Jerry P. Jasinski tribute
Two polymorphs of [Rh(μ-I)(COD)]2
a100 W. 18<sup>th</sup> Ave., Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
*Correspondence e-mail: thomas.3877@osu.edu
The solid-state structure of di-μ-iodido-bis{[(1,2,5,6-η)-cycloocta-1,4-diene]rhodium(I)}, [Rh2I2(C8H12)2] or [Rh(μ-I)(COD)]2, was determined from two crystals with different morphologies, which were found to correspond to two polymorphs containing Rh dimers with significantly different molecular structures. Both polymorphs are monoclinic and the [Rh(μ-I)(COD)]2 molecules in each case possess C2v symmetry. However, the core geometry of the butterfly-shaped Rh2I2 core differs substantially. In the C2/c polymorph, the core geometry of [Rh(μ-I)(COD)]2B is bent, with a hinge angle of 96.13 (8)° and a Rh⋯Rh distance of 2.9612 (11) Å. The P21/c polymorph features a more planar [Rh(μ-I)(COD)]2P core geometry, with a hinge angle of 145.69 (9)° and a Rh⋯Rh distance of 3.7646 (5) Å.
Keywords: crystal structure; polymorph; rhodium; dimer.
1. Chemical context
Compounds of the type [M(μ-X)(COD)]2, (M = Ir, Rh, X = Cl, Br, I) are ubiquitous synthons for Rh and Ir catalysts. As a representative example, [Rh(COD)(DPEphos)]BF4 catalyzes the hydroamination of vinylarenes with anti-Markovnikov selectivity, and is prepared via the reaction of [Rh(μ-Cl)(COD)]2 with two equivalents of AgBF4 and two equivalents of DPEphos (Utsunomiya et al., 2003). Within the series [M(μ-X)(COD)]2 (M = Ir, Rh; X = Cl, Br, I), all compounds have been structurally characterized with the notable exception of [Rh(μ-I)(COD)]2 (De Ridder & Imhoff, 1994; Pettinari et al., 2002; Cotton et al., 1986; Yamagata et al., 2007a,b). Thus, crystallographic characterization of the title compound was pursued to complete the series.
2. Structural commentary
Crystallization of [Rh(μ-I)(COD)]2 in toluene at 236 K produced two types of crystals with different colors and morphologies, namely dark-orange and yellow–orange blocks. A representative crystal of each type was subjected to single crystal X-ray diffraction, revealing two different polymorphs of [Rh(μ-I)(COD)]2 containing dimers with significantly different structural features. X-ray diffraction of the dark-orange crystals revealed that [Rh(μ-I)(COD)]2 crystallized in the monoclinic C2/c in this polymorph. The molecular structure of [Rh(μ-I)(COD)]2B exhibited a C2v-symmetric geometry featuring a bent Rh2I2 diamond core (Fig. 1). The hinge angle, defined as the angle between the intersecting planes that contain the iodide ligands and each rhodium, is 96.13 (8)° and the Rh⋯Rh distance is 2.9612 (11) Å. [Rh(μ-I)(COD)]2B exhibits a geometry significantly different from that of [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2, which both exhibit more planar Rh2X2 cores with hinge angles of 169.08 (6) and 148.74 (7)° and Rh⋯Rh distances of 3.5169 (6) and 3.5648 (14) Å, respectively (De Ridder & Imhoff, 1994; Pettinari et al., 2002). However, the hinge angle of [Rh(μ-I)(COD)]2B is similar to that of [Ir(μ-I)(COD)]2 [95.26 (1)°; Yamagata et al., 2007b].
X-ray diffraction of the yellow–orange crystals revealed a different polymorph of [Rh(μ-I)(COD)]2, this time crystallizing in the monoclinic P21/c The geometry of the dirhodium dimer in the P21/c polymorph [Rh(μ-I)(COD)]2P differs significantly from the C2/c polymorph [Rh(μ-I)(COD)]2B. The Rh2I2 core geometry of [Rh(μ-I)(COD)]2P is more planar, with a hinge angle of 145.69 (9)° and a Rh⋯Rh distance of 3.7646 (5) Å (Fig. 2). The molecular structure of [Rh(μ-I)(COD)]2P is therefore similar to [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 (De Ridder & Imhoff, 1994; Pettinari et al., 2002).
A previous theoretical study found relatively small energetic differences (< 10 kcal mol−1) between planar and bent [Rh(μ-X)(L)2]2 geometries (Aullón et al., 1998). By analyzing the donor–acceptor interactions between dz2 and pz orbitals of the two metal atoms, it was determined that the stability of bent morphologies increases as the of the bridging ligand decreases. The degree of bending was predicted to increase in the order Cl < Br < I, consistent with the observation of a bent structure for [Rh(μ-I)(COD)]2B but not [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 (Aullón et al., 1998). Moreover, Aullón and coworkers predicted the bent form to be more stable for Ir than for Rh, in line with the exclusive observation of a bent geometry for [Ir(μ-I)(COD)]2, but the possibility of both planar and bent forms for [Rh(μ-I)(COD)]2.
There is no meaningful difference between the two independent Rh—I distances in [Rh(μ-I)(COD)]2B [2.7072 (7) and 2.6975 (7) Å]. The four Rh—I distances in [Rh(μ-I)(COD)]2P are slightly less symmetric: the bonds between I2 and the two Rh centers [2.6833 (4) and 2.6738 (4) Å] are slightly shorter than those associated with I1 [2.6998 (4) and 2.7061 (4) Å]. Similarly, the Rh—C distances in [Rh(μ-I)(COD)]2B are more symmetric, ranging from 2.115 (6) to 2.122 (6) Å, while the Rh—C distances in [Rh(μ-I)(COD)]2P range from 2.117 (4) to 2.131 (4) Å. The average Rh—C distance in the bent and planar structures are similar to the average Rh—C distances reported for the [Rh(μ-Cl)(COD)]2 and [Rh(μ-Br)(COD)]2 analogues (De Ridder & Imhoff, 1994; Pettinari et al., 2002), with all four compounds having an average Rh—C distance of 2.12 Å. As expected based on the inherent differences in covalent radii, the average Rh—I distances in [Rh(μ-I)(COD)]2B and [Rh(μ-I)(COD)]2P (2.70 and 2.69 Å, respectively) are considerably longer than the average Rh—Br and Rh—Cl distances in [Rh(μ-Br)(COD)]2 and [Rh(μ-Cl)(COD)]2 (2.54 and 2.38 Å, respectively).
3. Supramolecular features
The structural differences between the dimers in the two polymorphs of [Rh(μ-I)(COD)]2 are attributed to differences in crystal packing and weak interatomic forces. The bent and planar geometries are likely similar in energy. Stabilization of the bent geometry in [Rh(μ-I)(COD)]2B arises from intramolecular dispersion forces between the C—H bonds of the cyclooctadiene ligands on the two Rh centers within each molecule. Indeed there are four close C—H⋯H—C contacts (H2⋯H5 = 2.64 Å; H3A⋯H4B = 2.66 Å) between the alkene and methylene hydrogen atoms made possible by the bent geometry (Fig. 3). In the case of [Rh(μ-I)(COD)]2P, no such intramolecular C—H⋯H—C interactions are present. The shortest intermolecuar interactions in [Rh(μ-I)(COD)]2P are two Rh⋯H—C contacts in the apical positions of Rh2 (Rh2⋯H16A(1 − x, 1 − y, −z) = 2.67 Å; Rh2⋯H3A(2 − x, 1 − y, 1 − z) = 2.93 Å) that could, at best, be labeled as weak intermolecular agostic interactions (Fig. 4). Consistent with the intermolecular interactions in the planar structure, the P21/c has a higher density (2.621 g cm−3) than the bent C2/c polymorph (2.597 g cm−3), indicative of tighter crystal packing.
4. Synthesis and crystallization
[Rh(μ-I)(COD)]2 was prepared according to the procedure described by J. A. Hlina et al. (2017). Under a nitrogen atmosphere, [Rh(μ-Cl)(COD)]2 (312.0 mg, 0.6323 mmol) was added to toluene (5 mL) and trimethylsilyl iodide (184.6 µL, 1.297 mmol). The reaction mixture turned dark red and rust-colored crystals precipitated from the solution. The solid was isolated, washed with hexanes and dried in vacuo to yield the final product [Rh(μ-I)(COD)]2 as a red–brown crystalline solid (358.5 mg, 84%). X-ray quality crystals were grown from a concentrated solution of toluene at 236 K, resulting in crystals with two different morphologies. 1H NMR (C6D6): 1.15–1.28 (m, 8H, –CHH–), 1.90–2.05 (m, 8H, –CHH–), 4.62–4.70 (m, 8H, =CH). A single species was observed by 1H NMR spectroscopy and the 1H NMR spectrum did not contain any broad features indicative of dynamic behavior or interconversion between the two isomers in solution.
5. Refinement
Crystal data, data collection and structure . Crystals were mounted on MiTeGen Micromounts with Paratone 24EX oil. Data were collected in a nitrogen gas stream at 100 (2) K using φ and ω scans. Solution by (SHELXT) produced a complete phasing model for All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL2018). All carbon-bonded methylene hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL2018. All carbon-bonded methine hydrogen atoms were located in the difference map. Their C—H distances were restrained to a target value of 1.00 (2) Å. For all H atoms, displacement parameter Uiso(H) values were set to 1.2 times Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S205698902100743X/zl5015sup1.cif
contains datablocks global, B, P. DOI:Structure factors: contains datablock B. DOI: https://doi.org/10.1107/S205698902100743X/zl5015Bsup2.hkl
Structure factors: contains datablock P. DOI: https://doi.org/10.1107/S205698902100743X/zl5015Psup3.hkl
For both structures, data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Rh2I2(C8H12)2] | F(000) = 1264 |
Mr = 675.97 | Dx = 2.597 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3414 (16) Å | Cell parameters from 2574 reflections |
b = 11.8176 (17) Å | θ = 2.8–23.3° |
c = 11.9374 (15) Å | µ = 5.47 mm−1 |
β = 96.690 (3)° | T = 100 K |
V = 1729.2 (4) Å3 | Block, dark orange |
Z = 4 | 0.10 × 0.06 × 0.03 mm |
Nonius Kappa APEXII diffractometer | 1775 independent reflections |
Radiation source: sealed tube, fine-focus | 1320 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.4°, θmin = 2.4° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.062, Tmax = 0.093 | l = −14→14 |
15175 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0302P)2] where P = (Fo2 + 2Fc2)/3 |
1775 reflections | (Δ/σ)max < 0.001 |
103 parameters | Δρmax = 1.36 e Å−3 |
4 restraints | Δρmin = −0.79 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.52770 (3) | 0.20354 (3) | 0.40381 (4) | 0.02475 (15) | |
Rh1 | 0.38142 (4) | 0.31608 (4) | 0.25934 (4) | 0.02137 (15) | |
C1 | 0.2885 (6) | 0.3639 (6) | 0.3898 (6) | 0.0274 (16) | |
H1 | 0.309 (5) | 0.316 (5) | 0.458 (3) | 0.033* | |
C2 | 0.3652 (5) | 0.4497 (6) | 0.3749 (5) | 0.0255 (15) | |
H2 | 0.433 (3) | 0.456 (5) | 0.429 (4) | 0.031* | |
C3 | 0.3323 (6) | 0.5616 (5) | 0.3199 (6) | 0.0294 (16) | |
H3A | 0.380935 | 0.621981 | 0.354264 | 0.035* | |
H3B | 0.256778 | 0.580087 | 0.333793 | 0.035* | |
C4 | 0.3390 (6) | 0.5579 (5) | 0.1903 (6) | 0.0312 (17) | |
H4A | 0.282371 | 0.608659 | 0.152182 | 0.037* | |
H4B | 0.410972 | 0.587248 | 0.175166 | 0.037* | |
C5 | 0.3237 (5) | 0.4422 (6) | 0.1410 (6) | 0.0273 (16) | |
H5 | 0.357 (5) | 0.418 (5) | 0.074 (3) | 0.033* | |
C6 | 0.2378 (5) | 0.3707 (5) | 0.1589 (5) | 0.0229 (15) | |
H6 | 0.219 (5) | 0.306 (3) | 0.107 (4) | 0.028* | |
C7 | 0.1447 (5) | 0.4044 (6) | 0.2257 (5) | 0.0295 (16) | |
H7A | 0.076675 | 0.366941 | 0.192462 | 0.035* | |
H7B | 0.133403 | 0.487216 | 0.219759 | 0.035* | |
C8 | 0.1680 (5) | 0.3714 (6) | 0.3502 (6) | 0.0286 (16) | |
H8A | 0.134470 | 0.428113 | 0.396580 | 0.034* | |
H8B | 0.133657 | 0.297304 | 0.361920 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0234 (3) | 0.0275 (2) | 0.0232 (3) | 0.00135 (18) | 0.00190 (18) | 0.00455 (18) |
Rh1 | 0.0203 (3) | 0.0237 (3) | 0.0200 (3) | 0.0009 (2) | 0.0018 (2) | 0.0007 (2) |
C1 | 0.031 (4) | 0.029 (4) | 0.024 (4) | 0.000 (3) | 0.007 (3) | −0.004 (3) |
C2 | 0.028 (4) | 0.027 (4) | 0.022 (4) | 0.004 (3) | 0.003 (3) | −0.004 (3) |
C3 | 0.030 (4) | 0.020 (4) | 0.038 (4) | 0.005 (3) | 0.006 (3) | −0.002 (3) |
C4 | 0.028 (4) | 0.024 (4) | 0.042 (5) | 0.003 (3) | 0.006 (3) | 0.008 (3) |
C5 | 0.025 (4) | 0.034 (4) | 0.022 (4) | 0.004 (3) | −0.001 (3) | 0.004 (3) |
C6 | 0.025 (4) | 0.025 (4) | 0.017 (4) | 0.002 (3) | −0.006 (3) | −0.003 (3) |
C7 | 0.024 (4) | 0.029 (4) | 0.034 (4) | 0.005 (3) | −0.001 (3) | 0.002 (3) |
C8 | 0.029 (4) | 0.026 (4) | 0.031 (4) | 0.002 (3) | 0.006 (3) | 0.005 (3) |
I1—Rh1 | 2.6975 (7) | C1—C8 | 1.509 (9) |
I1—Rh1i | 2.7072 (7) | C2—C3 | 1.510 (9) |
Rh1—Rh1i | 2.9612 (11) | C3—C4 | 1.560 (9) |
Rh1—C1 | 2.115 (6) | C4—C5 | 1.492 (9) |
Rh1—C2 | 2.122 (6) | C5—C6 | 1.392 (9) |
Rh1—C5 | 2.119 (7) | C6—C7 | 1.526 (9) |
Rh1—C6 | 2.121 (6) | C7—C8 | 1.532 (9) |
C1—C2 | 1.413 (9) | ||
Rh1—I1—Rh1i | 66.45 (2) | C6—Rh1—I1 | 164.61 (18) |
I1—Rh1—I1i | 85.13 (2) | C6—Rh1—Rh1i | 136.51 (18) |
I1i—Rh1—Rh1i | 56.621 (18) | C6—Rh1—C2 | 90.3 (2) |
I1—Rh1—Rh1i | 56.933 (19) | C2—C1—Rh1 | 70.8 (4) |
C1—Rh1—I1i | 165.07 (19) | C2—C1—C8 | 124.6 (6) |
C1—Rh1—I1 | 92.3 (2) | C8—C1—Rh1 | 112.6 (4) |
C1—Rh1—Rh1i | 132.91 (19) | C1—C2—Rh1 | 70.3 (4) |
C1—Rh1—C2 | 39.0 (2) | C1—C2—C3 | 122.2 (6) |
C1—Rh1—C5 | 97.7 (3) | C3—C2—Rh1 | 114.2 (5) |
C1—Rh1—C6 | 81.1 (3) | C2—C3—C4 | 111.4 (5) |
C2—Rh1—I1i | 155.75 (18) | C5—C4—C3 | 113.4 (5) |
C2—Rh1—I1 | 93.32 (18) | C4—C5—Rh1 | 111.4 (5) |
C2—Rh1—Rh1i | 102.57 (18) | C6—C5—Rh1 | 70.9 (4) |
C5—Rh1—I1 | 157.07 (18) | C6—C5—C4 | 124.1 (6) |
C5—Rh1—I1i | 90.08 (18) | C5—C6—Rh1 | 70.8 (4) |
C5—Rh1—Rh1i | 102.03 (18) | C5—C6—C7 | 123.7 (6) |
C5—Rh1—C2 | 82.0 (3) | C7—C6—Rh1 | 114.5 (4) |
C5—Rh1—C6 | 38.3 (2) | C6—C7—C8 | 111.9 (5) |
C6—Rh1—I1i | 97.57 (17) | C1—C8—C7 | 112.7 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
[Rh2I2(C8H12)2] | F(000) = 1264 |
Mr = 675.97 | Dx = 2.621 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4505 (5) Å | Cell parameters from 9797 reflections |
b = 19.390 (1) Å | θ = 2.6–26.4° |
c = 8.6271 (4) Å | µ = 5.52 mm−1 |
β = 101.523 (2)° | T = 100 K |
V = 1712.92 (14) Å3 | Block, yellow-orange |
Z = 4 | 0.14 × 0.14 × 0.09 mm |
Nonius Kappa APEXII diffractometer | 3519 independent reflections |
Radiation source: sealed tube, fine-focus | 2922 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 7.9 pixels mm-1 | θmax = 26.4°, θmin = 2.0° |
ω and φ scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −24→24 |
Tmin = 0.057, Tmax = 0.093 | l = −9→10 |
38760 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: mixed |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0284P)2] where P = (Fo2 + 2Fc2)/3 |
3519 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 1.26 e Å−3 |
8 restraints | Δρmin = −0.67 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.73024 (3) | 0.56233 (2) | 0.46409 (3) | 0.02018 (8) | |
I2 | 0.89372 (2) | 0.46580 (2) | 0.19408 (3) | 0.02188 (8) | |
Rh1 | 0.80485 (3) | 0.42940 (2) | 0.45350 (4) | 0.01765 (9) | |
Rh2 | 0.72305 (3) | 0.57016 (2) | 0.14928 (4) | 0.01730 (9) | |
C1 | 0.7956 (4) | 0.3230 (2) | 0.3955 (5) | 0.0205 (9) | |
H1 | 0.778 (4) | 0.318 (2) | 0.280 (2) | 0.025* | |
C2 | 0.9215 (4) | 0.3392 (2) | 0.4781 (5) | 0.0229 (9) | |
H2 | 0.990 (3) | 0.346 (2) | 0.416 (4) | 0.027* | |
C3 | 0.9741 (4) | 0.3226 (2) | 0.6498 (5) | 0.0253 (10) | |
H3A | 1.059815 | 0.345583 | 0.683485 | 0.030* | |
H3B | 0.988454 | 0.272270 | 0.660875 | 0.030* | |
C4 | 0.8836 (4) | 0.3453 (2) | 0.7597 (5) | 0.0261 (10) | |
H4A | 0.827646 | 0.306003 | 0.776878 | 0.031* | |
H4B | 0.937029 | 0.358549 | 0.863519 | 0.031* | |
C5 | 0.7978 (4) | 0.4056 (2) | 0.6927 (5) | 0.0241 (10) | |
H5 | 0.814 (4) | 0.4466 (15) | 0.756 (5) | 0.029* | |
C6 | 0.6732 (4) | 0.3985 (2) | 0.5982 (5) | 0.0198 (9) | |
H6 | 0.607 (3) | 0.4340 (16) | 0.602 (5) | 0.024* | |
C7 | 0.6093 (4) | 0.3303 (2) | 0.5424 (5) | 0.0234 (9) | |
H7A | 0.529071 | 0.339182 | 0.462128 | 0.028* | |
H7B | 0.583454 | 0.306526 | 0.632950 | 0.028* | |
C8 | 0.6995 (4) | 0.2832 (2) | 0.4711 (5) | 0.0240 (9) | |
H8A | 0.748312 | 0.253106 | 0.555256 | 0.029* | |
H8B | 0.645911 | 0.253237 | 0.390385 | 0.029* | |
C9 | 0.6610 (4) | 0.5469 (2) | −0.0943 (5) | 0.0206 (9) | |
H9 | 0.679 (4) | 0.4967 (11) | −0.103 (5) | 0.025* | |
C10 | 0.7642 (4) | 0.5945 (2) | −0.0773 (5) | 0.0208 (9) | |
H10 | 0.847 (3) | 0.5720 (19) | −0.087 (5) | 0.025* | |
C11 | 0.7443 (4) | 0.6700 (2) | −0.1207 (5) | 0.0247 (10) | |
H11A | 0.665144 | 0.675101 | −0.204767 | 0.030* | |
H11B | 0.819921 | 0.686915 | −0.162912 | 0.030* | |
C12 | 0.7293 (4) | 0.7139 (2) | 0.0242 (5) | 0.0237 (9) | |
H12A | 0.816605 | 0.729810 | 0.079190 | 0.028* | |
H12B | 0.676206 | 0.755212 | −0.012730 | 0.028* | |
C13 | 0.6659 (4) | 0.6751 (2) | 0.1393 (5) | 0.0228 (9) | |
H13 | 0.685 (4) | 0.693 (2) | 0.250 (3) | 0.027* | |
C14 | 0.5529 (4) | 0.6343 (2) | 0.0998 (5) | 0.0210 (9) | |
H14 | 0.501 (3) | 0.626 (2) | 0.181 (4) | 0.025* | |
C15 | 0.4755 (4) | 0.6267 (2) | −0.0676 (5) | 0.0240 (9) | |
H15A | 0.485798 | 0.669082 | −0.128031 | 0.029* | |
H15B | 0.381741 | 0.621703 | −0.064695 | 0.029* | |
C16 | 0.5200 (4) | 0.5641 (2) | −0.1526 (5) | 0.0233 (9) | |
H16A | 0.466146 | 0.523646 | −0.136871 | 0.028* | |
H16B | 0.504985 | 0.573709 | −0.267501 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02462 (15) | 0.01759 (15) | 0.01827 (15) | 0.00106 (11) | 0.00414 (11) | 0.00015 (11) |
I2 | 0.02106 (15) | 0.02275 (16) | 0.02346 (15) | 0.00440 (11) | 0.00840 (11) | 0.00442 (12) |
Rh1 | 0.01825 (17) | 0.01641 (17) | 0.01870 (17) | 0.00044 (13) | 0.00467 (13) | 0.00062 (13) |
Rh2 | 0.01825 (17) | 0.01664 (17) | 0.01712 (17) | 0.00074 (13) | 0.00379 (13) | 0.00049 (13) |
C1 | 0.028 (2) | 0.014 (2) | 0.021 (2) | 0.0024 (17) | 0.0100 (18) | −0.0021 (18) |
C2 | 0.024 (2) | 0.018 (2) | 0.029 (2) | 0.0044 (18) | 0.0087 (18) | 0.0019 (19) |
C3 | 0.021 (2) | 0.026 (2) | 0.029 (2) | 0.0061 (18) | 0.0056 (18) | 0.004 (2) |
C4 | 0.032 (3) | 0.022 (2) | 0.023 (2) | 0.0001 (19) | 0.0030 (19) | −0.0015 (19) |
C5 | 0.033 (3) | 0.021 (2) | 0.019 (2) | 0.001 (2) | 0.0093 (19) | 0.0014 (19) |
C6 | 0.019 (2) | 0.019 (2) | 0.022 (2) | 0.0040 (17) | 0.0069 (17) | −0.0012 (18) |
C7 | 0.021 (2) | 0.024 (2) | 0.026 (2) | −0.0016 (18) | 0.0056 (18) | 0.0011 (19) |
C8 | 0.028 (2) | 0.020 (2) | 0.024 (2) | 0.0007 (18) | 0.0052 (18) | −0.0011 (18) |
C9 | 0.026 (2) | 0.023 (2) | 0.013 (2) | 0.0013 (18) | 0.0045 (17) | −0.0008 (18) |
C10 | 0.023 (2) | 0.025 (2) | 0.018 (2) | 0.0030 (18) | 0.0099 (17) | −0.0014 (18) |
C11 | 0.027 (2) | 0.025 (2) | 0.023 (2) | −0.0018 (19) | 0.0065 (18) | 0.0073 (19) |
C12 | 0.029 (2) | 0.018 (2) | 0.022 (2) | −0.0015 (18) | 0.0003 (18) | 0.0016 (18) |
C13 | 0.029 (2) | 0.017 (2) | 0.021 (2) | 0.0051 (18) | −0.0001 (18) | −0.0013 (18) |
C14 | 0.024 (2) | 0.017 (2) | 0.022 (2) | 0.0081 (18) | 0.0060 (18) | 0.0019 (18) |
C15 | 0.024 (2) | 0.020 (2) | 0.028 (2) | 0.0031 (18) | 0.0020 (19) | 0.0023 (19) |
C16 | 0.026 (2) | 0.023 (2) | 0.019 (2) | −0.0014 (18) | 0.0011 (18) | −0.0002 (18) |
I1—Rh1 | 2.6998 (4) | C2—C3 | 1.509 (6) |
I1—Rh2 | 2.7061 (4) | C3—C4 | 1.531 (6) |
I2—Rh1 | 2.6833 (4) | C4—C5 | 1.516 (6) |
I2—Rh2 | 2.6738 (4) | C5—C6 | 1.398 (6) |
Rh1—C1 | 2.120 (4) | C6—C7 | 1.516 (6) |
Rh1—C2 | 2.117 (4) | C7—C8 | 1.526 (5) |
Rh1—C5 | 2.131 (4) | C9—C10 | 1.404 (6) |
Rh1—C6 | 2.120 (4) | C9—C16 | 1.496 (6) |
Rh2—C9 | 2.120 (4) | C10—C11 | 1.514 (6) |
Rh2—C10 | 2.137 (4) | C11—C12 | 1.547 (6) |
Rh2—C13 | 2.117 (4) | C12—C13 | 1.501 (6) |
Rh2—C14 | 2.142 (4) | C13—C14 | 1.405 (6) |
C1—C2 | 1.400 (6) | C14—C15 | 1.514 (6) |
C1—C8 | 1.514 (6) | C15—C16 | 1.538 (6) |
Rh1—I1—Rh2 | 88.274 (12) | C2—C1—Rh1 | 70.6 (2) |
Rh2—I2—Rh1 | 89.290 (12) | C2—C1—C8 | 122.2 (4) |
I2—Rh1—I1 | 85.839 (12) | C8—C1—Rh1 | 113.4 (3) |
C1—Rh1—I1 | 159.56 (12) | C1—C2—Rh1 | 70.8 (2) |
C1—Rh1—I2 | 93.80 (11) | C1—C2—C3 | 124.9 (4) |
C1—Rh1—C5 | 90.54 (16) | C3—C2—Rh1 | 111.4 (3) |
C2—Rh1—I1 | 161.67 (12) | C2—C3—C4 | 113.4 (3) |
C2—Rh1—I2 | 90.72 (11) | C5—C4—C3 | 112.2 (3) |
C2—Rh1—C1 | 38.60 (16) | C4—C5—Rh1 | 113.8 (3) |
C2—Rh1—C5 | 81.67 (16) | C6—C5—Rh1 | 70.4 (2) |
C2—Rh1—C6 | 97.81 (16) | C6—C5—C4 | 123.8 (4) |
C5—Rh1—I1 | 96.17 (12) | C5—C6—Rh1 | 71.2 (2) |
C5—Rh1—I2 | 161.76 (12) | C5—C6—C7 | 124.8 (4) |
C6—Rh1—I1 | 91.38 (11) | C7—C6—Rh1 | 110.9 (3) |
C6—Rh1—I2 | 159.83 (11) | C6—C7—C8 | 112.4 (3) |
C6—Rh1—C1 | 81.93 (16) | C1—C8—C7 | 112.6 (3) |
C6—Rh1—C5 | 38.41 (16) | C10—C9—Rh2 | 71.4 (2) |
I2—Rh2—I1 | 85.902 (12) | C10—C9—C16 | 125.0 (4) |
C9—Rh2—I1 | 157.60 (12) | C16—C9—Rh2 | 111.8 (3) |
C9—Rh2—I2 | 92.63 (12) | C9—C10—Rh2 | 70.1 (2) |
C9—Rh2—C10 | 38.52 (16) | C9—C10—C11 | 123.0 (4) |
C9—Rh2—C14 | 81.27 (16) | C11—C10—Rh2 | 113.4 (3) |
C10—Rh2—I1 | 163.81 (12) | C10—C11—C12 | 111.3 (3) |
C10—Rh2—I2 | 92.82 (11) | C13—C12—C11 | 112.8 (3) |
C10—Rh2—C14 | 89.99 (16) | C12—C13—Rh2 | 110.5 (3) |
C13—Rh2—I1 | 92.62 (12) | C14—C13—Rh2 | 71.7 (2) |
C13—Rh2—I2 | 155.19 (12) | C14—C13—C12 | 125.6 (4) |
C13—Rh2—C9 | 97.80 (16) | C13—C14—Rh2 | 69.8 (2) |
C13—Rh2—C10 | 81.78 (16) | C13—C14—C15 | 123.3 (4) |
C13—Rh2—C14 | 38.53 (16) | C15—C14—Rh2 | 113.5 (3) |
C14—Rh2—I1 | 95.06 (11) | C14—C15—C16 | 112.1 (3) |
C14—Rh2—I2 | 166.28 (11) | C9—C16—C15 | 112.7 (3) |
Acknowledgements
The authors are grateful for access to the X-ray Diffraction Facility located in and supported by The Ohio State University Department of Chemistry and Biochemistry, as well as the support of The Ohio State University Sustainability Institute.
Funding information
Funding for this research was provided by: U.S. Department of Energy, Office of Science (award No. DE-SC0019179 to Christine M. Thomas).
References
Aullón, G., Ujaque, G., Lledós, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813. Web of Science CrossRef CAS Google Scholar
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153–157. CSD CrossRef CAS Web of Science Google Scholar
De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569–1572. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hlina, J. A., Wells, J. A. L., Pankhurst, J. R., Love, J. B. & Arnold, P. L. (2017). Dalton Trans. 46, 5540–5545. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Pettinari, C. F., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5–14. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Utsunomiya, M., Kuwano, R., Kawatsura, M. & Hartwig, J. F. (2003). J. Am. Chem. Soc. 125, 5608–5609. Web of Science CrossRef PubMed CAS Google Scholar
Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.