research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[cis-di­aqua­bis­­(phen­an­thro­line)cobalt(II)] bis­­(citrato)germanate(IV) dinitrate

crossmark logo

aI.I. Mechnikov Odessa National University, 2, Dvoryanskaya str., Odessa, 65082, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Naukyi Ave. 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com

Edited by M. Zeller, Purdue University, USA (Received 8 July 2021; accepted 14 August 2021; online 20 August 2021)

The asymmetric unit of the title compound, [Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2, features two complex [(C12H8N2)2(H2O)2Co]2+ cations, two NO3 anions as well as one centrosymmetric [(C6H5O7)2Ge]2− anion. Two HCit ligands (Cit = citrate, C6H4O7) each coordinate via three different oxygen atoms (hy­droxy­late, α-carboxyl­ate, β-carboxyl­ate) to the Ge atom, forming a slightly distorted octa­hedron. The coordination polyhedron of the Co atom is also octa­hedral, formed by coordination of four nitro­gen atoms from two phenanthroline mol­ecules and two water oxygen atoms. In the crystal, the cations and anions are linked by hydrogen bonds and form layers parallel to the bc plane. The structure exhibits disorder of the NO3 anion [disorder ratio 0.688 (9) to 0.312 (9)]. There are also highly disordered solvent mol­ecules (presumably water and/or ethanol) in the crystal structure; explicit refinement of these mol­ecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods [SQUEEZE procedure in PLATON; Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

1. Chemical context

Citric acid (H4Cit) is an essential component of the Krebs cycle and a universal inter­mediate in plant and animal metab­olism. Its biocompatibility, hydro­philicity and general safety make citric acid a common component in foodstuffs, beverages, pharmaceuticals, cosmetics, etc (Nangare et al., 2021[Nangare, S., Vispute, Y., Tade, R., Dugam, S. & Patil, P. (2021). Future J. Pharm. Sci. 7, 54, 1-23.]). Recently, Varbanets and co-workers have reported that germanium coordination compounds with citric acid combined with a second metal and ligand, such as Co and 1,10-phenanthroline (phen), show high anti­hypoxic, cerebroprotective properties and have an activation effect on enzymes (Lukianchuk et al., 2019[Lukianchuk, V. D., Bukhtiarova, T. A., Seifullina, I. I., Polishchuk, E. M., Martsinko, O. E. & Topolnytska, H. A. (2019). IJMMR, 5, 58-65.]; Gudzenko et al., 2019a[Gudzenko, E. V., Borzova, N. V., Varbanets, L. D., Ivanitsa, V. A., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019a). Mikrobiol. Zh. 3, 14-26.],b[Gudzenko, E. V., Varbanets, L. D., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019b). Biotechnol. Acta, 12, 19-26.]). Complex compounds have been obtained through reactions in the system GeO2–H4Cit–CoX2–phen–C2H5OH–H2O (X = Cl, CH3COO). The authors reported that the anion of the cobalt salt (chloride and acetate) affects the composition and structure of the complex and results in the formation of cation–anionic compounds such as [Co(phen)3][Ge(HCit)2]·2H2O (Seifullina et al., 2017a[Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shihkina, S. V. (2017a). Russ. J. Coord. Chem. 43, 505-511.]) or [Co(H2O)2(phen)2]2[Ge(Cit)2]·4H2O (Martsinko et al., 2018a[Martsinko, E., Seifullina, I., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2018a). Chem. J. Moldova, 13, 56-62.],b[Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Seifullina, I. I., Dyakonenko, V. V. & Shishkina, S. V. (2018b). Vopros. Khim. Khim. Tekhnol. 6, 49-55.]). A bis­(citrato)germanate anion with HCit3 ligands tridentately coordinated to germ­anium are implemented in the structure [Co(phen)3][Ge(HCit)2]·2H2O. In the [Co(phen)3]2+ cation, the cobalt atom binds to three phenanthroline mol­ecules. In [Co(H2O)2(phen)2]2[Ge(Cit)2]·4H2O, on the other hand, cobalt(II) combines with only two mol­ecules of 1,10-phenanthroline and the oxygen atoms of two coordinated water mol­ecules to complete the octa­hedral metal coordination. In this compound, the third carb­oxy­lic group of the citric acid is deprotonated, which leads to a change of the charge of the anion and of the molar Co:Ge ratio, while the coordination polyhedron of the germanium atom remains the same: distorted octa­hedral, formed by six oxygen atoms of three types of oxygen atoms from two tridentate chelating citrate ligands.

[Scheme 1]

In the present work, we report the synthesis and structural analysis of a new complex, [Co(H2O)2(phen)2]2[Ge(HCit)2(NO3)2], which was synthesized by changing the anion of the initial cobalt(II) salt to nitrate. This study is important for establishing the effect that the anion of the 3d metal salt has on the composition and structure of heterometal bis­(citrato)germanates with 1,10-phenanthroline, as well as for the creation of new bioactive compounds.

2. Structural commentary

The title compound is a salt (Fig. 1[link]), with a complex Co-based cation and two types of anions – the complex anion Ge(HCit)2 and nitrate. The Ge atom occupies a special position on an inversion centre [the coordinates are (0.5, 1.0, 0.5)] so only half of the complex anion is located in the asymmetric unit. The charge of the two [Co(H2O)2(phen)2]2+ cations are compensated by one Ge complex dianion and two nitrate anions.

[Figure 1]
Figure 1
The mol­ecular structure of [Co(H2O)2(phen)2]2[Ge(HCit)2(NO3)2] [symmetry code: (i)1 − x, 2 − y, 1 − z].

The coordination polyhedron of the Ge atom is a distorted octa­hedron formed by oxygen atoms of three types: hydroxyl (O3), α-carboxyl­ate (O1) and β-carboxyl­ate (O4) of two HCit3− ligands. The Ge—O bond lengths are consequently not equivalent. The Ge1—O3 hydroxyl bond [1.813 (2) Å] is shorter than the bonds with the carboxyl­ate oxygen atoms. In addition, the Ge—O1 bond with the α-carboxyl­ate oxygen atom is shorter than the Ge–O4 bond with the β-carboxyl­ate oxygen atom [1.914 (3) Å and 1.959 (3) Å, respectively]. The values of O—Ge—O bond angles lie in the 87.6 (1)–92.4 (1)° range (Table 1[link]). The structure of the complex germanate anion is in a good agreement with those of similar complexes containing citratogermanates previously described (Martsinko et al., 2013[Martsinko, E. E., Minacheva, L. Kh., Chebanenko, E. A., Seifullina, I. I., Sergienko, V. S. & Churakov, A. V. (2013). Zh. Neorg. Khim. 58, 588-595.], 2018a[Martsinko, E., Seifullina, I., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2018a). Chem. J. Moldova, 13, 56-62.],b[Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Seifullina, I. I., Dyakonenko, V. V. & Shishkina, S. V. (2018b). Vopros. Khim. Khim. Tekhnol. 6, 49-55.]; Seifullina et al., 2017a[Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shihkina, S. V. (2017a). Russ. J. Coord. Chem. 43, 505-511.],b[Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shishkina, S. V. (2017b). Zh. Strukt. Khim. 58, 532-538.], 2019[Seifullina, I., Martsinko, E. E., Chebanenko, E. A., Afanasenko, E. V., Shishkina, S. V. & D'yakonenko, V. V. (2019). Russ. J. Coord. Chem. 45, 496-504.]).

Table 1
Selected geometric parameters (Å, °)

Ge1—O1 1.914 (3) Co1—N1 2.136 (3)
Ge1—O3 1.813 (2) Co1—N2 2.123 (3)
Ge1—O4 1.959 (3) Co1—N3 2.157 (4)
Co1—O8 2.083 (3) Co1—N4 2.159 (3)
Co1—O9 2.100 (3)    
       
O1—Ge1—O4i 90.92 (12) O8—Co1—N4 92.07 (14)
O1—Ge1—O4 89.08 (12) O9—Co1—N2 91.13 (13)
O3—Ge1—O1i 92.43 (11) O9—Co1—N3 88.06 (13)
O3—Ge1—O1 87.58 (11) O9—Co1—N4 92.60 (13)
O3—Ge1—O4i 89.40 (11) N1—Co1—N3 96.18 (12)
O3—Ge1—O4 90.60 (11) N1—Co1—N4 98.61 (12)
O8—Co1—O9 86.92 (13) N2—Co1—N1 78.06 (12)
O8—Co1—N1 90.75 (13) N2—Co1—N3 94.13 (14)
O8—Co1—N2 96.54 (14) N3—Co1—N4 77.58 (13)
Symmetry code: (i) [-x+1, -y+2, -z+1].

The coordination of the organic ligands to the Ge atom forms five- and six-membered metallocycles. The Ge1–O3–C2–C3–C4–O4 six-membered ring adopts a half-chair conformation [the C2 and O3 atoms deviate by 0.277 (4) and −0.657 (3) Å, respectively, from the mean plane though atoms Ge1, C3, C4 and O4, which is planar within 0.01 Å]. The Ge1—O1—C1—C2—O3 five-membered ring adopts an envelope conformation. Atom O3 deviates by 0.527 (3) Å from the mean plane of the remaining ring atoms (planar within 0.03 Å).

The coordination polyhedron of the Co atom is a distorted octa­hedron, which is formed by nitro­gen atoms of two phenanthroline mol­ecules and oxygen atoms of two water mol­ecules. The Co—N and Co—O bond lengths lie in the ranges 2.120 (3)–2.160 (3) and 2.083 (3)–2.098 (3) Å, respectively, while the N—Co—N, O—Co—N and O—Co—O angles are in the range 77.6 (1)–98.6 (1)° (Table 1[link]).

3. Supra­molecular features

In the crystal, the water mol­ecules of the [Co(H2O)2(phen)2]2+ cation are linked to the [Ge(HCit)2]2− and NO3 anions by inter­molecular O—H⋯O hydrogen bonds (Table 2[link]); these supra­molecular clusters form layers parallel to the bc plane (Fig. 2[link]). Voids with a volume of 149 Å3 containing 49 electrons were found between adjacent layers. The content appears to be a combination of water and ethanol solvent mol­ecules with more than twofold disorder. Refinement of these mol­ecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods (SQUEEZE procedure; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O10ii 0.82 1.88 2.600 (12) 146
O8—H8A⋯O2 0.84 (2) 1.88 (2) 2.709 (4) 168 (5)
O9—H9A⋯O5iii 0.82 (2) 1.96 (2) 2.701 (4) 150 (4)
O9—H9B⋯O10 0.82 (2) 1.99 (3) 2.789 (15) 166 (6)
Symmetry codes: (ii) x+1, y+1, z; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The crystal packing of [Co(H2O)2(phen)2]2[Ge(HCit)2(NO3)2] viewed along the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the Ge(HCit)22− anion yielded 15 structures containing this anion (Seiler et al., 2005[Seiler, O., Burschka, C., Schwahn, D. & Tacke, R. (2005). Inorg. Chem. 44, 2318-2325.]; Seifullina et al., 2006[Seifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2006). Zh. Neorg. Khim. 51, 1892-1899.], 2007[Seifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2007). Zh. Neorg. Khim. 52, 494-499.], 2015[Seifullina, I. I., Ilyukhin, A. B., Martsinko, E. E., Sergienko, V. S. & Chebanenko, E. A. (2015). Russ. J. Inorg. Chem. 60, 33-37.], 2016[Seifullina, I., Martsinko, E., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2016). Chem. J. Moldova, 11, 52-57.], 2017a[Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shihkina, S. V. (2017a). Russ. J. Coord. Chem. 43, 505-511.],b[Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shishkina, S. V. (2017b). Zh. Strukt. Khim. 58, 532-538.]; Martsinko et al., 2011[Martsinko, E. E., Minacheva, L. Kh., Pesaroglo, A. G., Seifullina, I. I., Churakov, A. V. & Sergienko, V. S. Zh. (2011). Zh. Neorg. Khim. 56, 1247-1253.], 2013[Martsinko, E. E., Minacheva, L. Kh., Chebanenko, E. A., Seifullina, I. I., Sergienko, V. S. & Churakov, A. V. (2013). Zh. Neorg. Khim. 58, 588-595.], 2018a[Martsinko, E., Seifullina, I., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2018a). Chem. J. Moldova, 13, 56-62.],b[Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Seifullina, I. I., Dyakonenko, V. V. & Shishkina, S. V. (2018b). Vopros. Khim. Khim. Tekhnol. 6, 49-55.]). In these structures, the Ge—O bond lengths for the hydroxyl, α-carboxyl­ate and β-carboxyl­ate oxygen atoms are in the ranges 1.793–1.840, 1.881–1.914 and 1.904–1.955 Å, respectively.

A search for the [Co(H2O)2(phen)2]2+ cation yielded six structures (Batsanov et al., 2011[Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225-231.]; Yang et al., 2003[Yang, J., Ma, J., Wu, D., Guo, L. & Liu, J. (2003). J. Mol. Struct. 657, 333-341.]; Bulut et al., 2003[Bulut, A., İçbudak, H., Yeşilel, O. Z., Ölmez, H. & Büyükgüngör, O. (2003). Acta Cryst. E59, m736-m738.]; Abdelhak et al., 2006[Abdelhak, J., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2006). Acta Cryst. E62, m2394-m2396.]; Das et al., 2013[Das, B. & Baruah, J. B. (2013). J. Mol. Struct. 1034, 144-151.]; Fu et al., 2003[Fu, R.-B., Wu, X.-T., Hu, S.-M., Zhang, J.-J., Fu, Z.-Y., Du, W.-X. & Xia, S.-Q. (2003). Eur. J. Inorg. Chem. pp. 1798-1801.]). The Co—O bond lengths in the coordination polyhedron vary between 2.073 and 2.140 Å while the Co—N bond lengths range from within 2.118 to 2.164 Å.

No structures containing any combination of [Co(H2O)2(phen)2]2+ cations and [Ge(HCit)2]2− anions were found in the CSD.

5. Synthesis and crystallization

A suspension of germanium(IV) oxide (0.0523 g, 0.5 mmol, GeO2, 99.99%, Aldrich) and citric acid (0.21 g, 1 mmol, H4Cit·H2O, ≥99%, Aldrich) in 100 mL of hot distilled water was stirred to dissolve the reagents completely and slowly evaporated at 323 K to a volume of 20 mL. After cooling the mixture to room temperature, 20 mL of a 95% ethanol solution containing 1,10-phenanthroline (0.18 g, 1 mmol, phen, 99%, Aldrich) and cobalt(II) nitrate hexa­hydrate [0.146 g, 0.5 mmol, Co(NO3)2·6H2O, ≥99%, Aldrich] were added (Fig. 3[link]). Pink crystals suitable for X-ray analysis were obtained in two days, yield: 63%.

[Figure 3]
Figure 3
Two-step synthesis of [Co(H2O)2(phen)2]2[Ge(HCit)2(NO3)2].

During the study of the thermal stability of the synthesized complex (Q-1500D PerkinElmer), it was established that its decomposition starts with an endothermic peak in the range of 393–423 K (peak 413 K). The corresponding weight loss of 1.5% indicates that the complex includes mol­ecules of solvation. Therefore, crystals were dried at 423 K for 30 min to remove solvate mol­ecules prior to the yield calculation and for elemental analysis.

Analysis calculated for C60H50Co2GeN10O24 (1485.57) in %: C 48.47, H 3.37, Co 7.94, Ge 4.49, N 9.42; found C 48.25, H 3.26, Co 7.88, Ge 4.35, N 9.40 (ICP optical emission spectrom­eter Optima 2000 DV PerkinElmer and Elemental Analyzer CE-440).

IR (νmax, cm−1, spectrometer Frontier PerkinElmer, KBr): 3228 ν(OH), 3062, 2917 ν(C—H), 1743 ν(C=O), 1668 νas(COO), 1613 δ(H2O), 1587, 1519, 1428 ν(C—CAr), 1410 νs(COO), 1367 ν(C—N), 1089 ν(C—O), 1198, 1148, 915, 856 δ(C—H), 641 ν(Ge—O), 554 ν(Co—O), 425 ν(Co—N).

The IR spectrum of the complex contains absorption bands for ν(C=O), νas(COO) and νs(COO), which indicate the presence of non-equivalent coordinated and free carboxyl groups in the complex. A ν(C—O) absorption band at 1089 cm−1 evidences that the alcoholic OH groups of the citrate ligands are deprotonated and involved in coordination. The presence of Ge—O stretching vibrations suggests that the carboxyl­ate and hydroxyl groups are bonded to germanium. Absorption bands assigned to the ν(C—N) heterocycle, the ν(C—C) phenanthroline ring vibrations and deformation vibrations δ(C—H) of the aromatic rings are also found in the IR spectrum. The compound contains coordinated water mol­ecules, as indicated by the H2O deformation vibrations at 1613 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound and carb­oxy­lic acid H atoms were added in calculated positions with C—H bond lengths of 0.93 Å for C—H, 0.97 Å for CH2 and 0.82 Å for O—H bonds. Carb­oxy­lic acid H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Water hydrogen atoms of the metal complex were located from difference-Fourier maps of electron density and their positions were refined with restraints of 0.84 (2) Å for O—H bond distances and 1.36 (2) Å for H⋯H distances. The position of one water H atom (H9A) was further restrained based on hydrogen bonding considerations. Uiso(H) were set to xUeq(C,O), where x = 1.5 for hydroxyl groups and water mol­ecules and 1.2 for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2]NO3
Mr 1485.55
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 10.6719 (5), 11.8089 (4), 14.0901 (7)
α, β, γ (°) 105.697 (4), 94.026 (4), 104.815 (4)
V3) 1633.98 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.167, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14229, 7497, 4949
Rint 0.071
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.192, 0.98
No. of reflections 7497
No. of parameters 489
No. of restraints 131
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.09, −0.87
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The structure exhibits disorder of the NO3 anion. All N—O bond distances were restrained to be similar to each other (within a standard deviation of 0.02 Å) and the distance between oxygen atoms O10B and O11B was restrained to a target value of 2.200 (4) Å. Uij values of nitrate atoms closer to each other than 2 Å were restrained to be similar to each other (within a standard deviation of 0.02 Å2). Subject to these conditions, the disorder ratio refined to 0.688 (9):0.312 (9).

There are also highly disordered solvent mol­ecules (presumably water and/or ethanol) in the crystal structure; explicit refinement of these mol­ecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods (SQUEEZE; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The voids with a volume of 149 Å3 contain 49 electrons.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[cis-diaquabis(phenanthroline)cobalt(II)] bis(citrato)germanate(IV) dinitrate top
Crystal data top
[Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2Z = 1
Mr = 1485.55F(000) = 758
Triclinic, P1Dx = 1.510 Mg m3
a = 10.6719 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8089 (4) ÅCell parameters from 3558 reflections
c = 14.0901 (7) Åθ = 3.6–26.0°
α = 105.697 (4)°µ = 1.05 mm1
β = 94.026 (4)°T = 294 K
γ = 104.815 (4)°Block, colourless
V = 1633.98 (13) Å30.5 × 0.4 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
7497 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1315
Tmin = 0.167, Tmax = 1.000l = 1718
14229 measured reflections
Refinement top
Refinement on F2131 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
7497 reflectionsΔρmax = 1.09 e Å3
489 parametersΔρmin = 0.87 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.5000001.0000000.5000000.03675 (17)
Co10.33663 (5)0.61981 (4)0.77746 (4)0.04432 (18)
O10.5174 (3)0.9298 (2)0.6060 (2)0.0458 (6)
O20.6415 (3)0.8220 (3)0.6500 (2)0.0586 (8)
O30.6711 (2)1.0110 (2)0.4908 (2)0.0425 (6)
O40.4470 (3)0.8345 (2)0.4052 (2)0.0491 (7)
O50.4742 (3)0.6620 (2)0.3179 (2)0.0542 (7)
O60.8227 (3)1.0894 (3)0.7076 (3)0.0752 (10)
O71.0212 (3)1.0937 (4)0.6678 (3)0.0905 (12)
H7A1.0462891.1345110.7263750.136*
O80.5332 (3)0.6796 (3)0.7618 (3)0.0618 (8)
H8A0.574 (5)0.717 (5)0.725 (4)0.093*
H8B0.588 (4)0.655 (5)0.791 (4)0.093*
O90.3742 (4)0.4581 (3)0.7902 (3)0.0634 (8)
H9A0.415 (4)0.437 (4)0.745 (3)0.095*
H9B0.306 (3)0.407 (4)0.789 (4)0.095*
O100.1634 (11)0.2778 (14)0.8150 (6)0.079 (2)0.688 (9)
O10B0.186 (3)0.285 (3)0.8413 (15)0.105 (6)0.312 (9)
O110.1943 (13)0.3850 (8)0.9768 (7)0.145 (4)0.688 (9)
O11B0.287 (2)0.3400 (17)0.9953 (13)0.154 (6)0.312 (9)
O120.0517 (10)0.2005 (10)0.9183 (8)0.157 (4)0.688 (9)
O12B0.072 (2)0.304 (2)0.9734 (17)0.151 (5)0.312 (9)
N10.3167 (3)0.7994 (3)0.7946 (2)0.0457 (7)
N20.3626 (4)0.6943 (3)0.9350 (2)0.0506 (8)
N30.1305 (3)0.5296 (3)0.7653 (3)0.0479 (8)
N40.2778 (3)0.5440 (3)0.6181 (2)0.0461 (8)
N50.1351 (12)0.2883 (9)0.9041 (7)0.102 (3)0.688 (9)
N5B0.180 (2)0.319 (3)0.9359 (18)0.124 (4)0.312 (9)
C10.6179 (4)0.8863 (3)0.6003 (3)0.0447 (9)
C20.7002 (4)0.9130 (3)0.5205 (3)0.0397 (8)
C30.6587 (4)0.7976 (4)0.4312 (3)0.0454 (9)
H3A0.7158080.8094870.3819350.054*
H3B0.6726110.7298390.4527980.054*
C40.5174 (4)0.7610 (3)0.3810 (3)0.0394 (8)
C50.8460 (4)0.9469 (4)0.5569 (3)0.0525 (10)
H5A0.8670660.8749700.5660460.063*
H5B0.8937370.9700510.5057090.063*
C60.8925 (5)1.0500 (4)0.6529 (4)0.0632 (12)
C70.3017 (4)0.8521 (4)0.7247 (3)0.0541 (10)
H70.2999490.8083120.6586700.065*
C80.2886 (5)0.9685 (5)0.7449 (5)0.0770 (16)
H80.2773071.0021980.6935350.092*
C90.2924 (6)1.0338 (5)0.8411 (5)0.0803 (17)
H90.2824331.1123600.8554520.096*
C100.3110 (6)0.9843 (4)0.9186 (4)0.0690 (14)
C110.3231 (4)0.8637 (4)0.8909 (3)0.0497 (10)
C120.3176 (7)1.0460 (5)1.0206 (5)0.092 (2)
H120.3097941.1253791.0394070.110*
C130.3359 (7)0.9894 (5)1.0937 (4)0.0885 (18)
H130.3375111.0301441.1604190.106*
C140.3519 (5)0.8692 (4)1.0659 (4)0.0666 (13)
C150.3463 (4)0.8074 (4)0.9668 (3)0.0486 (9)
C160.3762 (6)0.8107 (5)1.1371 (4)0.0761 (15)
H160.3793250.8484501.2046750.091*
C170.3953 (6)0.6961 (6)1.1045 (4)0.0787 (15)
H170.4127780.6558701.1499650.094*
C180.3882 (5)0.6420 (5)1.0041 (4)0.0684 (13)
H180.4019440.5649970.9831890.082*
C190.0581 (5)0.5253 (4)0.8367 (4)0.0620 (12)
H190.0936410.5750160.9012180.074*
C200.0684 (5)0.4500 (5)0.8195 (5)0.0702 (13)
H200.1165770.4504180.8719970.084*
C210.1230 (5)0.3757 (5)0.7271 (5)0.0674 (13)
H210.2083390.3246580.7155270.081*
C220.0488 (4)0.3766 (4)0.6486 (4)0.0531 (10)
C230.0781 (4)0.4572 (3)0.6715 (3)0.0440 (9)
C240.0971 (5)0.3013 (4)0.5461 (4)0.0644 (13)
H240.1808760.2466140.5304280.077*
C250.0238 (5)0.3089 (4)0.4742 (4)0.0634 (12)
H250.0570550.2592830.4092190.076*
C260.1055 (4)0.3925 (4)0.4953 (3)0.0508 (10)
C270.1561 (4)0.4645 (3)0.5929 (3)0.0436 (9)
C280.1845 (5)0.4073 (4)0.4225 (4)0.0593 (12)
H280.1542070.3611520.3562400.071*
C290.3026 (5)0.4868 (4)0.4473 (4)0.0642 (12)
H290.3550170.4970890.3985220.077*
C300.3479 (5)0.5546 (4)0.5458 (3)0.0555 (10)
H300.4313050.6100720.5617650.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0349 (3)0.0352 (3)0.0442 (3)0.0129 (2)0.0064 (2)0.0156 (2)
Co10.0491 (3)0.0407 (3)0.0417 (3)0.0123 (2)0.0033 (2)0.0112 (2)
O10.0451 (15)0.0529 (15)0.0486 (16)0.0186 (13)0.0101 (13)0.0250 (12)
O20.0620 (19)0.0699 (19)0.065 (2)0.0305 (16)0.0121 (16)0.0419 (16)
O30.0422 (15)0.0426 (14)0.0503 (16)0.0154 (12)0.0083 (12)0.0230 (12)
O40.0410 (14)0.0452 (15)0.0594 (18)0.0166 (12)0.0003 (13)0.0106 (12)
O50.0590 (18)0.0459 (15)0.0540 (18)0.0197 (14)0.0005 (14)0.0068 (13)
O60.061 (2)0.080 (2)0.073 (2)0.0225 (18)0.0113 (19)0.0010 (18)
O70.052 (2)0.111 (3)0.084 (3)0.016 (2)0.008 (2)0.001 (2)
O80.0465 (18)0.072 (2)0.069 (2)0.0075 (16)0.0001 (16)0.0349 (16)
O90.071 (2)0.0506 (17)0.079 (2)0.0247 (16)0.0242 (19)0.0254 (16)
O100.093 (5)0.080 (4)0.061 (4)0.019 (4)0.013 (4)0.026 (4)
O10B0.157 (11)0.077 (7)0.070 (9)0.009 (9)0.009 (9)0.034 (8)
O110.212 (9)0.093 (5)0.091 (5)0.002 (5)0.003 (6)0.012 (4)
O11B0.175 (12)0.088 (9)0.159 (11)0.000 (9)0.015 (10)0.015 (8)
O120.169 (7)0.153 (7)0.123 (7)0.016 (6)0.035 (6)0.053 (6)
O12B0.167 (10)0.141 (10)0.122 (9)0.011 (9)0.058 (8)0.025 (8)
N10.0435 (18)0.0484 (18)0.0450 (19)0.0124 (15)0.0061 (15)0.0143 (14)
N20.061 (2)0.0498 (19)0.044 (2)0.0171 (17)0.0063 (17)0.0185 (15)
N30.0477 (19)0.0493 (18)0.049 (2)0.0128 (15)0.0088 (16)0.0196 (15)
N40.0485 (19)0.0437 (17)0.0434 (19)0.0106 (15)0.0007 (15)0.0125 (13)
N50.151 (7)0.087 (5)0.070 (5)0.029 (5)0.001 (5)0.036 (4)
N5B0.164 (8)0.104 (7)0.092 (8)0.012 (7)0.015 (7)0.036 (7)
C10.040 (2)0.041 (2)0.054 (2)0.0126 (17)0.0013 (18)0.0151 (17)
C20.0343 (18)0.0420 (19)0.048 (2)0.0176 (16)0.0053 (16)0.0163 (16)
C30.041 (2)0.050 (2)0.050 (2)0.0176 (18)0.0082 (18)0.0178 (17)
C40.045 (2)0.0319 (17)0.041 (2)0.0123 (16)0.0027 (16)0.0090 (14)
C50.041 (2)0.056 (2)0.059 (3)0.0181 (19)0.0031 (19)0.0122 (19)
C60.051 (3)0.065 (3)0.066 (3)0.014 (2)0.005 (2)0.014 (2)
C70.051 (2)0.063 (3)0.058 (3)0.017 (2)0.006 (2)0.033 (2)
C80.080 (4)0.089 (4)0.093 (4)0.038 (3)0.023 (3)0.061 (3)
C90.102 (4)0.067 (3)0.098 (4)0.047 (3)0.031 (4)0.042 (3)
C100.079 (4)0.056 (3)0.079 (4)0.031 (3)0.019 (3)0.018 (2)
C110.050 (2)0.045 (2)0.052 (2)0.0158 (19)0.0063 (19)0.0102 (17)
C120.126 (6)0.064 (3)0.085 (4)0.042 (4)0.024 (4)0.006 (3)
C130.110 (5)0.080 (4)0.062 (4)0.030 (3)0.020 (3)0.004 (3)
C140.074 (3)0.065 (3)0.055 (3)0.016 (3)0.005 (3)0.013 (2)
C150.052 (2)0.047 (2)0.041 (2)0.0083 (18)0.0039 (18)0.0119 (16)
C160.074 (3)0.096 (4)0.050 (3)0.016 (3)0.004 (3)0.016 (3)
C170.081 (4)0.107 (4)0.058 (3)0.026 (3)0.002 (3)0.043 (3)
C180.084 (4)0.077 (3)0.050 (3)0.030 (3)0.002 (3)0.025 (2)
C190.057 (3)0.063 (3)0.068 (3)0.015 (2)0.015 (2)0.024 (2)
C200.059 (3)0.079 (3)0.083 (4)0.019 (3)0.024 (3)0.038 (3)
C210.044 (3)0.066 (3)0.100 (4)0.008 (2)0.013 (3)0.044 (3)
C220.044 (2)0.046 (2)0.073 (3)0.0119 (18)0.000 (2)0.026 (2)
C230.040 (2)0.0384 (19)0.057 (2)0.0131 (16)0.0001 (18)0.0189 (16)
C240.047 (3)0.049 (2)0.089 (4)0.004 (2)0.013 (3)0.021 (2)
C250.065 (3)0.051 (2)0.062 (3)0.013 (2)0.017 (2)0.007 (2)
C260.055 (2)0.043 (2)0.051 (2)0.0136 (18)0.010 (2)0.0129 (17)
C270.043 (2)0.0398 (19)0.050 (2)0.0133 (16)0.0026 (18)0.0167 (16)
C280.065 (3)0.058 (3)0.047 (3)0.020 (2)0.009 (2)0.0059 (19)
C290.078 (3)0.070 (3)0.050 (3)0.026 (3)0.014 (2)0.021 (2)
C300.054 (3)0.059 (3)0.048 (3)0.008 (2)0.010 (2)0.0139 (19)
Geometric parameters (Å, º) top
Ge1—O1i1.914 (3)C5—H5A0.9700
Ge1—O11.914 (3)C5—H5B0.9700
Ge1—O3i1.813 (2)C5—C61.505 (6)
Ge1—O31.813 (2)C7—H70.9300
Ge1—O4i1.959 (3)C7—C81.372 (6)
Ge1—O41.959 (3)C8—H80.9300
Co1—O82.083 (3)C8—C91.357 (8)
Co1—O92.100 (3)C9—H90.9300
Co1—N12.136 (3)C9—C101.396 (7)
Co1—N22.123 (3)C10—C111.414 (6)
Co1—N32.157 (4)C10—C121.411 (8)
Co1—N42.159 (3)C11—C151.442 (6)
O1—C11.301 (4)C12—H120.9300
O2—C11.221 (4)C12—C131.399 (9)
O3—C21.429 (4)C13—H130.9300
O4—C41.282 (4)C13—C141.425 (7)
O5—C41.214 (4)C14—C151.378 (6)
O6—C61.196 (5)C14—C161.408 (7)
O7—H7A0.8200C16—H160.9300
O7—C61.317 (6)C16—C171.378 (7)
O8—H8A0.839 (19)C17—H170.9300
O8—H8B0.846 (19)C17—C181.374 (7)
O9—H9A0.821 (17)C18—H180.9300
O9—H9B0.815 (19)C19—H190.9300
O10—N51.292 (10)C19—C201.376 (7)
O10B—N5B1.294 (14)C20—H200.9300
O11—N51.288 (10)C20—C211.348 (8)
O11B—N5B1.292 (14)C21—H210.9300
O12—N51.253 (10)C21—C221.405 (7)
O12B—N5B1.295 (14)C22—C231.399 (6)
N1—C71.321 (5)C22—C241.452 (7)
N1—C111.351 (5)C23—C271.440 (5)
N2—C151.349 (5)C24—H240.9300
N2—C181.334 (5)C24—C251.331 (7)
N3—C191.314 (5)C25—H250.9300
N3—C231.353 (5)C25—C261.433 (7)
N4—C271.351 (5)C26—C271.391 (6)
N4—C301.321 (5)C26—C281.392 (6)
C1—C21.524 (5)C28—H280.9300
C2—C31.524 (5)C28—C291.322 (7)
C2—C51.518 (5)C29—H290.9300
C3—H3A0.9700C29—C301.381 (6)
C3—H3B0.9700C30—H300.9300
C3—C41.521 (5)
O1i—Ge1—O1180.0C6—C5—C2114.2 (3)
O1i—Ge1—O4i89.08 (12)C6—C5—H5A108.7
O1—Ge1—O4i90.92 (12)C6—C5—H5B108.7
O1i—Ge1—O490.92 (12)O6—C6—O7124.1 (5)
O1—Ge1—O489.08 (12)O6—C6—C5125.0 (4)
O3—Ge1—O1i92.43 (11)O7—C6—C5110.9 (4)
O3i—Ge1—O1i87.57 (11)N1—C7—H7118.5
O3—Ge1—O187.58 (11)N1—C7—C8123.0 (5)
O3i—Ge1—O192.43 (11)C8—C7—H7118.5
O3i—Ge1—O3180.0C7—C8—H8120.5
O3i—Ge1—O4i90.60 (11)C9—C8—C7119.0 (5)
O3—Ge1—O4i89.40 (11)C9—C8—H8120.5
O3i—Ge1—O489.40 (11)C8—C9—H9119.6
O3—Ge1—O490.60 (11)C8—C9—C10120.8 (4)
O4—Ge1—O4i180.0C10—C9—H9119.6
O8—Co1—O986.92 (13)C9—C10—C11116.4 (5)
O8—Co1—N190.75 (13)C9—C10—C12124.6 (5)
O8—Co1—N296.54 (14)C12—C10—C11119.0 (5)
O8—Co1—N3168.28 (14)N1—C11—C10121.9 (4)
O8—Co1—N492.07 (14)N1—C11—C15118.3 (3)
O9—Co1—N1168.62 (14)C10—C11—C15119.8 (4)
O9—Co1—N291.13 (13)C10—C12—H12119.6
O9—Co1—N388.06 (13)C13—C12—C10120.9 (5)
O9—Co1—N492.60 (13)C13—C12—H12119.6
N1—Co1—N396.18 (12)C12—C13—H13120.0
N1—Co1—N498.61 (12)C12—C13—C14120.0 (5)
N2—Co1—N178.06 (12)C14—C13—H13120.0
N2—Co1—N394.13 (14)C15—C14—C13120.1 (5)
N2—Co1—N4170.78 (13)C15—C14—C16117.9 (4)
N3—Co1—N477.58 (13)C16—C14—C13122.0 (5)
C1—O1—Ge1109.6 (2)N2—C15—C11116.4 (4)
C2—O3—Ge1107.7 (2)N2—C15—C14123.4 (4)
C4—O4—Ge1127.8 (3)C14—C15—C11120.2 (4)
C6—O7—H7A109.5C14—C16—H16120.7
Co1—O8—H8A134 (3)C17—C16—C14118.5 (5)
Co1—O8—H8B118 (3)C17—C16—H16120.7
H8A—O8—H8B107 (3)C16—C17—H17120.3
Co1—O9—H9A106 (3)C18—C17—C16119.3 (5)
Co1—O9—H9B110 (4)C18—C17—H17120.3
H9A—O9—H9B114 (3)N2—C18—C17123.3 (5)
C7—N1—Co1128.3 (3)N2—C18—H18118.3
C7—N1—C11118.9 (4)C17—C18—H18118.3
C11—N1—Co1112.8 (3)N3—C19—H19118.7
C15—N2—Co1114.3 (3)N3—C19—C20122.5 (5)
C18—N2—Co1128.2 (3)C20—C19—H19118.7
C18—N2—C15117.5 (4)C19—C20—H20119.7
C19—N3—Co1128.8 (3)C21—C20—C19120.5 (5)
C19—N3—C23118.5 (4)C21—C20—H20119.7
C23—N3—Co1112.2 (3)C20—C21—H21120.5
C27—N4—Co1112.8 (3)C20—C21—C22118.9 (4)
C30—N4—Co1129.2 (3)C22—C21—H21120.5
C30—N4—C27117.6 (4)C21—C22—C24124.0 (4)
O11—N5—O10120.7 (11)C23—C22—C21117.3 (4)
O12—N5—O10118.2 (10)C23—C22—C24118.7 (4)
O12—N5—O11121.1 (10)N3—C23—C22122.3 (4)
O10B—N5B—O12B124 (3)N3—C23—C27118.4 (3)
O11B—N5B—O10B116.8 (15)C22—C23—C27119.3 (4)
O11B—N5B—O12B117 (2)C22—C24—H24119.3
O1—C1—C2115.1 (3)C25—C24—C22121.3 (4)
O2—C1—O1123.4 (4)C25—C24—H24119.3
O2—C1—C2121.4 (3)C24—C25—H25119.5
O3—C2—C1109.2 (3)C24—C25—C26121.0 (4)
O3—C2—C3108.5 (3)C26—C25—H25119.5
O3—C2—C5109.4 (3)C27—C26—C25119.4 (4)
C3—C2—C1106.9 (3)C27—C26—C28117.2 (4)
C5—C2—C1112.1 (3)C28—C26—C25123.4 (4)
C5—C2—C3110.6 (3)N4—C27—C23117.3 (3)
C2—C3—H3A108.3N4—C27—C26122.4 (4)
C2—C3—H3B108.3C26—C27—C23120.2 (4)
H3A—C3—H3B107.4C26—C28—H28119.9
C4—C3—C2115.8 (3)C29—C28—C26120.1 (4)
C4—C3—H3A108.3C29—C28—H28119.9
C4—C3—H3B108.3C28—C29—H29120.0
O4—C4—C3119.9 (3)C28—C29—C30119.9 (5)
O5—C4—O4121.5 (4)C30—C29—H29120.0
O5—C4—C3118.6 (3)N4—C30—C29122.7 (4)
C2—C5—H5A108.7N4—C30—H30118.7
C2—C5—H5B108.7C29—C30—H30118.7
H5A—C5—H5B107.6
Ge1—O1—C1—O2169.8 (3)C9—C10—C11—C15178.3 (5)
Ge1—O1—C1—C25.7 (4)C9—C10—C12—C13179.6 (6)
Ge1—O3—C2—C132.7 (3)C10—C11—C15—N2177.1 (4)
Ge1—O3—C2—C383.5 (3)C10—C11—C15—C142.3 (7)
Ge1—O3—C2—C5155.8 (3)C10—C12—C13—C141.9 (11)
Ge1—O4—C4—O5177.0 (3)C11—N1—C7—C81.9 (7)
Ge1—O4—C4—C32.6 (5)C11—C10—C12—C130.0 (10)
Co1—N1—C7—C8179.4 (4)C12—C10—C11—N1179.5 (5)
Co1—N1—C11—C10179.4 (4)C12—C10—C11—C152.0 (8)
Co1—N1—C11—C152.1 (5)C12—C13—C14—C151.6 (10)
Co1—N2—C15—C114.1 (5)C12—C13—C14—C16177.2 (6)
Co1—N2—C15—C14176.5 (4)C13—C14—C15—N2178.9 (5)
Co1—N2—C18—C17175.9 (4)C13—C14—C15—C110.4 (8)
Co1—N3—C19—C20170.6 (3)C13—C14—C16—C17177.7 (6)
Co1—N3—C23—C22170.9 (3)C14—C16—C17—C180.9 (9)
Co1—N3—C23—C279.5 (4)C15—N2—C18—C171.7 (8)
Co1—N4—C27—C239.6 (4)C15—C14—C16—C171.1 (9)
Co1—N4—C27—C26171.0 (3)C16—C14—C15—N20.1 (8)
Co1—N4—C30—C29170.5 (3)C16—C14—C15—C11179.3 (5)
O1i—Ge1—O3—C2149.9 (2)C16—C17—C18—N20.5 (9)
O1—Ge1—O3—C230.1 (2)C18—N2—C15—C11178.0 (4)
O1—C1—C2—O317.6 (4)C18—N2—C15—C141.5 (7)
O1—C1—C2—C399.6 (4)C19—N3—C23—C221.4 (5)
O1—C1—C2—C5139.1 (3)C19—N3—C23—C27178.2 (3)
O2—C1—C2—O3166.8 (4)C19—C20—C21—C220.2 (7)
O2—C1—C2—C376.0 (5)C20—C21—C22—C231.0 (6)
O2—C1—C2—C545.3 (5)C20—C21—C22—C24179.7 (4)
O3—C2—C3—C454.0 (4)C21—C22—C23—N31.8 (6)
O3—C2—C5—C668.0 (5)C21—C22—C23—C27177.8 (3)
O4—Ge1—O3—C259.0 (2)C21—C22—C24—C25177.8 (4)
O4i—Ge1—O3—C2121.0 (2)C22—C23—C27—N4179.6 (3)
N1—C7—C8—C90.7 (8)C22—C23—C27—C260.2 (5)
N1—C11—C15—N21.4 (6)C22—C24—C25—C260.3 (7)
N1—C11—C15—C14179.2 (4)C23—N3—C19—C200.1 (6)
N3—C19—C20—C210.7 (8)C23—C22—C24—C250.9 (6)
N3—C23—C27—N40.0 (5)C24—C22—C23—N3179.4 (3)
N3—C23—C27—C26179.4 (3)C24—C22—C23—C271.0 (5)
C1—C2—C3—C463.7 (4)C24—C25—C26—C271.5 (6)
C1—C2—C5—C653.3 (5)C24—C25—C26—C28177.7 (4)
C2—C3—C4—O49.6 (5)C25—C26—C27—N4179.2 (3)
C2—C3—C4—O5170.7 (3)C25—C26—C27—C231.4 (5)
C2—C5—C6—O613.3 (7)C25—C26—C28—C29179.5 (4)
C2—C5—C6—O7165.2 (4)C26—C28—C29—C300.5 (7)
C3—C2—C5—C6172.5 (4)C27—N4—C30—C291.1 (6)
C5—C2—C3—C4174.0 (3)C27—C26—C28—C290.3 (6)
C7—N1—C11—C101.6 (6)C28—C26—C27—N41.6 (5)
C7—N1—C11—C15176.9 (4)C28—C26—C27—C23177.8 (3)
C7—C8—C9—C100.8 (9)C28—C29—C30—N40.1 (7)
C8—C9—C10—C111.0 (9)C30—N4—C27—C23177.4 (3)
C8—C9—C10—C12179.3 (6)C30—N4—C27—C262.0 (5)
C9—C10—C11—N10.2 (7)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O10ii0.821.882.600 (12)146
O8—H8A···O20.84 (2)1.88 (2)2.709 (4)168 (5)
O9—H9A···O5iii0.82 (2)1.96 (2)2.701 (4)150 (4)
O9—H9B···O100.82 (2)1.99 (3)2.789 (15)166 (6)
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

References

First citationAbdelhak, J., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2006). Acta Cryst. E62, m2394–m2396.  CSD CrossRef IUCr Journals Google Scholar
First citationBatsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationBulut, A., İçbudak, H., Yeşilel, O. Z., Ölmez, H. & Büyükgüngör, O. (2003). Acta Cryst. E59, m736–m738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDas, B. & Baruah, J. B. (2013). J. Mol. Struct. 1034, 144–151.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, R.-B., Wu, X.-T., Hu, S.-M., Zhang, J.-J., Fu, Z.-Y., Du, W.-X. & Xia, S.-Q. (2003). Eur. J. Inorg. Chem. pp. 1798–1801.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGudzenko, E. V., Varbanets, L. D., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019b). Biotechnol. Acta, 12, 19–26.  CrossRef Google Scholar
First citationGudzenko, E. V., Borzova, N. V., Varbanets, L. D., Ivanitsa, V. A., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019a). Mikrobiol. Zh. 3, 14–26.  CrossRef Google Scholar
First citationLukianchuk, V. D., Bukhtiarova, T. A., Seifullina, I. I., Polishchuk, E. M., Martsinko, O. E. & Topolnytska, H. A. (2019). IJMMR, 5, 58–65.  CrossRef Google Scholar
First citationMartsinko, E., Seifullina, I., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2018a). Chem. J. Moldova, 13, 56–62.  CrossRef CAS Google Scholar
First citationMartsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Seifullina, I. I., Dyakonenko, V. V. & Shishkina, S. V. (2018b). Vopros. Khim. Khim. Tekhnol. 6, 49–55.  Google Scholar
First citationMartsinko, E. E., Minacheva, L. Kh., Chebanenko, E. A., Seifullina, I. I., Sergienko, V. S. & Churakov, A. V. (2013). Zh. Neorg. Khim. 58, 588–595.  Google Scholar
First citationMartsinko, E. E., Minacheva, L. Kh., Pesaroglo, A. G., Seifullina, I. I., Churakov, A. V. & Sergienko, V. S. Zh. (2011). Zh. Neorg. Khim. 56, 1247–1253.  Google Scholar
First citationNangare, S., Vispute, Y., Tade, R., Dugam, S. & Patil, P. (2021). Future J. Pharm. Sci. 7, 54, 1–23.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeifullina, I., Martsinko, E., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2016). Chem. J. Moldova, 11, 52–57.  CrossRef CAS Google Scholar
First citationSeifullina, I., Martsinko, E. E., Chebanenko, E. A., Afanasenko, E. V., Shishkina, S. V. & D'yakonenko, V. V. (2019). Russ. J. Coord. Chem. 45, 496–504.  CSD CrossRef CAS Google Scholar
First citationSeifullina, I. I., Ilyukhin, A. B., Martsinko, E. E., Sergienko, V. S. & Chebanenko, E. A. (2015). Russ. J. Inorg. Chem. 60, 33–37.  CSD CrossRef CAS Google Scholar
First citationSeifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shihkina, S. V. (2017a). Russ. J. Coord. Chem. 43, 505–511.  CSD CrossRef CAS Google Scholar
First citationSeifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shishkina, S. V. (2017b). Zh. Strukt. Khim. 58, 532–538.  CAS Google Scholar
First citationSeifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2006). Zh. Neorg. Khim. 51, 1892–1899.  Google Scholar
First citationSeifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2007). Zh. Neorg. Khim. 52, 494–499.  Google Scholar
First citationSeiler, O., Burschka, C., Schwahn, D. & Tacke, R. (2005). Inorg. Chem. 44, 2318–2325.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, J., Ma, J., Wu, D., Guo, L. & Liu, J. (2003). J. Mol. Struct. 657, 333–341.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds