C8—C3 | 179.2 (3) |
O2—C1—C2—N1 | −1.8 (6) | C6—C7—C8—C3 | −0.3 (5) |
O1—C1—C2—N1 | 178.3 (3) | O3—C7—C8—O1 | −0.6 (5) |
O2—C1—C2—C3 | 179.9 (4) | C6—C7—C8—O1 | 179.8 (3) |
O1—C1—C2—C3 | −0.1 (3) | C1—O1—C8—C3 | −1.3 (3) |
N1—C2—C3—C8 | −179.0 (3) | C1—O1—C8—C7 | 178.6 (3) |
C1—C2—C3—C8 | −0.7 (3) | N1—N2—C10—C15 | 172.0 (3) |
N1—C2—C3—C4 | 1.5 (6) | N1—N2—C10—C11 | −7.6 (5) |
C1—C2—C3—C4 | 179.9 (4) | C15—C10—C11—C12 | −0.8 (5) |
C8—C3—C4—C5 | −0.4 (5) | N2—C10—C11—C12 | 178.7 (3) |
C2—C3—C4—C5 | 178.9 (4) | C10—C11—C12—C13 | 0.8 (6) |
C3—C4—C5—C6 | −0.5 (6) | C11—C12—C13—C14 | −0.7 (6) |
C4—C5—C6—C7 | 1.0 (6) | C12—C13—C14—C15 | 0.7 (5) |
C9—O3—C7—C6 | 0.9 (5) | C11—C10—C15—C14 | 0.8 (5) |
C9—O3—C7—C8 | −178.5 (3) | N2—C10—C15—C14 | −178.8 (3) |
C5—C6—C7—O3 | 179.9 (3) | C13—C14—C15—C10 | −0.8 (5) |
C5—C6—C7—C8 | −0.6 (5) |
Cg3 is the centroid of the C10–C15 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O2 | 0.92 (4) | 2.14 (3) | 2.843 (3) | 133 (3) |
N2—H1···O2i | 0.92 (4) | 2.44 (4) | 3.181 (4) | 138 (3) |
C9—H9C···Cg3ii | 0.96 | 2.70 | 3.555 (4) | 149 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H1···O2 | 2.44 | 1/2 - x, 1/2 - y, 1 - z |
H9B···N2 | 2.91 | 1 - x, -y, 1 - z |
H9C···C11 | 2.93 | 1 - x, 1 - y, 1 - z |
H5A···H15A | 2.51 | 1/2 + x, -1/2 + y, z |
C9···H14A | 2.85 | 1/2 + x, 1/2 - y, -1/2 + z |
H11A···H11A | 2.31 | 1 - x, y, 3/2 - z |
C15···H13A | 3.07 | 1/2 - x, -1/2 + y, 3/2 - z |
Contact | Percentage contribution |
H···H | 40.7 |
O···H/H···O | 24.7 |
C···H/H···C | 16.1 |
C···C | 8.8 |
N···C/C···N | 3.8 |
N···H/H···N | 3.5 |
O···C/C···O | 1.9 |
O···N/N···O | 0.4 |
O···O | 0.2 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and UFA; methodology, ZA and SHM; investigation, SHM, RKA, and ZA; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and UFA; visualization, RKA, ZA and MA; funding acquisition, UFA, SHM and RKA; resources, RKA, ZA and SHM; supervision, MA and SM.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Niyazova, A. A. & Mlowe, S. (2021). Acta Cryst. E77, 829–833. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291–1295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320–328. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 814–818. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.