Jerry P. Jasinski tribute\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis study of (E)-1-(4-chloro­phen­yl)-N-(4-ferrocenylphen­yl)methanimine

crossmark logo

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco, bApplied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: rihamsghyar2018@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 5 July 2021; accepted 4 August 2021; online 10 August 2021)

The substituted cyclo­penta­dienyl ring in the title mol­ecule, [Fe(C5H5)(C18H13ClN)], is nearly coplanar with the phenyl-1-(4-chloro­phen­yl)methanimine substituent, with dihedral angles between the planes of the phenyl­ene ring and the Cp and 4-(chloro­phen­yl)methanimine units of 7.87 (19) and 9.23 (10)°, respectively. The unsubstituted cyclo­penta­dienyl ring is rotationally disordered, the occupancy ratio for the two orientations refined to a 0.666 (7)/0.334 (7) ratio. In the crystal, the mol­ecules pack in `bilayers' parallel to the ab plane with the ferrocenyl groups on the outer faces and the substituents directed towards the regions between them. The ferrocenyl groups are linked by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (46.1%), H⋯C/C⋯ H (35.4%) and H⋯Cl/Cl⋯H (13.8%) inter­actions. Thus C—H⋯π(ring) and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

1. Chemical context

Compounds containing metallocene building units, and particularly ferrocene derivatives, have been studied extensively both in academic and industrial settings (Santos et al., 2017[Santos, M. M., Bastos, P., Catela, I., Zalewska, K. & Branco, L. C. (2017). Med. Chem. 17, 771-784.]; Singh et al., 2019[Singh, A., Lumb, I., Mehra, V. & Kumar, V. (2019). Dalton Trans. 48, 2840-2860.]; Ong & Gasser, 2020[Ong, Y. C. & Gasser, G. (2020). Drug Discov. Today: Technol. pp. 1740-6749.]). Owing to a favorable combination of chemical and physical properties, ferrocene derivatives are often biologically active, making them attractive pharmacophores for drug design and useful templates in medicinal chemistry research and therapeutic applications including as anti­oxidant (Bugarinović et al., 2018[Bugarinović, J. P., Pešić, M. S., Minić, A., Katanić, J., Ilić-Komatina, D., Pejović, A., Mihailović, V., Stevanović, D., Nastasijević, B. & Damljanović, I. (2018). J. Inorg. Biochem. 189, 134-142.]; Naz et al., 2020[Naz, M., Ali, J., Fatima, S., Tabassum, S., Nawaz, S., Badshah, A. & Dou, H. (2020). Colloids Surf. A Physicochem. Eng. Asp. 597, 124760.]), anti-inflammatory (Yun Guo et al., 2019), anti­malarial (Peter & Aderibigbe, 2019[Peter, S. & Aderibigbe, B. A. (2019). Molecules, 24, 3604.]; Xiao et al., 2020[Xiao, J., Sun, Z., Kong, F. & Gao, F. (2020). Eur. J. Med. Chem. 185, 11791.]), anti­leishmanial (Rauf et al., 2016[Rauf, M. K., Shaheen, U., Asghar, F., Badshah, A., Nadhman, A., Azam, S., Ali, M. I., Shahnaz, G. & Yasinzai, M. (2016). Arch. Pharm. Chem. Life Sci. 349, 50-62.]), anti­cancer (Wang et al., 2020[Wang, R., Chen, H., Yan, W., Zheng, M., Zhang, T. & Zhang, Y. (2020). Eur. J. Med. Chem. 190, 112109.]; Ismail et al., 2020[Ismail, M. K., Khan, Z., Rana, M., Horswell, S. L., Male, L., Nguyen, H. V., Perotti, A., Romero-Canelón, I., Wilkinson, E. A., Hodges, N. J. & Tucker, J. H. R. (2020). ChemBioChem, 21, 2487-2494.]), anti­plasmodial (García-Barrantes et al., 2013[García-Barrantes, P. M., Lamoureux, G. V., Pérez, A. L., García-Sánchez, R. N., Martínez, A. R. & San Feliciano, A. (2013). Eur. J. Med. Chem. 70, 548-557.]), anti­convulsant (Adil et al., 2018[Adil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184-197.]) and anti­microbial (Damljanović et al., 2009[Damljanović, I., Vukićević, M., Radulović, N., Palić, R., Ellmerer, E., Ratković, Z., Joksović, M. D. & Vukićević, R. D. (2009). Bioorg. Med. Chem. Lett. 19, 1093-1096.]) agents. A wide range of therapeutic activities is also associated with ferrocenyl Schiff bases, which have shown exceptionally high activities against pathogenic microbes (Chohan & Praveen, 2000[Chohan, Z. H. & Praveen, M. (2000). Appl. Organomet. Chem. 14, 376-382.]; Chohan et al. 2001[Chohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met.-Based Drugs, 8, 95-101.]), and these mol­ecules exhibit potent anti­oxidant and DNA-protecting properties (Li & Liu, 2011[Li, Y. F. & Liu, Z. Q. (2011). Eur. J. Med. Chem. 44, 158-163.]). The potential uses of ferrocenyl Schiff bases also include the synthesis of materials for use in electrochemical sensors (Jo et al., 2007[Jo, S. J., Jin, Y. E., Kim, J. H. & Suh, H. S. (2007). Bull. Korean Chem. Soc. 28, 2015-2019.]), non-linear optical materials (Yu et al., 2015[Yu, W., Jia, J., Gao, J., Han, L. & Li, Y. (2015). Chem. Phys. Lett. 624, 47-52.]), luminescent systems (Fery-Forgues & Delavaux-Nicot, 2000[Fery-Forgues, S. & Delavaux-Nicot, B. (2000). J. Photochem. Photobiol. 132, 137-159.]), homogeneous catalysis (Gibson et al., 2006[Gibson, V. C., Long, N. J., Oxford, P. J., White, A. J. & Williams, D. J. (2006). Organometallics, 25, 1932-1939.]), conducting polymers (Tice et al., 2007[Tice, N. C., Parkin, S. & Selegue, J. P. (2007). J. Organomet. Chem. 692, 791-800.]) and organometallic polymers (Xue et al., 2001[Xue, W. M., Kühn, F. E., Herdtweck, E. & Li, Q. (2001). Eur. J. Inorg. Chem. pp. 213-221.]). The coordination of a variety of metal centers to produce new complexes of ferrocene-derived Schiff base ligands has been studied for their inter­esting anti­bacterial activities compared to the free ligands (Chohan & Praveen, 2000[Chohan, Z. H. & Praveen, M. (2000). Appl. Organomet. Chem. 14, 376-382.]). Ferrocenyl liquid crystalline Schiff bases, also known as ferrocenomesogens, present inter­esting magnetic properties such as paramagnetism and control of mol­ecular orientation in magnetic fields (Seshadri et al., 2007[Seshadri, T., Haupt, H. J., Flörke, U. & Henkel, G. (2007). Liq. Cryst. 34, 33-47.]; Onofrei et al., 2012[Onofrei, R. M., Carlescu, I., Lisa, G., Silion, M., Hurduc, N. & Scutaru, D. (2012). Rev. Chim. 63, 139-145.]).

[Scheme 1]

In a continuation of our research towards the synthesis of ferrocene-derived Schiff bases, we have been using 4-ferrocenyl aniline as an inter­mediate in the synthesis of new heterocyclic systems and have studied the condensation reactions between 4-ferrocenyl aniline and 4-chloro­benzaldehyde. The title compound (I)[link] was obtained and characterized by single crystal X-ray diffraction techniques as well as by Hirshfeld surface analysis.

2. Structural commentary

4-Ferrocenyl aniline was synthesized according to a reported procedure (Hu et al., 2001; Ali et al., 2013) and single crystals of its condensation product with 4-chloro­benzaldehyde were obtained by recrystallization from methanol (Fig. 1[link]). Bond distances and angles are in the expected ranges and agree well with values observed for similar compounds (see e.g. Kumar et al., 2020[Jakku, R., Eda, R. R., Mirzadeh, N., Telukutla, S. R., Vardhaman, A. K., Lingamallu, G., Balasubramanian, S., Deep, P., Sistla, R., Bhargava, S. & Trivedi, R. (2020). Polyhedron, 192, 114829.]; Shabbir et al., 2017[Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Bolte, M., Ismail, H. & Mirza, B. (2017). Inorg. Chim. Acta, 463, 102-111.]; Toro et al., 2018[Toro, P., Suazo, C., Acuña, A., Fuentealba, M., Artigas, V., Arancibia, R., Olea-Azar, C., Moncada, M., Wilkinson, S. & Klahn, A. H. (2018). J. Organomet. Chem. 862, 13-21.]). The unsubstituted cyclo­penta­dienyl ring, C1–C5, was found to be rotationally disordered, with a refined occupancy of 0.666 (7) for the major moiety. The two Cp rings are not quite parallel as there is a 2.7 (5)° dihedral angle between them. The substituted cyclo­penta­dienyl ring, C6–C10, is nearly coplanar with the phenyl-1-(4-chloro­phen­yl)methanimine substituent. The Cp ring is inclined by 16.8 (2)° with respect to the C11–C16 phenyl­ene ring. The imine fragment is essentially coplanar with the chloro­phenyl unit, with an r.m.s. deviation from planarity of only 0.05 Å. The dihedral angle between the phenyl­ene ring and the plane of the 4-chloro­phenyl-methanimine unit, N1/C17–C23, is 9.23 (10)°. This renders the entire mol­ecule, with the exception of the Fe atom and the unsubstituted Cp ring, mostly flat.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major orientation of the disordered cyclo­penta­dienyl ring is shown.

3. Supra­molecular features

In the crystal, mol­ecules are arranged in double layers perpendicular to the c axis with alternating ferrocenyl and Schiff base segments, with the ferrocenyl groups facing towards the outside of each layer and bordering the ferrocene moieties of the neighboring layer, and the phenyl-1-(4-chloro­phen­yl)methanimine substituents at the center of the double layers with the substituents from both sides of the layer inter­digitating with each other (Figs. 2[link] and 3[link]). Two double layers are found within the boundaries of the ortho­rhom­bic Pbca unit cell. The phenyl-1-(4-chloro­phen­yl)methanimine substituents are thus all arranged parallel to each other (at the center of each layer). They are, however, rotated along their long axis with respect to each other, and despite their nearly coplanar nature that predestines them for π-stacking inter­actions, no such inter­actions are observed in the solid state. Indeed, directional inter­actions are sparse in the structure of the title compound. Ferrocenyl groups are tied together by C—H⋯π inter­actions, facilitated by neighboring ferrocene units within each layer being roughly 90° rotated against each other. Cp-H atoms thus point towards the π-system of neighboring Cp rings. The shortest C—H⋯π inter­actions are between H5 and H7 towards the C atoms C7 and C10 of the substituted Cp ring at −x + [{1\over 2}], y + [{1\over 2}], z (H⋯C distances are 2.77 and 2.73 Å, respectively), and between H3 and H10 towards C atoms C4 and C3 at −x + [{3\over 2}], y − [{1\over 2}], z (H⋯C distances are 2.84 and 2.82 Å, respectively). The shortest C—H centroid inter­action is for C7—H7⋯Cg2 [Cg2 is the centroid of the substituted Cp ring, C6–C10, at −x + [{1\over 2}], y + [{1\over 2}], z; H⋯Cg2 = 2.76 Å, C7⋯Cg2 = 3.683 (4) Å, C7—H7⋯Cg2 = 154°]. Also present is a C22—H22⋯Cg5 inter­action [Cg5 is the centroid of the C18–C23 ring at −x + [{1\over 2}], y + [{1\over 2}], z with H⋯Cg5 = 2.95 Å, C22⋯Cg5 = 3.605 (4) Å, C22—H22⋯Cg5 = 127°] and a weak C4—H4⋯Cl1 hydrogen bond (Cl1 at −x + 1, y + [{1\over 2}], −z + [{1\over 2}], with H4⋯Cl1 = 2.82 Å, C4⋯Cl1 = 3.66 (4) Å and C4—H4⋯Cl1 = 142°).

[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. C—H⋯Cl hydrogen bonds and C—H⋯π(ring) inter­actions are depicted, respectively, by green and orange dashed lines. Non-inter­acting H atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link]. Non-inter­acting H atoms are omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors. The blue regions indicate positive electrostatic potentials (hydrogen-bond donors), while the red regions indicate negative electrostatic potentials (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; the absence of adjacent red and/or blue triangles, Fig. 5[link], indicates that there are no ππ inter­actions. The overall two-dimensional fingerprint plot is shown in Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯N/N⋯H, C⋯C, C⋯N/N⋯C and Cl⋯Cl contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 6[link]bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 46.1% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The presence of C—H⋯π inter­actions, as described in the Supra­molecular features section, is indicated by pairs of characteristic wings in the fingerprint plot representing H⋯C/C⋯H contacts, Fig. 6[link]c. These H⋯C/C⋯H contacts represent a 35.4% contribution to the HS. Pairs of scattered points of spikes are seen in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts, Fig. 6[link]d, with a 13.8% contribution to the HS. H⋯N/N⋯H contacts, Fig. 6[link]e, contribute only 4.0% to the HS. Finally, C⋯C (Fig. 6[link]f), C⋯N/N⋯C (Fig. 6[link]g) and Cl⋯Cl contacts (Fig. 6[link]h) have only 0.5%, 0.2% and 0.1% contributions.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range −0.1325 to 1.1632 a.u. The red dots indicate the C—H⋯π(ring) inter­actions involving the ferrocene and the C18–C23 ring.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯N/N⋯H, (f) C⋯C, (g) C⋯N/N⋯C and (h) Cl⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that C—H⋯π and van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

A search of the Cambridge Structural Database (CSD) (Groom et al., 2016, updated to May 29, 2021) found three closely related, ferrocene-substituted Schiff base compounds: (A: Jakku et al., 2020[Jakku, R., Eda, R. R., Mirzadeh, N., Telukutla, S. R., Vardhaman, A. K., Lingamallu, G., Balasubramanian, S., Deep, P., Sistla, R., Bhargava, S. & Trivedi, R. (2020). Polyhedron, 192, 114829.]; B: Shabbir et al., 2017[Shabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Bolte, M., Ismail, H. & Mirza, B. (2017). Inorg. Chim. Acta, 463, 102-111.]; C: Toro et al., 2018[Toro, P., Suazo, C., Acuña, A., Fuentealba, M., Artigas, V., Arancibia, R., Olea-Azar, C., Moncada, M., Wilkinson, S. & Klahn, A. H. (2018). J. Organomet. Chem. 862, 13-21.]; Fig. 7[link]).

[Figure 7]
Figure 7
Related ferrocene–Schiff base complexes.

6. Synthesis and crystallization

4-Ferrocenyl aniline was synthesized according to a reported procedure (Hu et al., 2001; Ali et al., 2013). In a 250 mL round-bottom flask, 1.0 mmol of 4-ferrocenyl aniline in 15 mL of dried methanol was mixed with an equimolar amount of 4-chloro­phenyl aldehyde in 15 mL of dried methanol. The mixture was agitated under reflux, the progress of the reaction was monitored by TLC, and the desired product was formed within 6 h. The solvent was removed under vacuum and the solid that was obtained was recrystallized from methanol (yield: 87%) to yield brown crystals, m.p. 210 K. 1H NMR (300 MHz, CDCl3) δ 4.08 (s, 5H, Cp C5H5); 4.36 (t, 2H, Cp C5H4, J = 3.39) ; 4.68 (t, 2H, Cp C5H4, J = 3.45); 7.20 (d, 2H, C6H4-ar, J = 8.4); 7.48 (d, 2H, C6H4-ar, J = 8.43); 7.53 (d, 2H, C6H4-ar, J = 8.43); 7.88 (d, 2H, C6H4-ar, J = 8.44) ; 8.52 (s, 1H, CH=N). 13C NMR (75 MHz, CDCl3) δ 66.42 (2C, C5H4); 69.05 (2C, C5H4); 69,64 (5C, C5H5); 84.80 (Cq, C5H4); 121.10 (2C, CH-Ar); 126.76 (2C, CH-Ar); 129.09 (2C, CH-Ar); 129.87 (2C, CH-Ar); 134.92 (1Cq, Ar-CH=N); 137.20 (1Cq, Ar-Cl); 137.72 (1Cq, Ar-C5H4); 149.21 (1Cq, Ar-N=CH) ; 157.62 (1C, CH=N).

7. Refinement

Crystal, data collection and refinement details are presented in Table 1[link]. Analysis of 1284 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) showed the crystal to be either split or non-merohedrally twinned. The top choice of unit cell had parameters a = 7.662, b = 10.009, c = 45.974 Å, α = 90.05, β = 90.21, γ = 89.97° (unrefined) with a second component (14%) rotated 180° about the b axis. To eliminate possible bias, the raw data were processed as triclinic using the multi-component version of SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) under control of the two-component orientation file generated by CELL_NOW, leading to an ortho­rhom­bic cell within experimental error and a twin matrix of: −0.99988 − 0.00291 − 0.00258 − 0.00684 0.99978 0.00453 0.09083 0.09422 − 0.99967, thus indicating presence of two separate domains not related by twinning (`split crystal'). The data were corrected for absorption using TWINABS (Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS., University of Göttingen, Göttingen, Germany.]), which was also used to extract a single-component reflection file from the two-component intensity data, which was used to determine the space group and solve the structure. The resulting space group of Pbca required transformation of the original cell by the matrix: 0 1 0 1 0 0 0 0 −1. Trial final refinements with the single-component reflection file and with the complete two-component data showed the former to be more satisfactory on the basis of a lower values for R1 and su's on derived parameters as well as smaller residual features about the Fe atom.

Table 1
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C18H13ClN)]
Mr 399.68
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 10.0991 (18), 7.7277 (14), 45.979 (8)
V3) 3588.3 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.13 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS., University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.88, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 12370, 4001, 2903
Rint 0.046
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.118, 1.17
No. of reflections 4001
No. of parameters 233
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms. The unsubstituted cyclo­penta­dienyl ring is rotationally disordered over two sets of sites with the two components refined as rigid penta­gons (AFIX 56 constraint of SHELXL). ADPs of equivalent major and minor disordered C atoms were constrained to be identical. The occupancy ratio for the two orientations refined to a 0.666 (7)/0.334 (7) ratio.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-1-(4-Chlorophenyl)-N-(4-ferrocenylphenyl)methanimine top
Crystal data top
[Fe(C5H5)(C18H13ClN)]Dx = 1.480 Mg m3
Mr = 399.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7602 reflections
a = 10.0991 (18) Åθ = 2.7–27.6°
b = 7.7277 (14) ŵ = 1.00 mm1
c = 45.979 (8) ÅT = 150 K
V = 3588.3 (11) Å3Plate, orange
Z = 80.13 × 0.12 × 0.04 mm
F(000) = 1648
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
4001 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 7.3910 pixels mm-1θmax = 27.6°, θmin = 1.8°
ω scansh = 1312
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 109
Tmin = 0.88, Tmax = 0.96l = 590
12370 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0177P)2 + 8.9667P]
where P = (Fo2 + 2Fc2)/3
4001 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Experimental. The diffraction data were obtained from 7 sets of frames, each of width 0.5° in ω, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 40 sec/frame. Analysis of 1284 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to non-merohedrally twinned. The top choice of unit cell had parameters a = 7.662, b = 10.009, c = 45.974 Å, α = 90.05, β = 90.21, γ = 89.97° (unrefined) with a second component (14%) rotated 180° about the b-axis. To eliminate possible bias, the raw data were processed as triclinic using the multi-component version of SAINT (Bruker, 2020) under control of the two-component orientation file generated by CELL_NOW leading to an orthorhombic cell within experinental error and a twin matrix of: -0.99988 -0.00291 -0.00258 -0.00684 0.99978 0.00453 0.09083 0.09422 -0.99967.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The C1···C5 ring is rotationally disordered over two orientations in a 0.666 (7)/0.334 (7) ratio. The two components were refined as rigid pentagons. Trial refinements with the single-component reflection file extracted from the full data set with TWINABS and with the complete two-component data showed the former to be more satisfactory on the basis of a lower values for R1 and su's on derived parameters as well as smaller residual features abot the Fe atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50398 (5)0.66068 (7)0.44481 (2)0.02709 (15)
Cl10.35163 (12)0.58417 (15)0.14716 (2)0.0460 (3)
N10.3450 (3)0.5987 (4)0.29393 (6)0.0302 (7)
C10.5820 (7)0.8567 (9)0.46980 (8)0.0357 (19)0.666 (7)
H10.5527500.8895080.4898340.043*0.666 (7)
C20.6831 (5)0.7360 (6)0.46279 (12)0.0310 (15)0.666 (7)
H20.7368920.6679770.4770300.037*0.666 (7)
C30.6915 (5)0.7248 (7)0.43202 (13)0.039 (2)0.666 (7)
H30.7535320.6492770.4207870.047*0.666 (7)
C40.5956 (7)0.8385 (9)0.42001 (7)0.046 (2)0.666 (7)
H40.5796320.8592680.3988290.056*0.666 (7)
C50.5279 (6)0.9201 (8)0.44336 (14)0.040 (2)0.666 (7)
H50.4555431.0077470.4415010.048*0.666 (7)
C1A0.6195 (16)0.814 (2)0.46947 (16)0.0357 (19)0.334 (7)
H1A0.6338040.8024890.4909080.043*0.334 (7)
C2A0.6952 (9)0.7317 (14)0.4474 (3)0.0310 (15)0.334 (7)
H2A0.7721020.6524400.4505700.037*0.334 (7)
C3A0.6450 (12)0.7860 (18)0.42003 (19)0.039 (2)0.334 (7)
H3A0.6780960.7481360.4005510.047*0.334 (7)
C4A0.5383 (11)0.9017 (17)0.4252 (3)0.046 (2)0.334 (7)
H4A0.4816840.9573040.4099880.056*0.334 (7)
C5A0.5226 (14)0.9189 (19)0.4557 (3)0.040 (2)0.334 (7)
H5A0.4542990.9909470.4658270.048*0.334 (7)
C60.3865 (3)0.5206 (5)0.41718 (7)0.0258 (8)
C70.3080 (4)0.6077 (5)0.43866 (7)0.0297 (9)
H70.2367590.6945020.4347430.036*
C80.3495 (4)0.5481 (5)0.46672 (8)0.0339 (9)
H80.3127830.5871070.4858210.041*
C90.4530 (4)0.4280 (5)0.46280 (8)0.0319 (9)
H90.5020530.3670600.4786740.038*
C100.4771 (4)0.4098 (5)0.43228 (7)0.0279 (8)
H100.5453110.3333790.4231220.034*
C110.3788 (4)0.5450 (5)0.38538 (7)0.0271 (8)
C120.4825 (4)0.4907 (5)0.36759 (8)0.0309 (9)
H120.5598500.4428180.3761740.037*
C130.4749 (4)0.5055 (5)0.33747 (8)0.0326 (9)
H130.5463030.4665090.3257380.039*
C140.3630 (4)0.5770 (5)0.32443 (7)0.0290 (8)
C150.2619 (4)0.6370 (5)0.34228 (7)0.0309 (9)
H150.1868730.6912510.3337700.037*
C160.2682 (4)0.6192 (5)0.37221 (7)0.0300 (9)
H160.1965110.6580350.3838880.036*
C170.4136 (4)0.5112 (5)0.27598 (8)0.0318 (9)
H170.4754490.4289430.2831620.038*
C180.3996 (4)0.5342 (5)0.24447 (7)0.0267 (8)
C190.4920 (4)0.4611 (5)0.22554 (8)0.0318 (9)
H190.5645910.3978260.2332490.038*
C200.4793 (4)0.4793 (5)0.19553 (8)0.0330 (9)
H200.5431570.4303140.1827730.040*
C210.3729 (4)0.5694 (5)0.18472 (8)0.0321 (9)
C220.2802 (4)0.6460 (5)0.20288 (8)0.0323 (9)
H220.2083620.7099720.1950030.039*
C230.2942 (4)0.6279 (5)0.23271 (8)0.0316 (9)
H230.2312550.6799420.2453230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0214 (3)0.0270 (3)0.0329 (2)0.0033 (3)0.0021 (2)0.0016 (2)
Cl10.0552 (7)0.0485 (7)0.0341 (5)0.0034 (6)0.0029 (5)0.0010 (5)
N10.0298 (18)0.0277 (18)0.0332 (15)0.0038 (16)0.0029 (13)0.0023 (13)
C10.034 (5)0.028 (5)0.045 (2)0.006 (4)0.005 (2)0.011 (2)
C20.027 (3)0.027 (3)0.039 (4)0.010 (2)0.012 (3)0.003 (3)
C30.025 (4)0.053 (5)0.038 (4)0.017 (3)0.004 (3)0.015 (3)
C40.045 (6)0.052 (6)0.042 (3)0.017 (5)0.005 (3)0.012 (3)
C50.031 (3)0.021 (3)0.067 (7)0.000 (2)0.005 (4)0.010 (4)
C1A0.034 (5)0.028 (5)0.045 (2)0.006 (4)0.005 (2)0.011 (2)
C2A0.027 (3)0.027 (3)0.039 (4)0.010 (2)0.012 (3)0.003 (3)
C3A0.025 (4)0.053 (5)0.038 (4)0.017 (3)0.004 (3)0.015 (3)
C4A0.045 (6)0.052 (6)0.042 (3)0.017 (5)0.005 (3)0.012 (3)
C5A0.031 (3)0.021 (3)0.067 (7)0.000 (2)0.005 (4)0.010 (4)
C60.0174 (19)0.026 (2)0.0341 (18)0.0029 (16)0.0007 (14)0.0006 (15)
C70.0172 (19)0.030 (2)0.0419 (19)0.0017 (17)0.0034 (15)0.0000 (16)
C80.030 (2)0.038 (3)0.0332 (18)0.010 (2)0.0048 (16)0.0002 (16)
C90.027 (2)0.034 (2)0.0351 (18)0.0068 (19)0.0032 (15)0.0058 (16)
C100.026 (2)0.023 (2)0.0356 (17)0.0020 (17)0.0034 (15)0.0010 (15)
C110.021 (2)0.023 (2)0.0373 (18)0.0019 (17)0.0010 (15)0.0002 (15)
C120.022 (2)0.035 (2)0.0357 (18)0.0002 (18)0.0021 (15)0.0020 (16)
C130.027 (2)0.037 (2)0.0336 (18)0.0003 (19)0.0021 (15)0.0006 (16)
C140.029 (2)0.023 (2)0.0351 (18)0.0041 (18)0.0024 (16)0.0036 (15)
C150.026 (2)0.025 (2)0.0412 (18)0.0032 (19)0.0073 (16)0.0014 (16)
C160.027 (2)0.023 (2)0.0396 (18)0.0026 (18)0.0009 (16)0.0014 (15)
C170.033 (2)0.023 (2)0.0394 (19)0.0002 (19)0.0063 (17)0.0014 (16)
C180.028 (2)0.016 (2)0.0364 (18)0.0043 (17)0.0019 (15)0.0008 (14)
C190.024 (2)0.027 (2)0.045 (2)0.0016 (19)0.0066 (17)0.0003 (16)
C200.030 (2)0.027 (2)0.0421 (19)0.0035 (19)0.0040 (17)0.0049 (16)
C210.036 (2)0.027 (2)0.0339 (18)0.0058 (19)0.0020 (16)0.0015 (16)
C220.029 (2)0.027 (2)0.0405 (18)0.0014 (19)0.0068 (16)0.0019 (17)
C230.029 (2)0.028 (2)0.0375 (18)0.0003 (18)0.0007 (15)0.0031 (16)
Geometric parameters (Å, º) top
Fe1—C2A2.011 (11)C5A—H5A1.0000
Fe1—C42.011 (5)C6—C101.433 (5)
Fe1—C1A2.012 (16)C6—C71.434 (5)
Fe1—C52.020 (6)C6—C111.476 (5)
Fe1—C72.041 (4)C7—C81.432 (5)
Fe1—C102.041 (4)C7—H71.0000
Fe1—C32.044 (5)C8—C91.409 (6)
Fe1—C92.045 (4)C8—H81.0000
Fe1—C62.048 (4)C9—C101.431 (5)
Fe1—C82.051 (4)C9—H91.0000
Fe1—C12.058 (6)C10—H101.0000
Fe1—C3A2.065 (11)C11—C161.394 (5)
Cl1—C211.744 (4)C11—C121.394 (5)
N1—C171.272 (5)C12—C131.391 (5)
N1—C141.424 (4)C12—H120.9500
C1—C51.4200C13—C141.393 (5)
C1—C21.4200C13—H130.9500
C1—H11.0000C14—C151.390 (5)
C2—C31.4200C15—C161.385 (5)
C2—H21.0000C15—H150.9500
C3—C41.4200C16—H160.9500
C3—H31.0000C17—C181.467 (5)
C4—C51.4200C17—H170.9500
C4—H41.0000C18—C191.395 (5)
C5—H51.0000C18—C231.396 (5)
C1A—C2A1.4200C19—C201.393 (5)
C1A—C5A1.4200C19—H190.9500
C1A—H1A1.0000C20—C211.374 (5)
C2A—C3A1.4200C20—H200.9500
C2A—H2A1.0000C21—C221.387 (5)
C3A—C4A1.4200C22—C231.386 (5)
C3A—H3A1.0000C22—H220.9500
C4A—C5A1.4200C23—H230.9500
C4A—H4A1.0000
C2A—Fe1—C1A41.3 (2)C1A—C2A—Fe169.4 (6)
C4—Fe1—C541.25 (11)C3A—C2A—Fe171.7 (5)
C2A—Fe1—C7173.8 (4)C1A—C2A—H2A126.0
C4—Fe1—C7120.3 (2)C3A—C2A—H2A126.0
C1A—Fe1—C7139.3 (4)Fe1—C2A—H2A126.0
C5—Fe1—C7108.08 (19)C4A—C3A—C2A108.0
C2A—Fe1—C10113.8 (3)C4A—C3A—Fe171.3 (5)
C4—Fe1—C10123.4 (2)C2A—C3A—Fe167.6 (5)
C1A—Fe1—C10142.7 (4)C4A—C3A—H3A126.0
C5—Fe1—C10161.7 (2)C2A—C3A—H3A126.0
C7—Fe1—C1068.99 (16)Fe1—C3A—H3A126.0
C4—Fe1—C340.99 (9)C5A—C4A—C3A108.0
C5—Fe1—C368.85 (13)C5A—C4A—Fe168.9 (6)
C7—Fe1—C3155.1 (2)C3A—C4A—Fe168.8 (5)
C10—Fe1—C3105.79 (16)C5A—C4A—H4A126.0
C2A—Fe1—C9117.2 (3)C3A—C4A—H4A126.0
C4—Fe1—C9161.1 (2)Fe1—C4A—H4A126.0
C1A—Fe1—C9115.8 (3)C4A—C5A—C1A108.0
C5—Fe1—C9156.3 (2)C4A—C5A—Fe171.3 (5)
C7—Fe1—C968.63 (16)C1A—C5A—Fe167.6 (5)
C10—Fe1—C941.01 (14)C4A—C5A—H5A126.0
C3—Fe1—C9124.3 (2)C1A—C5A—H5A126.0
C2A—Fe1—C6137.5 (4)Fe1—C5A—H5A126.0
C4—Fe1—C6106.01 (16)C10—C6—C7107.4 (3)
C1A—Fe1—C6175.3 (4)C10—C6—C11126.2 (3)
C5—Fe1—C6124.97 (19)C7—C6—C11126.4 (3)
C7—Fe1—C641.08 (14)C10—C6—Fe169.2 (2)
C10—Fe1—C641.03 (14)C7—C6—Fe169.2 (2)
C3—Fe1—C6119.10 (17)C11—C6—Fe1125.3 (3)
C9—Fe1—C668.92 (15)C8—C7—C6107.9 (3)
C2A—Fe1—C8144.8 (4)C8—C7—Fe169.9 (2)
C4—Fe1—C8156.7 (2)C6—C7—Fe169.7 (2)
C1A—Fe1—C8114.5 (4)C8—C7—H7126.0
C5—Fe1—C8121.9 (2)C6—C7—H7126.0
C7—Fe1—C840.99 (14)Fe1—C7—H7126.0
C10—Fe1—C868.56 (16)C9—C8—C7108.3 (3)
C3—Fe1—C8161.6 (2)C9—C8—Fe169.7 (2)
C9—Fe1—C840.25 (16)C7—C8—Fe169.1 (2)
C6—Fe1—C868.88 (14)C9—C8—H8125.8
C4—Fe1—C168.74 (15)C7—C8—H8125.8
C5—Fe1—C140.74 (12)Fe1—C8—H8125.8
C7—Fe1—C1126.60 (19)C8—C9—C10108.4 (3)
C10—Fe1—C1155.2 (2)C8—C9—Fe170.1 (2)
C3—Fe1—C168.13 (11)C10—C9—Fe169.3 (2)
C9—Fe1—C1121.19 (19)C8—C9—H9125.8
C6—Fe1—C1163.2 (2)C10—C9—H9125.8
C8—Fe1—C1109.23 (18)Fe1—C9—H9125.8
C2A—Fe1—C3A40.75 (18)C9—C10—C6107.9 (3)
C1A—Fe1—C3A68.6 (3)C9—C10—Fe169.7 (2)
C7—Fe1—C3A133.3 (4)C6—C10—Fe169.7 (2)
C10—Fe1—C3A112.4 (3)C9—C10—H10126.0
C9—Fe1—C3A144.0 (4)C6—C10—H10126.0
C6—Fe1—C3A107.8 (3)Fe1—C10—H10126.0
C8—Fe1—C3A174.1 (4)C16—C11—C12118.1 (3)
C17—N1—C14120.4 (3)C16—C11—C6121.7 (3)
C5—C1—C2108.0C12—C11—C6120.2 (3)
C5—C1—Fe168.20 (19)C13—C12—C11121.2 (4)
C2—C1—Fe170.44 (19)C13—C12—H12119.4
C5—C1—H1126.0C11—C12—H12119.4
C2—C1—H1126.0C12—C13—C14120.4 (4)
Fe1—C1—H1126.0C12—C13—H13119.8
C1—C2—C3108.0C14—C13—H13119.8
C1—C2—Fe169.3 (2)C15—C14—C13118.3 (3)
C3—C2—Fe168.7 (2)C15—C14—N1116.6 (3)
C1—C2—H2126.0C13—C14—N1125.1 (3)
C3—C2—H2126.0C16—C15—C14121.3 (4)
Fe1—C2—H2126.0C16—C15—H15119.3
C4—C3—C2108.0C14—C15—H15119.3
C4—C3—Fe168.3 (2)C15—C16—C11120.7 (4)
C2—C3—Fe170.9 (2)C15—C16—H16119.7
C4—C3—H3126.0C11—C16—H16119.7
C2—C3—H3126.0N1—C17—C18121.6 (4)
Fe1—C3—H3126.0N1—C17—H17119.2
C3—C4—C5108.0C18—C17—H17119.2
C3—C4—Fe170.74 (19)C19—C18—C23118.6 (3)
C5—C4—Fe169.7 (2)C19—C18—C17120.2 (3)
C3—C4—H4126.0C23—C18—C17121.3 (3)
C5—C4—H4126.0C20—C19—C18121.1 (4)
Fe1—C4—H4126.0C20—C19—H19119.5
C1—C5—C4108.0C18—C19—H19119.5
C1—C5—Fe171.1 (2)C21—C20—C19118.8 (4)
C4—C5—Fe169.0 (2)C21—C20—H20120.6
C1—C5—H5126.0C19—C20—H20120.6
C4—C5—H5126.0C20—C21—C22121.8 (3)
Fe1—C5—H5126.0C20—C21—Cl1119.2 (3)
C2A—C1A—C5A108.0C22—C21—Cl1119.0 (3)
C2A—C1A—Fe169.3 (5)C23—C22—C21119.0 (4)
C5A—C1A—Fe171.7 (4)C23—C22—H22120.5
C2A—C1A—H1A126.0C21—C22—H22120.5
C5A—C1A—H1A126.0C22—C23—C18120.9 (4)
Fe1—C1A—H1A126.0C22—C23—H23119.6
C1A—C2A—C3A108.0C18—C23—H23119.6
C5—C1—C2—C30.0C7—C8—C9—Fe158.5 (3)
Fe1—C1—C2—C358.00 (19)C8—C9—C10—C60.1 (4)
C5—C1—C2—Fe158.00 (19)Fe1—C9—C10—C659.5 (3)
C1—C2—C3—C40.0C8—C9—C10—Fe159.4 (3)
Fe1—C2—C3—C458.4 (2)C7—C6—C10—C90.6 (4)
C1—C2—C3—Fe158.4 (2)C11—C6—C10—C9178.6 (4)
C2—C3—C4—C50.0Fe1—C6—C10—C959.4 (3)
Fe1—C3—C4—C560.0 (2)C7—C6—C10—Fe158.8 (3)
C2—C3—C4—Fe160.0 (2)C11—C6—C10—Fe1119.2 (4)
C2—C1—C5—C40.0C10—C6—C11—C16163.4 (4)
Fe1—C1—C5—C459.4 (2)C7—C6—C11—C1618.9 (6)
C2—C1—C5—Fe159.4 (2)Fe1—C6—C11—C16107.8 (4)
C3—C4—C5—C10.0C10—C6—C11—C1215.5 (6)
Fe1—C4—C5—C160.66 (17)C7—C6—C11—C12162.2 (4)
C3—C4—C5—Fe160.66 (17)Fe1—C6—C11—C1273.3 (5)
C5A—C1A—C2A—C3A0.0C16—C11—C12—C131.8 (6)
Fe1—C1A—C2A—C3A61.6 (4)C6—C11—C12—C13177.1 (4)
C5A—C1A—C2A—Fe161.6 (4)C11—C12—C13—C140.7 (6)
C1A—C2A—C3A—C4A0.0C12—C13—C14—C151.7 (6)
Fe1—C2A—C3A—C4A60.1 (5)C12—C13—C14—N1179.8 (4)
C1A—C2A—C3A—Fe160.1 (5)C17—N1—C14—C15162.1 (4)
C2A—C3A—C4A—C5A0.0C17—N1—C14—C1319.8 (6)
Fe1—C3A—C4A—C5A57.8 (6)C13—C14—C15—C163.1 (6)
C2A—C3A—C4A—Fe157.8 (6)N1—C14—C15—C16178.7 (3)
C3A—C4A—C5A—C1A0.0C14—C15—C16—C112.0 (6)
Fe1—C4A—C5A—C1A57.7 (4)C12—C11—C16—C150.5 (6)
C3A—C4A—C5A—Fe157.7 (4)C6—C11—C16—C15178.4 (4)
C2A—C1A—C5A—C4A0.0C14—N1—C17—C18178.4 (3)
Fe1—C1A—C5A—C4A60.1 (5)N1—C17—C18—C19168.2 (4)
C2A—C1A—C5A—Fe160.1 (5)N1—C17—C18—C2312.3 (6)
C10—C6—C7—C80.8 (4)C23—C18—C19—C200.5 (6)
C11—C6—C7—C8178.9 (4)C17—C18—C19—C20179.0 (4)
Fe1—C6—C7—C859.7 (3)C18—C19—C20—C210.8 (6)
C10—C6—C7—Fe158.9 (3)C19—C20—C21—C221.8 (6)
C11—C6—C7—Fe1119.2 (4)C19—C20—C21—Cl1176.9 (3)
C6—C7—C8—C90.8 (4)C20—C21—C22—C231.4 (6)
Fe1—C7—C8—C958.8 (3)Cl1—C21—C22—C23177.3 (3)
C6—C7—C8—Fe159.6 (3)C21—C22—C23—C180.0 (6)
C7—C8—C9—C100.4 (4)C19—C18—C23—C220.9 (6)
Fe1—C8—C9—C1058.9 (3)C17—C18—C23—C22178.7 (4)
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAdil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184–197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugarinović, J. P., Pešić, M. S., Minić, A., Katanić, J., Ilić-Komatina, D., Pejović, A., Mihailović, V., Stevanović, D., Nastasijević, B. & Damljanović, I. (2018). J. Inorg. Biochem. 189, 134–142.  Web of Science PubMed Google Scholar
First citationChohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met.-Based Drugs, 8, 95–101.  CrossRef CAS Google Scholar
First citationChohan, Z. H. & Praveen, M. (2000). Appl. Organomet. Chem. 14, 376–382.  Web of Science CrossRef CAS Google Scholar
First citationDamljanović, I., Vukićević, M., Radulović, N., Palić, R., Ellmerer, E., Ratković, Z., Joksović, M. D. & Vukićević, R. D. (2009). Bioorg. Med. Chem. Lett. 19, 1093–1096.  Web of Science PubMed Google Scholar
First citationFery-Forgues, S. & Delavaux-Nicot, B. (2000). J. Photochem. Photobiol. 132, 137–159.  CAS Google Scholar
First citationGarcía-Barrantes, P. M., Lamoureux, G. V., Pérez, A. L., García-Sánchez, R. N., Martínez, A. R. & San Feliciano, A. (2013). Eur. J. Med. Chem. 70, 548–557.  Web of Science PubMed Google Scholar
First citationGibson, V. C., Long, N. J., Oxford, P. J., White, A. J. & Williams, D. J. (2006). Organometallics, 25, 1932–1939.  Web of Science CSD CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIsmail, M. K., Khan, Z., Rana, M., Horswell, S. L., Male, L., Nguyen, H. V., Perotti, A., Romero–Canelón, I., Wilkinson, E. A., Hodges, N. J. & Tucker, J. H. R. (2020). ChemBioChem, 21, 2487–2494.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJakku, R., Eda, R. R., Mirzadeh, N., Telukutla, S. R., Vardhaman, A. K., Lingamallu, G., Balasubramanian, S., Deep, P., Sistla, R., Bhargava, S. & Trivedi, R. (2020). Polyhedron, 192, 114829.  Web of Science CSD CrossRef Google Scholar
First citationJo, S. J., Jin, Y. E., Kim, J. H. & Suh, H. S. (2007). Bull. Korean Chem. Soc. 28, 2015–2019.  CAS Google Scholar
First citationLi, Y. F. & Liu, Z. Q. (2011). Eur. J. Med. Chem. 44, 158–163.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNaz, M., Ali, J., Fatima, S., Tabassum, S., Nawaz, S., Badshah, A. & Dou, H. (2020). Colloids Surf. A Physicochem. Eng. Asp. 597, 124760.  Web of Science CSD CrossRef Google Scholar
First citationOng, Y. C. & Gasser, G. (2020). Drug Discov. Today: Technol. pp. 1740–6749.  Google Scholar
First citationOnofrei, R. M., Carlescu, I., Lisa, G., Silion, M., Hurduc, N. & Scutaru, D. (2012). Rev. Chim. 63, 139–145.  CAS Google Scholar
First citationPeter, S. & Aderibigbe, B. A. (2019). Molecules, 24, 3604.  Web of Science CrossRef Google Scholar
First citationRauf, M. K., Shaheen, U., Asghar, F., Badshah, A., Nadhman, A., Azam, S., Ali, M. I., Shahnaz, G. & Yasinzai, M. (2016). Arch. Pharm. Chem. Life Sci. 349, 50–62.  Web of Science CrossRef CAS Google Scholar
First citationSantos, M. M., Bastos, P., Catela, I., Zalewska, K. & Branco, L. C. (2017). Med. Chem. 17, 771–784.  CAS Google Scholar
First citationSeshadri, T., Haupt, H. J., Flörke, U. & Henkel, G. (2007). Liq. Cryst. 34, 33–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationShabbir, M., Akhter, Z., Ahmad, I., Ahmed, S., Bolte, M., Ismail, H. & Mirza, B. (2017). Inorg. Chim. Acta, 463, 102–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS., University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A., Lumb, I., Mehra, V. & Kumar, V. (2019). Dalton Trans. 48, 2840–2860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTice, N. C., Parkin, S. & Selegue, J. P. (2007). J. Organomet. Chem. 692, 791–800.  Web of Science CSD CrossRef CAS Google Scholar
First citationToro, P., Suazo, C., Acuña, A., Fuentealba, M., Artigas, V., Arancibia, R., Olea-Azar, C., Moncada, M., Wilkinson, S. & Klahn, A. H. (2018). J. Organomet. Chem. 862, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, R., Chen, H., Yan, W., Zheng, M., Zhang, T. & Zhang, Y. (2020). Eur. J. Med. Chem. 190, 112109.  Web of Science CrossRef PubMed Google Scholar
First citationXiao, J., Sun, Z., Kong, F. & Gao, F. (2020). Eur. J. Med. Chem. 185, 11791.  Web of Science CrossRef Google Scholar
First citationXue, W. M., Kühn, F. E., Herdtweck, E. & Li, Q. (2001). Eur. J. Inorg. Chem. pp. 213–221.  CSD CrossRef Google Scholar
First citationYu, W., Jia, J., Gao, J., Han, L. & Li, Y. (2015). Chem. Phys. Lett. 624, 47–52.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds