research communications
N,N-diethyl-3,3-dimethyl-2-azaspiro[4.5]decan-1-amine: a diethylamine adduct of a cyclic(alkyl)(amino)carbene (CAAC)
of 2-(2,6-diisopropylphenyl)-aChemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA, and bDepartment of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
*Correspondence e-mail: libermanmartin@chapman.edu
The structure of the title compound, C27H46N2, at 93 K has monoclinic (P21/n) symmetry. The title compound was prepared by treatment of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium hydrogen dichloride with two equivalents of lithium diethylamide. Characterization of the title compound by single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy is presented. Formation of the diethylamine adduct of the cyclic(alkyl)(amino)carbene (CAAC) was unexpected, as deprotonation using lithium diisopropylamide results in free CAAC formation.
Keywords: crystal structure; cyclic(alkyl)(amino)carbene; carbene reactivity; N—H bond activation.
CCDC reference: 2100575
1. Chemical context
Cyclic (alkyl)(amino)carbenes (CAACs) are a class of singlet N-heterocyclic (NHCs), CAACs are simultaneously stronger σ-donors and stronger π-acceptors (Melaimi et al., 2017). These properties, along with the distinctive CAAC steric environment imparted by the quaternary carbon adjacent to the carbene center, have enabled the application of CAACs as ligands to stabilize unusual transition-metal (Roy et al., 2016) and main-group compounds (Soleilhavoup & Bertrand, 2015).
featuring a carbene center flanked by one amino substituent and an alkyl substituent. Compared toAs a result of their strong et al., 2007, 2010). Analogous reactivity has also been observed for other classes of electrophilic including N,N′-diamidocarbenes (DACs) (Hudnall et al., 2010; Moerdyk et al., 2013; Chase et al., 2014; Lastovickova & Bielawski, 2016). Despite this rich reactivity, these carbene reactions are typically irreversible. However, a recent report demonstrated that a CAAC with a sterically demanding menthol-derived quaternary carbon substituent undergoes N—H and P—H reductive eliminations (Tolentino et al., 2019). This established the reversibility of and reaction at carbon centers, and suggests that CAACs and other electrophilic may be able to perform catalytic coupling reactions.
CAACs are capable of activating strong bonds, including H—H, N—H, P—H, Si—H, and B—H bonds (FreyIn the current work, we report the structure of the title compound 2-(2,6-diisopropylphenyl)-N,N-diethyl-3,3-dimethyl-2-azaspiro[4.5]decan-1-amine, which was prepared by treatment of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium hydrogen dichloride with two equivalents of lithium diethylamide (Fig. 1). Previous syntheses to furnish the corresponding free CAAC carbene have employed the bulkier bases lithium diisopropylamide or potassium bis(trimethylsilyl)amide (Lavallo et al., 2005; Tolentino et al., 2019), indicating that the size of the amine significantly impacts the propensity toward amine addition to the CAAC.
2. Structural commentary
The molecular structure of the title compound is presented in Fig. 2, and selected geometric parameters are summarized in Table 1. As expected, X-ray confirmed the pyramidalization of the former carbene carbon center (the sum of the N1—C1—C2, N1—C1—N2, and C2—C1—N2 angles is 337.79°), consistent with sp3 The C–NEt2 (C1—N2) bond length [1.4675 (14) Å] is a typical distance for a carbon–nitrogen single bond (Allen et al., 1987) and is similar to bond distances observed for previously reported CAAC N–H insertion products (see Database Survey section below).
|
The cyclohexyl ring (C2, C5–C9) of the title compound adopts a chair conformation. The cyclic nitrogen atom, N1, is distorted from planarity (sum of C1—N1—C4, C1—N1—C16, and C4—N1—C16 angles = 351.21°). This differs from the analogous CAAC structure in its free carbene form, in which there is π-donation from nitrogen to stabilize the carbene center (sum of bond angles around nitrogen = 356.57°; Frey et al., 2007). Bond angles for the diethylamino nitrogen atom, N2, are consistent with sp3 (sum of C1—N2—C12, C1—N2—C14, and C12—N2—C14 angles = 343.51°).
3. Supramolecular features
Four molecules of the title compound are present in the . The methylene group at the 4-position of the cyclohexyl ring is oriented towards the aryl ring of the 2,6-diisopropylphenyl group of the neighboring molecule, with a distance of 2.790 Å between the aryl ring centroid (C16–C21) and the nearest methylene hydrogen atom (H7B). The molecules are oriented such that the 3-position of the cyclohexyl ring of one molecule is adjacent to a methyl group at the gem-dimethyl position of a neighboring molecule, with a distance of 2.387 Å between nearest hydrogen atoms (H8B · · · H10B) (Fig. 4).
as shown in Fig. 34. Database survey
A survey of the Cambridge Structural Database (2020 Version, ConQuest 2.0.5; Groom et al., 2016) was performed to identify structures of related free CAAC and CAAC amine addition compounds. The for the corresponding CAAC free carbene has been reported (CSD refcode GIDWAS; Frey et al., 2007). Crystal structures have also been reported for CAAC N—H bond-activation products involving ammonia (CSD refcode GIDWEW; Frey et al., 2007), diphenylamine (CSD refcodes GOMGEX and GOMGUN; Tolentino et al., 2019), imidazole (CSD refcode RARHOK; Paul & Radius, 2017), benzimidazole (CSD refcode RARHUQ; Paul & Radius, 2017), 2-phenylbenzimidazole (CSD refcode HOKTAF; Kieser et al., 2019), and carbazole (CSD refcode HOKOS; Kieser et al., 2019).
5. Synthesis and crystallization
The synthesis of 2-(2,6-diisopropylphenyl)-N,N-diethyl-3,3-dimethyl-2-azaspiro[4.5]decan-1-amine is summarized in Fig. 1. All solvents were dried by passage through solvent purification columns (JC Meyer) and stored over activated 3 Å molecular sieves. Lithium diethylamide (Sigma–Aldrich) and 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium hydrogen dichloride (TCI America) were used as received. Celite (Aldrich) was dried under vacuum at 473 K for 48 h before use. The 1H and 13C NMR spectra were recorded on a Bruker AVANCE III 400 MHz NMR spectrometer at 298 K. The 1H NMR spectrum was calibrated internally to resonances for the residual proteo solvent relative to tetramethylsilane. The 13C NMR spectrum was calibrated to the solvent resonance relative to tetramethylsilane. Spectra were analyzed using MestReNova Ver. 14.2.0 software.
In a nitrogen-atmosphere glovebox, a cold (258 K) solution of lithium diethylamide (99 mg, 1.3 mmol) in 8 mL of THF was added dropwise to a stirred cold (258 K) suspension of 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]dec-1-en-2-ium hydrogen dichloride (250 mg, 0.63 mmol) in 5 mL of THF. The orange solution was slowly warmed to room temperature. After 24 h, volatiles were removed in vacuo to afford a pale orange solid. After extraction with pentane (2 × 20 mL) and filtration through Celite on a fritted funnel, evaporation of volatiles in vacuo afforded a pale orange solid. Single crystals suitable for X-ray analysis were grown by slow evaporation of a pentane solution of the crude product at 258 K, which led to the formation of colorless block-like crystals of the title compound (115 mg, 46% yield).
1H NMR (400 MHz, benzene-d6, 198 K): δ = 7.04–7.13 (m, 3H, HAr), 4.46 (s, 1H, CAAC CH), 3.98 (sept, 1H, CH(CH3)2, J = 6.9 Hz), 3.17 (sept, 1H, CH(CH3)2, J = 6.9 Hz), 2.54 (br s, 4H), 2.15 (d, 1H, J = 13.7 Hz, CH2), 1.97 (d, 1H, J = 12.7 Hz, CH2), 1.49–1.87 (m, 10H), 1.47 (s, 2H), 1.30–1.39 (m, 6H, CH(CH3)2), 1.21 (m, 6H, CH(CH3)2), 0.80–1.06 (br m, 6H), 0.95 (s, 3H), 0.86 (t, 2H, J = 7.1 Hz). 13C NMR (101 MHz, benzene-d6, 298 K): δ = 151.02 (aryl Cquat), 148.36 (aryl Cquat), 144.33 (aryl Cquat), 126.58(aryl CH), 125.81 (aryl CH), 124.64 (aryl CH), 97.44 [CH(NEt2)], 61.30 (Cquat), 51.57 (CH2), 45.73 (Cquat), 41.26 (CH2), 32.99 (CH3), 32.77 (CH2), 29.15 (CH3), 28.96 [CH(CH3)2], 27.45 [CH(CH3)2], 26.98 (CH3), 26.61 (CH2), 25.58 (CH3), 25.05 (CH3), 25.03 (CH2), 24.86 (CH3), 23.71 (CH2).
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 2100575
https://doi.org/10.1107/S2056989021007854/zl5021sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007854/zl5021Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007854/zl5021Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C27H46N2 | F(000) = 888 |
Mr = 398.66 | Dx = 1.102 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3319 (11) Å | Cell parameters from 9991 reflections |
b = 14.4082 (13) Å | θ = 2.2–30.5° |
c = 13.6155 (12) Å | µ = 0.06 mm−1 |
β = 96.4589 (16)° | T = 93 K |
V = 2403.9 (4) Å3 | Irregular, colorless |
Z = 4 | 0.25 × 0.25 × 0.19 mm |
Bruker SMART APEXII CCD diffractometer | 5087 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.069 |
φ and ω scans | θmax = 29.6°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −17→17 |
Tmin = 0.823, Tmax = 0.862 | k = −20→20 |
57200 measured reflections | l = −18→18 |
6744 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0481P)2 + 1.1815P] where P = (Fo2 + 2Fc2)/3 |
6744 reflections | (Δ/σ)max < 0.001 |
270 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A colorless crystal of approximate dimensions 0.191 x 0.248 x 0.250 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct. The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. Least-squares analysis yielded wR2 = 0.1207 and Goof = 1.018 for 270 variables refined against 6744 data (0.72 ), R1 = 0.0482 for those 5087 data with I > 2.0sigma(I). |
x | y | z | Uiso*/Ueq | ||
N1 | 0.21509 (8) | 0.23294 (7) | 0.51919 (7) | 0.0098 (2) | |
N2 | 0.19958 (8) | 0.23854 (7) | 0.33444 (7) | 0.0116 (2) | |
C1 | 0.26502 (9) | 0.25804 (8) | 0.42898 (8) | 0.0098 (2) | |
H1A | 0.2755 | 0.3269 | 0.4316 | 0.012* | |
C2 | 0.38287 (9) | 0.21455 (8) | 0.44118 (8) | 0.0100 (2) | |
C3 | 0.40228 (9) | 0.19144 (8) | 0.55256 (8) | 0.0116 (2) | |
H3A | 0.4473 | 0.1347 | 0.5633 | 0.014* | |
H3B | 0.4410 | 0.2432 | 0.5892 | 0.014* | |
C4 | 0.28990 (9) | 0.17623 (8) | 0.58916 (9) | 0.0112 (2) | |
C5 | 0.46257 (10) | 0.28977 (8) | 0.41182 (9) | 0.0127 (2) | |
H5A | 0.4390 | 0.3100 | 0.3433 | 0.015* | |
H5B | 0.4585 | 0.3442 | 0.4556 | 0.015* | |
C6 | 0.58148 (10) | 0.25689 (9) | 0.41836 (9) | 0.0149 (2) | |
H6A | 0.6277 | 0.3075 | 0.3970 | 0.018* | |
H6B | 0.6078 | 0.2413 | 0.4878 | 0.018* | |
C7 | 0.59148 (10) | 0.17188 (9) | 0.35313 (9) | 0.0149 (2) | |
H7A | 0.6677 | 0.1492 | 0.3614 | 0.018* | |
H7B | 0.5725 | 0.1890 | 0.2829 | 0.018* | |
C8 | 0.51526 (10) | 0.09514 (9) | 0.38112 (9) | 0.0140 (2) | |
H8A | 0.5397 | 0.0735 | 0.4490 | 0.017* | |
H8B | 0.5193 | 0.0419 | 0.3357 | 0.017* | |
C9 | 0.39694 (9) | 0.12857 (8) | 0.37605 (9) | 0.0122 (2) | |
H9A | 0.3512 | 0.0775 | 0.3973 | 0.015* | |
H9B | 0.3703 | 0.1438 | 0.3066 | 0.015* | |
C10 | 0.25722 (10) | 0.07300 (8) | 0.58361 (9) | 0.0144 (2) | |
H10A | 0.1848 | 0.0655 | 0.6058 | 0.022* | |
H10B | 0.3107 | 0.0366 | 0.6262 | 0.022* | |
H10C | 0.2554 | 0.0512 | 0.5152 | 0.022* | |
C11 | 0.29103 (10) | 0.20714 (9) | 0.69696 (9) | 0.0141 (2) | |
H11A | 0.3137 | 0.2723 | 0.7032 | 0.021* | |
H11B | 0.3424 | 0.1685 | 0.7392 | 0.021* | |
H11C | 0.2177 | 0.2004 | 0.7174 | 0.021* | |
C12 | 0.12797 (10) | 0.31610 (9) | 0.29816 (9) | 0.0152 (3) | |
H12A | 0.1066 | 0.3513 | 0.3554 | 0.018* | |
H12B | 0.0607 | 0.2908 | 0.2612 | 0.018* | |
C13 | 0.18274 (12) | 0.38151 (10) | 0.23150 (11) | 0.0228 (3) | |
H13A | 0.1331 | 0.4328 | 0.2110 | 0.034* | |
H13B | 0.2006 | 0.3477 | 0.1730 | 0.034* | |
H13C | 0.2498 | 0.4062 | 0.2675 | 0.034* | |
C14 | 0.14360 (10) | 0.14878 (9) | 0.32281 (9) | 0.0142 (2) | |
H14A | 0.0682 | 0.1555 | 0.3404 | 0.017* | |
H14B | 0.1821 | 0.1031 | 0.3686 | 0.017* | |
C15 | 0.13992 (11) | 0.11302 (10) | 0.21688 (9) | 0.0196 (3) | |
H15A | 0.1024 | 0.0530 | 0.2114 | 0.029* | |
H15B | 0.2145 | 0.1056 | 0.1997 | 0.029* | |
H15C | 0.1005 | 0.1575 | 0.1716 | 0.029* | |
C16 | 0.13925 (9) | 0.29785 (8) | 0.55420 (8) | 0.0101 (2) | |
C17 | 0.16954 (10) | 0.39033 (8) | 0.58137 (8) | 0.0118 (2) | |
C18 | 0.08998 (10) | 0.45134 (9) | 0.60845 (9) | 0.0150 (2) | |
H18A | 0.1097 | 0.5136 | 0.6250 | 0.018* | |
C19 | −0.01697 (10) | 0.42321 (9) | 0.61176 (9) | 0.0167 (3) | |
H19A | −0.0700 | 0.4659 | 0.6298 | 0.020* | |
C20 | −0.04562 (10) | 0.33259 (9) | 0.58858 (9) | 0.0153 (3) | |
H20A | −0.1185 | 0.3129 | 0.5927 | 0.018* | |
C21 | 0.03019 (10) | 0.26912 (8) | 0.55924 (8) | 0.0117 (2) | |
C22 | 0.28572 (10) | 0.42758 (8) | 0.58449 (9) | 0.0124 (2) | |
H22A | 0.3346 | 0.3746 | 0.5717 | 0.015* | |
C23 | 0.29540 (11) | 0.50154 (9) | 0.50440 (9) | 0.0173 (3) | |
H23A | 0.2704 | 0.4754 | 0.4393 | 0.026* | |
H23B | 0.3717 | 0.5210 | 0.5060 | 0.026* | |
H23C | 0.2503 | 0.5553 | 0.5169 | 0.026* | |
C24 | 0.32675 (11) | 0.46913 (10) | 0.68579 (10) | 0.0192 (3) | |
H24A | 0.3178 | 0.4235 | 0.7377 | 0.029* | |
H24B | 0.2845 | 0.5250 | 0.6970 | 0.029* | |
H24C | 0.4041 | 0.4854 | 0.6873 | 0.029* | |
C25 | −0.00794 (10) | 0.17054 (9) | 0.53442 (9) | 0.0134 (2) | |
H25A | 0.0520 | 0.1375 | 0.5050 | 0.016* | |
C26 | −0.10981 (11) | 0.16883 (10) | 0.45862 (10) | 0.0213 (3) | |
H26A | −0.0967 | 0.2062 | 0.4010 | 0.032* | |
H26B | −0.1720 | 0.1944 | 0.4886 | 0.032* | |
H26C | −0.1259 | 0.1047 | 0.4378 | 0.032* | |
C27 | −0.03084 (11) | 0.11760 (10) | 0.62790 (10) | 0.0207 (3) | |
H27A | 0.0339 | 0.1199 | 0.6767 | 0.031* | |
H27B | −0.0484 | 0.0528 | 0.6109 | 0.031* | |
H27C | −0.0926 | 0.1464 | 0.6557 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0099 (4) | 0.0105 (5) | 0.0093 (4) | 0.0021 (4) | 0.0023 (3) | 0.0011 (4) |
N2 | 0.0117 (5) | 0.0120 (5) | 0.0107 (4) | 0.0014 (4) | −0.0009 (4) | −0.0001 (4) |
C1 | 0.0103 (5) | 0.0100 (5) | 0.0090 (5) | 0.0001 (4) | 0.0015 (4) | −0.0003 (4) |
C2 | 0.0083 (5) | 0.0106 (5) | 0.0111 (5) | 0.0006 (4) | 0.0013 (4) | −0.0005 (4) |
C3 | 0.0102 (5) | 0.0128 (6) | 0.0116 (5) | 0.0012 (4) | 0.0007 (4) | 0.0007 (4) |
C4 | 0.0106 (5) | 0.0111 (5) | 0.0117 (5) | 0.0019 (4) | 0.0010 (4) | 0.0015 (4) |
C5 | 0.0122 (5) | 0.0120 (6) | 0.0144 (5) | −0.0019 (4) | 0.0036 (4) | −0.0015 (4) |
C6 | 0.0105 (5) | 0.0172 (6) | 0.0171 (6) | −0.0029 (5) | 0.0024 (4) | −0.0028 (5) |
C7 | 0.0101 (5) | 0.0177 (6) | 0.0172 (6) | −0.0002 (5) | 0.0028 (4) | −0.0027 (5) |
C8 | 0.0124 (6) | 0.0134 (6) | 0.0167 (6) | 0.0018 (4) | 0.0032 (4) | −0.0030 (5) |
C9 | 0.0105 (5) | 0.0120 (6) | 0.0144 (5) | −0.0001 (4) | 0.0026 (4) | −0.0026 (4) |
C10 | 0.0141 (6) | 0.0124 (6) | 0.0169 (6) | 0.0017 (5) | 0.0031 (5) | 0.0028 (5) |
C11 | 0.0157 (6) | 0.0161 (6) | 0.0105 (5) | 0.0028 (5) | 0.0017 (4) | 0.0019 (4) |
C12 | 0.0137 (6) | 0.0179 (6) | 0.0137 (6) | 0.0049 (5) | −0.0004 (4) | 0.0014 (5) |
C13 | 0.0246 (7) | 0.0209 (7) | 0.0232 (7) | 0.0059 (6) | 0.0034 (5) | 0.0080 (5) |
C14 | 0.0133 (6) | 0.0154 (6) | 0.0137 (5) | −0.0011 (5) | 0.0009 (4) | −0.0031 (5) |
C15 | 0.0187 (6) | 0.0234 (7) | 0.0163 (6) | −0.0020 (5) | −0.0004 (5) | −0.0069 (5) |
C16 | 0.0111 (5) | 0.0113 (5) | 0.0078 (5) | 0.0028 (4) | 0.0012 (4) | 0.0009 (4) |
C17 | 0.0131 (5) | 0.0130 (6) | 0.0092 (5) | 0.0018 (4) | 0.0009 (4) | 0.0004 (4) |
C18 | 0.0190 (6) | 0.0123 (6) | 0.0137 (6) | 0.0027 (5) | 0.0020 (5) | 0.0000 (4) |
C19 | 0.0158 (6) | 0.0190 (6) | 0.0157 (6) | 0.0085 (5) | 0.0039 (5) | 0.0009 (5) |
C20 | 0.0113 (5) | 0.0200 (6) | 0.0148 (6) | 0.0030 (5) | 0.0021 (4) | 0.0020 (5) |
C21 | 0.0118 (5) | 0.0143 (6) | 0.0091 (5) | 0.0011 (4) | 0.0009 (4) | 0.0010 (4) |
C22 | 0.0142 (6) | 0.0109 (6) | 0.0121 (5) | −0.0001 (4) | 0.0016 (4) | −0.0022 (4) |
C23 | 0.0217 (7) | 0.0123 (6) | 0.0182 (6) | −0.0023 (5) | 0.0034 (5) | 0.0001 (5) |
C24 | 0.0210 (6) | 0.0187 (6) | 0.0172 (6) | 0.0004 (5) | −0.0009 (5) | −0.0060 (5) |
C25 | 0.0109 (5) | 0.0158 (6) | 0.0137 (5) | −0.0011 (4) | 0.0023 (4) | 0.0004 (5) |
C26 | 0.0147 (6) | 0.0260 (7) | 0.0223 (7) | −0.0025 (5) | −0.0024 (5) | −0.0035 (5) |
C27 | 0.0192 (6) | 0.0220 (7) | 0.0219 (7) | −0.0027 (5) | 0.0065 (5) | 0.0046 (5) |
N1—C16 | 1.4412 (15) | C13—H13A | 0.9800 |
N1—C1 | 1.4794 (15) | C13—H13B | 0.9800 |
N1—C4 | 1.4928 (15) | C13—H13C | 0.9800 |
N2—C14 | 1.4662 (16) | C14—C15 | 1.5274 (17) |
N2—C1 | 1.4675 (14) | C14—H14A | 0.9900 |
N2—C12 | 1.4745 (15) | C14—H14B | 0.9900 |
C1—C2 | 1.5741 (16) | C15—H15A | 0.9800 |
C1—H1A | 1.0000 | C15—H15B | 0.9800 |
C2—C3 | 1.5449 (16) | C15—H15C | 0.9800 |
C2—C9 | 1.5445 (16) | C16—C21 | 1.4162 (16) |
C2—C5 | 1.5456 (16) | C16—C17 | 1.4215 (17) |
C3—C4 | 1.5402 (16) | C17—C18 | 1.3974 (17) |
C3—H3A | 0.9900 | C17—C22 | 1.5260 (17) |
C3—H3B | 0.9900 | C18—C19 | 1.3853 (18) |
C4—C11 | 1.5324 (17) | C18—H18A | 0.9500 |
C4—C10 | 1.5406 (17) | C19—C20 | 1.3800 (19) |
C5—C6 | 1.5340 (17) | C19—H19A | 0.9500 |
C5—H5A | 0.9900 | C20—C21 | 1.3978 (17) |
C5—H5B | 0.9900 | C20—H20A | 0.9500 |
C6—C7 | 1.5260 (17) | C21—C25 | 1.5222 (17) |
C6—H6A | 0.9900 | C22—C24 | 1.5361 (17) |
C6—H6B | 0.9900 | C22—C23 | 1.5390 (17) |
C7—C8 | 1.5271 (18) | C22—H22A | 1.0000 |
C7—H7A | 0.9900 | C23—H23A | 0.9800 |
C7—H7B | 0.9900 | C23—H23B | 0.9800 |
C8—C9 | 1.5307 (16) | C23—H23C | 0.9800 |
C8—H8A | 0.9900 | C24—H24A | 0.9800 |
C8—H8B | 0.9900 | C24—H24B | 0.9800 |
C9—H9A | 0.9900 | C24—H24C | 0.9800 |
C9—H9B | 0.9900 | C25—C26 | 1.5337 (17) |
C10—H10A | 0.9800 | C25—C27 | 1.5370 (18) |
C10—H10B | 0.9800 | C25—H25A | 1.0000 |
C10—H10C | 0.9800 | C26—H26A | 0.9800 |
C11—H11A | 0.9800 | C26—H26B | 0.9800 |
C11—H11B | 0.9800 | C26—H26C | 0.9800 |
C11—H11C | 0.9800 | C27—H27A | 0.9800 |
C12—C13 | 1.5186 (19) | C27—H27B | 0.9800 |
C12—H12A | 0.9900 | C27—H27C | 0.9800 |
C12—H12B | 0.9900 | ||
C16—N1—C1 | 117.52 (9) | N2—C12—H12B | 109.1 |
C16—N1—C4 | 121.44 (9) | C13—C12—H12B | 109.1 |
C1—N1—C4 | 112.25 (9) | H12A—C12—H12B | 107.9 |
C14—N2—C1 | 117.99 (9) | C12—C13—H13A | 109.5 |
C14—N2—C12 | 112.05 (9) | C12—C13—H13B | 109.5 |
C1—N2—C12 | 113.47 (9) | H13A—C13—H13B | 109.5 |
N2—C1—N1 | 116.25 (9) | C12—C13—H13C | 109.5 |
N2—C1—C2 | 115.24 (9) | H13A—C13—H13C | 109.5 |
N1—C1—C2 | 106.30 (9) | H13B—C13—H13C | 109.5 |
N2—C1—H1A | 106.1 | N2—C14—C15 | 111.30 (10) |
N1—C1—H1A | 106.1 | N2—C14—H14A | 109.4 |
C2—C1—H1A | 106.1 | C15—C14—H14A | 109.4 |
C3—C2—C9 | 112.07 (10) | N2—C14—H14B | 109.4 |
C3—C2—C5 | 111.85 (9) | C15—C14—H14B | 109.4 |
C9—C2—C5 | 107.34 (9) | H14A—C14—H14B | 108.0 |
C3—C2—C1 | 103.21 (9) | C14—C15—H15A | 109.5 |
C9—C2—C1 | 114.88 (9) | C14—C15—H15B | 109.5 |
C5—C2—C1 | 107.46 (9) | H15A—C15—H15B | 109.5 |
C4—C3—C2 | 107.61 (9) | C14—C15—H15C | 109.5 |
C4—C3—H3A | 110.2 | H15A—C15—H15C | 109.5 |
C2—C3—H3A | 110.2 | H15B—C15—H15C | 109.5 |
C4—C3—H3B | 110.2 | C21—C16—C17 | 118.98 (11) |
C2—C3—H3B | 110.2 | C21—C16—N1 | 118.78 (10) |
H3A—C3—H3B | 108.5 | C17—C16—N1 | 122.22 (10) |
N1—C4—C11 | 112.99 (10) | C18—C17—C16 | 119.12 (11) |
N1—C4—C3 | 103.28 (9) | C18—C17—C22 | 117.14 (11) |
C11—C4—C3 | 110.91 (10) | C16—C17—C22 | 123.73 (10) |
N1—C4—C10 | 110.96 (9) | C19—C18—C17 | 121.59 (12) |
C11—C4—C10 | 107.56 (10) | C19—C18—H18A | 119.2 |
C3—C4—C10 | 111.18 (10) | C17—C18—H18A | 119.2 |
C6—C5—C2 | 113.58 (10) | C20—C19—C18 | 119.31 (12) |
C6—C5—H5A | 108.8 | C20—C19—H19A | 120.3 |
C2—C5—H5A | 108.8 | C18—C19—H19A | 120.3 |
C6—C5—H5B | 108.8 | C19—C20—C21 | 121.47 (12) |
C2—C5—H5B | 108.8 | C19—C20—H20A | 119.3 |
H5A—C5—H5B | 107.7 | C21—C20—H20A | 119.3 |
C7—C6—C5 | 110.69 (10) | C20—C21—C16 | 119.47 (11) |
C7—C6—H6A | 109.5 | C20—C21—C25 | 118.29 (11) |
C5—C6—H6A | 109.5 | C16—C21—C25 | 122.23 (11) |
C7—C6—H6B | 109.5 | C17—C22—C24 | 112.06 (10) |
C5—C6—H6B | 109.5 | C17—C22—C23 | 111.79 (10) |
H6A—C6—H6B | 108.1 | C24—C22—C23 | 108.81 (10) |
C6—C7—C8 | 110.10 (10) | C17—C22—H22A | 108.0 |
C6—C7—H7A | 109.6 | C24—C22—H22A | 108.0 |
C8—C7—H7A | 109.6 | C23—C22—H22A | 108.0 |
C6—C7—H7B | 109.6 | C22—C23—H23A | 109.5 |
C8—C7—H7B | 109.6 | C22—C23—H23B | 109.5 |
H7A—C7—H7B | 108.2 | H23A—C23—H23B | 109.5 |
C7—C8—C9 | 111.79 (10) | C22—C23—H23C | 109.5 |
C7—C8—H8A | 109.3 | H23A—C23—H23C | 109.5 |
C9—C8—H8A | 109.3 | H23B—C23—H23C | 109.5 |
C7—C8—H8B | 109.3 | C22—C24—H24A | 109.5 |
C9—C8—H8B | 109.3 | C22—C24—H24B | 109.5 |
H8A—C8—H8B | 107.9 | H24A—C24—H24B | 109.5 |
C8—C9—C2 | 113.24 (10) | C22—C24—H24C | 109.5 |
C8—C9—H9A | 108.9 | H24A—C24—H24C | 109.5 |
C2—C9—H9A | 108.9 | H24B—C24—H24C | 109.5 |
C8—C9—H9B | 108.9 | C21—C25—C26 | 111.94 (10) |
C2—C9—H9B | 108.9 | C21—C25—C27 | 111.11 (10) |
H9A—C9—H9B | 107.7 | C26—C25—C27 | 109.66 (11) |
C4—C10—H10A | 109.5 | C21—C25—H25A | 108.0 |
C4—C10—H10B | 109.5 | C26—C25—H25A | 108.0 |
H10A—C10—H10B | 109.5 | C27—C25—H25A | 108.0 |
C4—C10—H10C | 109.5 | C25—C26—H26A | 109.5 |
H10A—C10—H10C | 109.5 | C25—C26—H26B | 109.5 |
H10B—C10—H10C | 109.5 | H26A—C26—H26B | 109.5 |
C4—C11—H11A | 109.5 | C25—C26—H26C | 109.5 |
C4—C11—H11B | 109.5 | H26A—C26—H26C | 109.5 |
H11A—C11—H11B | 109.5 | H26B—C26—H26C | 109.5 |
C4—C11—H11C | 109.5 | C25—C27—H27A | 109.5 |
H11A—C11—H11C | 109.5 | C25—C27—H27B | 109.5 |
H11B—C11—H11C | 109.5 | H27A—C27—H27B | 109.5 |
N2—C12—C13 | 112.38 (10) | C25—C27—H27C | 109.5 |
N2—C12—H12A | 109.1 | H27A—C27—H27C | 109.5 |
C13—C12—H12A | 109.1 | H27B—C27—H27C | 109.5 |
C14—N2—C1—N1 | −44.13 (14) | C3—C2—C9—C8 | −69.22 (13) |
C12—N2—C1—N1 | 89.84 (12) | C5—C2—C9—C8 | 53.96 (13) |
C14—N2—C1—C2 | 81.21 (13) | C1—C2—C9—C8 | 173.39 (10) |
C12—N2—C1—C2 | −144.82 (10) | C14—N2—C12—C13 | −132.20 (11) |
C16—N1—C1—N2 | −82.53 (12) | C1—N2—C12—C13 | 91.09 (13) |
C4—N1—C1—N2 | 129.41 (10) | C1—N2—C14—C15 | −145.42 (11) |
C16—N1—C1—C2 | 147.71 (10) | C12—N2—C14—C15 | 79.99 (13) |
C4—N1—C1—C2 | −0.35 (12) | C1—N1—C16—C21 | 118.88 (11) |
N2—C1—C2—C3 | −146.18 (10) | C4—N1—C16—C21 | −96.14 (13) |
N1—C1—C2—C3 | −15.85 (11) | C1—N1—C16—C17 | −59.47 (14) |
N2—C1—C2—C9 | −23.88 (14) | C4—N1—C16—C17 | 85.51 (14) |
N1—C1—C2—C9 | 106.45 (11) | C21—C16—C17—C18 | −2.55 (16) |
N2—C1—C2—C5 | 95.48 (11) | N1—C16—C17—C18 | 175.80 (10) |
N1—C1—C2—C5 | −134.18 (10) | C21—C16—C17—C22 | 176.45 (10) |
C9—C2—C3—C4 | −97.89 (11) | N1—C16—C17—C22 | −5.21 (17) |
C5—C2—C3—C4 | 141.50 (10) | C16—C17—C18—C19 | 1.60 (18) |
C1—C2—C3—C4 | 26.27 (12) | C22—C17—C18—C19 | −177.46 (11) |
C16—N1—C4—C11 | −10.30 (15) | C17—C18—C19—C20 | 0.55 (19) |
C1—N1—C4—C11 | 136.35 (10) | C18—C19—C20—C21 | −1.75 (19) |
C16—N1—C4—C3 | −130.19 (11) | C19—C20—C21—C16 | 0.76 (18) |
C1—N1—C4—C3 | 16.45 (12) | C19—C20—C21—C25 | −179.70 (11) |
C16—N1—C4—C10 | 110.60 (12) | C17—C16—C21—C20 | 1.40 (16) |
C1—N1—C4—C10 | −102.76 (11) | N1—C16—C21—C20 | −177.00 (10) |
C2—C3—C4—N1 | −26.48 (12) | C17—C16—C21—C25 | −178.12 (10) |
C2—C3—C4—C11 | −147.79 (10) | N1—C16—C21—C25 | 3.48 (16) |
C2—C3—C4—C10 | 92.57 (11) | C18—C17—C22—C24 | 54.13 (14) |
C3—C2—C5—C6 | 68.34 (13) | C16—C17—C22—C24 | −124.88 (12) |
C9—C2—C5—C6 | −54.98 (13) | C18—C17—C22—C23 | −68.32 (14) |
C1—C2—C5—C6 | −179.06 (9) | C16—C17—C22—C23 | 112.66 (13) |
C2—C5—C6—C7 | 57.69 (13) | C20—C21—C25—C26 | 52.45 (15) |
C5—C6—C7—C8 | −55.75 (13) | C16—C21—C25—C26 | −128.02 (12) |
C6—C7—C8—C9 | 55.59 (13) | C20—C21—C25—C27 | −70.53 (14) |
C7—C8—C9—C2 | −56.42 (13) | C16—C21—C25—C27 | 109.01 (13) |
Bond distances | ||
Ccarbene—NEt2 | C1—N2 | 1.4675 (14) |
Ccarbene—Ncyclic | C1—N1 | 1.4794 (15) |
Ccarbene—Cspiro | C1—C2 | 1.5741 (16) |
Ncyclic—CMe2 | N1—C4 | 1.4928 (15) |
Cspiro—CH2 | C2—C3 | 1.5449 (16) |
CMe2—CH2 | C4—C3 | 1.5402 (16) |
Bond angles | ||
Ncyclic—Ccarbene—Cspiro | N1—C1—C2 | 106.30 (9) |
Ncyclic—Ccarbene—NEt2 | N1—C1—N2 | 116.25 (9) |
Cspiro—Ccarbene—NEt2 | C2—C1—N2 | 115.24 (9) |
Ccarbene—Ncyclic—CDipp | C1—N1—C16 | 117.52 (9) |
Acknowledgements
We are grateful to the UCI Department of Chemistry, X-ray Crystallography Facility, for use of the Bruker SMART APEXII diffractometer.
Funding information
Funding for this research was provided by: Chapman University.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19. CrossRef Web of Science Google Scholar
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chase, D. T., Moerdyk, J. P. & Bielawski, C. W. (2014). Org. Lett. 16, 812–815. Web of Science CSD CrossRef CAS PubMed Google Scholar
Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439–441. Web of Science CSD CrossRef PubMed CAS Google Scholar
Frey, G. D., Masuda, J. D., Donnadieu, B. & Bertrand, G. (2010). Angew. Chem. Int. Ed. 49, 9444–9447. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hudnall, T. W., Moerdyk, J. P. & Bielawski, C. W. (2010). Chem. Commun. 46, 4288–4290. Web of Science CSD CrossRef CAS Google Scholar
Kieser, J. M., Kinney, Z. J., Gaffen, J. R., Evariste, S., Harrison, A. M., Rheingold, A. L. & Protasiewicz, J. D. (2019). J. Am. Chem. Soc. 141, 12055–12063. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lastovickova, D. N. & Bielawski, C. W. (2016). Organometallics, 35, 706–712. Web of Science CSD CrossRef CAS Google Scholar
Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. (2005). Angew. Chem. Int. Ed. 44, 5705–5709. Web of Science CSD CrossRef CAS Google Scholar
Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. (2017). Angew. Chem. Int. Ed. 56, 10046–10068. Web of Science CrossRef CAS Google Scholar
Moerdyk, J. P., Blake, G. A., Chase, D. T. & Bielawski, C. W. (2013). J. Am. Chem. Soc. 135, 18798–18801. Web of Science CrossRef CAS PubMed Google Scholar
Paul, U. S. D. & Radius, U. (2017). Chem. Eur. J. 23, 3993–4009. Web of Science CSD CrossRef CAS PubMed Google Scholar
Roy, S., Mondal, K. C. & Roesky, H. W. (2016). Acc. Chem. Res. 49, 357–369. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soleilhavoup, M. & Bertrand, G. (2015). Acc. Chem. Res. 48, 256–266. Web of Science CrossRef CAS PubMed Google Scholar
Tolentino, D. R., Neale, S. E., Isaac, C. J., Macgregor, S. A., Whittlesey, M. K., Jazzar, R. & Bertrand, G. (2019). J. Am. Chem. Soc. 141, 9823–9826. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.