research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (3Z)-7-meth­­oxy-3-(2-phenyl­hydrazinyl­­idene)-1-benzo­furan-2(3H)-one

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 June 2021; accepted 2 August 2021; online 6 August 2021)

In the title compound, C15H12N2O3, pairs of mol­ecules are linked into dimers by N—H⋯O hydrogen bonds, forming an R22(12) ring motif, with the dimers stacked along the a axis. These dimers are connected through ππ stacking inter­actions between the centroids of the benzene and furan rings of their 2,3-di­hydro-1-benzo­furan ring systems. Furthermore, there exists a C—H⋯π inter­action that consolidates the crystal packing. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (40.7%), O⋯H/H⋯O (24.7%), C⋯H/H⋯C (16.1%) and C⋯C (8.8%).

1. Chemical context

Hydrazones are a versatile class of organic ligands that have extensive applications in synthetic transformations, the synthesis of bioactive compounds, the design of materials and in coordination chemistry (Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). Moreover, metal complexes of hydrazone ligands have been successfully applied as catalysts in organic synthesis (Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]). The properties of metal-hydrazonates can be regulated by the design of ligands through the involvement of non-covalent-bond donor or acceptor substituents (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]). Supra­molecular networks of all dimensions in the crystal structures of hydrazone compounds or metal-hydrazonates, resulting from extensive hydrogen-bonding and other types of inter­molecular inter­actions, have been reported (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]). Thus, the attachment of suitable substituents or synthons to hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shihkaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]).

[Scheme 1]

In a continuation of our work in this context (Atioğlu et al., 2020[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291-1295.], 2021[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Niyazova, A. A. & Mlowe, S. (2021). Acta Cryst. E77, 829-833.]), we have synthesized a new hydrazone compound, (3Z)-7-meth­oxy-3-(2-phenyl­hydrazinyl­idene)-1-benzo­furan-2(3H)-one, which shows multiple inter­molecular non-covalent inter­actions.

2. Structural commentary

In the title compound, the mol­ecular conformation is stabilized by an intra­molecular N2—H1⋯O2 hydrogen bond, forming an S(6) ring motif (Table 1[link], Fig. 1[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The 2,3-di­hydro-1-benzo­furan ring system (O1/C1–C8) is essentially planar [maximum deviation of 0.016 (2) Å for O1] and subtends a dihedral angle of 5.32 (14)° with the phenyl ring (C10–C15).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2 0.92 (4) 2.14 (3) 2.843 (3) 133 (3)
N2—H1⋯O2i 0.92 (4) 2.44 (4) 3.181 (4) 138 (3)
C9—H9CCg3ii 0.96 2.70 3.555 (4) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [1-x, 1-y, 1-z].
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 30% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, pairs of mol­ecules are linked into dimers by inter­molecular N—H⋯O hydrogen bonds, forming an [R_{2}^{2}](12) ring motif (Table 1[link]). These dimers are stacked along the a axis and connected by ππ stacking inter­actions between the centroids of the benzene and furan rings of their 2,3-di­hydro-1-benzo­furan ring systems [Cg1⋯Cg2(1 − x, − y, 1 − z) = 3.5316 (19) Å, slippage = 0.352 Å, where Cg1 and Cg2 are the centroids of the benzene (C3–C8) and furan (O1/C1–C3/C8) rings, respectively] (Figs. 2[link], 3[link] and 4[link]). Furthermore, there exists a C—H⋯π inter­action between the H9C atom of the methyl group C9 and the centroid of the phenyl ring (C10–C15).

[Figure 2]
Figure 2
Inter­molecular N—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions (shown as dashed lines) in the title compound. [Symmetry codes: (a) 1 − x, −y, 1 − z; (b) 1 − x, 1 − y, 1 − z; (c) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z].
[Figure 3]
Figure 3
A view of the mol­ecular packing of the title compound along the a-axis direction. Inter­molecular inter­actions are depicted as in Fig. 2[link].
[Figure 4]
Figure 4
A view of the mol­ecular packing of the title compound along the b-axis direction. Inter­molecular inter­actions are depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to calculate the Hirshfeld surfaces and generate the two-dimensional fingerprint plots. Hirshfeld surfaces allow for the display of inter­molecular inter­actions by using distinct colours and intensities to indicate short and long contacts, as well as the relative strength of the inter­actions. The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1718 to 1.3843 a.u. is shown in Fig. 5[link]. The N2—H1⋯O2 inter­actions, which play a key role in the mol­ecular packing of the title compound, are responsible for the red spot that occurs around O2. The bright-red spots appearing near O2 and hydrogen atom H1 indicate their roles as donors and/or acceptors in hydrogen-bonding; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) shown in Fig. 6[link]. Here the blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1718 to 1.3843 a.u. The two N—H⋯O hydrogen bonds forming the dimer are depicted as dashed lines.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions, respectively, around atoms, corresponding to positive and negative potentials.

The overall two-dimensional fingerprint plot for the title compound is given in Fig. 7[link]a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are shown in Fig. 7[link]be, while numerical details of the different contacts are given in Table 2[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H (Fig. 7[link]b; 40.7%), O⋯H/H⋯O (Fig. 7[link]c; 24.7%), C⋯H/H⋯C (Fig. 7[link]d; 16.1%) and C⋯C (Fig. 7[link]e; 8.8%). Other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (3.8%), N⋯H/H⋯N (3.5%), O⋯C/C⋯O (1.9%), O⋯N/N⋯O (0.4%) and O⋯O (0.2%) contacts.

Table 2
Inter­atomic contacts of the title compound (Å)

Contact Distance Symmetry operation
H1⋯O2 2.44 [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
H9B⋯N2 2.91 1 − x, −y, 1 − z
H9C⋯C11 2.93 1 − x, 1 − y, 1 − z
H5A⋯H15A 2.51 [{1\over 2}] + x, −[{1\over 2}] + y, z
C9⋯H14A 2.85 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H11A⋯H11A 2.31 1 − x, y, [{3\over 2}] − z
C15⋯H13A 3.07 [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 763 hits for structures with a hydrazone moiety. Five structures that are closely related to the title compound are: 2-(4-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide (TODMEH; Oliveira et al., 2019[Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320-328.]); 2-(2-nitro-1H-imidazol-1-yl)-N′-[1-(pyridin-2-yl)ethyl­idene]aceto­hy­dra­zide (TODMIL; Oliveira et al., 2019[Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320-328.]); 2-(4-nitro-1H-imidazol-1-yl)-N′-[phen­yl(pyridin-2-yl)methyl­idene]acetohydrazide (TODMOR; Oliveira et al., 2019[Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320-328.]); 2-(4-nitro-1H-imidazol-1-yl)-N′-[phen­yl(pyridin-2-yl)methyl­idene]acetohydrazide (TODMUX; Oliveira et al., 2019[Oliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320-328.]) and 1,1′-[1,3-phenyl­enebis(2,2-di­chloro­ethene-1,1-di­yl)]bis­(phenyl­diazene) (EXIWOA; Shikhaliyev et al., 2021[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 814-818.]).

TODMEH and TODMOR crystallize in the monoclinic space group P21/c with Z = 4. TODMIL crystallizes in the monoclinic space group I2/a with Z = 8 and TODMUX crystallizes in the triclinic space group P[\overline{1}] with Z = 2. EXIWOA crystallizes in the monoclinic space group P21/c with Z = 4. The E conformation in TODMEH, TODMIL and TODMUX is stabilized by a strong inter­molecular N—H⋯O inter­action. These inter­actions lead to the formation of dimeric structural arrangements. In the crystal packing of TODMOR, an inter­molecular N—H⋯N inter­action results in a zigzag structural arrangement, with the formation of chains along the crystallographic b axis. Non-classical inter­molecular C—H⋯N and C—H⋯O inter­actions are also observed in the crystal structures of TODMEH, TODMIL, TODMOR and TODMUX. In EXIWOA, mol­ecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H inter­actions, forming a three-dimensional supra­molecular network.

6. Synthesis and crystallization

A 20 ml screw-neck vial was charged with dimethyl sulfoxide (DMSO; 10 ml), (E)-2-{[2-(3,5-di­methyl­phen­yl)hydrazineyl­idene]meth­yl}phenol (240 mg, 1 mmol), tetra­methyl­ethyl-enedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corres­ponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2-3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v = 3/1–1/1). Colourless solid (yield 65%); m.p. 475 K. Analysis calculated for C15H12N2O3 (M = 268.27): C 67.16, H 4.51, N 10.44; found: C 67.11, H 4.47, N 10.35%. 1H NMR (300 MHz, CDCl3) δ 12.13 (s, 1H, NH), 6.91–7.43 (8H, Ar), 3.99 (s, 3H, OCH3). 13C NMR (75 MHz,CDCl3) δ 186.20, 161.87, 150.65, 141.76, 129.60, 125.09, 124.44, 123.87, 114.90, 112.74, 111.44, 108.76, 56.46. ESI–MS: m/z: 269.26 [M + H]+. Crystals suitable for X-ray analysis were obtained by slow evaporation of a di­chloro­methane solution.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atom of the NH group was located in a difference-Fourier map and refined freely [N2—H1 = 0.92 (4) Å]. H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic or 1.5Ueq(C) for methyl H atoms. Owing to poor agreement between observed and calculated intensities, seven outliers, ([\overline{13}] 7 1), ([\overline{8}] 6 13), (13 7 0), ([\overline{9}] 5 19), ([\overline{7}] 5 20), ([\overline{15}] 5 12) and (0 6 16), were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C15H12N2O3
Mr 268.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 17.436 (2), 7.2485 (7), 20.595 (2)
β (°) 99.181 (4)
V3) 2569.6 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.49 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.629, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12800, 2427, 1463
Rint 0.085
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.152, 1.01
No. of reflections 2427
No. of parameters 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(3Z)-7-Methoxy-3-(2-phenylhydrazinylidene)-1-benzofuran-2(3H)-one top
Crystal data top
C15H12N2O3F(000) = 1120
Mr = 268.27Dx = 1.387 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.436 (2) ÅCell parameters from 2240 reflections
b = 7.2485 (7) Åθ = 2.4–26.3°
c = 20.595 (2) ŵ = 0.10 mm1
β = 99.181 (4)°T = 296 K
V = 2569.6 (5) Å3Prism, colourless
Z = 80.49 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1463 reflections with I > 2σ(I)
φ and ω scansRint = 0.085
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.629, Tmax = 0.745h = 2121
12800 measured reflectionsk = 88
2427 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0517P)2 + 2.9831P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2427 reflectionsΔρmax = 0.18 e Å3
187 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0015 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42001 (12)0.2382 (3)0.41831 (10)0.0546 (6)
O20.31175 (13)0.3077 (4)0.45997 (10)0.0648 (7)
O30.53382 (14)0.1359 (4)0.34426 (11)0.0728 (8)
N10.42389 (15)0.3396 (4)0.58811 (12)0.0477 (7)
N20.35184 (16)0.3699 (4)0.59750 (13)0.0500 (7)
C10.38107 (19)0.2841 (5)0.46932 (14)0.0483 (8)
C20.43742 (17)0.2955 (4)0.52959 (13)0.0434 (8)
C30.51208 (17)0.2536 (4)0.51198 (14)0.0450 (8)
C40.58718 (18)0.2419 (5)0.54600 (16)0.0591 (10)
H4A0.5981000.2657590.5908950.071*
C50.64493 (19)0.1937 (5)0.51096 (18)0.0653 (10)
H5A0.6958110.1859000.5327620.078*
C60.6297 (2)0.1564 (5)0.44427 (17)0.0615 (10)
H6A0.6703620.1223860.4225080.074*
C70.55574 (19)0.1688 (5)0.40953 (15)0.0521 (9)
C80.49847 (17)0.2183 (4)0.44538 (14)0.0466 (8)
C90.5936 (2)0.0804 (6)0.30818 (17)0.0778 (12)
H9A0.5717740.0639160.2627290.117*
H9B0.6159690.0337130.3257000.117*
H9C0.6331130.1737110.3119130.117*
C100.33773 (18)0.4270 (4)0.65966 (14)0.0467 (8)
C110.3957 (2)0.4326 (5)0.71354 (14)0.0594 (10)
H11A0.4457900.3955980.7095790.071*
C120.3796 (2)0.4926 (5)0.77285 (16)0.0671 (11)
H12A0.4193100.4972930.8088080.081*
C130.3062 (2)0.5458 (5)0.78029 (16)0.0640 (10)
H13A0.2957010.5850280.8209670.077*
C140.2482 (2)0.5402 (5)0.72659 (16)0.0604 (10)
H14A0.1981940.5773000.7308140.073*
C150.26373 (19)0.4799 (5)0.66640 (15)0.0538 (9)
H15A0.2240710.4751360.6304250.065*
H10.313 (2)0.352 (5)0.5627 (17)0.082 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0484 (13)0.0750 (18)0.0406 (11)0.0036 (12)0.0072 (10)0.0031 (11)
O20.0484 (15)0.092 (2)0.0533 (14)0.0061 (13)0.0049 (11)0.0059 (12)
O30.0659 (16)0.103 (2)0.0527 (14)0.0041 (14)0.0200 (12)0.0074 (14)
N10.0488 (16)0.0505 (18)0.0441 (14)0.0068 (13)0.0082 (12)0.0010 (12)
N20.0471 (17)0.060 (2)0.0427 (15)0.0017 (14)0.0062 (13)0.0044 (13)
C10.049 (2)0.054 (2)0.0428 (17)0.0112 (17)0.0118 (15)0.0010 (15)
C20.0476 (18)0.044 (2)0.0375 (16)0.0077 (15)0.0050 (14)0.0020 (14)
C30.0498 (19)0.042 (2)0.0431 (16)0.0085 (15)0.0082 (14)0.0052 (14)
C40.053 (2)0.073 (3)0.0489 (18)0.0091 (18)0.0014 (16)0.0038 (17)
C50.044 (2)0.083 (3)0.068 (2)0.0021 (18)0.0070 (18)0.012 (2)
C60.054 (2)0.067 (3)0.067 (2)0.0014 (18)0.0194 (18)0.0100 (19)
C70.058 (2)0.051 (2)0.0499 (19)0.0049 (17)0.0159 (17)0.0025 (16)
C80.0481 (19)0.047 (2)0.0447 (17)0.0073 (15)0.0070 (15)0.0063 (15)
C90.092 (3)0.084 (3)0.066 (2)0.011 (2)0.038 (2)0.006 (2)
C100.052 (2)0.047 (2)0.0404 (16)0.0068 (15)0.0080 (15)0.0010 (15)
C110.055 (2)0.076 (3)0.0456 (18)0.0031 (18)0.0016 (16)0.0101 (17)
C120.074 (3)0.080 (3)0.0446 (19)0.003 (2)0.0019 (18)0.0106 (18)
C130.078 (3)0.069 (3)0.047 (2)0.002 (2)0.0174 (19)0.0081 (17)
C140.060 (2)0.061 (3)0.065 (2)0.0041 (18)0.0248 (19)0.0021 (18)
C150.050 (2)0.060 (2)0.0511 (19)0.0028 (17)0.0061 (16)0.0037 (16)
Geometric parameters (Å, º) top
O1—C11.380 (3)C6—C71.375 (5)
O1—C81.400 (3)C6—H6A0.9300
O2—C11.205 (3)C7—C81.381 (4)
O3—C71.359 (4)C9—H9A0.9600
O3—C91.431 (4)C9—H9B0.9600
N1—C21.304 (3)C9—H9C0.9600
N1—N21.320 (3)C10—C151.374 (4)
N2—C101.404 (4)C10—C111.377 (4)
N2—H10.92 (4)C11—C121.367 (4)
C1—C21.457 (4)C11—H11A0.9300
C2—C31.438 (4)C12—C131.369 (5)
C3—C81.378 (4)C12—H12A0.9300
C3—C41.386 (4)C13—C141.375 (5)
C4—C51.374 (4)C13—H13A0.9300
C4—H4A0.9300C14—C151.381 (4)
C5—C61.383 (5)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C1—O1—C8106.9 (2)C3—C8—C7123.8 (3)
C7—O3—C9116.7 (3)C3—C8—O1112.3 (3)
C2—N1—N2119.5 (3)C7—C8—O1123.9 (3)
N1—N2—C10119.5 (3)O3—C9—H9A109.5
N1—N2—H1118 (2)O3—C9—H9B109.5
C10—N2—H1123 (2)H9A—C9—H9B109.5
O2—C1—O1121.0 (3)O3—C9—H9C109.5
O2—C1—C2130.6 (3)H9A—C9—H9C109.5
O1—C1—C2108.4 (3)H9B—C9—H9C109.5
N1—C2—C3126.1 (3)C15—C10—C11119.4 (3)
N1—C2—C1127.2 (3)C15—C10—N2118.6 (3)
C3—C2—C1106.7 (2)C11—C10—N2122.1 (3)
C8—C3—C4119.4 (3)C12—C11—C10120.1 (3)
C8—C3—C2105.7 (3)C12—C11—H11A120.0
C4—C3—C2134.9 (3)C10—C11—H11A120.0
C5—C4—C3117.6 (3)C11—C12—C13121.2 (3)
C5—C4—H4A121.2C11—C12—H12A119.4
C3—C4—H4A121.2C13—C12—H12A119.4
C4—C5—C6122.1 (3)C12—C13—C14118.8 (3)
C4—C5—H5A119.0C12—C13—H13A120.6
C6—C5—H5A119.0C14—C13—H13A120.6
C7—C6—C5121.3 (3)C13—C14—C15120.5 (3)
C7—C6—H6A119.4C13—C14—H14A119.8
C5—C6—H6A119.4C15—C14—H14A119.8
O3—C7—C6126.6 (3)C10—C15—C14120.0 (3)
O3—C7—C8117.5 (3)C10—C15—H15A120.0
C6—C7—C8115.9 (3)C14—C15—H15A120.0
C2—N1—N2—C10176.6 (3)C4—C3—C8—C70.8 (5)
C8—O1—C1—O2179.2 (3)C2—C3—C8—C7178.7 (3)
C8—O1—C1—C20.8 (3)C4—C3—C8—O1179.3 (3)
N2—N1—C2—C3178.2 (3)C2—C3—C8—O11.2 (4)
N2—N1—C2—C13.7 (5)O3—C7—C8—C3179.2 (3)
O2—C1—C2—N11.8 (6)C6—C7—C8—C30.3 (5)
O1—C1—C2—N1178.3 (3)O3—C7—C8—O10.6 (5)
O2—C1—C2—C3179.9 (4)C6—C7—C8—O1179.8 (3)
O1—C1—C2—C30.1 (3)C1—O1—C8—C31.3 (3)
N1—C2—C3—C8179.0 (3)C1—O1—C8—C7178.6 (3)
C1—C2—C3—C80.7 (3)N1—N2—C10—C15172.0 (3)
N1—C2—C3—C41.5 (6)N1—N2—C10—C117.6 (5)
C1—C2—C3—C4179.9 (4)C15—C10—C11—C120.8 (5)
C8—C3—C4—C50.4 (5)N2—C10—C11—C12178.7 (3)
C2—C3—C4—C5178.9 (4)C10—C11—C12—C130.8 (6)
C3—C4—C5—C60.5 (6)C11—C12—C13—C140.7 (6)
C4—C5—C6—C71.0 (6)C12—C13—C14—C150.7 (5)
C9—O3—C7—C60.9 (5)C11—C10—C15—C140.8 (5)
C9—O3—C7—C8178.5 (3)N2—C10—C15—C14178.8 (3)
C5—C6—C7—O3179.9 (3)C13—C14—C15—C100.8 (5)
C5—C6—C7—C80.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.92 (4)2.14 (3)2.843 (3)133 (3)
N2—H1···O2i0.92 (4)2.44 (4)3.181 (4)138 (3)
C9—H9C···Cg3ii0.962.703.555 (4)149
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
Interatomic contacts of the title compound (Å) top
ContactDistanceSymmetry operation
H1···O22.441/2 - x, 1/2 - y, 1 - z
H9B···N22.911 - x, -y, 1 - z
H9C···C112.931 - x, 1 - y, 1 - z
H5A···H15A2.511/2 + x, -1/2 + y, z
C9···H14A2.851/2 + x, 1/2 - y, -1/2 + z
H11A···H11A2.311 - x, y, 3/2 - z
C15···H13A3.071/2 - x, -1/2 + y, 3/2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H40.7
O···H/H···O24.7
C···H/H···C16.1
C···C8.8
N···C/C···N3.8
N···H/H···N3.5
O···C/C···O1.9
O···N/N···O0.4
O···O0.2

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and UFA; methodology, ZA and SHM; investigation, SHM, RKA, and ZA; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and UFA; visualization, RKA, ZA and MA; funding acquisition, UFA, SHM and RKA; resources, RKA, ZA and SHM; supervision, MA and SM.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Niyazova, A. A. & Mlowe, S. (2021). Acta Cryst. E77, 829–833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291–1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationOliveira, A. P. A., Ferreira, I. P., Despaigne, A. A. R., Silva, J. G. da, Vieira, A. C. S., Santos, M. S., Alexandre-Moreira, M. S., Diniz, R. & Beraldo, H. (2019). Acta Cryst. C75, 320–328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 814–818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds