Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two polymorphs of [Rh(μ-I)(COD)]2

crossmark logo

a100 W. 18<sup>th</sup> Ave., Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
*Correspondence e-mail: thomas.3877@osu.edu

Edited by M. Zeller, Purdue University, USA (Received 2 July 2021; accepted 19 July 2021; online 27 July 2021)

The solid-state structure of di-μ-iodido-bis­{[(1,2,5,6-η)-cyclo­octa-1,4-diene]rhodium(I)}, [Rh2I2(C8H12)2] or [Rh(μ-I)(COD)]2, was determined from two crystals with different morphologies, which were found to correspond to two polymorphs containing Rh dimers with significantly different mol­ecular structures. Both polymorphs are monoclinic and the [Rh(μ-I)(COD)]2 mol­ecules in each case possess C2v symmetry. However, the core geometry of the butterfly-shaped Rh2I2 core differs substanti­ally. In the C2/c polymorph, the core geometry of [Rh(μ-I)(COD)]2B is bent, with a hinge angle of 96.13 (8)° and a Rh⋯Rh distance of 2.9612 (11) Å. The P21/c polymorph features a more planar [Rh(μ-I)(COD)]2P core geometry, with a hinge angle of 145.69 (9)° and a Rh⋯Rh distance of 3.7646 (5) Å.

1. Chemical context

Compounds of the type [M(μ-X)(COD)]2, (M = Ir, Rh, X = Cl, Br, I) are ubiquitous synthons for Rh and Ir catalysts. As a representative example, [Rh(COD)(DPEphos)]BF4 catalyzes the hydro­amination of vinyl­arenes with anti-Markovnikov selectivity, and is prepared via the reaction of [Rh(μ-Cl)(COD)]2 with two equivalents of AgBF4 and two equivalents of DPEphos (Utsunomiya et al., 2003[Utsunomiya, M., Kuwano, R., Kawatsura, M. & Hartwig, J. F. (2003). J. Am. Chem. Soc. 125, 5608-5609.]). Within the series [M(μ-X)(COD)]2 (M = Ir, Rh; X = Cl, Br, I), all compounds have been structurally characterized with the notable exception of [Rh(μ-I)(COD)]2 (De Ridder & Imhoff, 1994[De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.]; Pettinari et al., 2002[Pettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5-14.]; Cotton et al., 1986[Cotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153-157.]; Yamagata et al., 2007a[Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498.],b[Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.]). Thus, crystallographic characterization of the title compound was pursued to complete the series.

[Scheme 1]

2. Structural commentary

Crystallization of [Rh(μ-I)(COD)]2 in toluene at 236 K produced two types of crystals with different colors and morphologies, namely dark-orange and yellow–orange blocks. A representative crystal of each type was subjected to single crystal X-ray diffraction, revealing two different polymorphs of [Rh(μ-I)(COD)]2 containing dimers with significantly different structural features. X-ray diffraction of the dark-orange crystals revealed that [Rh(μ-I)(COD)]2 crystallized in the monoclinic C2/c space group in this polymorph. The mol­ecular structure of [Rh(μ-I)(COD)]2B exhibited a C2v-symmetric geometry featuring a bent Rh2I2 diamond core (Fig. 1[link]). The hinge angle, defined as the angle between the inter­secting planes that contain the iodide ligands and each rhodium, is 96.13 (8)° and the Rh⋯Rh distance is 2.9612 (11) Å. [Rh(μ-I)(COD)]2B exhibits a geometry significantly different from that of [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2, which both exhibit more planar Rh2X2 cores with hinge angles of 169.08 (6) and 148.74 (7)° and Rh⋯Rh distances of 3.5169 (6) and 3.5648 (14) Å, respectively (De Ridder & Imhoff, 1994[De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.]; Pettinari et al., 2002[Pettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5-14.]). However, the hinge angle of [Rh(μ-I)(COD)]2B is similar to that of [Ir(μ-I)(COD)]2 [95.26 (1)°; Yamagata et al., 2007b[Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.]].

[Figure 1]
Figure 1
Bent structure of [Rh(μ-I)(COD)]2B within the monoclinic C2/c polymorph. Independent atoms are labelled, while the other half of the molecule is symmetry-generated through a twofold rotation axis. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are removed for clarity.

X-ray diffraction of the yellow–orange crystals revealed a different polymorph of [Rh(μ-I)(COD)]2, this time crystallizing in the monoclinic P21/c space group. The geometry of the dirhodium dimer in the P21/c polymorph [Rh(μ-I)(COD)]2P differs significantly from the C2/c polymorph [Rh(μ-I)(COD)]2B. The Rh2I2 core geometry of [Rh(μ-I)(COD)]2P is more planar, with a hinge angle of 145.69 (9)° and a Rh⋯Rh distance of 3.7646 (5) Å (Fig. 2[link]). The mol­ecular structure of [Rh(μ-I)(COD)]2P is therefore similar to [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 (De Ridder & Imhoff, 1994[De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.]; Pettinari et al., 2002[Pettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5-14.]).

[Figure 2]
Figure 2
Planar structure of [Rh(μ-I)(COD)]2P within the monoclinic P21/c polymorph. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are removed for clarity.

A previous theoretical study found relatively small energetic differences (< 10 kcal mol−1) between planar and bent [Rh(μ-X)(L)2]2 geometries (Aullón et al., 1998[Aullón, G., Ujaque, G., Lledós, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804-813.]). By analyzing the donor–acceptor inter­actions between dz2 and pz orbitals of the two metal atoms, it was determined that the stability of bent morphologies increases as the electronegativity of the bridging ligand decreases. The degree of bending was predicted to increase in the order Cl < Br < I, consistent with the observation of a bent structure for [Rh(μ-I)(COD)]2B but not [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 (Aullón et al., 1998[Aullón, G., Ujaque, G., Lledós, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804-813.]). Moreover, Aullón and coworkers predicted the bent form to be more stable for Ir than for Rh, in line with the exclusive observation of a bent geometry for [Ir(μ-I)(COD)]2, but the possibility of both planar and bent forms for [Rh(μ-I)(COD)]2.

There is no meaningful difference between the two independent Rh—I distances in [Rh(μ-I)(COD)]2B [2.7072 (7) and 2.6975 (7) Å]. The four Rh—I distances in [Rh(μ-I)(COD)]2P are slightly less symmetric: the bonds between I2 and the two Rh centers [2.6833 (4) and 2.6738 (4) Å] are slightly shorter than those associated with I1 [2.6998 (4) and 2.7061 (4) Å]. Similarly, the Rh—C distances in [Rh(μ-I)(COD)]2B are more symmetric, ranging from 2.115 (6) to 2.122 (6) Å, while the Rh—C distances in [Rh(μ-I)(COD)]2P range from 2.117 (4) to 2.131 (4) Å. The average Rh—C distance in the bent and planar structures are similar to the average Rh—C distances reported for the [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 analogues (De Ridder & Imhoff, 1994[De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.]; Pettinari et al., 2002[Pettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5-14.]), with all four compounds having an average Rh—C distance of 2.12 Å. As expected based on the inherent differences in covalent radii, the average Rh—I distances in [Rh(μ-I)(COD)]2B and [Rh(μ-I)(COD)]2P (2.70 and 2.69 Å, respectively) are considerably longer than the average Rh—Br and Rh—Cl distances in [Rh(μ-Br)(COD)]2 and [Rh(μ-Cl)(COD)]2 (2.54 and 2.38 Å, respectively).

3. Supra­molecular features

The structural differences between the dimers in the two polymorphs of [Rh(μ-I)(COD)]2 are attributed to differences in crystal packing and weak inter­atomic forces. The bent and planar geometries are likely similar in energy. Stabilization of the bent geometry in [Rh(μ-I)(COD)]2B arises from intra­molecular dispersion forces between the C—H bonds of the cyclo­octa­diene ligands on the two Rh centers within each mol­ecule. Indeed there are four close C—H⋯H—C contacts (H2⋯H5 = 2.64 Å; H3A⋯H4B = 2.66 Å) between the alkene and methyl­ene hydrogen atoms made possible by the bent geometry (Fig. 3[link]). In the case of [Rh(μ-I)(COD)]2P, no such intra­molecular C—H⋯H—C inter­actions are present. The shortest inter­molecuar inter­actions in [Rh(μ-I)(COD)]2P are two Rh⋯H—C contacts in the apical positions of Rh2 (Rh2⋯H16A(1 − x, 1 − y, −z) = 2.67 Å; Rh2⋯H3A(2 − x, 1 − y, 1 − z) = 2.93 Å) that could, at best, be labeled as weak inter­molecular agostic inter­actions (Fig. 4[link]). Consistent with the inter­molecular inter­actions in the planar structure, the P21/c has a higher density (2.621 g cm−3) than the bent C2/c polymorph (2.597 g cm−3), indicative of tighter crystal packing.

[Figure 3]
Figure 3
Diagram of [Rh(μ-I)(COD)]2B showing weak intra­molecular C—H⋯H—C dispersion inter­actions between the two COD mol­ecules on the two Rh centers.
[Figure 4]
Figure 4
Diagram of [Rh(μ-I)(COD)]2P showing weak inter­molecular C—H⋯Rh inter­actions between adjacent mol­ecules.

4. Synthesis and crystallization

[Rh(μ-I)(COD)]2 was prepared according to the procedure described by J. A. Hlina et al. (2017[Hlina, J. A., Wells, J. A. L., Pankhurst, J. R., Love, J. B. & Arnold, P. L. (2017). Dalton Trans. 46, 5540-5545.]). Under a nitro­gen atmosphere, [Rh(μ-Cl)(COD)]2 (312.0 mg, 0.6323 mmol) was added to toluene (5 mL) and tri­methyl­silyl iodide (184.6 µL, 1.297 mmol). The reaction mixture turned dark red and rust-colored crystals precipitated from the solution. The solid was isolated, washed with hexa­nes and dried in vacuo to yield the final product [Rh(μ-I)(COD)]2 as a red–brown crystalline solid (358.5 mg, 84%). X-ray quality crystals were grown from a concentrated solution of toluene at 236 K, resulting in crystals with two different morphologies. 1H NMR (C6D6): 1.15–1.28 (m, 8H, –CHH–), 1.90–2.05 (m, 8H, –CHH–), 4.62–4.70 (m, 8H, =CH). A single species was observed by 1H NMR spectroscopy and the 1H NMR spectrum did not contain any broad features indicative of dynamic behavior or inter­conversion between the two isomers in solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Crystals were mounted on MiTeGen Micromounts with Paratone 24EX oil. Data were collected in a nitro­gen gas stream at 100 (2) K using φ and ω scans. Solution by direct methods (SHELXT) produced a complete phasing model for refinement. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL2018). All carbon-bonded methyl­ene hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL2018. All carbon-bonded methine hydrogen atoms were located in the difference map. Their C—H distances were restrained to a target value of 1.00 (2) Å. For all H atoms, displacement parameter Uiso(H) values were set to 1.2 times Ueq(C).

Table 1
Experimental details

  [Rh(μ-I)(COD)]2B [Rh(μ-I)(COD)]2P
Crystal data
Chemical formula [Rh2I2(C8H12)2] [Rh2I2(C8H12)2]
Mr 675.97 675.97
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 12.3414 (16), 11.8176 (17), 11.9374 (15) 10.4505 (5), 19.390 (1), 8.6271 (4)
β (°) 96.690 (3) 101.523 (2)
V3) 1729.2 (4) 1712.92 (14)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 5.47 5.52
Crystal size (mm) 0.10 × 0.06 × 0.03 0.15 × 0.14 × 0.09
 
Data collection
Diffractometer Nonius Kappa APEXII Nonius Kappa APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.062, 0.093 0.057, 0.093
No. of measured, independent and observed [I > 2σ(I)] reflections 15175, 1775, 1320 38760, 3519, 2922
Rint 0.080 0.051
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.03 0.025, 0.055, 1.07
No. of reflections 1775 3519
No. of parameters 103 205
No. of restraints 4 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.36, −0.79 1.26, −0.67
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-iodido-bis{[(1,2,5,6-η)-cycloocta-1,4-diene]rhodium(I)} (B) top
Crystal data top
[Rh2I2(C8H12)2]F(000) = 1264
Mr = 675.97Dx = 2.597 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.3414 (16) ÅCell parameters from 2574 reflections
b = 11.8176 (17) Åθ = 2.8–23.3°
c = 11.9374 (15) ŵ = 5.47 mm1
β = 96.690 (3)°T = 100 K
V = 1729.2 (4) Å3Block, dark orange
Z = 40.10 × 0.06 × 0.03 mm
Data collection top
Nonius Kappa APEXII
diffractometer
1775 independent reflections
Radiation source: sealed tube, fine-focus1320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.062, Tmax = 0.093l = 1414
15175 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 1.36 e Å3
4 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.52770 (3)0.20354 (3)0.40381 (4)0.02475 (15)
Rh10.38142 (4)0.31608 (4)0.25934 (4)0.02137 (15)
C10.2885 (6)0.3639 (6)0.3898 (6)0.0274 (16)
H10.309 (5)0.316 (5)0.458 (3)0.033*
C20.3652 (5)0.4497 (6)0.3749 (5)0.0255 (15)
H20.433 (3)0.456 (5)0.429 (4)0.031*
C30.3323 (6)0.5616 (5)0.3199 (6)0.0294 (16)
H3A0.3809350.6219810.3542640.035*
H3B0.2567780.5800870.3337930.035*
C40.3390 (6)0.5579 (5)0.1903 (6)0.0312 (17)
H4A0.2823710.6086590.1521820.037*
H4B0.4109720.5872480.1751660.037*
C50.3237 (5)0.4422 (6)0.1410 (6)0.0273 (16)
H50.357 (5)0.418 (5)0.074 (3)0.033*
C60.2378 (5)0.3707 (5)0.1589 (5)0.0229 (15)
H60.219 (5)0.306 (3)0.107 (4)0.028*
C70.1447 (5)0.4044 (6)0.2257 (5)0.0295 (16)
H7A0.0766750.3669410.1924620.035*
H7B0.1334030.4872160.2197590.035*
C80.1680 (5)0.3714 (6)0.3502 (6)0.0286 (16)
H8A0.1344700.4281130.3965800.034*
H8B0.1336570.2973040.3619200.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0234 (3)0.0275 (2)0.0232 (3)0.00135 (18)0.00190 (18)0.00455 (18)
Rh10.0203 (3)0.0237 (3)0.0200 (3)0.0009 (2)0.0018 (2)0.0007 (2)
C10.031 (4)0.029 (4)0.024 (4)0.000 (3)0.007 (3)0.004 (3)
C20.028 (4)0.027 (4)0.022 (4)0.004 (3)0.003 (3)0.004 (3)
C30.030 (4)0.020 (4)0.038 (4)0.005 (3)0.006 (3)0.002 (3)
C40.028 (4)0.024 (4)0.042 (5)0.003 (3)0.006 (3)0.008 (3)
C50.025 (4)0.034 (4)0.022 (4)0.004 (3)0.001 (3)0.004 (3)
C60.025 (4)0.025 (4)0.017 (4)0.002 (3)0.006 (3)0.003 (3)
C70.024 (4)0.029 (4)0.034 (4)0.005 (3)0.001 (3)0.002 (3)
C80.029 (4)0.026 (4)0.031 (4)0.002 (3)0.006 (3)0.005 (3)
Geometric parameters (Å, º) top
I1—Rh12.6975 (7)C1—C81.509 (9)
I1—Rh1i2.7072 (7)C2—C31.510 (9)
Rh1—Rh1i2.9612 (11)C3—C41.560 (9)
Rh1—C12.115 (6)C4—C51.492 (9)
Rh1—C22.122 (6)C5—C61.392 (9)
Rh1—C52.119 (7)C6—C71.526 (9)
Rh1—C62.121 (6)C7—C81.532 (9)
C1—C21.413 (9)
Rh1—I1—Rh1i66.45 (2)C6—Rh1—I1164.61 (18)
I1—Rh1—I1i85.13 (2)C6—Rh1—Rh1i136.51 (18)
I1i—Rh1—Rh1i56.621 (18)C6—Rh1—C290.3 (2)
I1—Rh1—Rh1i56.933 (19)C2—C1—Rh170.8 (4)
C1—Rh1—I1i165.07 (19)C2—C1—C8124.6 (6)
C1—Rh1—I192.3 (2)C8—C1—Rh1112.6 (4)
C1—Rh1—Rh1i132.91 (19)C1—C2—Rh170.3 (4)
C1—Rh1—C239.0 (2)C1—C2—C3122.2 (6)
C1—Rh1—C597.7 (3)C3—C2—Rh1114.2 (5)
C1—Rh1—C681.1 (3)C2—C3—C4111.4 (5)
C2—Rh1—I1i155.75 (18)C5—C4—C3113.4 (5)
C2—Rh1—I193.32 (18)C4—C5—Rh1111.4 (5)
C2—Rh1—Rh1i102.57 (18)C6—C5—Rh170.9 (4)
C5—Rh1—I1157.07 (18)C6—C5—C4124.1 (6)
C5—Rh1—I1i90.08 (18)C5—C6—Rh170.8 (4)
C5—Rh1—Rh1i102.03 (18)C5—C6—C7123.7 (6)
C5—Rh1—C282.0 (3)C7—C6—Rh1114.5 (4)
C5—Rh1—C638.3 (2)C6—C7—C8111.9 (5)
C6—Rh1—I1i97.57 (17)C1—C8—C7112.7 (5)
Symmetry code: (i) x+1, y, z+1/2.
Di-µ-iodido-bis{[(1,2,5,6-η)-cycloocta-1,4-diene]rhodium(I)} (P) top
Crystal data top
[Rh2I2(C8H12)2]F(000) = 1264
Mr = 675.97Dx = 2.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4505 (5) ÅCell parameters from 9797 reflections
b = 19.390 (1) Åθ = 2.6–26.4°
c = 8.6271 (4) ŵ = 5.52 mm1
β = 101.523 (2)°T = 100 K
V = 1712.92 (14) Å3Block, yellow-orange
Z = 40.14 × 0.14 × 0.09 mm
Data collection top
Nonius Kappa APEXII
diffractometer
3519 independent reflections
Radiation source: sealed tube, fine-focus2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.0°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2424
Tmin = 0.057, Tmax = 0.093l = 910
38760 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0284P)2]
where P = (Fo2 + 2Fc2)/3
3519 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 1.26 e Å3
8 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.73024 (3)0.56233 (2)0.46409 (3)0.02018 (8)
I20.89372 (2)0.46580 (2)0.19408 (3)0.02188 (8)
Rh10.80485 (3)0.42940 (2)0.45350 (4)0.01765 (9)
Rh20.72305 (3)0.57016 (2)0.14928 (4)0.01730 (9)
C10.7956 (4)0.3230 (2)0.3955 (5)0.0205 (9)
H10.778 (4)0.318 (2)0.280 (2)0.025*
C20.9215 (4)0.3392 (2)0.4781 (5)0.0229 (9)
H20.990 (3)0.346 (2)0.416 (4)0.027*
C30.9741 (4)0.3226 (2)0.6498 (5)0.0253 (10)
H3A1.0598150.3455830.6834850.030*
H3B0.9884540.2722700.6608750.030*
C40.8836 (4)0.3453 (2)0.7597 (5)0.0261 (10)
H4A0.8276460.3060030.7768780.031*
H4B0.9370290.3585490.8635190.031*
C50.7978 (4)0.4056 (2)0.6927 (5)0.0241 (10)
H50.814 (4)0.4466 (15)0.756 (5)0.029*
C60.6732 (4)0.3985 (2)0.5982 (5)0.0198 (9)
H60.607 (3)0.4340 (16)0.602 (5)0.024*
C70.6093 (4)0.3303 (2)0.5424 (5)0.0234 (9)
H7A0.5290710.3391820.4621280.028*
H7B0.5834540.3065260.6329500.028*
C80.6995 (4)0.2832 (2)0.4711 (5)0.0240 (9)
H8A0.7483120.2531060.5552560.029*
H8B0.6459110.2532370.3903850.029*
C90.6610 (4)0.5469 (2)0.0943 (5)0.0206 (9)
H90.679 (4)0.4967 (11)0.103 (5)0.025*
C100.7642 (4)0.5945 (2)0.0773 (5)0.0208 (9)
H100.847 (3)0.5720 (19)0.087 (5)0.025*
C110.7443 (4)0.6700 (2)0.1207 (5)0.0247 (10)
H11A0.6651440.6751010.2047670.030*
H11B0.8199210.6869150.1629120.030*
C120.7293 (4)0.7139 (2)0.0242 (5)0.0237 (9)
H12A0.8166050.7298100.0791900.028*
H12B0.6762060.7552120.0127300.028*
C130.6659 (4)0.6751 (2)0.1393 (5)0.0228 (9)
H130.685 (4)0.693 (2)0.250 (3)0.027*
C140.5529 (4)0.6343 (2)0.0998 (5)0.0210 (9)
H140.501 (3)0.626 (2)0.181 (4)0.025*
C150.4755 (4)0.6267 (2)0.0676 (5)0.0240 (9)
H15A0.4857980.6690820.1280310.029*
H15B0.3817410.6217030.0646950.029*
C160.5200 (4)0.5641 (2)0.1526 (5)0.0233 (9)
H16A0.4661460.5236460.1368710.028*
H16B0.5049850.5737090.2675010.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02462 (15)0.01759 (15)0.01827 (15)0.00106 (11)0.00414 (11)0.00015 (11)
I20.02106 (15)0.02275 (16)0.02346 (15)0.00440 (11)0.00840 (11)0.00442 (12)
Rh10.01825 (17)0.01641 (17)0.01870 (17)0.00044 (13)0.00467 (13)0.00062 (13)
Rh20.01825 (17)0.01664 (17)0.01712 (17)0.00074 (13)0.00379 (13)0.00049 (13)
C10.028 (2)0.014 (2)0.021 (2)0.0024 (17)0.0100 (18)0.0021 (18)
C20.024 (2)0.018 (2)0.029 (2)0.0044 (18)0.0087 (18)0.0019 (19)
C30.021 (2)0.026 (2)0.029 (2)0.0061 (18)0.0056 (18)0.004 (2)
C40.032 (3)0.022 (2)0.023 (2)0.0001 (19)0.0030 (19)0.0015 (19)
C50.033 (3)0.021 (2)0.019 (2)0.001 (2)0.0093 (19)0.0014 (19)
C60.019 (2)0.019 (2)0.022 (2)0.0040 (17)0.0069 (17)0.0012 (18)
C70.021 (2)0.024 (2)0.026 (2)0.0016 (18)0.0056 (18)0.0011 (19)
C80.028 (2)0.020 (2)0.024 (2)0.0007 (18)0.0052 (18)0.0011 (18)
C90.026 (2)0.023 (2)0.013 (2)0.0013 (18)0.0045 (17)0.0008 (18)
C100.023 (2)0.025 (2)0.018 (2)0.0030 (18)0.0099 (17)0.0014 (18)
C110.027 (2)0.025 (2)0.023 (2)0.0018 (19)0.0065 (18)0.0073 (19)
C120.029 (2)0.018 (2)0.022 (2)0.0015 (18)0.0003 (18)0.0016 (18)
C130.029 (2)0.017 (2)0.021 (2)0.0051 (18)0.0001 (18)0.0013 (18)
C140.024 (2)0.017 (2)0.022 (2)0.0081 (18)0.0060 (18)0.0019 (18)
C150.024 (2)0.020 (2)0.028 (2)0.0031 (18)0.0020 (19)0.0023 (19)
C160.026 (2)0.023 (2)0.019 (2)0.0014 (18)0.0011 (18)0.0002 (18)
Geometric parameters (Å, º) top
I1—Rh12.6998 (4)C2—C31.509 (6)
I1—Rh22.7061 (4)C3—C41.531 (6)
I2—Rh12.6833 (4)C4—C51.516 (6)
I2—Rh22.6738 (4)C5—C61.398 (6)
Rh1—C12.120 (4)C6—C71.516 (6)
Rh1—C22.117 (4)C7—C81.526 (5)
Rh1—C52.131 (4)C9—C101.404 (6)
Rh1—C62.120 (4)C9—C161.496 (6)
Rh2—C92.120 (4)C10—C111.514 (6)
Rh2—C102.137 (4)C11—C121.547 (6)
Rh2—C132.117 (4)C12—C131.501 (6)
Rh2—C142.142 (4)C13—C141.405 (6)
C1—C21.400 (6)C14—C151.514 (6)
C1—C81.514 (6)C15—C161.538 (6)
Rh1—I1—Rh288.274 (12)C2—C1—Rh170.6 (2)
Rh2—I2—Rh189.290 (12)C2—C1—C8122.2 (4)
I2—Rh1—I185.839 (12)C8—C1—Rh1113.4 (3)
C1—Rh1—I1159.56 (12)C1—C2—Rh170.8 (2)
C1—Rh1—I293.80 (11)C1—C2—C3124.9 (4)
C1—Rh1—C590.54 (16)C3—C2—Rh1111.4 (3)
C2—Rh1—I1161.67 (12)C2—C3—C4113.4 (3)
C2—Rh1—I290.72 (11)C5—C4—C3112.2 (3)
C2—Rh1—C138.60 (16)C4—C5—Rh1113.8 (3)
C2—Rh1—C581.67 (16)C6—C5—Rh170.4 (2)
C2—Rh1—C697.81 (16)C6—C5—C4123.8 (4)
C5—Rh1—I196.17 (12)C5—C6—Rh171.2 (2)
C5—Rh1—I2161.76 (12)C5—C6—C7124.8 (4)
C6—Rh1—I191.38 (11)C7—C6—Rh1110.9 (3)
C6—Rh1—I2159.83 (11)C6—C7—C8112.4 (3)
C6—Rh1—C181.93 (16)C1—C8—C7112.6 (3)
C6—Rh1—C538.41 (16)C10—C9—Rh271.4 (2)
I2—Rh2—I185.902 (12)C10—C9—C16125.0 (4)
C9—Rh2—I1157.60 (12)C16—C9—Rh2111.8 (3)
C9—Rh2—I292.63 (12)C9—C10—Rh270.1 (2)
C9—Rh2—C1038.52 (16)C9—C10—C11123.0 (4)
C9—Rh2—C1481.27 (16)C11—C10—Rh2113.4 (3)
C10—Rh2—I1163.81 (12)C10—C11—C12111.3 (3)
C10—Rh2—I292.82 (11)C13—C12—C11112.8 (3)
C10—Rh2—C1489.99 (16)C12—C13—Rh2110.5 (3)
C13—Rh2—I192.62 (12)C14—C13—Rh271.7 (2)
C13—Rh2—I2155.19 (12)C14—C13—C12125.6 (4)
C13—Rh2—C997.80 (16)C13—C14—Rh269.8 (2)
C13—Rh2—C1081.78 (16)C13—C14—C15123.3 (4)
C13—Rh2—C1438.53 (16)C15—C14—Rh2113.5 (3)
C14—Rh2—I195.06 (11)C14—C15—C16112.1 (3)
C14—Rh2—I2166.28 (11)C9—C16—C15112.7 (3)
 

Acknowledgements

The authors are grateful for access to the X-ray Diffraction Facility located in and supported by The Ohio State University Department of Chemistry and Biochemistry, as well as the support of The Ohio State University Sustainability Institute.

Funding information

Funding for this research was provided by: U.S. Department of Energy, Office of Science (award No. DE-SC0019179 to Christine M. Thomas).

References

First citationAullón, G., Ujaque, G., Lledós, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153–157.  CSD CrossRef CAS Web of Science Google Scholar
First citationDe Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569–1572.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHlina, J. A., Wells, J. A. L., Pankhurst, J. R., Love, J. B. & Arnold, P. L. (2017). Dalton Trans. 46, 5540–5545.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUtsunomiya, M., Kuwano, R., Kawatsura, M. & Hartwig, J. F. (2003). J. Am. Chem. Soc. 125, 5608–5609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds