research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(2,6-diiso­propyl­phen­yl)-N,N-di­ethyl-3,3-di­methyl-2-aza­spiro­[4.5]decan-1-amine: a di­ethyl­amine adduct of a cyclic(alk­yl)(amino)­carbene (CAAC)

crossmark logo

aChemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA, and bDepartment of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
*Correspondence e-mail: libermanmartin@chapman.edu

Edited by M. Zeller, Purdue University, USA (Received 28 July 2021; accepted 30 July 2021; online 6 August 2021)

The structure of the title compound, C27H46N2, at 93 K has monoclinic (P21/n) symmetry. The title compound was prepared by treatment of 2-(2,6-diiso­propyl­phenyl)-3,3-dimethyl-2-aza­spiro­[4.5]dec-1-en-2-ium hydrogen dichloride with two equivalents of lithium di­ethyl­amide. Characterization of the title compound by single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy is presented. Formation of the di­ethyl­amine adduct of the cyclic(alk­yl)(amino)­carbene (CAAC) was unexpected, as deprotonation using lithium diiso­propyl­amide results in free CAAC formation.

1. Chemical context

Cyclic (alk­yl)(amino)­carbenes (CAACs) are a class of singlet carbenes featuring a carbene center flanked by one amino substituent and an alkyl substituent. Compared to N-heterocyclic carbenes (NHCs), CAACs are simultaneously stronger σ-donors and stronger π-acceptors (Melaimi et al., 2017[Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. (2017). Angew. Chem. Int. Ed. 56, 10046-10068.]). These properties, along with the distinctive CAAC steric environment imparted by the quaternary carbon adjacent to the carbene center, have enabled the application of CAACs as ligands to stabilize unusual transition-metal (Roy et al., 2016[Roy, S., Mondal, K. C. & Roesky, H. W. (2016). Acc. Chem. Res. 49, 357-369.]) and main-group compounds (Soleilhavoup & Bertrand, 2015[Soleilhavoup, M. & Bertrand, G. (2015). Acc. Chem. Res. 48, 256-266.]).

As a result of their strong electrophilicity, CAACs are capable of activating strong bonds, including H—H, N—H, P—H, Si—H, and B—H bonds (Frey et al., 2007[Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439-441.], 2010[Frey, G. D., Masuda, J. D., Donnadieu, B. & Bertrand, G. (2010). Angew. Chem. Int. Ed. 49, 9444-9447.]). Analogous oxidative addition reactivity has also been observed for other classes of electrophilic carbenes, including N,N′-di­amido­carbenes (DACs) (Hudnall et al., 2010[Hudnall, T. W., Moerdyk, J. P. & Bielawski, C. W. (2010). Chem. Commun. 46, 4288-4290.]; Moerdyk et al., 2013[Moerdyk, J. P., Blake, G. A., Chase, D. T. & Bielawski, C. W. (2013). J. Am. Chem. Soc. 135, 18798-18801.]; Chase et al., 2014[Chase, D. T., Moerdyk, J. P. & Bielawski, C. W. (2014). Org. Lett. 16, 812-815.]; Lastovickova & Bielawski, 2016[Lastovickova, D. N. & Bielawski, C. W. (2016). Organometallics, 35, 706-712.]). Despite this rich reactivity, these carbene oxidative addition reactions are typically irreversible. However, a recent report demonstrated that a CAAC with a sterically demanding menthol-derived quaternary carbon substituent undergoes N—H and P—H reductive eliminations (Tolentino et al., 2019[Tolentino, D. R., Neale, S. E., Isaac, C. J., Macgregor, S. A., Whittlesey, M. K., Jazzar, R. & Bertrand, G. (2019). J. Am. Chem. Soc. 141, 9823-9826.]). This established the reversibility of oxidative addition and reductive elimination reaction at carbon centers, and suggests that CAACs and other electrophilic carbenes may be able to perform catalytic coupling reactions.

In the current work, we report the structure of the title compound 2-(2,6-diiso­propyl­phenyl)-N,N-diethyl-3,3-di­meth­yl-2-aza­spiro­[4.5]decan-1-amine, which was prepared by treatment of 2-(2,6-diiso­propylphenyl)-3,3-dimethyl-2-aza­spiro­[4.5]dec-1-en-2-ium hydrogen dichloride with two equivalents of lithium di­ethyl­amide (Fig. 1[link]). Previous syntheses to furnish the corresponding free CAAC carbene have employed the bulkier bases lithium diiso­propyl­amide or potassium bis­(tri­methyl­sil­yl)amide (Lavallo et al., 2005[Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. (2005). Angew. Chem. Int. Ed. 44, 5705-5709.]; Tolentino et al., 2019[Tolentino, D. R., Neale, S. E., Isaac, C. J., Macgregor, S. A., Whittlesey, M. K., Jazzar, R. & Bertrand, G. (2019). J. Am. Chem. Soc. 141, 9823-9826.]), indicating that the size of the amine significantly impacts the propensity toward amine addition to the CAAC.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the title compound.

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 2[link], and selected geometric parameters are summarized in Table 1[link]. As expected, X-ray diffraction analysis confirmed the pyramidalization of the former carbene carbon center (the sum of the N1—C1—C2, N1—C1—N2, and C2—C1—N2 angles is 337.79°), consistent with sp3 hybridization. The C–NEt2 (C1—N2) bond length [1.4675 (14) Å] is a typical distance for a carbon–nitro­gen single bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.]) and is similar to bond distances observed for previously reported CAAC N–H insertion products (see Database Survey section below).

Table 1
Selected geometric parameters (Å, °)

Bond distances    
Ccarbene—NEt2 C1—N2 1.4675 (14)
Ccarbene—Ncyclic C1—N1 1.4794 (15)
Ccarbene—Cspiro C1—C2 1.5741 (16)
Ncyclic—CMe2 N1—C4 1.4928 (15)
Cspiro—CH2 C2—C3 1.5449 (16)
CMe2—CH2 C4—C3 1.5402 (16)
Bond angles    
Ncyclic—Ccarbene—Cspiro N1—C1—C2 106.30 (9)
Ncyclic—Ccarbene—NEt2 N1—C1—N2 116.25 (9)
Cspiro—Ccarbene—NEt2 C2—C1—N2 115.24 (9)
Ccarbene—Ncyclic—CDipp C1—N1—C16 117.52 (9)
[Figure 2]
Figure 2
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The cyclo­hexyl ring (C2, C5–C9) of the title compound adopts a chair conformation. The cyclic nitro­gen atom, N1, is distorted from planarity (sum of C1—N1—C4, C1—N1—C16, and C4—N1—C16 angles = 351.21°). This differs from the analogous CAAC structure in its free carbene form, in which there is π-donation from nitro­gen to stabilize the carbene center (sum of bond angles around nitro­gen = 356.57°; Frey et al., 2007[Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439-441.]). Bond angles for the di­ethyl­amino nitro­gen atom, N2, are consistent with sp3 hybridization (sum of C1—N2—C12, C1—N2—C14, and C12—N2—C14 angles = 343.51°).

3. Supra­molecular features

Four mol­ecules of the title compound are present in the unit cell, as shown in Fig. 3[link]. The methyl­ene group at the 4-position of the cyclo­hexyl ring is oriented towards the aryl ring of the 2,6-diiso­propyl­phenyl group of the neighboring mol­ecule, with a distance of 2.790 Å between the aryl ring centroid (C16–C21) and the nearest methyl­ene hydrogen atom (H7B). The mol­ecules are oriented such that the 3-position of the cyclo­hexyl ring of one mol­ecule is adjacent to a methyl group at the gem-dimethyl position of a neighboring mol­ecule, with a distance of 2.387 Å between nearest hydrogen atoms (H8B · · · H10B) (Fig. 4[link]).

[Figure 3]
Figure 3
View of the four mol­ecules of the title compound in the unit cell. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 4]
Figure 4
View of short inter­molecular distances between neighboring mol­ecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A survey of the Cambridge Structural Database (2020 Version, ConQuest 2.0.5; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was performed to identify structures of related free CAAC and CAAC amine addition compounds. The crystal structure for the corresponding CAAC free carbene has been reported (CSD refcode GIDWAS; Frey et al., 2007[Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439-441.]). Crystal structures have also been reported for CAAC N—H bond-activation products involving ammonia (CSD refcode GIDWEW; Frey et al., 2007[Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439-441.]), di­phenyl­amine (CSD refcodes GOMGEX and GOMGUN; Tolentino et al., 2019[Tolentino, D. R., Neale, S. E., Isaac, C. J., Macgregor, S. A., Whittlesey, M. K., Jazzar, R. & Bertrand, G. (2019). J. Am. Chem. Soc. 141, 9823-9826.]), imidazole (CSD refcode RARHOK; Paul & Radius, 2017[Paul, U. S. D. & Radius, U. (2017). Chem. Eur. J. 23, 3993-4009.]), benzimidazole (CSD refcode RARHUQ; Paul & Radius, 2017[Paul, U. S. D. & Radius, U. (2017). Chem. Eur. J. 23, 3993-4009.]), 2-phenyl­benzimidazole (CSD refcode HOKTAF; Kieser et al., 2019[Kieser, J. M., Kinney, Z. J., Gaffen, J. R., Evariste, S., Harrison, A. M., Rheingold, A. L. & Protasiewicz, J. D. (2019). J. Am. Chem. Soc. 141, 12055-12063.]), and carbazole (CSD refcode HOKOS; Kieser et al., 2019[Kieser, J. M., Kinney, Z. J., Gaffen, J. R., Evariste, S., Harrison, A. M., Rheingold, A. L. & Protasiewicz, J. D. (2019). J. Am. Chem. Soc. 141, 12055-12063.]).

5. Synthesis and crystallization

The synthesis of 2-(2,6-diiso­propylphenyl)-N,N-diethyl-3,3-dimethyl-2-aza­spiro­[4.5]decan-1-amine is summarized in Fig. 1[link]. All solvents were dried by passage through solvent purification columns (JC Meyer) and stored over activated 3 Å mol­ecular sieves. Lithium di­ethyl­amide (Sigma–Aldrich) and 2-(2,6-diiso­propylphenyl)-3,3-dimethyl-2-aza­spiro­[4.5]dec-1-en-2-ium hydrogen dichloride (TCI America) were used as received. Celite (Aldrich) was dried under vacuum at 473 K for 48 h before use. The 1H and 13C NMR spectra were recorded on a Bruker AVANCE III 400 MHz NMR spectrometer at 298 K. The 1H NMR spectrum was calibrated inter­nally to resonances for the residual proteo solvent relative to tetra­methyl­silane. The 13C NMR spectrum was calibrated to the solvent resonance relative to tetra­methyl­silane. Spectra were analyzed using MestReNova Ver. 14.2.0 software.

In a nitro­gen-atmosphere glovebox, a cold (258 K) solution of lithium di­ethyl­amide (99 mg, 1.3 mmol) in 8 mL of THF was added dropwise to a stirred cold (258 K) suspension of 2-(2,6-diiso­propylphenyl)-3,3-dimethyl-2-aza­spiro­[4.5]dec-1-en-2-ium hydrogen dichloride (250 mg, 0.63 mmol) in 5 mL of THF. The orange solution was slowly warmed to room temperature. After 24 h, volatiles were removed in vacuo to afford a pale orange solid. After extraction with pentane (2 × 20 mL) and filtration through Celite on a fritted funnel, evaporation of volatiles in vacuo afforded a pale orange solid. Single crystals suitable for X-ray analysis were grown by slow evaporation of a pentane solution of the crude product at 258 K, which led to the formation of colorless block-like crystals of the title compound (115 mg, 46% yield).

1H NMR (400 MHz, benzene-d6, 198 K): δ = 7.04–7.13 (m, 3H, HAr), 4.46 (s, 1H, CAAC CH), 3.98 (sept, 1H, CH(CH3)2, J = 6.9 Hz), 3.17 (sept, 1H, CH(CH3)2, J = 6.9 Hz), 2.54 (br s, 4H), 2.15 (d, 1H, J = 13.7 Hz, diastereotopic CH2), 1.97 (d, 1H, J = 12.7 Hz, diastereotopic CH­2), 1.49–1.87 (m, 10H), 1.47 (s, 2H), 1.30–1.39 (m, 6H, CH(CH3)2), 1.21 (m, 6H, CH(CH3)2), 0.80–1.06 (br m, 6H), 0.95 (s, 3H), 0.86 (t, 2H, J = 7.1 Hz). 13C NMR (101 MHz, benzene-d6, 298 K): δ = 151.02 (aryl Cquat), 148.36 (aryl Cquat), 144.33 (aryl Cquat), 126.58(aryl CH), 125.81 (aryl CH), 124.64 (aryl CH), 97.44 [CH(NEt2)], 61.30 (Cquat), 51.57 (CH2), 45.73 (Cquat), 41.26 (CH2), 32.99 (CH3), 32.77 (CH2), 29.15 (CH3), 28.96 [CH(CH3)2], 27.45 [CH(CH3)2], 26.98 (CH3), 26.61 (CH2), 25.58 (CH3), 25.05 (CH3), 25.03 (CH2), 24.86 (CH3), 23.71 (CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C27H46N2
Mr 398.66
Crystal system, space group Monoclinic, P21/n
Temperature (K) 93
a, b, c (Å) 12.3319 (11), 14.4082 (13), 13.6155 (12)
β (°) 96.4589 (16)
V3) 2403.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.25 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.823, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 57200, 6744, 5087
Rint 0.069
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.02
No. of reflections 6744
No. of parameters 270
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(2,6-Diisopropylphenyl)-N,N-diethyl-3,3-dimethyl-2-azaspiro[4.5]decan-1-amine top
Crystal data top
C27H46N2F(000) = 888
Mr = 398.66Dx = 1.102 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3319 (11) ÅCell parameters from 9991 reflections
b = 14.4082 (13) Åθ = 2.2–30.5°
c = 13.6155 (12) ŵ = 0.06 mm1
β = 96.4589 (16)°T = 93 K
V = 2403.9 (4) Å3Irregular, colorless
Z = 40.25 × 0.25 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
φ and ω scansθmax = 29.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1717
Tmin = 0.823, Tmax = 0.862k = 2020
57200 measured reflectionsl = 1818
6744 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0481P)2 + 1.1815P]
where P = (Fo2 + 2Fc2)/3
6744 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A colorless crystal of approximate dimensions 0.191 x 0.248 x 0.250 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program package. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct.

The structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.1207 and Goof = 1.018 for 270 variables refined against 6744 data (0.72 ), R1 = 0.0482 for those 5087 data with I > 2.0sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21509 (8)0.23294 (7)0.51919 (7)0.0098 (2)
N20.19958 (8)0.23854 (7)0.33444 (7)0.0116 (2)
C10.26502 (9)0.25804 (8)0.42898 (8)0.0098 (2)
H1A0.27550.32690.43160.012*
C20.38287 (9)0.21455 (8)0.44118 (8)0.0100 (2)
C30.40228 (9)0.19144 (8)0.55256 (8)0.0116 (2)
H3A0.44730.13470.56330.014*
H3B0.44100.24320.58920.014*
C40.28990 (9)0.17623 (8)0.58916 (9)0.0112 (2)
C50.46257 (10)0.28977 (8)0.41182 (9)0.0127 (2)
H5A0.43900.31000.34330.015*
H5B0.45850.34420.45560.015*
C60.58148 (10)0.25689 (9)0.41836 (9)0.0149 (2)
H6A0.62770.30750.39700.018*
H6B0.60780.24130.48780.018*
C70.59148 (10)0.17188 (9)0.35313 (9)0.0149 (2)
H7A0.66770.14920.36140.018*
H7B0.57250.18900.28290.018*
C80.51526 (10)0.09514 (9)0.38112 (9)0.0140 (2)
H8A0.53970.07350.44900.017*
H8B0.51930.04190.33570.017*
C90.39694 (9)0.12857 (8)0.37605 (9)0.0122 (2)
H9A0.35120.07750.39730.015*
H9B0.37030.14380.30660.015*
C100.25722 (10)0.07300 (8)0.58361 (9)0.0144 (2)
H10A0.18480.06550.60580.022*
H10B0.31070.03660.62620.022*
H10C0.25540.05120.51520.022*
C110.29103 (10)0.20714 (9)0.69696 (9)0.0141 (2)
H11A0.31370.27230.70320.021*
H11B0.34240.16850.73920.021*
H11C0.21770.20040.71740.021*
C120.12797 (10)0.31610 (9)0.29816 (9)0.0152 (3)
H12A0.10660.35130.35540.018*
H12B0.06070.29080.26120.018*
C130.18274 (12)0.38151 (10)0.23150 (11)0.0228 (3)
H13A0.13310.43280.21100.034*
H13B0.20060.34770.17300.034*
H13C0.24980.40620.26750.034*
C140.14360 (10)0.14878 (9)0.32281 (9)0.0142 (2)
H14A0.06820.15550.34040.017*
H14B0.18210.10310.36860.017*
C150.13992 (11)0.11302 (10)0.21688 (9)0.0196 (3)
H15A0.10240.05300.21140.029*
H15B0.21450.10560.19970.029*
H15C0.10050.15750.17160.029*
C160.13925 (9)0.29785 (8)0.55420 (8)0.0101 (2)
C170.16954 (10)0.39033 (8)0.58137 (8)0.0118 (2)
C180.08998 (10)0.45134 (9)0.60845 (9)0.0150 (2)
H18A0.10970.51360.62500.018*
C190.01697 (10)0.42321 (9)0.61176 (9)0.0167 (3)
H19A0.07000.46590.62980.020*
C200.04562 (10)0.33259 (9)0.58858 (9)0.0153 (3)
H20A0.11850.31290.59270.018*
C210.03019 (10)0.26912 (8)0.55924 (8)0.0117 (2)
C220.28572 (10)0.42758 (8)0.58449 (9)0.0124 (2)
H22A0.33460.37460.57170.015*
C230.29540 (11)0.50154 (9)0.50440 (9)0.0173 (3)
H23A0.27040.47540.43930.026*
H23B0.37170.52100.50600.026*
H23C0.25030.55530.51690.026*
C240.32675 (11)0.46913 (10)0.68579 (10)0.0192 (3)
H24A0.31780.42350.73770.029*
H24B0.28450.52500.69700.029*
H24C0.40410.48540.68730.029*
C250.00794 (10)0.17054 (9)0.53442 (9)0.0134 (2)
H25A0.05200.13750.50500.016*
C260.10981 (11)0.16883 (10)0.45862 (10)0.0213 (3)
H26A0.09670.20620.40100.032*
H26B0.17200.19440.48860.032*
H26C0.12590.10470.43780.032*
C270.03084 (11)0.11760 (10)0.62790 (10)0.0207 (3)
H27A0.03390.11990.67670.031*
H27B0.04840.05280.61090.031*
H27C0.09260.14640.65570.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0099 (4)0.0105 (5)0.0093 (4)0.0021 (4)0.0023 (3)0.0011 (4)
N20.0117 (5)0.0120 (5)0.0107 (4)0.0014 (4)0.0009 (4)0.0001 (4)
C10.0103 (5)0.0100 (5)0.0090 (5)0.0001 (4)0.0015 (4)0.0003 (4)
C20.0083 (5)0.0106 (5)0.0111 (5)0.0006 (4)0.0013 (4)0.0005 (4)
C30.0102 (5)0.0128 (6)0.0116 (5)0.0012 (4)0.0007 (4)0.0007 (4)
C40.0106 (5)0.0111 (5)0.0117 (5)0.0019 (4)0.0010 (4)0.0015 (4)
C50.0122 (5)0.0120 (6)0.0144 (5)0.0019 (4)0.0036 (4)0.0015 (4)
C60.0105 (5)0.0172 (6)0.0171 (6)0.0029 (5)0.0024 (4)0.0028 (5)
C70.0101 (5)0.0177 (6)0.0172 (6)0.0002 (5)0.0028 (4)0.0027 (5)
C80.0124 (6)0.0134 (6)0.0167 (6)0.0018 (4)0.0032 (4)0.0030 (5)
C90.0105 (5)0.0120 (6)0.0144 (5)0.0001 (4)0.0026 (4)0.0026 (4)
C100.0141 (6)0.0124 (6)0.0169 (6)0.0017 (5)0.0031 (5)0.0028 (5)
C110.0157 (6)0.0161 (6)0.0105 (5)0.0028 (5)0.0017 (4)0.0019 (4)
C120.0137 (6)0.0179 (6)0.0137 (6)0.0049 (5)0.0004 (4)0.0014 (5)
C130.0246 (7)0.0209 (7)0.0232 (7)0.0059 (6)0.0034 (5)0.0080 (5)
C140.0133 (6)0.0154 (6)0.0137 (5)0.0011 (5)0.0009 (4)0.0031 (5)
C150.0187 (6)0.0234 (7)0.0163 (6)0.0020 (5)0.0004 (5)0.0069 (5)
C160.0111 (5)0.0113 (5)0.0078 (5)0.0028 (4)0.0012 (4)0.0009 (4)
C170.0131 (5)0.0130 (6)0.0092 (5)0.0018 (4)0.0009 (4)0.0004 (4)
C180.0190 (6)0.0123 (6)0.0137 (6)0.0027 (5)0.0020 (5)0.0000 (4)
C190.0158 (6)0.0190 (6)0.0157 (6)0.0085 (5)0.0039 (5)0.0009 (5)
C200.0113 (5)0.0200 (6)0.0148 (6)0.0030 (5)0.0021 (4)0.0020 (5)
C210.0118 (5)0.0143 (6)0.0091 (5)0.0011 (4)0.0009 (4)0.0010 (4)
C220.0142 (6)0.0109 (6)0.0121 (5)0.0001 (4)0.0016 (4)0.0022 (4)
C230.0217 (7)0.0123 (6)0.0182 (6)0.0023 (5)0.0034 (5)0.0001 (5)
C240.0210 (6)0.0187 (6)0.0172 (6)0.0004 (5)0.0009 (5)0.0060 (5)
C250.0109 (5)0.0158 (6)0.0137 (5)0.0011 (4)0.0023 (4)0.0004 (5)
C260.0147 (6)0.0260 (7)0.0223 (7)0.0025 (5)0.0024 (5)0.0035 (5)
C270.0192 (6)0.0220 (7)0.0219 (7)0.0027 (5)0.0065 (5)0.0046 (5)
Geometric parameters (Å, º) top
N1—C161.4412 (15)C13—H13A0.9800
N1—C11.4794 (15)C13—H13B0.9800
N1—C41.4928 (15)C13—H13C0.9800
N2—C141.4662 (16)C14—C151.5274 (17)
N2—C11.4675 (14)C14—H14A0.9900
N2—C121.4745 (15)C14—H14B0.9900
C1—C21.5741 (16)C15—H15A0.9800
C1—H1A1.0000C15—H15B0.9800
C2—C31.5449 (16)C15—H15C0.9800
C2—C91.5445 (16)C16—C211.4162 (16)
C2—C51.5456 (16)C16—C171.4215 (17)
C3—C41.5402 (16)C17—C181.3974 (17)
C3—H3A0.9900C17—C221.5260 (17)
C3—H3B0.9900C18—C191.3853 (18)
C4—C111.5324 (17)C18—H18A0.9500
C4—C101.5406 (17)C19—C201.3800 (19)
C5—C61.5340 (17)C19—H19A0.9500
C5—H5A0.9900C20—C211.3978 (17)
C5—H5B0.9900C20—H20A0.9500
C6—C71.5260 (17)C21—C251.5222 (17)
C6—H6A0.9900C22—C241.5361 (17)
C6—H6B0.9900C22—C231.5390 (17)
C7—C81.5271 (18)C22—H22A1.0000
C7—H7A0.9900C23—H23A0.9800
C7—H7B0.9900C23—H23B0.9800
C8—C91.5307 (16)C23—H23C0.9800
C8—H8A0.9900C24—H24A0.9800
C8—H8B0.9900C24—H24B0.9800
C9—H9A0.9900C24—H24C0.9800
C9—H9B0.9900C25—C261.5337 (17)
C10—H10A0.9800C25—C271.5370 (18)
C10—H10B0.9800C25—H25A1.0000
C10—H10C0.9800C26—H26A0.9800
C11—H11A0.9800C26—H26B0.9800
C11—H11B0.9800C26—H26C0.9800
C11—H11C0.9800C27—H27A0.9800
C12—C131.5186 (19)C27—H27B0.9800
C12—H12A0.9900C27—H27C0.9800
C12—H12B0.9900
C16—N1—C1117.52 (9)N2—C12—H12B109.1
C16—N1—C4121.44 (9)C13—C12—H12B109.1
C1—N1—C4112.25 (9)H12A—C12—H12B107.9
C14—N2—C1117.99 (9)C12—C13—H13A109.5
C14—N2—C12112.05 (9)C12—C13—H13B109.5
C1—N2—C12113.47 (9)H13A—C13—H13B109.5
N2—C1—N1116.25 (9)C12—C13—H13C109.5
N2—C1—C2115.24 (9)H13A—C13—H13C109.5
N1—C1—C2106.30 (9)H13B—C13—H13C109.5
N2—C1—H1A106.1N2—C14—C15111.30 (10)
N1—C1—H1A106.1N2—C14—H14A109.4
C2—C1—H1A106.1C15—C14—H14A109.4
C3—C2—C9112.07 (10)N2—C14—H14B109.4
C3—C2—C5111.85 (9)C15—C14—H14B109.4
C9—C2—C5107.34 (9)H14A—C14—H14B108.0
C3—C2—C1103.21 (9)C14—C15—H15A109.5
C9—C2—C1114.88 (9)C14—C15—H15B109.5
C5—C2—C1107.46 (9)H15A—C15—H15B109.5
C4—C3—C2107.61 (9)C14—C15—H15C109.5
C4—C3—H3A110.2H15A—C15—H15C109.5
C2—C3—H3A110.2H15B—C15—H15C109.5
C4—C3—H3B110.2C21—C16—C17118.98 (11)
C2—C3—H3B110.2C21—C16—N1118.78 (10)
H3A—C3—H3B108.5C17—C16—N1122.22 (10)
N1—C4—C11112.99 (10)C18—C17—C16119.12 (11)
N1—C4—C3103.28 (9)C18—C17—C22117.14 (11)
C11—C4—C3110.91 (10)C16—C17—C22123.73 (10)
N1—C4—C10110.96 (9)C19—C18—C17121.59 (12)
C11—C4—C10107.56 (10)C19—C18—H18A119.2
C3—C4—C10111.18 (10)C17—C18—H18A119.2
C6—C5—C2113.58 (10)C20—C19—C18119.31 (12)
C6—C5—H5A108.8C20—C19—H19A120.3
C2—C5—H5A108.8C18—C19—H19A120.3
C6—C5—H5B108.8C19—C20—C21121.47 (12)
C2—C5—H5B108.8C19—C20—H20A119.3
H5A—C5—H5B107.7C21—C20—H20A119.3
C7—C6—C5110.69 (10)C20—C21—C16119.47 (11)
C7—C6—H6A109.5C20—C21—C25118.29 (11)
C5—C6—H6A109.5C16—C21—C25122.23 (11)
C7—C6—H6B109.5C17—C22—C24112.06 (10)
C5—C6—H6B109.5C17—C22—C23111.79 (10)
H6A—C6—H6B108.1C24—C22—C23108.81 (10)
C6—C7—C8110.10 (10)C17—C22—H22A108.0
C6—C7—H7A109.6C24—C22—H22A108.0
C8—C7—H7A109.6C23—C22—H22A108.0
C6—C7—H7B109.6C22—C23—H23A109.5
C8—C7—H7B109.6C22—C23—H23B109.5
H7A—C7—H7B108.2H23A—C23—H23B109.5
C7—C8—C9111.79 (10)C22—C23—H23C109.5
C7—C8—H8A109.3H23A—C23—H23C109.5
C9—C8—H8A109.3H23B—C23—H23C109.5
C7—C8—H8B109.3C22—C24—H24A109.5
C9—C8—H8B109.3C22—C24—H24B109.5
H8A—C8—H8B107.9H24A—C24—H24B109.5
C8—C9—C2113.24 (10)C22—C24—H24C109.5
C8—C9—H9A108.9H24A—C24—H24C109.5
C2—C9—H9A108.9H24B—C24—H24C109.5
C8—C9—H9B108.9C21—C25—C26111.94 (10)
C2—C9—H9B108.9C21—C25—C27111.11 (10)
H9A—C9—H9B107.7C26—C25—C27109.66 (11)
C4—C10—H10A109.5C21—C25—H25A108.0
C4—C10—H10B109.5C26—C25—H25A108.0
H10A—C10—H10B109.5C27—C25—H25A108.0
C4—C10—H10C109.5C25—C26—H26A109.5
H10A—C10—H10C109.5C25—C26—H26B109.5
H10B—C10—H10C109.5H26A—C26—H26B109.5
C4—C11—H11A109.5C25—C26—H26C109.5
C4—C11—H11B109.5H26A—C26—H26C109.5
H11A—C11—H11B109.5H26B—C26—H26C109.5
C4—C11—H11C109.5C25—C27—H27A109.5
H11A—C11—H11C109.5C25—C27—H27B109.5
H11B—C11—H11C109.5H27A—C27—H27B109.5
N2—C12—C13112.38 (10)C25—C27—H27C109.5
N2—C12—H12A109.1H27A—C27—H27C109.5
C13—C12—H12A109.1H27B—C27—H27C109.5
C14—N2—C1—N144.13 (14)C3—C2—C9—C869.22 (13)
C12—N2—C1—N189.84 (12)C5—C2—C9—C853.96 (13)
C14—N2—C1—C281.21 (13)C1—C2—C9—C8173.39 (10)
C12—N2—C1—C2144.82 (10)C14—N2—C12—C13132.20 (11)
C16—N1—C1—N282.53 (12)C1—N2—C12—C1391.09 (13)
C4—N1—C1—N2129.41 (10)C1—N2—C14—C15145.42 (11)
C16—N1—C1—C2147.71 (10)C12—N2—C14—C1579.99 (13)
C4—N1—C1—C20.35 (12)C1—N1—C16—C21118.88 (11)
N2—C1—C2—C3146.18 (10)C4—N1—C16—C2196.14 (13)
N1—C1—C2—C315.85 (11)C1—N1—C16—C1759.47 (14)
N2—C1—C2—C923.88 (14)C4—N1—C16—C1785.51 (14)
N1—C1—C2—C9106.45 (11)C21—C16—C17—C182.55 (16)
N2—C1—C2—C595.48 (11)N1—C16—C17—C18175.80 (10)
N1—C1—C2—C5134.18 (10)C21—C16—C17—C22176.45 (10)
C9—C2—C3—C497.89 (11)N1—C16—C17—C225.21 (17)
C5—C2—C3—C4141.50 (10)C16—C17—C18—C191.60 (18)
C1—C2—C3—C426.27 (12)C22—C17—C18—C19177.46 (11)
C16—N1—C4—C1110.30 (15)C17—C18—C19—C200.55 (19)
C1—N1—C4—C11136.35 (10)C18—C19—C20—C211.75 (19)
C16—N1—C4—C3130.19 (11)C19—C20—C21—C160.76 (18)
C1—N1—C4—C316.45 (12)C19—C20—C21—C25179.70 (11)
C16—N1—C4—C10110.60 (12)C17—C16—C21—C201.40 (16)
C1—N1—C4—C10102.76 (11)N1—C16—C21—C20177.00 (10)
C2—C3—C4—N126.48 (12)C17—C16—C21—C25178.12 (10)
C2—C3—C4—C11147.79 (10)N1—C16—C21—C253.48 (16)
C2—C3—C4—C1092.57 (11)C18—C17—C22—C2454.13 (14)
C3—C2—C5—C668.34 (13)C16—C17—C22—C24124.88 (12)
C9—C2—C5—C654.98 (13)C18—C17—C22—C2368.32 (14)
C1—C2—C5—C6179.06 (9)C16—C17—C22—C23112.66 (13)
C2—C5—C6—C757.69 (13)C20—C21—C25—C2652.45 (15)
C5—C6—C7—C855.75 (13)C16—C21—C25—C26128.02 (12)
C6—C7—C8—C955.59 (13)C20—C21—C25—C2770.53 (14)
C7—C8—C9—C256.42 (13)C16—C21—C25—C27109.01 (13)
Selected geometric parameters (Å, °). top
Bond distances
Ccarbene—NEt2C1—N21.4675 (14)
Ccarbene—N­cyclicC1—N11.4794 (15)
Ccarbene—CspiroC1—C21.5741 (16)
Ncyclic—CMe2N1—C41.4928 (15)
Cspiro—CH2C2—C31.5449 (16)
CMe2—CH2C4—C31.5402 (16)
Bond angles
Ncyclic—Ccarbene—CspiroN1—C1—C2106.30 (9)
Ncyclic—Ccarbene—NEt2N1—C1—N2116.25 (9)
Cspiro—Ccarbene—NEt2C2—C1—N2115.24 (9)
Ccarbene—Ncyclic—CDippC1—N1—C16117.52 (9)
 

Acknowledgements

We are grateful to the UCI Department of Chemistry, X-ray Crystallography Facility, for use of the Bruker SMART APEXII diffractometer.

Funding information

Funding for this research was provided by: Chapman University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChase, D. T., Moerdyk, J. P. & Bielawski, C. W. (2014). Org. Lett. 16, 812–815.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFrey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, 316, 439–441.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFrey, G. D., Masuda, J. D., Donnadieu, B. & Bertrand, G. (2010). Angew. Chem. Int. Ed. 49, 9444–9447.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHudnall, T. W., Moerdyk, J. P. & Bielawski, C. W. (2010). Chem. Commun. 46, 4288–4290.  Web of Science CSD CrossRef CAS Google Scholar
First citationKieser, J. M., Kinney, Z. J., Gaffen, J. R., Evariste, S., Harrison, A. M., Rheingold, A. L. & Protasiewicz, J. D. (2019). J. Am. Chem. Soc. 141, 12055–12063.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLastovickova, D. N. & Bielawski, C. W. (2016). Organometallics, 35, 706–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationLavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. (2005). Angew. Chem. Int. Ed. 44, 5705–5709.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. (2017). Angew. Chem. Int. Ed. 56, 10046–10068.  Web of Science CrossRef CAS Google Scholar
First citationMoerdyk, J. P., Blake, G. A., Chase, D. T. & Bielawski, C. W. (2013). J. Am. Chem. Soc. 135, 18798–18801.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPaul, U. S. D. & Radius, U. (2017). Chem. Eur. J. 23, 3993–4009.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoy, S., Mondal, K. C. & Roesky, H. W. (2016). Acc. Chem. Res. 49, 357–369.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoleilhavoup, M. & Bertrand, G. (2015). Acc. Chem. Res. 48, 256–266.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTolentino, D. R., Neale, S. E., Isaac, C. J., Macgregor, S. A., Whittlesey, M. K., Jazzar, R. & Bertrand, G. (2019). J. Am. Chem. Soc. 141, 9823–9826.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds