research communications
Synthesis, μ6-2-[bis(carboxylatomethyl)amino]terephthalato}dicobalt(II)] 1.6-hydrate]
and magnetic properties of poly[[diaqua{aCollege of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People's Republic of China
*Correspondence e-mail: jiemacn@163.com
The 2(C12H7NO8)(H2O)2]·1.6H2O}n comprises two CoII ions, which are coordinated by fully deprotonated 2-aminodiacetic terephthalic acid (adtp4–) and terminal water molecules in distorted octahedral N1O5 and O6 coordination environments. The title compound features tetranuclear CoII units bridged by κ3O:O:O′- and κ3O:O,O′-carboxylate groups, which are joined into ribbons via syn–anti carboxylate bridges. The parallel adtp4– ligands with an alternately reversed arrangement further link adjacent CoII ribbons into (010) layers, which are assembled into a three-dimensional supramolecular network via intermolecular hydrogen bonds. The disordered water solvent molecules are situated in channels parallel to [100]. Magnetic measurements and analyses reveal that the title compound displays antiferromagnetic behaviour. The purity of the title compound was characterized by X-ray powder diffraction.
of the polymeric title compound {[CoKeywords: crystal structure; 2-aminodiacetic terephthalic acid; tetranuclear CoII units; layered structure.
CCDC reference: 2063394
1. Chemical context
Over the last two decades, coordination polymers (CPs) have become one of the most attractive fields in chemistry because of their fascinating structures and promising applications as solid functional materials in adsorption and separation (Gan et al., 2020; Yang et al., 2020; Qian et al., 2020; Islamoglu et al., 2020), catalysis (Bavykina et al., 2020), sensing (Allendorf et al., 2020), luminescence (Rice et al., 2020) and magnetism (Thorarinsdottir & Harris, 2020; Wang et al., 2019b). Multicarboxylic acids have been employed to synthesize compounds comprising of various dimensional structures such as chains, layers and three-dimensional frameworks. Immense efforts have been devoted to the construction of CPs for successful predictions and the rational design of definite structures; many significant advances in the construction of CPs have occurred by employing well-defined rigid multicarboxylic acids (Padial et al., 2020; Li et al., 2020b; Wang et al., 2019a; Shen et al., 2017; Pang et al., 2017). However, using semi-rigid or flexible ligands, predictions are still tricky and confusing owing to the diversity of ligand configurations, the formation of various polynuclear metal units and the influence of weak interatomic interactions.
Our previous studies have focused on the construction of CPs based on semi-rigid multicarboxylic acids with the aminodiacetate moiety such as 2-aminodiacetic terephthalic acid (H4adtp) (Liu et al., 2009). The ortho-carboxylate group of H4adtp can be regarded as three carboxylic arms attached to one amino nitrogen atom. The three arms can chelate and/or bridge metal ions through their carboxylate groups into polynuclear metal units or chains. The residual phenyl carboxylate group can cross-link the polynuclear metal units or chains into layers or three-dimensional frameworks. In previous work, we have reported the supramolecular hydrogen-bonded pillar-layered structure of [Mn(H2adtp)(H2O)]n where the three arms connect MnII ions into layers with MnII chains and H2adtp ligands joined by hydrogen bonding act as pillars (Ma et al., 2015). Herein we report the layer structure of the title compound, {[Co2(C12H7NO8)(H2O)2]·1.6H2O}n (I), based on fully deprotonated H4adtp as one of the ligands. The power X-ray diffraction pattern and magnetism of (I) were also studied in detail.
2. Structural commentary
The I) comprises two CoII ions, one adtp4– ligand, two terminal water ligands and 1.6 disordered solvent water molecules. Regarding the adtp4– ligand, one carboxylate group (C12, O7, O8) of the aminodiacetate moiety adopts a κ3-O:O:O′ coordination mode and the other one (C10, O5, O6) employs a syn–anti bidentate bridging fashion, whereas the carboxylate group in the ortho-position (C1, O1, O2) coordinates in a κ3-O:O,O′ mode and that in the meta-position (C8, O3, O4) binds to one CoII ion in monodentate fashion (see Scheme). As shown in Fig. 1, Co1 and Co2 are both six-coordinated and located in distorted octahedral environments with an N1O5 coordination set for Co1 and an O6 set for Co2. The adip4– ligand chelates Co1 with the amino nitrogen atom (N1) and carboxylate oxygen atoms (O1, O5 and O7) from the aminodiacetate moiety and its ortho-positioned carboxylate group. The residual cis-related sites are occupied by one meta-positioned carboxylate oxygen atom (O4ii) and one aminodiacetate oxygen atom (O7i) from two other adip4– ligands (for symmetry codes refer to Table 1). The ortho-positioned carboxylate group (O1iii and O2iii) from another adip4– ligand chelates Co2, two cis-related positions of which are occupied by two aminodiacetate oxygen atoms (O8iv and O6) from two different adip4– ligands. The remaining two cis-related sites of Co2 are occupied by two terminal water ligands (O9 and O10). The length of the Co—N bond is 2.241 (3) Å and the Co—O distances are between 1.992 (3) and 2.362 (3) Å, which are all in the expected ranges. As shown in Fig. 2, two inversion-related adtp4– ligands bridge two pairs of CoII ions (Co1, Co1ii, Co2i and Co2iii) into a tetranuclear unit with their κ3O:O:O′-carboxylate groups from the aminodiacetate moieties and ortho-positioned κ3O:O,O′-carboxylate groups (Li et al., 2020a; Zhang et al., 2019a,b; Liu et al., 2018), wherein two equivalent μ2-oxygen atoms (O7 and O7i) from κ3O:O:O′-carboxylate groups doubly bridge Co1 and Co1ii into a dinuclear unit. The dinuclear unit is further joined with two equivalent Co2i and Co2iii atoms via κ3O:O:O′-carboxylate groups and μ2-oxygen bridges (O1 and O1i) from κ3O:O,O′-carboxylate groups. Adjacent tetranuclear units are linked into a ribbon via double syn–anti bridging carboxylate groups from the aminodiacetate moieties. The closest Co1⋯Co2 and Co1⋯Co1 distances in the ribbon are 3.7074 (8) and 3.5762 (8) Å, respectively. Parallel-aligned adtp4– ligands with an alternately reversed arrangement bind adjacent CoII ribbons into a layer extending parallel to (010) (Fig. 3).
of (3. Supramolecular features
The (010) layers of (I) are assembled into a three-dimensional supramolecular network via intermolecular hydrogen bonds O9—H9A⋯O3v and O9—H9B⋯O2vi (Table 2, Fig. 4). The positionally and occupationally disordered solvent water molecules (O11–O14) are situated in channels extending parallel to [100].
4. Magnetic properties
The variable-temperature magnetic susceptibilities (χM) of (I) were measured in the range 2–300 K under 1000 Oe. The χM, χM−1 and χMT versus T plots are shown in Fig. 5. The value of χMT at 300 K is 5.43 cm3 K mol−1, which is much larger than the expected spin-only value (3.75 cm3 K mol−1) of two isolated CoII ions with g = 2.0, S = 3/2, which may be due to the contribution of the incompletely quenched orbital As the temperature decreases, the χMT value decreases slowly between 300 and 50 K and then it descends more steeply to the minimum value of 0.51 cm3 K mol−1 at 2 K. The curve clearly indicates that the dominant antiferromagnetic coupling is operating. The temperature dependence of χM−1 follows the Curie–Weiss law, and the linear fit by the equation 1/χM = (T − θ)/C gives C = 5.76 cm−3 K mol−1 and θ = −21.99 K, which is consistent with an antiferromagnetic behaviour.
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.42, May 2021 update; Groom et al., 2016) for complexes with 2-aminodiacetic terephthalic acid gave 19 hits, of which three are CoII complexes including the title compound (Refcode: CUFDIS). The other two CoII complexes are discrete coordination molecules (Liu et al., 2012). Three other complexes with layer structures based on 2-aminodiacetic terephthalic acid without another organic ligand have also been reported, viz. MUMBON, an MnII complex (Ma et al., 2015), NEVJIJ, a CdII complex (Ma et al., 2013), and NEVJUV, a ZnII complex (Ma et al., 2013). NEVJUV has similar cell parameters to the title compound, but similar tetranuclear metal units are not found in NEVJUV because the ZnII atoms have lower coordination numbers and the carboxylate oxygen atoms do not bridge the ZnII atoms as in the title compound. To the best of our knowledge, similar tetranuclear metal units have not been reported so far. Besides, one CoII coordination polymer (CCDC reference: 2063370; Ma et al., 2021), {[Co2(adtp)(H2O)6]·5H2O}n, has been synthesized, which consists of parallel stacked zigzag chains in which CoII cations are linked together through μ3-adtp4− anions.
6. Synthesis and crystallization
H4adtp was prepared using a similar protocol to that reported in the literature (Xu et al., 2006). The other chemicals were purchased from commercial sources and used without further purification. A solution of 0.2 mmol (0.0594 g) H4adtp in 5.0 ml of H2O was adjusted to a pH of 6.1 by adding a 1.0 M KHCO3 solution drop by drop. The above solution was mixed with 0.5 mmol (0.1455 g) of Co(NO3)2·6H2O and 5.0 ml of CH3CN, then transferred into a 25.0 ml Teflon-lined stainless steel autoclave. The autoclave was sealed, heated to 393 K and held at that temperature for 72 h. The autoclave was allowed to cool to 303 K within 24 h. Plate-like pink crystals of (I) were collected in 66% yield based on H4adtp. Analysis calculated (%) for C12Co2N1O11.6H14.2 (Mr = 475.90): C 30.29, H 3.01, N, 2.94; found: C 30.18, H 3.15, N 3.06. Selected IR data (KBr pellet, cm−1): 3389 (s), 1631 (s), 1570 (m), 1405 (s), 1373 (s), 1319 (b), 1111 (b), 780 (b), 712 (b).
The phase purity of compound (I) was confirmed by powder X-ray (PXRD; Fig. S1 in the supporting information). The peak positions of the experimental PXRD patterns are in good agreement with those simulated on basis of the present single-crystal X-ray data, indicating that a pure phase was obtained.
7. Refinement
Crystal data, data collection and structure . The solvent water molecules (O11, O12, O13 and O14) were found to be disordered and were refined isotropically with site occupancies of 0.5, 0.5, 0.35 and 0.25, respectively. The hydrogen atoms of the non-disordered water molecules (O9, O10) were found in an difference density map and refined as riding, with Uiso(H) = 1.5 Ueq(O). Other hydrogen atoms were placed at geometrically calculated positions and treated as riding, with Csp2—H = 0.93 Å, Csp3—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C). H atoms of O11, O12, O13 and O14 are not included in the model but were taken into account in the overall formula.
details are summarized in Table 3Supporting information
CCDC reference: 2063394
https://doi.org/10.1107/S2056989021008355/wm5615sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989021008355/wm5615Isup3.cdx
Figure S1 The simulated and experimental PXRD patterns for compound (I). DOI: https://doi.org/10.1107/S2056989021008355/wm5615sup4.tif
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Co2(C12H7NO8)(H2O)2]·(H2O)1.6 | Z = 2 |
Mr = 475.90 | F(000) = 480 |
Triclinic, P1 | Dx = 2.046 Mg m−3 |
a = 9.0064 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2340 (8) Å | Cell parameters from 1889 reflections |
c = 9.8426 (9) Å | θ = 2.3–27.5° |
α = 93.859 (3)° | µ = 2.22 mm−1 |
β = 105.571 (4)° | T = 293 K |
γ = 99.483 (5)° | Plate, clear light red |
V = 772.37 (13) Å3 | 0.30 × 0.25 × 0.05 mm |
Rigaku Saturn70 (4x4 bin mode) diffractometer | 2619 independent reflections |
Radiation source: fine-focus sealed tube | 2245 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.022 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
CCD_Profile_fitting scans | h = −10→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | k = −10→10 |
Tmin = 0.908, Tmax = 1.000 | l = −11→11 |
5012 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.035P)2 + 1.7231P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2619 reflections | Δρmax = 0.80 e Å−3 |
244 parameters | Δρmin = −0.41 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.29415 (6) | 0.45959 (5) | 0.48240 (5) | 0.01675 (15) | |
O5 | 0.0863 (3) | 0.3198 (3) | 0.4645 (3) | 0.0269 (6) | |
C1 | 0.2786 (4) | 0.7012 (4) | 0.3125 (4) | 0.0166 (8) | |
O7 | 0.4739 (3) | 0.3593 (3) | 0.4646 (3) | 0.0194 (6) | |
C2 | 0.2925 (4) | 0.6185 (4) | 0.1820 (4) | 0.0163 (8) | |
Co2 | −0.25268 (6) | 0.14862 (5) | 0.47212 (5) | 0.01611 (15) | |
O2 | 0.3336 (3) | 0.8376 (3) | 0.3404 (3) | 0.0213 (6) | |
C3 | 0.3371 (5) | 0.7042 (4) | 0.0822 (4) | 0.0209 (8) | |
H3 | 0.362867 | 0.806555 | 0.103109 | 0.025* | |
C4 | 0.3438 (5) | 0.6402 (4) | −0.0464 (4) | 0.0208 (8) | |
H4 | 0.376198 | 0.698823 | −0.110146 | 0.025* | |
C5 | 0.3021 (4) | 0.4882 (4) | −0.0798 (4) | 0.0170 (8) | |
C6 | 0.2603 (4) | 0.4025 (4) | 0.0199 (4) | 0.0185 (8) | |
H6 | 0.232662 | 0.300415 | −0.002608 | 0.022* | |
O9 | −0.3388 (3) | −0.0735 (3) | 0.4106 (3) | 0.0273 (6) | |
H9A | −0.294396 | −0.105535 | 0.348644 | 0.041* | |
H9B | −0.438376 | −0.087425 | 0.364194 | 0.041* | |
C7 | 0.2586 (4) | 0.4641 (4) | 0.1514 (4) | 0.0166 (8) | |
C8 | 0.2993 (4) | 0.4154 (4) | −0.2221 (4) | 0.0203 (8) | |
O8 | 0.5342 (3) | 0.1757 (3) | 0.3424 (3) | 0.0214 (6) | |
C9 | 0.0396 (4) | 0.3315 (4) | 0.2165 (4) | 0.0203 (8) | |
H9C | −0.000542 | 0.253614 | 0.137501 | 0.024* | |
H9D | −0.004209 | 0.417680 | 0.188115 | 0.024* | |
C10 | −0.0098 (4) | 0.2809 (4) | 0.3444 (4) | 0.0194 (8) | |
O4 | 0.3328 (3) | 0.5005 (3) | −0.3085 (3) | 0.0283 (7) | |
C13 | 0.2808 (4) | 0.2309 (4) | 0.2585 (4) | 0.0195 (8) | |
H13A | 0.285691 | 0.196842 | 0.164707 | 0.023* | |
H13B | 0.212473 | 0.154326 | 0.287781 | 0.023* | |
C12 | 0.4434 (4) | 0.2572 (4) | 0.3616 (4) | 0.0177 (8) | |
O3 | 0.2624 (4) | 0.2777 (3) | −0.2452 (3) | 0.0328 (7) | |
O6 | −0.1453 (3) | 0.2040 (3) | 0.3200 (3) | 0.0242 (6) | |
O1 | 0.2057 (3) | 0.6374 (3) | 0.3941 (3) | 0.0194 (6) | |
O10 | −0.0424 (3) | 0.0957 (3) | 0.6003 (3) | 0.0286 (6) | |
H10A | −0.052816 | 0.076051 | 0.685363 | 0.043* | |
H10B | 0.017174 | 0.187022 | 0.599944 | 0.043* | |
N1 | 0.2142 (3) | 0.3688 (3) | 0.2523 (3) | 0.0153 (6) | |
O11 | 0.3252 (12) | 0.0275 (10) | 0.9277 (10) | 0.069 (2)* | 0.5 |
O12 | −0.0171 (11) | 0.0705 (10) | 0.8922 (10) | 0.074 (2)* | 0.5 |
O13 | 0.2365 (15) | 0.0205 (11) | 0.9190 (11) | 0.047 (3)* | 0.35 |
O14 | 0.100 (3) | 0.029 (3) | 0.899 (3) | 0.104 (7)* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0195 (3) | 0.0195 (3) | 0.0122 (3) | 0.0038 (2) | 0.0062 (2) | 0.00157 (19) |
O5 | 0.0250 (16) | 0.0349 (16) | 0.0172 (14) | −0.0055 (13) | 0.0071 (12) | 0.0012 (12) |
C1 | 0.0154 (19) | 0.0204 (19) | 0.0136 (18) | 0.0037 (15) | 0.0040 (15) | 0.0008 (14) |
O7 | 0.0190 (14) | 0.0198 (13) | 0.0172 (13) | 0.0035 (11) | 0.0026 (11) | −0.0023 (10) |
C2 | 0.016 (2) | 0.0189 (18) | 0.0141 (18) | 0.0026 (15) | 0.0051 (15) | 0.0004 (14) |
Co2 | 0.0175 (3) | 0.0160 (3) | 0.0165 (3) | 0.0032 (2) | 0.0082 (2) | 0.00012 (19) |
O2 | 0.0288 (16) | 0.0168 (13) | 0.0201 (14) | 0.0024 (12) | 0.0116 (12) | −0.0006 (10) |
C3 | 0.027 (2) | 0.0183 (18) | 0.0181 (19) | 0.0059 (16) | 0.0073 (16) | 0.0019 (15) |
C4 | 0.024 (2) | 0.025 (2) | 0.0160 (19) | 0.0061 (17) | 0.0090 (16) | 0.0060 (15) |
C5 | 0.0161 (19) | 0.0233 (19) | 0.0116 (17) | 0.0038 (16) | 0.0043 (14) | 0.0008 (14) |
C6 | 0.023 (2) | 0.0162 (17) | 0.0161 (18) | 0.0024 (15) | 0.0063 (15) | 0.0007 (14) |
O9 | 0.0234 (16) | 0.0212 (14) | 0.0379 (17) | 0.0016 (12) | 0.0137 (13) | −0.0051 (12) |
C7 | 0.016 (2) | 0.0223 (19) | 0.0122 (18) | 0.0034 (16) | 0.0061 (15) | 0.0028 (14) |
C8 | 0.021 (2) | 0.028 (2) | 0.0118 (18) | 0.0054 (17) | 0.0047 (15) | −0.0001 (15) |
O8 | 0.0198 (14) | 0.0211 (13) | 0.0235 (14) | 0.0074 (12) | 0.0054 (11) | −0.0018 (11) |
C9 | 0.014 (2) | 0.029 (2) | 0.0182 (19) | 0.0028 (16) | 0.0050 (15) | 0.0048 (16) |
C10 | 0.016 (2) | 0.0204 (19) | 0.023 (2) | 0.0044 (16) | 0.0073 (16) | 0.0028 (15) |
O4 | 0.0367 (18) | 0.0335 (16) | 0.0126 (13) | −0.0052 (13) | 0.0117 (12) | −0.0010 (11) |
C13 | 0.023 (2) | 0.0166 (18) | 0.0173 (19) | 0.0030 (16) | 0.0046 (16) | 0.0001 (14) |
C12 | 0.021 (2) | 0.0157 (18) | 0.0188 (19) | 0.0019 (16) | 0.0095 (16) | 0.0052 (15) |
O3 | 0.055 (2) | 0.0272 (16) | 0.0197 (15) | 0.0098 (14) | 0.0167 (14) | −0.0012 (12) |
O6 | 0.0177 (15) | 0.0345 (15) | 0.0207 (14) | 0.0010 (12) | 0.0085 (11) | 0.0043 (12) |
O1 | 0.0217 (14) | 0.0209 (13) | 0.0174 (13) | 0.0021 (11) | 0.0107 (11) | −0.0001 (10) |
O10 | 0.0263 (16) | 0.0333 (16) | 0.0275 (15) | 0.0067 (13) | 0.0076 (12) | 0.0101 (12) |
N1 | 0.0157 (16) | 0.0177 (15) | 0.0141 (15) | 0.0030 (13) | 0.0063 (12) | 0.0037 (12) |
Co1—O5 | 2.049 (3) | C5—C8 | 1.504 (5) |
Co1—O7 | 2.033 (3) | C6—H6 | 0.9300 |
Co1—O7i | 2.362 (3) | C6—C7 | 1.383 (5) |
Co1—O4ii | 1.992 (3) | O9—H9A | 0.8744 |
Co1—O1 | 2.083 (3) | O9—H9B | 0.8742 |
Co1—N1 | 2.241 (3) | C7—N1 | 1.461 (4) |
O5—C10 | 1.252 (5) | C8—O4 | 1.258 (5) |
C1—C2 | 1.495 (5) | C8—O3 | 1.249 (5) |
C1—O2 | 1.258 (4) | O8—C12 | 1.240 (4) |
C1—O1 | 1.281 (4) | C9—H9C | 0.9700 |
O7—C12 | 1.276 (4) | C9—H9D | 0.9700 |
C2—C3 | 1.401 (5) | C9—C10 | 1.521 (5) |
C2—C7 | 1.403 (5) | C9—N1 | 1.491 (5) |
Co2—O2iii | 2.161 (2) | C10—O6 | 1.259 (5) |
Co2—O9 | 2.057 (3) | C13—H13A | 0.9700 |
Co2—O8iv | 2.065 (3) | C13—H13B | 0.9700 |
Co2—O6 | 2.038 (3) | C13—C12 | 1.512 (5) |
Co2—O1iii | 2.212 (2) | C13—N1 | 1.492 (5) |
Co2—O10 | 2.126 (3) | O10—H10A | 0.8942 |
C3—H3 | 0.9300 | O10—H10B | 0.9225 |
C3—C4 | 1.381 (5) | O11—O13 | 0.771 (12) |
C4—H4 | 0.9300 | O12—O14 | 1.17 (3) |
C4—C5 | 1.384 (5) | O13—O14 | 1.21 (3) |
C5—C6 | 1.391 (5) | ||
O5—Co1—O7i | 170.67 (10) | C6—C5—C8 | 119.9 (3) |
O5—Co1—O1 | 99.02 (11) | C5—C6—H6 | 118.9 |
O5—Co1—N1 | 76.91 (11) | C7—C6—C5 | 122.2 (3) |
O7—Co1—O5 | 115.34 (11) | C7—C6—H6 | 118.9 |
O7—Co1—O7i | 71.31 (11) | Co2—O9—H9A | 109.7 |
O7—Co1—O1 | 133.46 (10) | Co2—O9—H9B | 109.8 |
O7—Co1—N1 | 78.36 (10) | H9A—O9—H9B | 104.3 |
O4ii—Co1—O5 | 91.10 (11) | C2—C7—N1 | 121.3 (3) |
O4ii—Co1—O7i | 80.73 (10) | C6—C7—C2 | 118.7 (3) |
O4ii—Co1—O7 | 103.42 (11) | C6—C7—N1 | 119.9 (3) |
O4ii—Co1—O1 | 106.43 (11) | O4—C8—C5 | 116.2 (3) |
O4ii—Co1—N1 | 167.23 (11) | O3—C8—C5 | 118.0 (3) |
O1—Co1—O7i | 79.19 (9) | O3—C8—O4 | 125.8 (3) |
O1—Co1—N1 | 80.14 (10) | C12—O8—Co2v | 130.6 (2) |
N1—Co1—O7i | 111.56 (10) | H9C—C9—H9D | 108.2 |
C10—O5—Co1 | 119.4 (2) | C10—C9—H9C | 109.6 |
O2—C1—C2 | 119.7 (3) | C10—C9—H9D | 109.6 |
O2—C1—O1 | 118.9 (3) | N1—C9—H9C | 109.6 |
O1—C1—C2 | 121.4 (3) | N1—C9—H9D | 109.6 |
Co1—O7—Co1i | 108.69 (10) | N1—C9—C10 | 110.1 (3) |
C12—O7—Co1i | 120.4 (2) | O5—C10—C9 | 117.6 (3) |
C12—O7—Co1 | 116.8 (2) | O5—C10—O6 | 125.6 (3) |
C3—C2—C1 | 116.4 (3) | O6—C10—C9 | 116.8 (3) |
C3—C2—C7 | 118.8 (3) | C8—O4—Co1vi | 129.3 (2) |
C7—C2—C1 | 124.8 (3) | H13A—C13—H13B | 108.0 |
O2iii—Co2—O1iii | 59.97 (9) | C12—C13—H13A | 109.4 |
O9—Co2—O2iii | 96.68 (10) | C12—C13—H13B | 109.4 |
O9—Co2—O8iv | 84.76 (11) | N1—C13—H13A | 109.4 |
O9—Co2—O1iii | 156.66 (10) | N1—C13—H13B | 109.4 |
O9—Co2—O10 | 89.06 (11) | N1—C13—C12 | 111.1 (3) |
O8iv—Co2—O2iii | 92.24 (10) | O7—C12—C13 | 116.7 (3) |
O8iv—Co2—O1iii | 95.29 (10) | O8—C12—O7 | 125.3 (3) |
O8iv—Co2—O10 | 173.82 (11) | O8—C12—C13 | 117.9 (3) |
O6—Co2—O2iii | 161.71 (11) | C10—O6—Co2 | 124.7 (2) |
O6—Co2—O9 | 101.55 (11) | Co1—O1—Co2iii | 119.35 (12) |
O6—Co2—O8iv | 90.90 (11) | C1—O1—Co1 | 115.4 (2) |
O6—Co2—O1iii | 101.79 (10) | C1—O1—Co2iii | 89.1 (2) |
O6—Co2—O10 | 90.63 (11) | Co2—O10—H10A | 110.5 |
O10—Co2—O2iii | 88.17 (11) | Co2—O10—H10B | 93.8 |
O10—Co2—O1iii | 90.26 (10) | H10A—O10—H10B | 114.8 |
C1—O2—Co2iii | 92.0 (2) | C7—N1—Co1 | 117.5 (2) |
C2—C3—H3 | 119.3 | C7—N1—C9 | 109.1 (3) |
C4—C3—C2 | 121.5 (3) | C7—N1—C13 | 113.8 (3) |
C4—C3—H3 | 119.3 | C9—N1—Co1 | 105.0 (2) |
C3—C4—H4 | 120.2 | C9—N1—C13 | 110.2 (3) |
C3—C4—C5 | 119.7 (3) | C13—N1—Co1 | 100.6 (2) |
C5—C4—H4 | 120.2 | O11—O13—O14 | 171 (2) |
C4—C5—C6 | 119.0 (3) | O12—O14—O13 | 164 (2) |
C4—C5—C8 | 121.1 (3) | ||
Co1—O5—C10—C9 | 4.5 (4) | C4—C5—C8—O4 | −1.8 (5) |
Co1—O5—C10—O6 | −174.9 (3) | C4—C5—C8—O3 | 179.1 (4) |
Co1i—O7—C12—O8 | 51.6 (4) | C5—C6—C7—C2 | 3.3 (6) |
Co1—O7—C12—O8 | −173.0 (3) | C5—C6—C7—N1 | −179.8 (3) |
Co1—O7—C12—C13 | 4.5 (4) | C5—C8—O4—Co1vi | −163.4 (2) |
Co1i—O7—C12—C13 | −130.8 (3) | C6—C5—C8—O4 | 177.4 (4) |
O5—C10—O6—Co2 | 9.2 (5) | C6—C5—C8—O3 | −1.7 (5) |
C1—C2—C3—C4 | −175.7 (3) | C6—C7—N1—Co1 | 158.5 (3) |
C1—C2—C7—C6 | 173.2 (3) | C6—C7—N1—C9 | −82.2 (4) |
C1—C2—C7—N1 | −3.7 (6) | C6—C7—N1—C13 | 41.4 (5) |
C2—C1—O2—Co2iii | 178.1 (3) | C7—C2—C3—C4 | 1.9 (6) |
C2—C1—O1—Co1 | 59.6 (4) | C8—C5—C6—C7 | −179.0 (3) |
C2—C1—O1—Co2iii | −178.0 (3) | C9—C10—O6—Co2 | −170.2 (2) |
C2—C3—C4—C5 | 1.6 (6) | C10—C9—N1—Co1 | −33.2 (3) |
C2—C7—N1—Co1 | −24.7 (4) | C10—C9—N1—C7 | −160.1 (3) |
C2—C7—N1—C9 | 94.7 (4) | C10—C9—N1—C13 | 74.3 (4) |
C2—C7—N1—C13 | −141.8 (3) | C12—C13—N1—Co1 | −40.3 (3) |
Co2v—O8—C12—O7 | 9.3 (5) | C12—C13—N1—C7 | 86.3 (4) |
Co2v—O8—C12—C13 | −168.3 (2) | C12—C13—N1—C9 | −150.7 (3) |
O2—C1—C2—C3 | −13.0 (5) | O3—C8—O4—Co1vi | 15.5 (6) |
O2—C1—C2—C7 | 169.5 (3) | O1—C1—C2—C3 | 164.0 (3) |
O2—C1—O1—Co1 | −123.4 (3) | O1—C1—C2—C7 | −13.6 (6) |
O2—C1—O1—Co2iii | −1.0 (3) | O1—C1—O2—Co2iii | 1.1 (3) |
C3—C2—C7—C6 | −4.3 (5) | N1—C9—C10—O5 | 22.0 (5) |
C3—C2—C7—N1 | 178.9 (3) | N1—C9—C10—O6 | −158.6 (3) |
C3—C4—C5—C6 | −2.6 (6) | N1—C13—C12—O7 | 27.9 (4) |
C3—C4—C5—C8 | 176.6 (3) | N1—C13—C12—O8 | −154.3 (3) |
C4—C5—C6—C7 | 0.2 (6) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x, −y+1, −z+1; (iv) x−1, y, z; (v) x+1, y, z; (vi) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O3vii | 0.87 | 1.93 | 2.701 (4) | 146 |
O9—H9B···O2viii | 0.87 | 2.00 | 2.809 (4) | 153 |
O10—H10A···O12 | 0.89 | 1.98 | 2.849 (10) | 164 |
O10—H10B···O5 | 0.92 | 2.02 | 2.798 (4) | 141 |
Symmetry codes: (vii) −x, −y, −z; (viii) x−1, y−1, z. |
Funding information
Funding for this research was provided by: Natural Science Foundation of Shandong Province (grant Nos. ZR2019QB013 and ZR2018MB041).
References
Allendorf, M. D., Dong, R., Feng, X., Kaskel, S., Matoga, D. & Stavila, V. (2020). Chem. Rev. 120, 8581–8640. CrossRef CAS PubMed Google Scholar
Bavykina, A., Kolobov, N., Khan, I. S., Bau, J. A., Ramirez, A. & Gascon, J. (2020). Chem. Rev. 120, 8468–8535. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gan, L., Chidambaram, A., Fonquernie, P. G., Light, M. E., Choquesillo-Lazarte, D., Huang, H., Solano, E., Fraile, J., Viñas, C., Teixidor, F., Navarro, J. A. R., Stylianou, K. C. & Planas, J. G. (2020). J. Am. Chem. Soc. 142, 8299–8311. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Islamoglu, T., Chen, Z., Wasson, M. C., Buru, C. T., Kirlikovali, K. O., Afrin, U., Mian, M. R. & Farha, O. K. (2020). Chem. Rev. 120, 8130–8160. Web of Science CrossRef CAS PubMed Google Scholar
Li, H.-X., Zhang, Z.-H., Wang, Q., Xue, D.-X. & Bai, J. (2020b). Cryst. Growth Des. 20, 8015–8020. CSD CrossRef CAS Google Scholar
Li, S.-D., Su, F., Zhu, M.-L. & Lu, L.-P. (2020a). Acta Cryst. C76, 863–868. CSD CrossRef IUCr Journals Google Scholar
Liu, M., Gao, K., Fan, Y., Guo, X., Wu, J., Meng, X. & Hou, H. (2018). Chem. Eur. J. 24, 1416–1424. CSD CrossRef CAS PubMed Google Scholar
Liu, M. L., Shi, W., Song, H. B., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). CrystEngComm, 11, 102–108. CSD CrossRef CAS Google Scholar
Liu, M.-L., Wang, Y.-X., Shi, W. & Cui, J.-Z. (2012). J. Coord. Chem. 65, 1915–1925. CSD CrossRef CAS Google Scholar
Ma, J., Chen, L., Wu, M. Y., Zhang, S. Q., Xiong, K. C., Han, D., Jiang, F. L. & Hong, M. C. (2013). CrystEngComm, 15, 911–921. CSD CrossRef CAS Google Scholar
Ma, J., Jiang, F.-L., Chen, L., Wu, M.-Y., Zhou, K., Yi, W.-T., Xiong, J. & Hong, M.-C. (2015). Inorg. Chem. Commun. 58, 43–47. CSD CrossRef CAS Google Scholar
Ma, J., Zhang, W.-Z., Xiong, J. & Yan, C.-Y. (2021). Acta Cryst. E77, 944–949. CSD CrossRef IUCr Journals Google Scholar
Padial, N. M., Lerma-Berlanga, B., Almora-Barrios, N., Castells-Gil, J., da Silva, I., de la Mata, M. A., Molina, S. I., Hernández-Saz, J., Platero-Prats, A. E., Tatay, S. & Martı-Gastaldo, C. (2020). J. Am. Chem. Soc. 142, 6638–6648. CSD CrossRef CAS PubMed Google Scholar
Pang, J., Yuan, S., Qin, J., Liu, C., Lollar, C., Wu, M., Yuan, D., Zhou, H.-C. & Hong, M. (2017). J. Am. Chem. Soc. 139, 16939–16945. CSD CrossRef CAS PubMed Google Scholar
Qian, Q., Asinger, P. A., Lee, M. J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F. M., Wu, A. X., Chi, W. S. & Smith, Z. P. (2020). Chem. Rev. 120, 8161–8266. CrossRef CAS PubMed Google Scholar
Rice, A. M., Martin, C. R., Galitskiy, V. A., Berseneva, A. A., Leith, G. A. & Shustova, N. B. (2020). Chem. Rev. 120, 8790–8813. CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, J.-Q., Liao, P.-Q., Zhou, D.-D., He, C.-T., Wu, J.-X., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. (2017). J. Am. Chem. Soc. 139, 1778–1781. CSD CrossRef CAS PubMed Google Scholar
Thorarinsdottir, A. E. & Harris, T. D. (2020). Chem. Rev. 120, 8716–8789. Web of Science CrossRef CAS PubMed Google Scholar
Wang, M., Gou, X., Shi, W. & Cheng, P. (2019b). Chem. Commun. 55, 11000–11012. CrossRef CAS Google Scholar
Wang, Y., Feng, L., Fan, W., Wang, K.-Y., Wang, X., Wang, X., Zhang, K., Zhang, X., Dai, F., Sun, D. & Zhou, H.-C. (2019a). J. Am. Chem. Soc. 141, 6967–6975. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y. Q., Yuan, D. Q., Wu, B. L., Han, L., Wu, M. Y., Jiang, F. L. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1168–1174. CSD CrossRef CAS Google Scholar
Yang, S., Peng, L., Syzgantseva, O. A., Trukhina, O., Kochetygov, I., Justin, A., Sun, D. T., Abedini, H., Syzgantseva, M. A., Oveisi, E., Lu, G. & Queen, W. L. (2020). J. Am. Chem. Soc. 142, 13415–13425. CrossRef CAS PubMed Google Scholar
Zhang, J.-Y., Ma, X.-L., Wang, Z.-X., He, X., Shao, M. & Li, M.-X. (2019b). Cryst. Growth Des. 19, 2308–2321. CSD CrossRef CAS Google Scholar
Zhang, Y.-Q., Blatov, V. A., Lv, X.-X., Tang, D.-Y., Qian, L.-L., Li, K. & Li, B.-L. (2019a). Acta Cryst. C75, 960–968. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.