Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1-hy­dr­oxy-8-methyl-9H-carbazole-2-carbaldehyde

crossmark logo

aPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, bDepartment of Chemistry, RV College of Engineering, Bangalore 560 059, Karnataka, India, cDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com, sridharanm@rvce.edu.in

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 21 June 2021; accepted 13 July 2021; online 16 July 2021)

Two crystallographically independent mol­ecules are present in the asymmetric unit of the title compound, C14H11NO2, with virtually identical geometries. The carbazole units are planar. The hy­droxy group at position 1, carbaldehyde group at position 2, and methyl group at position 8 (with the exception of two H atoms) are coplanar with the attached benzene rings. The dihedral angle between the two benzene rings is 2.20 (9)° in mol­ecule A and 2.01 (9)° in mol­ecule B. The pyrrole ring makes dihedral angles of 0.82 (10) and 1.40 (10)° [0.84 (10) and 1.18 (10)° in mol­ecule B] with the (–CH3)-substituted and (–OH and –CHO) substituted benzene rings, respectively. The mol­ecular structure is stabilized by the intra­molecular O—H⋯O hydrogen bonds, while the crystal structure features N—H⋯O and C—H⋯O hydrogen bonds. A range of ππ contacts further stabilizes the crystal structure.

1. Chemical context

Nitro­gen-containing heterocyclic compounds are key building blocks used to develop chemicals of biological and medicinal inter­est. Among nitro­gen heterocycles, carbazole alkaloids represent an important class of natural products. The Indian medicinal plant Murraya koenigii spreng (Rutaceae) is a rich source of carbazole alkaloids (Knölker & Reddy, 2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]), and a number of these natural products with novel structures and useful biological activities have been isolated from this plant over the past decades. The increase of isolable natural products as well as the pharmacological action of these carbazole derivatives has generated synthetic inter­est; consequently, the synthesis of carbazoles has been an active area of study.

Based on the structural, biological and pharmacological importance of carbazole derivatives, the present investigation was to devise a viable synthetic route to these compounds using different methodologies. For our synthetic strategy, 2,3,4,9-tetra­hydro-1H-carbazol-1-ones prepared in our laboratory were used as precursors, opening new avenues for the synthesis of highly functionalized carbazole derivatives such as 1-hy­droxy­imino-2,3,4,9-tetra­hydro-1H-carbazoles, 1-hy­droxy­carbazoles, and 1-hy­droxy-2-formyl­carbazoles. The functionalized carbazoles thus prepared lead to mukonine isomers, oxazolocarbazoles, girinimbine isomers, pyran­ocarbazoles, indoloisoflavones, indolocoumarins, indoloxanthones, benzocarbazoles, car­baz­ol­yl­oxy­prop­an­ol­amines and pyrazolo-, isoxazolo-, furo-, oxazino-, pyrimido-, pyridazino-, pyrido-, pyrazino- and indolo-carbazoles in excellent yields (Shanmugasundaram & Rajendra Prasad, 1999[Shanmugasundaram, K. & Rajendra Prasad, K. J. (1999). Heterocycles, 51, 9, 2163-2169.]; Sridharan & Rajendra Prasad, 2011[Sridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 53-59.]; Sridharan, Beagle et al., 2008[Sridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572-577.] and references cited therein). Herein, we report the synthesis and crystal structure of 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde (Fig. 1[link]), which is a potential precursor for the synthesis of many hetero-annulated carbazoles (Gunaseelan et al., 2007[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2682-o2683.]).

[Scheme 1]
[Figure 1]
Figure 1
The two crystallographically independent mol­ecules with the atom-numbering scheme. Non-H atoms are shown at the 50% displacement ellipsoid probability level, H atoms are represented as small spheres.

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with two independent mol­ecules (A and B, Fig. 1[link]) in the asymmetric unit. They are superimposable and both are essentially planar. Placing inverted mol­ecule B on mol­ecule A gives the best fit, with the overlay of the two independent mol­ecules shown in Fig. 2[link]. The weighted r.m.s. fit of the 17 non-H fitted atoms is 0.034 Å, the r.m.s. bond fit is 0.003 Å and the r.m.s. angle fit is 0.383°. Both independent mol­ecules, including the hy­droxy group at position 1, carbaldehyde group at position 2, and methyl group at position 8 (with the exception of two H atoms) are near planar. The dihedral angle between the two benzene rings of the carbazole is 2.20 (9)° in mol­ecule A and 2.01 (9)° in mol­ecule B. The pyrrole ring makes dihedral angles of 0.82 (10) and 1.40 (10)° for mol­ecule A and 0.84 (10) and 1.18 (10)° for mol­ecule B with the methyl-substituted and hydroxide/carbaldehyde-substituted benzene rings, respectively. The compound exhibits intra­molecular O—H⋯O hydrogen bonding between the hydroxide and aldehyde groups (Table 1[link]). Hydrogen bonds similar to the O1—H1D⋯O2 and O3—H3A⋯O4 bonds observed in this structure, forming S(6) ring motifs, have previously been observed (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.93 2.50 3.254 (2) 138
N1—H1⋯O4ii 0.87 (2) 2.00 (2) 2.862 (2) 174 (2)
O1—H1D⋯O2 0.94 (3) 1.74 (3) 2.602 (2) 151 (3)
N2—H2⋯O2iii 0.91 (2) 1.97 (2) 2.879 (2) 173 (2)
O3—H3A⋯O4 0.90 (3) 1.78 (3) 2.595 (2) 150 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 2]
Figure 2
Least-squares overlay of the two independent mol­ecules (inverted mol­ecule B on mol­ecule A). Fit rotation angle is −172.76°, r.m.s. fit = 0.087 Å.

3. Supra­molecular features

In the crystal, mol­ecules are connected into chains parallel to the c axis by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]). Both crystallographically independent mol­ecules are arranged in similar N1—H1⋯O4(x, [{1\over 2}] − y, [{1\over 2}] + z) and N2—H2⋯O2(x, 1 + y, z) hydrogen bonds. A C14—H14⋯O3(x, −1 + y, z) hydrogen bond is also present. A range of ππ contacts is also observed (Fig. 4[link]). The distances between ring centroids are Cg1⋯Cg2(x, −1 + y, z) = 3.4604 (13) Å, Cg1⋯Cg3 (x, 1 + y, z) = 3.4896 (13) Å and Cg7⋯Cg9 (x, 1 + y, z) = 3.6279 (13) Å, where Cg1, Cg2, Cg3, Cg7 and Cg9 are the centroids of the N1/C7/C6/C10/C9, C2–C7, C8–C13, N2/C21/C20/C24/C23 and C22–C27 rings, respectively.

[Figure 3]
Figure 3
Perspective partial packing view of the title compound, viewed along the b axis, showing the hydrogen-bonding inter­actions. Black dashed lines indicate the N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
Straw-style packing view of the title compound, viewed down the b axis, showing slipped ππ stacking inter­actions. Centroids are indicated by green spheres and contacts between centroids by black dotted lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the structure 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde gave two hits, viz. 2,2,10-trimethyl-2,3-di­hydro­pyrano(2,3-a)carbazol-4(11H)-one (CSD refcode: BOGTOH; Sridharan, Prasad et al., 2008[Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008). Acta Cryst. E64, o2157.]) and 1-(1-hy­droxy-8-methyl-9H-carbazol-2-yl)ethanone (CSD refcode: WACYEG; Archana et al., 2010[Archana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3146.]). A search for the structure of 9H-carbazole-1-ol gave 69 hits. 1-Hy­droxy-3-methyl-9H-carbazole-2-carbaldehyde, C14H11NO2, (CSD refcode: NIFCUB; Gunaseelan et al., 2007[Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2682-o2683.]) has the most similar structure to that of the title compound, with a 3-methyl rather than an 8-methyl group. The structure of NIFCUB is similarly stabilized by inter- and intra­molecular N—H⋯O and O—H⋯O hydrogen bonds.

5. Synthesis and crystallization

30% Sodium hydride in mineral oil (2.4 g) was washed with dry benzene and taken into a round-bottom flask containing dry benzene (100 ml). The flask was kept in an ice bath under stirring. Ethyl formate (8 ml) was added dropwise to the solution over a period of 10 minutes. Then 8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (1.6 g, 0.008 mol) in dry benzene (25 ml) was added slowly and the reaction mixture was allowed to stir for another 36 h. The reaction was monitored by TLC. After completion of the reaction, benzene was removed in vacuo and the contents in the flask were transferred to a beaker containing water. It was neutralized with dilute HCl, filtered, washed with water and dried to get crude 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde. It was purified by column chromatography over silica using petroleum ether:ethyl acetate (95:5) as eluant. The brown pure product obtained was recrystallized using glacial acetic acid (needle-shaped crystals, yield 0.965 g, 55%), m.p. 414 K (Fig. 5[link]).

[Figure 5]
Figure 5
Synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The indole NH hydrogen atoms, H1 and H2 and the hydroxyl OH hydrogen atoms H1D and H3A were located in a difference-Fourier map and freely refined. The remaining hydrogen atoms were placed in calculated positions with C—H bond distances of 0.93 Å (aromatic H), or 0.96 Å (methyl H) and were refined with anisotropic displacement parameters 1.2 and 1.5 times that of the parent carbon atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H11NO2
Mr 225.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 28.290 (5), 3.9052 (7), 20.264 (3)
β (°) 105.817 (2)
V3) 2154.0 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.75 × 0.19 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.830, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 19760, 5344, 4453
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 1.18
No. of reflections 5344
No. of parameters 325
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1-Hydroxy-8-methyl-9H-carbazole-2-carbaldehyde top
Crystal data top
C14H11NO2F(000) = 944
Mr = 225.24Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 28.290 (5) ÅCell parameters from 7327 reflections
b = 3.9052 (7) Åθ = 2.2–31.3°
c = 20.264 (3) ŵ = 0.09 mm1
β = 105.817 (2)°T = 296 K
V = 2154.0 (6) Å3Needle, brown
Z = 80.75 × 0.19 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5344 independent reflections
Radiation source: fine-focus sealed tube4453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3737
Tmin = 0.830, Tmax = 0.991k = 55
19760 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: mixed
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.1713P]
where P = (Fo2 + 2Fc2)/3
5344 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60695 (8)0.8782 (6)0.79934 (10)0.0305 (4)
H1A0.5863810.9939780.8228720.046*
H1B0.6366071.0070320.8042050.046*
H1C0.6149500.6542650.8187010.046*
C20.58026 (7)0.8460 (5)0.72475 (10)0.0225 (4)
C30.53306 (7)0.9707 (5)0.69748 (11)0.0269 (4)
H30.5175611.0810620.7265180.032*
C40.50767 (7)0.9371 (5)0.62778 (11)0.0278 (4)
H40.4758691.0219090.6119610.033*
C50.52935 (6)0.7800 (5)0.58267 (10)0.0239 (4)
H50.5125750.7585540.5365250.029*
C60.57725 (6)0.6531 (5)0.60773 (9)0.0190 (3)
C70.60179 (6)0.6862 (5)0.67805 (9)0.0187 (3)
C80.69229 (6)0.2303 (5)0.61767 (9)0.0186 (3)
C90.65285 (6)0.4087 (4)0.62986 (8)0.0171 (3)
C100.61009 (6)0.4752 (5)0.57646 (8)0.0173 (3)
C110.60642 (6)0.3678 (5)0.50886 (9)0.0213 (4)
H110.5785730.4162900.4733780.026*
C120.64511 (7)0.1896 (5)0.49680 (9)0.0213 (4)
H120.6430930.1145540.4525610.026*
C130.68800 (6)0.1176 (5)0.55022 (9)0.0199 (4)
C140.72687 (7)0.0821 (5)0.53619 (10)0.0230 (4)
H140.7224440.1639990.4918200.028*
C150.88208 (8)0.8160 (5)0.68439 (9)0.0265 (4)
H15A0.9021740.9050290.7269890.040*
H15B0.8606030.6428220.6934630.040*
H15C0.8628720.9979720.6583940.040*
C160.91438 (7)0.6628 (5)0.64413 (9)0.0214 (4)
C170.96492 (7)0.6431 (5)0.66858 (9)0.0256 (4)
H170.9798560.7300100.7119940.031*
C180.99471 (7)0.4977 (5)0.63077 (10)0.0270 (4)
H181.0285830.4911160.6495160.032*
C190.97440 (7)0.3645 (5)0.56619 (9)0.0232 (4)
H190.9941490.2671960.5412880.028*
C200.92328 (6)0.3795 (5)0.53906 (9)0.0187 (3)
C210.89409 (6)0.5292 (5)0.57814 (8)0.0179 (3)
C220.80092 (6)0.2763 (5)0.42718 (9)0.0183 (3)
C230.84263 (6)0.3534 (4)0.47993 (8)0.0176 (3)
C240.89000 (6)0.2655 (5)0.47573 (8)0.0180 (3)
C250.89635 (7)0.0985 (5)0.41705 (9)0.0218 (4)
H250.9275990.0439790.4136400.026*
C260.85547 (7)0.0181 (5)0.36514 (9)0.0232 (4)
H260.8591960.0936550.3263430.028*
C270.80755 (7)0.1021 (5)0.36941 (9)0.0206 (4)
C280.76490 (7)0.0010 (5)0.31623 (9)0.0254 (4)
H280.7698940.1165220.2785650.030*
N10.64768 (5)0.5391 (4)0.69071 (8)0.0191 (3)
N20.84527 (5)0.5107 (4)0.54173 (7)0.0187 (3)
O10.73268 (5)0.1687 (4)0.67024 (6)0.0238 (3)
O20.76604 (5)0.1520 (4)0.57967 (7)0.0276 (3)
O30.75629 (5)0.3697 (4)0.43310 (7)0.0230 (3)
O40.72203 (5)0.0536 (4)0.31724 (7)0.0298 (3)
H10.6700 (9)0.527 (7)0.7295 (13)0.033 (6)*
H1D0.7530 (11)0.035 (9)0.6508 (16)0.065 (9)*
H20.8187 (8)0.600 (6)0.5531 (12)0.031 (6)*
H3A0.7344 (11)0.288 (9)0.3952 (16)0.063 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (12)0.0266 (10)0.0261 (10)0.0013 (9)0.0192 (9)0.0015 (8)
C20.0284 (9)0.0157 (9)0.0283 (9)0.0017 (7)0.0160 (8)0.0015 (7)
C30.0298 (10)0.0167 (9)0.0411 (11)0.0003 (7)0.0213 (9)0.0011 (8)
C40.0212 (9)0.0196 (9)0.0443 (12)0.0017 (7)0.0120 (8)0.0058 (8)
C50.0203 (8)0.0193 (9)0.0310 (10)0.0008 (7)0.0053 (7)0.0067 (7)
C60.0191 (8)0.0169 (8)0.0218 (8)0.0018 (6)0.0068 (6)0.0048 (7)
C70.0208 (8)0.0157 (8)0.0219 (8)0.0002 (6)0.0096 (7)0.0042 (7)
C80.0188 (8)0.0193 (9)0.0182 (8)0.0015 (7)0.0059 (6)0.0015 (6)
C90.0181 (7)0.0172 (8)0.0170 (8)0.0028 (6)0.0066 (6)0.0026 (6)
C100.0182 (7)0.0172 (8)0.0173 (8)0.0025 (6)0.0061 (6)0.0034 (6)
C110.0227 (8)0.0226 (9)0.0177 (8)0.0034 (7)0.0041 (6)0.0027 (7)
C120.0268 (9)0.0218 (9)0.0158 (8)0.0064 (7)0.0067 (7)0.0003 (7)
C130.0215 (8)0.0203 (9)0.0199 (8)0.0039 (7)0.0089 (6)0.0004 (7)
C140.0276 (9)0.0214 (9)0.0238 (9)0.0023 (7)0.0133 (7)0.0004 (7)
C150.0382 (10)0.0237 (10)0.0179 (8)0.0029 (8)0.0083 (7)0.0025 (7)
C160.0300 (9)0.0177 (9)0.0160 (8)0.0027 (7)0.0053 (7)0.0030 (7)
C170.0330 (10)0.0216 (9)0.0181 (8)0.0055 (8)0.0001 (7)0.0028 (7)
C180.0244 (9)0.0262 (10)0.0265 (9)0.0019 (7)0.0005 (7)0.0064 (8)
C190.0226 (8)0.0237 (10)0.0232 (9)0.0031 (7)0.0062 (7)0.0061 (7)
C200.0209 (8)0.0171 (8)0.0188 (8)0.0008 (7)0.0064 (6)0.0039 (6)
C210.0206 (8)0.0165 (8)0.0166 (8)0.0004 (6)0.0052 (6)0.0034 (6)
C220.0214 (8)0.0180 (8)0.0166 (8)0.0002 (7)0.0068 (6)0.0031 (6)
C230.0222 (8)0.0174 (8)0.0143 (8)0.0004 (7)0.0070 (6)0.0016 (6)
C240.0206 (8)0.0171 (8)0.0171 (8)0.0028 (6)0.0064 (6)0.0040 (6)
C250.0245 (9)0.0225 (9)0.0203 (8)0.0045 (7)0.0092 (7)0.0024 (7)
C260.0325 (10)0.0220 (9)0.0165 (8)0.0030 (8)0.0093 (7)0.0003 (7)
C270.0270 (9)0.0202 (9)0.0143 (8)0.0001 (7)0.0051 (6)0.0012 (7)
C280.0346 (10)0.0233 (10)0.0162 (8)0.0013 (8)0.0035 (7)0.0003 (7)
N10.0197 (7)0.0218 (8)0.0165 (7)0.0019 (6)0.0060 (6)0.0013 (6)
N20.0204 (7)0.0216 (8)0.0149 (7)0.0002 (6)0.0062 (5)0.0005 (6)
O10.0187 (6)0.0312 (8)0.0203 (6)0.0047 (5)0.0034 (5)0.0006 (5)
O20.0247 (7)0.0301 (8)0.0308 (7)0.0022 (6)0.0123 (6)0.0014 (6)
O30.0186 (6)0.0318 (8)0.0187 (6)0.0013 (5)0.0051 (5)0.0013 (5)
O40.0278 (7)0.0397 (9)0.0193 (6)0.0043 (6)0.0019 (5)0.0011 (6)
Geometric parameters (Å, º) top
C1—C21.500 (3)C15—H15B0.9600
C1—H1A0.9600C15—H15C0.9600
C1—H1B0.9600C16—C171.382 (3)
C1—H1C0.9600C16—C211.404 (2)
C2—C31.387 (3)C17—C181.404 (3)
C2—C71.404 (2)C17—H170.9300
C3—C41.405 (3)C18—C191.380 (3)
C3—H30.9300C18—H180.9300
C4—C51.376 (3)C19—C201.401 (2)
C4—H40.9300C19—H190.9300
C5—C61.402 (2)C20—C211.417 (2)
C5—H50.9300C20—C241.440 (2)
C6—C71.411 (2)C21—N21.379 (2)
C6—C101.438 (2)C22—O31.350 (2)
C7—N11.378 (2)C22—C231.392 (2)
C8—O11.354 (2)C22—C271.410 (2)
C8—C91.393 (2)C23—N21.379 (2)
C8—C131.409 (2)C23—C241.408 (2)
C9—N11.378 (2)C24—C251.410 (2)
C9—C101.410 (2)C25—C261.371 (3)
C10—C111.409 (2)C25—H250.9300
C11—C121.374 (3)C26—C271.420 (3)
C11—H110.9300C26—H260.9300
C12—C131.417 (2)C27—C281.439 (2)
C12—H120.9300C28—O41.237 (2)
C13—C141.438 (3)C28—H280.9300
C14—O21.244 (2)N1—H10.87 (2)
C14—H140.9300N2—H20.91 (2)
C15—C161.505 (3)O1—H1D0.94 (3)
C15—H15A0.9600O3—H3A0.90 (3)
C2—C1—H1A109.5H15A—C15—H15C109.5
C2—C1—H1B109.5H15B—C15—H15C109.5
H1A—C1—H1B109.5C17—C16—C21115.81 (17)
C2—C1—H1C109.5C17—C16—C15123.33 (17)
H1A—C1—H1C109.5C21—C16—C15120.86 (16)
H1B—C1—H1C109.5C16—C17—C18122.89 (17)
C3—C2—C7115.79 (17)C16—C17—H17118.6
C3—C2—C1122.54 (17)C18—C17—H17118.6
C7—C2—C1121.68 (17)C19—C18—C17120.89 (18)
C2—C3—C4122.71 (18)C19—C18—H18119.6
C2—C3—H3118.6C17—C18—H18119.6
C4—C3—H3118.6C18—C19—C20118.34 (18)
C5—C4—C3120.74 (17)C18—C19—H19120.8
C5—C4—H4119.6C20—C19—H19120.8
C3—C4—H4119.6C19—C20—C21119.64 (16)
C4—C5—C6118.62 (18)C19—C20—C24133.72 (17)
C4—C5—H5120.7C21—C20—C24106.64 (15)
C6—C5—H5120.7N2—C21—C16128.23 (16)
C5—C6—C7119.64 (17)N2—C21—C20109.32 (15)
C5—C6—C10133.48 (17)C16—C21—C20122.43 (16)
C7—C6—C10106.86 (15)O3—C22—C23119.39 (15)
N1—C7—C2128.29 (17)O3—C22—C27122.90 (16)
N1—C7—C6109.21 (15)C23—C22—C27117.71 (16)
C2—C7—C6122.50 (16)N2—C23—C22128.21 (16)
O1—C8—C9119.60 (15)N2—C23—C24110.28 (15)
O1—C8—C13122.58 (16)C22—C23—C24121.50 (16)
C9—C8—C13117.81 (16)C23—C24—C25120.38 (16)
N1—C9—C8128.95 (16)C23—C24—C20105.83 (15)
N1—C9—C10109.92 (15)C25—C24—C20133.78 (16)
C8—C9—C10121.13 (16)C26—C25—C24118.57 (16)
C11—C10—C9120.79 (16)C26—C25—H25120.7
C11—C10—C6133.37 (16)C24—C25—H25120.7
C9—C10—C6105.84 (15)C25—C26—C27121.34 (17)
C12—C11—C10118.20 (16)C25—C26—H26119.3
C12—C11—H11120.9C27—C26—H26119.3
C10—C11—H11120.9C22—C27—C26120.48 (16)
C11—C12—C13121.50 (16)C22—C27—C28118.85 (17)
C11—C12—H12119.3C26—C27—C28120.62 (17)
C13—C12—H12119.3O4—C28—C27124.41 (18)
C8—C13—C12120.56 (16)O4—C28—H28117.8
C8—C13—C14119.52 (16)C27—C28—H28117.8
C12—C13—C14119.89 (16)C9—N1—C7108.16 (14)
O2—C14—C13124.09 (17)C9—N1—H1124.4 (16)
O2—C14—H14118.0C7—N1—H1127.5 (16)
C13—C14—H14118.0C23—N2—C21107.92 (15)
C16—C15—H15A109.5C23—N2—H2123.7 (15)
C16—C15—H15B109.5C21—N2—H2128.2 (15)
H15A—C15—H15B109.5C8—O1—H1D104.5 (18)
C16—C15—H15C109.5C22—O3—H3A105.7 (19)
C7—C2—C3—C40.8 (3)C18—C19—C20—C210.0 (3)
C1—C2—C3—C4179.15 (19)C18—C19—C20—C24178.91 (19)
C2—C3—C4—C50.9 (3)C17—C16—C21—N2179.02 (18)
C3—C4—C5—C60.2 (3)C15—C16—C21—N20.9 (3)
C4—C5—C6—C70.5 (3)C17—C16—C21—C200.7 (3)
C4—C5—C6—C10178.98 (19)C15—C16—C21—C20179.26 (17)
C3—C2—C7—N1179.66 (18)C19—C20—C21—N2179.13 (16)
C1—C2—C7—N10.3 (3)C24—C20—C21—N20.0 (2)
C3—C2—C7—C60.0 (3)C19—C20—C21—C160.5 (3)
C1—C2—C7—C6179.92 (17)C24—C20—C21—C16178.64 (16)
C5—C6—C7—N1179.06 (16)O3—C22—C23—N22.3 (3)
C10—C6—C7—N10.2 (2)C27—C22—C23—N2177.78 (17)
C5—C6—C7—C20.6 (3)O3—C22—C23—C24179.11 (16)
C10—C6—C7—C2179.45 (16)C27—C22—C23—C240.8 (3)
O1—C8—C9—N10.6 (3)N2—C23—C24—C25179.47 (16)
C13—C8—C9—N1178.76 (17)C22—C23—C24—C250.6 (3)
O1—C8—C9—C10179.52 (16)N2—C23—C24—C200.3 (2)
C13—C8—C9—C100.2 (3)C22—C23—C24—C20179.20 (16)
N1—C9—C10—C11179.77 (16)C19—C20—C24—C23179.2 (2)
C8—C9—C10—C111.1 (3)C21—C20—C24—C230.18 (19)
N1—C9—C10—C60.63 (19)C19—C20—C24—C250.6 (4)
C8—C9—C10—C6178.49 (16)C21—C20—C24—C25179.59 (19)
C5—C6—C10—C111.2 (4)C23—C24—C25—C261.3 (3)
C7—C6—C10—C11179.77 (19)C20—C24—C25—C26178.46 (19)
C5—C6—C10—C9178.36 (19)C24—C25—C26—C270.5 (3)
C7—C6—C10—C90.24 (19)O3—C22—C27—C26178.33 (17)
C9—C10—C11—C121.6 (3)C23—C22—C27—C261.6 (3)
C6—C10—C11—C12177.90 (19)O3—C22—C27—C284.1 (3)
C10—C11—C12—C130.8 (3)C23—C22—C27—C28175.89 (16)
O1—C8—C13—C12179.70 (16)C25—C26—C27—C221.0 (3)
C9—C8—C13—C121.0 (3)C25—C26—C27—C28176.49 (18)
O1—C8—C13—C142.4 (3)C22—C27—C28—O40.3 (3)
C9—C8—C13—C14176.92 (16)C26—C27—C28—O4177.80 (19)
C11—C12—C13—C80.5 (3)C8—C9—N1—C7178.24 (18)
C11—C12—C13—C14177.38 (17)C10—C9—N1—C70.8 (2)
C8—C13—C14—O23.4 (3)C2—C7—N1—C9179.03 (18)
C12—C13—C14—O2178.69 (18)C6—C7—N1—C90.6 (2)
C21—C16—C17—C180.4 (3)C22—C23—N2—C21179.13 (17)
C15—C16—C17—C18179.59 (18)C24—C23—N2—C210.4 (2)
C16—C17—C18—C190.1 (3)C16—C21—N2—C23178.75 (18)
C17—C18—C19—C200.3 (3)C20—C21—N2—C230.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.932.503.254 (2)138
N1—H1···O4ii0.87 (2)2.00 (2)2.862 (2)174 (2)
O1—H1D···O20.94 (3)1.74 (3)2.602 (2)151 (3)
N2—H2···O2iii0.91 (2)1.97 (2)2.879 (2)173 (2)
O3—H3A···O40.90 (3)1.78 (3)2.595 (2)150 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

AAT remembers the long time association and research collaboration with the late Professor Jerry P. Jasinski of the Department of Chemistry, Keene State College, USA. MS thanks the academic and administrative authorities of RV College of Engineering for their support and encouragement.

Funding information

Funding for this research was provided by: Ohio Board of Regents grant CAP-491 (The diffractometer was funded by NSF grant No. 0087210 to YSU).

References

First citationArchana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2682–o2683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science PubMed Google Scholar
First citationShanmugasundaram, K. & Rajendra Prasad, K. J. (1999). Heterocycles, 51, 9, 2163–2169.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.  Web of Science CrossRef Google Scholar
First citationSridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 53–59.  Google Scholar
First citationSridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008). Acta Cryst. E64, o2157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds