research communications
cis-diaquabis(phenanthroline)cobalt(II)] bis(citrato)germanate(IV) dinitrate
of bis[aI.I. Mechnikov Odessa National University, 2, Dvoryanskaya str., Odessa, 65082, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Naukyi Ave. 60, Kharkiv 61001, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com
The 12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2, features two complex [(C12H8N2)2(H2O)2Co]2+ cations, two NO3− anions as well as one centrosymmetric [(C6H5O7)2Ge]2− anion. Two HCit ligands (Cit = citrate, C6H4O7) each coordinate via three different oxygen atoms (hydroxylate, α-carboxylate, β-carboxylate) to the Ge atom, forming a slightly distorted octahedron. The of the Co atom is also octahedral, formed by coordination of four nitrogen atoms from two phenanthroline molecules and two water oxygen atoms. In the crystal, the cations and anions are linked by hydrogen bonds and form layers parallel to the bc plane. The structure exhibits disorder of the NO3− anion [disorder ratio 0.688 (9) to 0.312 (9)]. There are also highly disordered solvent molecules (presumably water and/or ethanol) in the explicit of these molecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods [SQUEEZE procedure in PLATON; Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).
of the title compound, [Co(CKeywords: crystal structure; bis(citrato)germanate; 3d metal salt; cobalt.
CCDC reference: 2103184
1. Chemical context
Citric acid (H4Cit) is an essential component of the Krebs cycle and a universal intermediate in plant and animal metabolism. Its biocompatibility, hydrophilicity and general safety make citric acid a common component in foodstuffs, beverages, pharmaceuticals, cosmetics, etc (Nangare et al., 2021). Recently, Varbanets and co-workers have reported that germanium coordination compounds with citric acid combined with a second metal and ligand, such as Co and 1,10-phenanthroline (phen), show high antihypoxic, cerebroprotective properties and have an activation effect on enzymes (Lukianchuk et al., 2019; Gudzenko et al., 2019a,b). Complex compounds have been obtained through reactions in the system GeO2–H4Cit–CoX2–phen–C2H5OH–H2O (X = Cl, CH3COO). The authors reported that the anion of the cobalt salt (chloride and acetate) affects the composition and structure of the complex and results in the formation of cation–anionic compounds such as [Co(phen)3][Ge(HCit)2]·2H2O (Seifullina et al., 2017a) or [Co(H2O)2(phen)2]2[Ge(Cit)2]·4H2O (Martsinko et al., 2018a,b). A bis(citrato)germanate anion with HCit3 ligands tridentately coordinated to germanium are implemented in the structure [Co(phen)3][Ge(HCit)2]·2H2O. In the [Co(phen)3]2+ cation, the cobalt atom binds to three phenanthroline molecules. In [Co(H2O)2(phen)2]2[Ge(Cit)2]·4H2O, on the other hand, cobalt(II) combines with only two molecules of 1,10-phenanthroline and the oxygen atoms of two coordinated water molecules to complete the octahedral metal coordination. In this compound, the third carboxylic group of the citric acid is deprotonated, which leads to a change of the charge of the anion and of the molar Co:Ge ratio, while the of the germanium atom remains the same: distorted octahedral, formed by six oxygen atoms of three types of oxygen atoms from two tridentate chelating citrate ligands.
In the present work, we report the synthesis and structural analysis of a new complex, [Co(H2O)2(phen)2]2[Ge(HCit)2(NO3)2], which was synthesized by changing the anion of the initial cobalt(II) salt to nitrate. This study is important for establishing the effect that the anion of the 3d metal salt has on the composition and structure of heterometal bis(citrato)germanates with 1,10-phenanthroline, as well as for the creation of new bioactive compounds.
2. Structural commentary
The title compound is a salt (Fig. 1), with a complex Co-based cation and two types of anions – the complex anion Ge(HCit)2 and nitrate. The Ge atom occupies a special position on an inversion centre [the coordinates are (0.5, 1.0, 0.5)] so only half of the complex anion is located in the The charge of the two [Co(H2O)2(phen)2]2+ cations are compensated by one Ge complex dianion and two nitrate anions.
The α-carboxylate (O1) and β-carboxylate (O4) of two HCit3− ligands. The Ge—O bond lengths are consequently not equivalent. The Ge1—O3 hydroxyl bond [1.813 (2) Å] is shorter than the bonds with the carboxylate oxygen atoms. In addition, the Ge—O1 bond with the α-carboxylate oxygen atom is shorter than the Ge–O4 bond with the β-carboxylate oxygen atom [1.914 (3) Å and 1.959 (3) Å, respectively]. The values of O—Ge—O bond angles lie in the 87.6 (1)–92.4 (1)° range (Table 1). The structure of the complex germanate anion is in a good agreement with those of similar complexes containing citratogermanates previously described (Martsinko et al., 2013, 2018a,b; Seifullina et al., 2017a,b, 2019).
of the Ge atom is a distorted octahedron formed by oxygen atoms of three types: hydroxyl (O3),The coordination of the organic ligands to the Ge atom forms five- and six-membered metallocycles. The Ge1–O3–C2–C3–C4–O4 six-membered ring adopts a half-chair conformation [the C2 and O3 atoms deviate by 0.277 (4) and −0.657 (3) Å, respectively, from the mean plane though atoms Ge1, C3, C4 and O4, which is planar within 0.01 Å]. The Ge1—O1—C1—C2—O3 five-membered ring adopts an
Atom O3 deviates by 0.527 (3) Å from the mean plane of the remaining ring atoms (planar within 0.03 Å). of the Co atom is a distorted octahedron, which is formed by nitrogen atoms of two phenanthroline molecules and oxygen atoms of two water molecules. The Co—N and Co—O bond lengths lie in the ranges 2.120 (3)–2.160 (3) and 2.083 (3)–2.098 (3) Å, respectively, while the N—Co—N, O—Co—N and O—Co—O angles are in the range 77.6 (1)–98.6 (1)° (Table 13. Supramolecular features
In the crystal, the water molecules of the [Co(H2O)2(phen)2]2+ cation are linked to the [Ge(HCit)2]2− and NO3− anions by intermolecular O—H⋯O hydrogen bonds (Table 2); these supramolecular clusters form layers parallel to the bc plane (Fig. 2). Voids with a volume of 149 Å3 containing 49 electrons were found between adjacent layers. The content appears to be a combination of water and ethanol solvent molecules with more than twofold disorder. of these molecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods (SQUEEZE procedure; Spek, 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update November 2020; Groom et al., 2016) for the Ge(HCit)22− anion yielded 15 structures containing this anion (Seiler et al., 2005; Seifullina et al., 2006, 2007, 2015, 2016, 2017a,b; Martsinko et al., 2011, 2013, 2018a,b). In these structures, the Ge—O bond lengths for the hydroxyl, α-carboxylate and β-carboxylate oxygen atoms are in the ranges 1.793–1.840, 1.881–1.914 and 1.904–1.955 Å, respectively.
A search for the [Co(H2O)2(phen)2]2+ cation yielded six structures (Batsanov et al., 2011; Yang et al., 2003; Bulut et al., 2003; Abdelhak et al., 2006; Das et al., 2013; Fu et al., 2003). The Co—O bond lengths in the vary between 2.073 and 2.140 Å while the Co—N bond lengths range from within 2.118 to 2.164 Å.
No structures containing any combination of [Co(H2O)2(phen)2]2+ cations and [Ge(HCit)2]2− anions were found in the CSD.
5. Synthesis and crystallization
A suspension of germanium(IV) oxide (0.0523 g, 0.5 mmol, GeO2, 99.99%, Aldrich) and citric acid (0.21 g, 1 mmol, H4Cit·H2O, ≥99%, Aldrich) in 100 mL of hot distilled water was stirred to dissolve the reagents completely and slowly evaporated at 323 K to a volume of 20 mL. After cooling the mixture to room temperature, 20 mL of a 95% ethanol solution containing 1,10-phenanthroline (0.18 g, 1 mmol, phen, 99%, Aldrich) and cobalt(II) nitrate hexahydrate [0.146 g, 0.5 mmol, Co(NO3)2·6H2O, ≥99%, Aldrich] were added (Fig. 3). Pink crystals suitable for X-ray analysis were obtained in two days, yield: 63%.
During the study of the thermal stability of the synthesized complex (Q-1500D PerkinElmer), it was established that its decomposition starts with an endothermic peak in the range of 393–423 K (peak 413 K). The corresponding weight loss of 1.5% indicates that the complex includes molecules of solvation. Therefore, crystals were dried at 423 K for 30 min to remove solvate molecules prior to the yield calculation and for elemental analysis.
Analysis calculated for C60H50Co2GeN10O24 (1485.57) in %: C 48.47, H 3.37, Co 7.94, Ge 4.49, N 9.42; found C 48.25, H 3.26, Co 7.88, Ge 4.35, N 9.40 (ICP optical emission spectrometer Optima 2000 DV PerkinElmer and Elemental Analyzer CE-440).
IR (νmax, cm−1, spectrometer Frontier PerkinElmer, KBr): 3228 ν(OH), 3062, 2917 ν(C—H), 1743 ν(C=O), 1668 νas(COO−), 1613 δ(H2O), 1587, 1519, 1428 ν(C—CAr), 1410 νs(COO−), 1367 ν(C—N), 1089 ν(C—O), 1198, 1148, 915, 856 δ(C—H), 641 ν(Ge—O), 554 ν(Co—O), 425 ν(Co—N).
The IR spectrum of the complex contains absorption bands for ν(C=O), νas(COO−) and νs(COO−), which indicate the presence of non-equivalent coordinated and free carboxyl groups in the complex. A ν(C—O) absorption band at 1089 cm−1 evidences that the alcoholic OH groups of the citrate ligands are deprotonated and involved in coordination. The presence of Ge—O stretching vibrations suggests that the carboxylate and hydroxyl groups are bonded to germanium. Absorption bands assigned to the ν(C—N) heterocycle, the ν(C—C) phenanthroline ring vibrations and deformation vibrations δ(C—H) of the aromatic rings are also found in the IR spectrum. The compound contains coordinated water molecules, as indicated by the H2O deformation vibrations at 1613 cm−1.
6. Refinement
Crystal data, data collection and structure . Carbon-bound and carboxylic acid H atoms were added in calculated positions with C—H bond lengths of 0.93 Å for C—H, 0.97 Å for CH2 and 0.82 Å for O—H bonds. Carboxylic acid H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Water hydrogen atoms of the metal complex were located from difference-Fourier maps of electron density and their positions were refined with restraints of 0.84 (2) Å for O—H bond distances and 1.36 (2) Å for H⋯H distances. The position of one water H atom (H9A) was further restrained based on hydrogen bonding considerations. Uiso(H) were set to xUeq(C,O), where x = 1.5 for hydroxyl groups and water molecules and 1.2 for all other H atoms.
details are summarized in Table 3
|
The structure exhibits disorder of the NO3− anion. All N—O bond distances were restrained to be similar to each other (within a standard deviation of 0.02 Å) and the distance between oxygen atoms O10B and O11B was restrained to a target value of 2.200 (4) Å. Uij values of nitrate atoms closer to each other than 2 Å were restrained to be similar to each other (within a standard deviation of 0.02 Å2). Subject to these conditions, the disorder ratio refined to 0.688 (9):0.312 (9).
There are also highly disordered solvent molecules (presumably water and/or ethanol) in the ) as implemented in the program PLATON (Spek, 2020). The voids with a volume of 149 Å3 contain 49 electrons.
explicit of these molecules was not possible, and the content of the voids was instead taken into account using reverse Fourier transform methods (SQUEEZE; Spek, 2015Supporting information
CCDC reference: 2103184
https://doi.org/10.1107/S205698902100846X/zl5018sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100846X/zl5018Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Co(C12H8N2)2(H2O)2]2[Ge(C6H5O7)2](NO3)2 | Z = 1 |
Mr = 1485.55 | F(000) = 758 |
Triclinic, P1 | Dx = 1.510 Mg m−3 |
a = 10.6719 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.8089 (4) Å | Cell parameters from 3558 reflections |
c = 14.0901 (7) Å | θ = 3.6–26.0° |
α = 105.697 (4)° | µ = 1.05 mm−1 |
β = 94.026 (4)° | T = 294 K |
γ = 104.815 (4)° | Block, colourless |
V = 1633.98 (13) Å3 | 0.5 × 0.4 × 0.2 mm |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 7497 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4949 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −13→15 |
Tmin = 0.167, Tmax = 1.000 | l = −17→18 |
14229 measured reflections |
Refinement on F2 | 131 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.192 | w = 1/[σ2(Fo2) + (0.092P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
7497 reflections | Δρmax = 1.09 e Å−3 |
489 parameters | Δρmin = −0.87 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ge1 | 0.500000 | 1.000000 | 0.500000 | 0.03675 (17) | |
Co1 | 0.33663 (5) | 0.61981 (4) | 0.77746 (4) | 0.04432 (18) | |
O1 | 0.5174 (3) | 0.9298 (2) | 0.6060 (2) | 0.0458 (6) | |
O2 | 0.6415 (3) | 0.8220 (3) | 0.6500 (2) | 0.0586 (8) | |
O3 | 0.6711 (2) | 1.0110 (2) | 0.4908 (2) | 0.0425 (6) | |
O4 | 0.4470 (3) | 0.8345 (2) | 0.4052 (2) | 0.0491 (7) | |
O5 | 0.4742 (3) | 0.6620 (2) | 0.3179 (2) | 0.0542 (7) | |
O6 | 0.8227 (3) | 1.0894 (3) | 0.7076 (3) | 0.0752 (10) | |
O7 | 1.0212 (3) | 1.0937 (4) | 0.6678 (3) | 0.0905 (12) | |
H7A | 1.046289 | 1.134511 | 0.726375 | 0.136* | |
O8 | 0.5332 (3) | 0.6796 (3) | 0.7618 (3) | 0.0618 (8) | |
H8A | 0.574 (5) | 0.717 (5) | 0.725 (4) | 0.093* | |
H8B | 0.588 (4) | 0.655 (5) | 0.791 (4) | 0.093* | |
O9 | 0.3742 (4) | 0.4581 (3) | 0.7902 (3) | 0.0634 (8) | |
H9A | 0.415 (4) | 0.437 (4) | 0.745 (3) | 0.095* | |
H9B | 0.306 (3) | 0.407 (4) | 0.789 (4) | 0.095* | |
O10 | 0.1634 (11) | 0.2778 (14) | 0.8150 (6) | 0.079 (2) | 0.688 (9) |
O10B | 0.186 (3) | 0.285 (3) | 0.8413 (15) | 0.105 (6) | 0.312 (9) |
O11 | 0.1943 (13) | 0.3850 (8) | 0.9768 (7) | 0.145 (4) | 0.688 (9) |
O11B | 0.287 (2) | 0.3400 (17) | 0.9953 (13) | 0.154 (6) | 0.312 (9) |
O12 | 0.0517 (10) | 0.2005 (10) | 0.9183 (8) | 0.157 (4) | 0.688 (9) |
O12B | 0.072 (2) | 0.304 (2) | 0.9734 (17) | 0.151 (5) | 0.312 (9) |
N1 | 0.3167 (3) | 0.7994 (3) | 0.7946 (2) | 0.0457 (7) | |
N2 | 0.3626 (4) | 0.6943 (3) | 0.9350 (2) | 0.0506 (8) | |
N3 | 0.1305 (3) | 0.5296 (3) | 0.7653 (3) | 0.0479 (8) | |
N4 | 0.2778 (3) | 0.5440 (3) | 0.6181 (2) | 0.0461 (8) | |
N5 | 0.1351 (12) | 0.2883 (9) | 0.9041 (7) | 0.102 (3) | 0.688 (9) |
N5B | 0.180 (2) | 0.319 (3) | 0.9359 (18) | 0.124 (4) | 0.312 (9) |
C1 | 0.6179 (4) | 0.8863 (3) | 0.6003 (3) | 0.0447 (9) | |
C2 | 0.7002 (4) | 0.9130 (3) | 0.5205 (3) | 0.0397 (8) | |
C3 | 0.6587 (4) | 0.7976 (4) | 0.4312 (3) | 0.0454 (9) | |
H3A | 0.715808 | 0.809487 | 0.381935 | 0.054* | |
H3B | 0.672611 | 0.729839 | 0.452798 | 0.054* | |
C4 | 0.5174 (4) | 0.7610 (3) | 0.3810 (3) | 0.0394 (8) | |
C5 | 0.8460 (4) | 0.9469 (4) | 0.5569 (3) | 0.0525 (10) | |
H5A | 0.867066 | 0.874970 | 0.566046 | 0.063* | |
H5B | 0.893737 | 0.970051 | 0.505709 | 0.063* | |
C6 | 0.8925 (5) | 1.0500 (4) | 0.6529 (4) | 0.0632 (12) | |
C7 | 0.3017 (4) | 0.8521 (4) | 0.7247 (3) | 0.0541 (10) | |
H7 | 0.299949 | 0.808312 | 0.658670 | 0.065* | |
C8 | 0.2886 (5) | 0.9685 (5) | 0.7449 (5) | 0.0770 (16) | |
H8 | 0.277307 | 1.002198 | 0.693535 | 0.092* | |
C9 | 0.2924 (6) | 1.0338 (5) | 0.8411 (5) | 0.0803 (17) | |
H9 | 0.282433 | 1.112360 | 0.855452 | 0.096* | |
C10 | 0.3110 (6) | 0.9843 (4) | 0.9186 (4) | 0.0690 (14) | |
C11 | 0.3231 (4) | 0.8637 (4) | 0.8909 (3) | 0.0497 (10) | |
C12 | 0.3176 (7) | 1.0460 (5) | 1.0206 (5) | 0.092 (2) | |
H12 | 0.309794 | 1.125379 | 1.039407 | 0.110* | |
C13 | 0.3359 (7) | 0.9894 (5) | 1.0937 (4) | 0.0885 (18) | |
H13 | 0.337511 | 1.030144 | 1.160419 | 0.106* | |
C14 | 0.3519 (5) | 0.8692 (4) | 1.0659 (4) | 0.0666 (13) | |
C15 | 0.3463 (4) | 0.8074 (4) | 0.9668 (3) | 0.0486 (9) | |
C16 | 0.3762 (6) | 0.8107 (5) | 1.1371 (4) | 0.0761 (15) | |
H16 | 0.379325 | 0.848450 | 1.204675 | 0.091* | |
C17 | 0.3953 (6) | 0.6961 (6) | 1.1045 (4) | 0.0787 (15) | |
H17 | 0.412778 | 0.655870 | 1.149965 | 0.094* | |
C18 | 0.3882 (5) | 0.6420 (5) | 1.0041 (4) | 0.0684 (13) | |
H18 | 0.401944 | 0.564997 | 0.983189 | 0.082* | |
C19 | 0.0581 (5) | 0.5253 (4) | 0.8367 (4) | 0.0620 (12) | |
H19 | 0.093641 | 0.575016 | 0.901218 | 0.074* | |
C20 | −0.0684 (5) | 0.4500 (5) | 0.8195 (5) | 0.0702 (13) | |
H20 | −0.116577 | 0.450418 | 0.871997 | 0.084* | |
C21 | −0.1230 (5) | 0.3757 (5) | 0.7271 (5) | 0.0674 (13) | |
H21 | −0.208339 | 0.324658 | 0.715527 | 0.081* | |
C22 | −0.0488 (4) | 0.3766 (4) | 0.6486 (4) | 0.0531 (10) | |
C23 | 0.0781 (4) | 0.4572 (3) | 0.6715 (3) | 0.0440 (9) | |
C24 | −0.0971 (5) | 0.3013 (4) | 0.5461 (4) | 0.0644 (13) | |
H24 | −0.180876 | 0.246614 | 0.530428 | 0.077* | |
C25 | −0.0238 (5) | 0.3089 (4) | 0.4742 (4) | 0.0634 (12) | |
H25 | −0.057055 | 0.259283 | 0.409219 | 0.076* | |
C26 | 0.1055 (4) | 0.3925 (4) | 0.4953 (3) | 0.0508 (10) | |
C27 | 0.1561 (4) | 0.4645 (3) | 0.5929 (3) | 0.0436 (9) | |
C28 | 0.1845 (5) | 0.4073 (4) | 0.4225 (4) | 0.0593 (12) | |
H28 | 0.154207 | 0.361152 | 0.356240 | 0.071* | |
C29 | 0.3026 (5) | 0.4868 (4) | 0.4473 (4) | 0.0642 (12) | |
H29 | 0.355017 | 0.497089 | 0.398522 | 0.077* | |
C30 | 0.3479 (5) | 0.5546 (4) | 0.5458 (3) | 0.0555 (10) | |
H30 | 0.431305 | 0.610072 | 0.561765 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ge1 | 0.0349 (3) | 0.0352 (3) | 0.0442 (3) | 0.0129 (2) | 0.0064 (2) | 0.0156 (2) |
Co1 | 0.0491 (3) | 0.0407 (3) | 0.0417 (3) | 0.0123 (2) | 0.0033 (2) | 0.0112 (2) |
O1 | 0.0451 (15) | 0.0529 (15) | 0.0486 (16) | 0.0186 (13) | 0.0101 (13) | 0.0250 (12) |
O2 | 0.0620 (19) | 0.0699 (19) | 0.065 (2) | 0.0305 (16) | 0.0121 (16) | 0.0419 (16) |
O3 | 0.0422 (15) | 0.0426 (14) | 0.0503 (16) | 0.0154 (12) | 0.0083 (12) | 0.0230 (12) |
O4 | 0.0410 (14) | 0.0452 (15) | 0.0594 (18) | 0.0166 (12) | −0.0003 (13) | 0.0106 (12) |
O5 | 0.0590 (18) | 0.0459 (15) | 0.0540 (18) | 0.0197 (14) | 0.0005 (14) | 0.0068 (13) |
O6 | 0.061 (2) | 0.080 (2) | 0.073 (2) | 0.0225 (18) | 0.0113 (19) | 0.0010 (18) |
O7 | 0.052 (2) | 0.111 (3) | 0.084 (3) | 0.016 (2) | −0.008 (2) | −0.001 (2) |
O8 | 0.0465 (18) | 0.072 (2) | 0.069 (2) | 0.0075 (16) | −0.0001 (16) | 0.0349 (16) |
O9 | 0.071 (2) | 0.0506 (17) | 0.079 (2) | 0.0247 (16) | 0.0242 (19) | 0.0254 (16) |
O10 | 0.093 (5) | 0.080 (4) | 0.061 (4) | 0.019 (4) | −0.013 (4) | 0.026 (4) |
O10B | 0.157 (11) | 0.077 (7) | 0.070 (9) | 0.009 (9) | −0.009 (9) | 0.034 (8) |
O11 | 0.212 (9) | 0.093 (5) | 0.091 (5) | 0.002 (5) | −0.003 (6) | 0.012 (4) |
O11B | 0.175 (12) | 0.088 (9) | 0.159 (11) | 0.000 (9) | −0.015 (10) | 0.015 (8) |
O12 | 0.169 (7) | 0.153 (7) | 0.123 (7) | −0.016 (6) | 0.035 (6) | 0.053 (6) |
O12B | 0.167 (10) | 0.141 (10) | 0.122 (9) | 0.011 (9) | 0.058 (8) | 0.025 (8) |
N1 | 0.0435 (18) | 0.0484 (18) | 0.0450 (19) | 0.0124 (15) | 0.0061 (15) | 0.0143 (14) |
N2 | 0.061 (2) | 0.0498 (19) | 0.044 (2) | 0.0171 (17) | 0.0063 (17) | 0.0185 (15) |
N3 | 0.0477 (19) | 0.0493 (18) | 0.049 (2) | 0.0128 (15) | 0.0088 (16) | 0.0196 (15) |
N4 | 0.0485 (19) | 0.0437 (17) | 0.0434 (19) | 0.0106 (15) | 0.0007 (15) | 0.0125 (13) |
N5 | 0.151 (7) | 0.087 (5) | 0.070 (5) | 0.029 (5) | 0.001 (5) | 0.036 (4) |
N5B | 0.164 (8) | 0.104 (7) | 0.092 (8) | 0.012 (7) | 0.015 (7) | 0.036 (7) |
C1 | 0.040 (2) | 0.041 (2) | 0.054 (2) | 0.0126 (17) | 0.0013 (18) | 0.0151 (17) |
C2 | 0.0343 (18) | 0.0420 (19) | 0.048 (2) | 0.0176 (16) | 0.0053 (16) | 0.0163 (16) |
C3 | 0.041 (2) | 0.050 (2) | 0.050 (2) | 0.0176 (18) | 0.0082 (18) | 0.0178 (17) |
C4 | 0.045 (2) | 0.0319 (17) | 0.041 (2) | 0.0123 (16) | 0.0027 (16) | 0.0090 (14) |
C5 | 0.041 (2) | 0.056 (2) | 0.059 (3) | 0.0181 (19) | −0.0031 (19) | 0.0122 (19) |
C6 | 0.051 (3) | 0.065 (3) | 0.066 (3) | 0.014 (2) | −0.005 (2) | 0.014 (2) |
C7 | 0.051 (2) | 0.063 (3) | 0.058 (3) | 0.017 (2) | 0.006 (2) | 0.033 (2) |
C8 | 0.080 (4) | 0.089 (4) | 0.093 (4) | 0.038 (3) | 0.023 (3) | 0.061 (3) |
C9 | 0.102 (4) | 0.067 (3) | 0.098 (4) | 0.047 (3) | 0.031 (4) | 0.042 (3) |
C10 | 0.079 (4) | 0.056 (3) | 0.079 (4) | 0.031 (3) | 0.019 (3) | 0.018 (2) |
C11 | 0.050 (2) | 0.045 (2) | 0.052 (2) | 0.0158 (19) | 0.0063 (19) | 0.0102 (17) |
C12 | 0.126 (6) | 0.064 (3) | 0.085 (4) | 0.042 (4) | 0.024 (4) | 0.006 (3) |
C13 | 0.110 (5) | 0.080 (4) | 0.062 (4) | 0.030 (3) | 0.020 (3) | −0.004 (3) |
C14 | 0.074 (3) | 0.065 (3) | 0.055 (3) | 0.016 (3) | 0.005 (3) | 0.013 (2) |
C15 | 0.052 (2) | 0.047 (2) | 0.041 (2) | 0.0083 (18) | 0.0039 (18) | 0.0119 (16) |
C16 | 0.074 (3) | 0.096 (4) | 0.050 (3) | 0.016 (3) | 0.004 (3) | 0.016 (3) |
C17 | 0.081 (4) | 0.107 (4) | 0.058 (3) | 0.026 (3) | 0.002 (3) | 0.043 (3) |
C18 | 0.084 (4) | 0.077 (3) | 0.050 (3) | 0.030 (3) | −0.002 (3) | 0.025 (2) |
C19 | 0.057 (3) | 0.063 (3) | 0.068 (3) | 0.015 (2) | 0.015 (2) | 0.024 (2) |
C20 | 0.059 (3) | 0.079 (3) | 0.083 (4) | 0.019 (3) | 0.024 (3) | 0.038 (3) |
C21 | 0.044 (3) | 0.066 (3) | 0.100 (4) | 0.008 (2) | 0.013 (3) | 0.044 (3) |
C22 | 0.044 (2) | 0.046 (2) | 0.073 (3) | 0.0119 (18) | 0.000 (2) | 0.026 (2) |
C23 | 0.040 (2) | 0.0384 (19) | 0.057 (2) | 0.0131 (16) | 0.0001 (18) | 0.0189 (16) |
C24 | 0.047 (3) | 0.049 (2) | 0.089 (4) | 0.004 (2) | −0.013 (3) | 0.021 (2) |
C25 | 0.065 (3) | 0.051 (2) | 0.062 (3) | 0.013 (2) | −0.017 (2) | 0.007 (2) |
C26 | 0.055 (2) | 0.043 (2) | 0.051 (2) | 0.0136 (18) | −0.010 (2) | 0.0129 (17) |
C27 | 0.043 (2) | 0.0398 (19) | 0.050 (2) | 0.0133 (16) | −0.0026 (18) | 0.0167 (16) |
C28 | 0.065 (3) | 0.058 (3) | 0.047 (3) | 0.020 (2) | −0.009 (2) | 0.0059 (19) |
C29 | 0.078 (3) | 0.070 (3) | 0.050 (3) | 0.026 (3) | 0.014 (2) | 0.021 (2) |
C30 | 0.054 (3) | 0.059 (3) | 0.048 (3) | 0.008 (2) | 0.010 (2) | 0.0139 (19) |
Ge1—O1i | 1.914 (3) | C5—H5A | 0.9700 |
Ge1—O1 | 1.914 (3) | C5—H5B | 0.9700 |
Ge1—O3i | 1.813 (2) | C5—C6 | 1.505 (6) |
Ge1—O3 | 1.813 (2) | C7—H7 | 0.9300 |
Ge1—O4i | 1.959 (3) | C7—C8 | 1.372 (6) |
Ge1—O4 | 1.959 (3) | C8—H8 | 0.9300 |
Co1—O8 | 2.083 (3) | C8—C9 | 1.357 (8) |
Co1—O9 | 2.100 (3) | C9—H9 | 0.9300 |
Co1—N1 | 2.136 (3) | C9—C10 | 1.396 (7) |
Co1—N2 | 2.123 (3) | C10—C11 | 1.414 (6) |
Co1—N3 | 2.157 (4) | C10—C12 | 1.411 (8) |
Co1—N4 | 2.159 (3) | C11—C15 | 1.442 (6) |
O1—C1 | 1.301 (4) | C12—H12 | 0.9300 |
O2—C1 | 1.221 (4) | C12—C13 | 1.399 (9) |
O3—C2 | 1.429 (4) | C13—H13 | 0.9300 |
O4—C4 | 1.282 (4) | C13—C14 | 1.425 (7) |
O5—C4 | 1.214 (4) | C14—C15 | 1.378 (6) |
O6—C6 | 1.196 (5) | C14—C16 | 1.408 (7) |
O7—H7A | 0.8200 | C16—H16 | 0.9300 |
O7—C6 | 1.317 (6) | C16—C17 | 1.378 (7) |
O8—H8A | 0.839 (19) | C17—H17 | 0.9300 |
O8—H8B | 0.846 (19) | C17—C18 | 1.374 (7) |
O9—H9A | 0.821 (17) | C18—H18 | 0.9300 |
O9—H9B | 0.815 (19) | C19—H19 | 0.9300 |
O10—N5 | 1.292 (10) | C19—C20 | 1.376 (7) |
O10B—N5B | 1.294 (14) | C20—H20 | 0.9300 |
O11—N5 | 1.288 (10) | C20—C21 | 1.348 (8) |
O11B—N5B | 1.292 (14) | C21—H21 | 0.9300 |
O12—N5 | 1.253 (10) | C21—C22 | 1.405 (7) |
O12B—N5B | 1.295 (14) | C22—C23 | 1.399 (6) |
N1—C7 | 1.321 (5) | C22—C24 | 1.452 (7) |
N1—C11 | 1.351 (5) | C23—C27 | 1.440 (5) |
N2—C15 | 1.349 (5) | C24—H24 | 0.9300 |
N2—C18 | 1.334 (5) | C24—C25 | 1.331 (7) |
N3—C19 | 1.314 (5) | C25—H25 | 0.9300 |
N3—C23 | 1.353 (5) | C25—C26 | 1.433 (7) |
N4—C27 | 1.351 (5) | C26—C27 | 1.391 (6) |
N4—C30 | 1.321 (5) | C26—C28 | 1.392 (6) |
C1—C2 | 1.524 (5) | C28—H28 | 0.9300 |
C2—C3 | 1.524 (5) | C28—C29 | 1.322 (7) |
C2—C5 | 1.518 (5) | C29—H29 | 0.9300 |
C3—H3A | 0.9700 | C29—C30 | 1.381 (6) |
C3—H3B | 0.9700 | C30—H30 | 0.9300 |
C3—C4 | 1.521 (5) | ||
O1i—Ge1—O1 | 180.0 | C6—C5—C2 | 114.2 (3) |
O1i—Ge1—O4i | 89.08 (12) | C6—C5—H5A | 108.7 |
O1—Ge1—O4i | 90.92 (12) | C6—C5—H5B | 108.7 |
O1i—Ge1—O4 | 90.92 (12) | O6—C6—O7 | 124.1 (5) |
O1—Ge1—O4 | 89.08 (12) | O6—C6—C5 | 125.0 (4) |
O3—Ge1—O1i | 92.43 (11) | O7—C6—C5 | 110.9 (4) |
O3i—Ge1—O1i | 87.57 (11) | N1—C7—H7 | 118.5 |
O3—Ge1—O1 | 87.58 (11) | N1—C7—C8 | 123.0 (5) |
O3i—Ge1—O1 | 92.43 (11) | C8—C7—H7 | 118.5 |
O3i—Ge1—O3 | 180.0 | C7—C8—H8 | 120.5 |
O3i—Ge1—O4i | 90.60 (11) | C9—C8—C7 | 119.0 (5) |
O3—Ge1—O4i | 89.40 (11) | C9—C8—H8 | 120.5 |
O3i—Ge1—O4 | 89.40 (11) | C8—C9—H9 | 119.6 |
O3—Ge1—O4 | 90.60 (11) | C8—C9—C10 | 120.8 (4) |
O4—Ge1—O4i | 180.0 | C10—C9—H9 | 119.6 |
O8—Co1—O9 | 86.92 (13) | C9—C10—C11 | 116.4 (5) |
O8—Co1—N1 | 90.75 (13) | C9—C10—C12 | 124.6 (5) |
O8—Co1—N2 | 96.54 (14) | C12—C10—C11 | 119.0 (5) |
O8—Co1—N3 | 168.28 (14) | N1—C11—C10 | 121.9 (4) |
O8—Co1—N4 | 92.07 (14) | N1—C11—C15 | 118.3 (3) |
O9—Co1—N1 | 168.62 (14) | C10—C11—C15 | 119.8 (4) |
O9—Co1—N2 | 91.13 (13) | C10—C12—H12 | 119.6 |
O9—Co1—N3 | 88.06 (13) | C13—C12—C10 | 120.9 (5) |
O9—Co1—N4 | 92.60 (13) | C13—C12—H12 | 119.6 |
N1—Co1—N3 | 96.18 (12) | C12—C13—H13 | 120.0 |
N1—Co1—N4 | 98.61 (12) | C12—C13—C14 | 120.0 (5) |
N2—Co1—N1 | 78.06 (12) | C14—C13—H13 | 120.0 |
N2—Co1—N3 | 94.13 (14) | C15—C14—C13 | 120.1 (5) |
N2—Co1—N4 | 170.78 (13) | C15—C14—C16 | 117.9 (4) |
N3—Co1—N4 | 77.58 (13) | C16—C14—C13 | 122.0 (5) |
C1—O1—Ge1 | 109.6 (2) | N2—C15—C11 | 116.4 (4) |
C2—O3—Ge1 | 107.7 (2) | N2—C15—C14 | 123.4 (4) |
C4—O4—Ge1 | 127.8 (3) | C14—C15—C11 | 120.2 (4) |
C6—O7—H7A | 109.5 | C14—C16—H16 | 120.7 |
Co1—O8—H8A | 134 (3) | C17—C16—C14 | 118.5 (5) |
Co1—O8—H8B | 118 (3) | C17—C16—H16 | 120.7 |
H8A—O8—H8B | 107 (3) | C16—C17—H17 | 120.3 |
Co1—O9—H9A | 106 (3) | C18—C17—C16 | 119.3 (5) |
Co1—O9—H9B | 110 (4) | C18—C17—H17 | 120.3 |
H9A—O9—H9B | 114 (3) | N2—C18—C17 | 123.3 (5) |
C7—N1—Co1 | 128.3 (3) | N2—C18—H18 | 118.3 |
C7—N1—C11 | 118.9 (4) | C17—C18—H18 | 118.3 |
C11—N1—Co1 | 112.8 (3) | N3—C19—H19 | 118.7 |
C15—N2—Co1 | 114.3 (3) | N3—C19—C20 | 122.5 (5) |
C18—N2—Co1 | 128.2 (3) | C20—C19—H19 | 118.7 |
C18—N2—C15 | 117.5 (4) | C19—C20—H20 | 119.7 |
C19—N3—Co1 | 128.8 (3) | C21—C20—C19 | 120.5 (5) |
C19—N3—C23 | 118.5 (4) | C21—C20—H20 | 119.7 |
C23—N3—Co1 | 112.2 (3) | C20—C21—H21 | 120.5 |
C27—N4—Co1 | 112.8 (3) | C20—C21—C22 | 118.9 (4) |
C30—N4—Co1 | 129.2 (3) | C22—C21—H21 | 120.5 |
C30—N4—C27 | 117.6 (4) | C21—C22—C24 | 124.0 (4) |
O11—N5—O10 | 120.7 (11) | C23—C22—C21 | 117.3 (4) |
O12—N5—O10 | 118.2 (10) | C23—C22—C24 | 118.7 (4) |
O12—N5—O11 | 121.1 (10) | N3—C23—C22 | 122.3 (4) |
O10B—N5B—O12B | 124 (3) | N3—C23—C27 | 118.4 (3) |
O11B—N5B—O10B | 116.8 (15) | C22—C23—C27 | 119.3 (4) |
O11B—N5B—O12B | 117 (2) | C22—C24—H24 | 119.3 |
O1—C1—C2 | 115.1 (3) | C25—C24—C22 | 121.3 (4) |
O2—C1—O1 | 123.4 (4) | C25—C24—H24 | 119.3 |
O2—C1—C2 | 121.4 (3) | C24—C25—H25 | 119.5 |
O3—C2—C1 | 109.2 (3) | C24—C25—C26 | 121.0 (4) |
O3—C2—C3 | 108.5 (3) | C26—C25—H25 | 119.5 |
O3—C2—C5 | 109.4 (3) | C27—C26—C25 | 119.4 (4) |
C3—C2—C1 | 106.9 (3) | C27—C26—C28 | 117.2 (4) |
C5—C2—C1 | 112.1 (3) | C28—C26—C25 | 123.4 (4) |
C5—C2—C3 | 110.6 (3) | N4—C27—C23 | 117.3 (3) |
C2—C3—H3A | 108.3 | N4—C27—C26 | 122.4 (4) |
C2—C3—H3B | 108.3 | C26—C27—C23 | 120.2 (4) |
H3A—C3—H3B | 107.4 | C26—C28—H28 | 119.9 |
C4—C3—C2 | 115.8 (3) | C29—C28—C26 | 120.1 (4) |
C4—C3—H3A | 108.3 | C29—C28—H28 | 119.9 |
C4—C3—H3B | 108.3 | C28—C29—H29 | 120.0 |
O4—C4—C3 | 119.9 (3) | C28—C29—C30 | 119.9 (5) |
O5—C4—O4 | 121.5 (4) | C30—C29—H29 | 120.0 |
O5—C4—C3 | 118.6 (3) | N4—C30—C29 | 122.7 (4) |
C2—C5—H5A | 108.7 | N4—C30—H30 | 118.7 |
C2—C5—H5B | 108.7 | C29—C30—H30 | 118.7 |
H5A—C5—H5B | 107.6 | ||
Ge1—O1—C1—O2 | −169.8 (3) | C9—C10—C11—C15 | 178.3 (5) |
Ge1—O1—C1—C2 | 5.7 (4) | C9—C10—C12—C13 | 179.6 (6) |
Ge1—O3—C2—C1 | −32.7 (3) | C10—C11—C15—N2 | −177.1 (4) |
Ge1—O3—C2—C3 | 83.5 (3) | C10—C11—C15—C14 | 2.3 (7) |
Ge1—O3—C2—C5 | −155.8 (3) | C10—C12—C13—C14 | 1.9 (11) |
Ge1—O4—C4—O5 | −177.0 (3) | C11—N1—C7—C8 | −1.9 (7) |
Ge1—O4—C4—C3 | 2.6 (5) | C11—C10—C12—C13 | 0.0 (10) |
Co1—N1—C7—C8 | 179.4 (4) | C12—C10—C11—N1 | 179.5 (5) |
Co1—N1—C11—C10 | −179.4 (4) | C12—C10—C11—C15 | −2.0 (8) |
Co1—N1—C11—C15 | 2.1 (5) | C12—C13—C14—C15 | −1.6 (10) |
Co1—N2—C15—C11 | −4.1 (5) | C12—C13—C14—C16 | 177.2 (6) |
Co1—N2—C15—C14 | 176.5 (4) | C13—C14—C15—N2 | 178.9 (5) |
Co1—N2—C18—C17 | −175.9 (4) | C13—C14—C15—C11 | −0.4 (8) |
Co1—N3—C19—C20 | −170.6 (3) | C13—C14—C16—C17 | −177.7 (6) |
Co1—N3—C23—C22 | 170.9 (3) | C14—C16—C17—C18 | −0.9 (9) |
Co1—N3—C23—C27 | −9.5 (4) | C15—N2—C18—C17 | 1.7 (8) |
Co1—N4—C27—C23 | 9.6 (4) | C15—C14—C16—C17 | 1.1 (9) |
Co1—N4—C27—C26 | −171.0 (3) | C16—C14—C15—N2 | 0.1 (8) |
Co1—N4—C30—C29 | 170.5 (3) | C16—C14—C15—C11 | −179.3 (5) |
O1i—Ge1—O3—C2 | −149.9 (2) | C16—C17—C18—N2 | −0.5 (9) |
O1—Ge1—O3—C2 | 30.1 (2) | C18—N2—C15—C11 | 178.0 (4) |
O1—C1—C2—O3 | 17.6 (4) | C18—N2—C15—C14 | −1.5 (7) |
O1—C1—C2—C3 | −99.6 (4) | C19—N3—C23—C22 | −1.4 (5) |
O1—C1—C2—C5 | 139.1 (3) | C19—N3—C23—C27 | 178.2 (3) |
O2—C1—C2—O3 | −166.8 (4) | C19—C20—C21—C22 | −0.2 (7) |
O2—C1—C2—C3 | 76.0 (5) | C20—C21—C22—C23 | −1.0 (6) |
O2—C1—C2—C5 | −45.3 (5) | C20—C21—C22—C24 | −179.7 (4) |
O3—C2—C3—C4 | −54.0 (4) | C21—C22—C23—N3 | 1.8 (6) |
O3—C2—C5—C6 | 68.0 (5) | C21—C22—C23—C27 | −177.8 (3) |
O4—Ge1—O3—C2 | −59.0 (2) | C21—C22—C24—C25 | 177.8 (4) |
O4i—Ge1—O3—C2 | 121.0 (2) | C22—C23—C27—N4 | 179.6 (3) |
N1—C7—C8—C9 | 0.7 (8) | C22—C23—C27—C26 | 0.2 (5) |
N1—C11—C15—N2 | 1.4 (6) | C22—C24—C25—C26 | −0.3 (7) |
N1—C11—C15—C14 | −179.2 (4) | C23—N3—C19—C20 | 0.1 (6) |
N3—C19—C20—C21 | 0.7 (8) | C23—C22—C24—C25 | −0.9 (6) |
N3—C23—C27—N4 | 0.0 (5) | C24—C22—C23—N3 | −179.4 (3) |
N3—C23—C27—C26 | −179.4 (3) | C24—C22—C23—C27 | 1.0 (5) |
C1—C2—C3—C4 | 63.7 (4) | C24—C25—C26—C27 | 1.5 (6) |
C1—C2—C5—C6 | −53.3 (5) | C24—C25—C26—C28 | −177.7 (4) |
C2—C3—C4—O4 | 9.6 (5) | C25—C26—C27—N4 | 179.2 (3) |
C2—C3—C4—O5 | −170.7 (3) | C25—C26—C27—C23 | −1.4 (5) |
C2—C5—C6—O6 | 13.3 (7) | C25—C26—C28—C29 | 179.5 (4) |
C2—C5—C6—O7 | −165.2 (4) | C26—C28—C29—C30 | 0.5 (7) |
C3—C2—C5—C6 | −172.5 (4) | C27—N4—C30—C29 | −1.1 (6) |
C5—C2—C3—C4 | −174.0 (3) | C27—C26—C28—C29 | 0.3 (6) |
C7—N1—C11—C10 | 1.6 (6) | C28—C26—C27—N4 | −1.6 (5) |
C7—N1—C11—C15 | −176.9 (4) | C28—C26—C27—C23 | 177.8 (3) |
C7—C8—C9—C10 | 0.8 (9) | C28—C29—C30—N4 | −0.1 (7) |
C8—C9—C10—C11 | −1.0 (9) | C30—N4—C27—C23 | −177.4 (3) |
C8—C9—C10—C12 | 179.3 (6) | C30—N4—C27—C26 | 2.0 (5) |
C9—C10—C11—N1 | −0.2 (7) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O10ii | 0.82 | 1.88 | 2.600 (12) | 146 |
O8—H8A···O2 | 0.84 (2) | 1.88 (2) | 2.709 (4) | 168 (5) |
O9—H9A···O5iii | 0.82 (2) | 1.96 (2) | 2.701 (4) | 150 (4) |
O9—H9B···O10 | 0.82 (2) | 1.99 (3) | 2.789 (15) | 166 (6) |
Symmetry codes: (ii) x+1, y+1, z; (iii) −x+1, −y+1, −z+1. |
References
Abdelhak, J., Namouchi Cherni, S., Zid, M. F. & Driss, A. (2006). Acta Cryst. E62, m2394–m2396. CSD CrossRef IUCr Journals Google Scholar
Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231. Web of Science CSD CrossRef CAS Google Scholar
Bulut, A., İçbudak, H., Yeşilel, O. Z., Ölmez, H. & Büyükgüngör, O. (2003). Acta Cryst. E59, m736–m738. Web of Science CSD CrossRef IUCr Journals Google Scholar
Das, B. & Baruah, J. B. (2013). J. Mol. Struct. 1034, 144–151. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, R.-B., Wu, X.-T., Hu, S.-M., Zhang, J.-J., Fu, Z.-Y., Du, W.-X. & Xia, S.-Q. (2003). Eur. J. Inorg. Chem. pp. 1798–1801. CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gudzenko, E. V., Varbanets, L. D., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019b). Biotechnol. Acta, 12, 19–26. CrossRef Google Scholar
Gudzenko, E. V., Borzova, N. V., Varbanets, L. D., Ivanitsa, V. A., Seifullina, I. I., Martsinko, E. E., Pirozhok, O. V. & Chebanenko, E. A. (2019a). Mikrobiol. Zh. 3, 14–26. CrossRef Google Scholar
Lukianchuk, V. D., Bukhtiarova, T. A., Seifullina, I. I., Polishchuk, E. M., Martsinko, O. E. & Topolnytska, H. A. (2019). IJMMR, 5, 58–65. CrossRef Google Scholar
Martsinko, E., Seifullina, I., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2018a). Chem. J. Moldova, 13, 56–62. CrossRef CAS Google Scholar
Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Seifullina, I. I., Dyakonenko, V. V. & Shishkina, S. V. (2018b). Vopros. Khim. Khim. Tekhnol. 6, 49–55. Google Scholar
Martsinko, E. E., Minacheva, L. Kh., Chebanenko, E. A., Seifullina, I. I., Sergienko, V. S. & Churakov, A. V. (2013). Zh. Neorg. Khim. 58, 588–595. Google Scholar
Martsinko, E. E., Minacheva, L. Kh., Pesaroglo, A. G., Seifullina, I. I., Churakov, A. V. & Sergienko, V. S. Zh. (2011). Zh. Neorg. Khim. 56, 1247–1253. Google Scholar
Nangare, S., Vispute, Y., Tade, R., Dugam, S. & Patil, P. (2021). Future J. Pharm. Sci. 7, 54, 1–23. Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seifullina, I., Martsinko, E., Chebanenko, E., Pirozhok, O., Dyakonenko, V. & Shishkina, S. (2016). Chem. J. Moldova, 11, 52–57. CrossRef CAS Google Scholar
Seifullina, I., Martsinko, E. E., Chebanenko, E. A., Afanasenko, E. V., Shishkina, S. V. & D'yakonenko, V. V. (2019). Russ. J. Coord. Chem. 45, 496–504. CSD CrossRef CAS Google Scholar
Seifullina, I. I., Ilyukhin, A. B., Martsinko, E. E., Sergienko, V. S. & Chebanenko, E. A. (2015). Russ. J. Inorg. Chem. 60, 33–37. CSD CrossRef CAS Google Scholar
Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shihkina, S. V. (2017a). Russ. J. Coord. Chem. 43, 505–511. CSD CrossRef CAS Google Scholar
Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V. & Shishkina, S. V. (2017b). Zh. Strukt. Khim. 58, 532–538. CAS Google Scholar
Seifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2006). Zh. Neorg. Khim. 51, 1892–1899. Google Scholar
Seifullina, I. I., Pesaroglo, A. G., Minacheva, L. Kh., Martsinko, E. E. & Sergienko, V. S. (2007). Zh. Neorg. Khim. 52, 494–499. Google Scholar
Seiler, O., Burschka, C., Schwahn, D. & Tacke, R. (2005). Inorg. Chem. 44, 2318–2325. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Yang, J., Ma, J., Wu, D., Guo, L. & Liu, J. (2003). J. Mol. Struct. 657, 333–341. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.