research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of di­ethyl (2E,2′E)-3,3′-[1-(8-phenyl­isoquinolin-1-yl)-1H-indole-2,7-di­yl]diacrylate

crossmark logo

aDepartment of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zxjseu@163.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 25 June 2021; accepted 30 July 2021; online 6 August 2021)

The mol­ecule of title compound, C33H28N2O4, comprises an indole unit (A), an iso­quinoline moiety (B) and a benzene ring (C). The dihedral angles between these groups are A/B = 57.47 (1), A/C = 18.48 (1) and B/C = 57.97 (1) °. The ethyl acrylate group at the 2-position is nearly co-planar with the indole unit [3.81 (2)°], while that at the 7-position is distinctly non-coplanar [52.64 (1)°]. Intra­molecular ππ inter­actions between the indole unit and benzene ring help to establish the clip-shaped conformation of the mol­ecule. In the crystal, the mol­ecules are assembled into two-dimensional layers via C—H⋯O hydrogen bonds, ππ and C—H⋯π inter­actions. Hirshfeld surface analysis illustrates that the greatest contributions are from H⋯H (63.2%), C⋯H/H⋯C (15.4%) and O⋯H/H⋯O (14.8%) contacts. The terminal C2H5 group of one of the ethyl acrylate side chains is disordered over two positions of equal occupancy.

1. Chemical context

As a type of N-containing heterocyclic compound, indoles derivatives are recognized as a privileged structural motif and are widely found in naturally occurring and synthetic mol­ecules with significant biological activity, such as alkaloids, agrochemicals, and drugs (Sharma et al., 2010[Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491-502.]; Vargas et al., 2018[Vargas, D. A., Tinoco, A., Tyagi, V. & Fasan, R. (2018). Angew. Chem. Int. Ed. 57, 9911-9915.]). In particular, drugs containing indole subunits exhibit various activities, such as anti-bacterial (Liu, Lauro et al., 2017[Liu, H. B., Lauro, G., O'Connor, R. D., Lohith, K., Kelly, M., Colin, P., Bifulco, G. & Bewley, C. A. (2017). J. Nat. Prod. 80, 2556-2560.]), anti-fungal (Xu et al., 2016[Xu, G. Q., Zhao, J. L., Jiang, Y. Q., Zhang, P. & Li, W. (2016). J. Chem. Res. 40, 269-272.]), anti-viral (Zhang et al., 2015[Zhang, M. Z., Chen, Q. & Yang, G. F. (2015). Eur. J. Med. Chem. 89, 421-441.]), anti-proliferative (Cheng et al., 2019[Cheng, G. L., Wang, Z., Yang, J. Y., Bao, Y., Xu, Q. H., Zhao, L. X. & Liu, D. (2019). Bioorg. Chem. 84, 410-417.]), anti-inflammatory (Mazzotta et al., 2020[Mazzotta, S., Frattaruolo, L., Brindisi, M., Ulivieri, C., Vanni, F., Brizzi, A., Carullo, G., Cappello, A. R. & Aiello, F. (2020). Future Med. Chem. 12, 5-17.]), anti-tumor (Li et al., 2007[Li, R. D., Zhai, X., Zhao, Y. F., Yu, S. & Gong, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 424-428.]), analgesic (Jin et al., 2021[Jin, P. F., Zhan, G. Q., Zheng, G., Liu, J. J., Peng, X., Huang, L., Gao, B., Yuan, X. H. & Yao, G. M. (2021). J. Nat. Prod. 84, 1326-1334.]), and a large number of indole-based drugs have been marketed (Mir et al., 2021[Mir, R. H., Mohi-ud-din, R., Wani, T. U., Dar, M. O., Shah, A. J., Lone, B., Pooja, C. & Masoodi, M. H. (2021). Curr. Org. Chem. 25, 724-736.]; Hussain et al., 2020[Hussain, K., Alam, Md. J., Hussain, A. & Siddique, N. A. (2020). Int. J. Pharm. Sci. Res. 11, 5441-5460.]), which has made great contributions to human health. Methods for the synthesis of functionalized indoles have therefore attracted a lot of attention over the past few decades. Among them, transition-metal-catalysed direct C—H activation of the indole framework itself has emerged as a fascinating avenue to afford functionalized indole derivatives on account of its atom economy and simplified procedure (Sandtorv, 2015[Sandtorv, A. H. (2015). Adv. Synth. Catal. 357, 2403-2435.]; Liu, Zhao& Wu, 2017[Liu, T., Zhou, W. & Wu, J. (2017). Org. Lett. 19, 6638-6641.]; Jagtap & Punji, 2020[Jagtap, R. A. & Punji, B. (2020). Asia. J. Org. Chem. 9, 326-342.]). On the other hand, because of the much higher reactivity of the 3-position than the 2-position and in turn than the sites in the six-membered ring (Joule et al., 2000[Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. Oxford: Blackwell Publishing.]; Fanton et al., 2010[Fanton, G., Coles, N. M., Cowley, A. R., Flemming, J. P. & Brown, J. M. (2010). Heterocycles, 80, 895-901.]), studies on the synthesis of 2,7-disubstituted indole derivatives have scarcely been reported. Kumar and Sekar employed pyrimidine as a directing group to synthesize 2-acyl indoles and 2,7-di­acyl indoles using a Pd catalyst (Kumar & Sekar, 2015[Kumar, G. & Sekar, G. (2015). RSC Adv. 5, 28292-28298.]). Herein, the synthesis, crystal structure and Hirshfeld analysis of the title compound is reported.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic P-1 space group with one mol­ecule in the asymmetric unit (Fig. 1[link]). The dihedral angles between the mean plane of the indole unit (A, N1/C16/C21–C23), the iso­quinoline moiety (B, N2/C7–C15) and the benzene ring (C, C1–C6) are 56.47 (2), 57.97 (1) and 18.48 (1)° for A/B, B/C and A/C, respectively. The benzene ring is almost parallel to the indole unit and hence intra­mol­ecular ππ inter­actions [Cg1⋯Cg2 = 3.3790 (4) Å, where Cg1 and Cg2 are the centroids of the N1/C16/C21–C23 and C1–C6 rings, respectively; Fig. 1[link]] arising from these two aromatic rings were observed, which contribute to the formation of the clip-shaped confirmation. The 2-substituted ethyl acrylate moiety on the indole unit is nearly co-planar with the indole unit [dihedral angle = 3.81 (2)°], while the dihedral angle between the indole unit and the 7-substituted ethyl acrylate moiety is 52.64 (1)°. Further analysis finds that the 7-substituted ethyl acrylate moiety is nearly parallel to the iso­quinoline unit [9.66 (2)°] and thus intra­mol­ecular ππ inter­actions [C30⋯Cg3 = 3.3958 (4) Å, Cg3 is the centroid of the C7–C12 ring; Fig. 1[link]] and C—H⋯π inter­actions are observed.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level showing the intra­molecular ππ and C—H⋯π inter­actions as dashed lines.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C10—H10A⋯O1, C8—H8A⋯O3 and C2—H2A⋯O4 hydrogen bonds (Fig. 2[link], Table 1[link]), generating two-dimensional layers propagating along the a-axis direction. Intermolecular ππ and C—H⋯π inter­actions [3.1990 (5)–4.1187 (6) Å] are observed within the layers (Fig. 3[link]). The layers are further connected into a three-dimensional network by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N2/C11–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.93 2.49 3.3404 (5) 152
C10—H10A⋯O1ii 0.93 2.64 3.4252 (5) 143
C2—H2A⋯O4iii 0.93 2.65 3.5339 (6) 159
C29—H29ACg3 0.93 2.86 3.370 (2) 116
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, -y, -z+2]; (iii) [-x, -y, -z+1].
[Figure 2]
Figure 2
The packing of the title compound showing the two-dimensional layers formed by C—H⋯O hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
Partial packing diagram of the title compound, showing the ππ and C—H–π inter­actions (red dashed lines).

4. Hirshfeld Surface analysis

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.1861 (red) to 1.7889 (blue) a.u. (Fig. 4[link]). The red spots symbolize short contacts and negative dnorm values on the surface correspond to the C—H⋯O hydrogen bonds described above. Two-dimensional fingerprint plots for the H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts are presented in Fig. 5[link]. At 63.2%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 15.4%, and the H⋯O/O⋯H contacts contribute 14.8% to the Hirshfeld surface, both resulting in a pair of characteristic wings.

[Figure 4]
Figure 4
Hirshfeld surfaces of the title compound mapped over dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A survey for compounds containing the subunit of the title compound, 2,7-di­vinyl-1H-indole, was conducted in the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Only one example, namely di­methyl 3,3′-(1-(isoquinolin-1-yl­meth­yl)-1H-indole-2,7-di­yl)(2E,2′E)-diacrylate (XUPXUC; Fanton et al., 2010[Fanton, G., Coles, N. M., Cowley, A. R., Flemming, J. P. & Brown, J. M. (2010). Heterocycles, 80, 895-901.]), was found, which has a isoquinolin-1-yl­methyl group attached to the nitro­gen atom.

6. Synthesis and crystallization

To a 10 mL Schlenk tube was added indole substrate 1-(1H-indol-1-yl)-8-phen­yliso­quinoline (0.20 mmol), Pd(OPiv)2 (OPiv = pivalate; 6.2 mg, 10 mol%), L [L = 2,5-di­methyl-7-(tri­fluoro­meth­yl)-3,4-di­hydro-2H-pyrano[2,3-b]quinoline; 11.3 mg, 20 mol%], CuO (15.7 mg, 1.0 equiv.) and Cu(OTf)2 (OTf = tri­fluoro­methane­sulfonate; 39.8 mg, 0.55 equiv.) and the tube was purged with O2 three times, followed by addition of ethyl acrylate (1.0 mmol) and anhydrous DCE (DCE = 1,2-di­chloro­ethane;1 mL). The formed mixture was stirred at 353 K under Ar for 24 h as monitored by TLC. The solution was then cooled to room temperature, and the solvent was removed under vacuum. The crude product was purified by column chromatography on silica gel to afford the pure product (55% yield). The recrystallization of the title compound in methanol afforded yellow block-shaped crystals. The synthesis is shown in Fig. 6[link].

[Figure 6]
Figure 6
Synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Atoms C32 and C33 were refined as disordered over two partially occupied positions of equal occupancy.

Table 2
Experimental details

Crystal data
Chemical formula C33H28N2O4
Mr 516.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6918 (11), 13.299 (2), 14.130 (2)
α, β, γ (°) 75.026 (2), 81.728 (3), 79.838 (2)
V3) 1367.1 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.980, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 7633, 4787, 3595
Rint 0.019
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.02
No. of reflections 4787
No. of parameters 361
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. , Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl (2E,2'E)-3,3'-[1-(8-phenylisoquinolin-1-yl)-1H-indole-2,7-diyl]diacrylate top
Crystal data top
C33H28N2O4Z = 2
Mr = 516.57F(000) = 544
Triclinic, P1Dx = 1.255 Mg m3
a = 7.6918 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.299 (2) ÅCell parameters from 2873 reflections
c = 14.130 (2) Åθ = 2.4–26.8°
α = 75.026 (2)°µ = 0.08 mm1
β = 81.728 (3)°T = 296 K
γ = 79.838 (2)°Block, yellow
V = 1367.1 (4) Å30.25 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4787 independent reflections
Radiation source: fine-focus sealed tube3595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 89
Tmin = 0.980, Tmax = 0.985k = 1515
7633 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2961P]
where P = (Fo2 + 2Fc2)/3
4787 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.19 e Å3
12 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2667 (3)0.12835 (16)0.62659 (15)0.0669 (5)
H1A0.20630.07850.59330.080*
C20.3886 (3)0.2076 (2)0.58064 (17)0.0805 (6)
H2A0.40850.21170.51630.097*
C30.4814 (3)0.28071 (18)0.62914 (18)0.0781 (6)
H3A0.56420.33420.59790.094*
C40.4512 (3)0.27430 (16)0.72388 (17)0.0714 (6)
H4A0.51490.32310.75730.086*
C50.3266 (2)0.19584 (14)0.77003 (14)0.0579 (5)
H5A0.30610.19290.83400.070*
C60.2320 (2)0.12148 (13)0.72222 (13)0.0492 (4)
C70.1090 (2)0.03181 (12)0.77462 (12)0.0486 (4)
C80.1445 (3)0.06862 (14)0.78380 (15)0.0645 (5)
H8A0.23560.07760.75140.077*
C90.0479 (3)0.15732 (15)0.84018 (17)0.0737 (6)
H9A0.07040.22400.84090.088*
C100.0779 (3)0.14745 (14)0.89381 (15)0.0668 (5)
H10A0.13600.20670.93430.080*
C110.1205 (2)0.04680 (13)0.88805 (13)0.0530 (4)
C120.0358 (2)0.04292 (12)0.82278 (11)0.0439 (4)
C130.1124 (2)0.13686 (12)0.80938 (12)0.0444 (4)
C140.2831 (3)0.06566 (16)0.93629 (15)0.0661 (5)
H14A0.35220.07540.98120.079*
C150.2454 (3)0.03174 (16)0.94468 (14)0.0644 (5)
H15A0.30220.08900.98800.077*
C160.1046 (2)0.21406 (12)0.62857 (12)0.0475 (4)
C170.1905 (2)0.13020 (13)0.58706 (13)0.0529 (4)
C180.1870 (3)0.14647 (16)0.48587 (14)0.0706 (6)
H18A0.24140.09300.45560.085*
C190.1055 (3)0.23942 (17)0.42822 (15)0.0809 (7)
H19A0.10280.24560.36140.097*
C200.0292 (3)0.32200 (16)0.46865 (15)0.0734 (6)
H20A0.02210.38460.42940.088*
C210.0296 (2)0.31074 (13)0.57007 (13)0.0556 (4)
C220.0357 (3)0.37794 (13)0.63444 (14)0.0596 (5)
H22A0.09060.44720.61590.072*
C230.0048 (2)0.32418 (12)0.72834 (13)0.0513 (4)
C240.0523 (2)0.35547 (13)0.82037 (14)0.0559 (4)
H24A0.02730.30470.87770.067*
C250.1282 (3)0.44978 (15)0.83035 (15)0.0655 (5)
H25A0.15140.50280.77430.079*
C260.1769 (3)0.47315 (14)0.92742 (16)0.0620 (5)
C270.3135 (4)0.60395 (19)1.01189 (17)0.0965 (8)
H27A0.36890.54941.06000.116*
H27B0.21070.61531.03820.116*
C280.4373 (3)0.69986 (18)0.99332 (18)0.0925 (8)
H28A0.47430.72181.05360.139*
H28B0.53900.68810.96770.139*
H28C0.38130.75370.94620.139*
C290.2884 (2)0.03339 (13)0.64329 (13)0.0532 (4)
H29A0.35650.03980.69010.064*
C300.2869 (3)0.06246 (14)0.63238 (14)0.0587 (5)
H30A0.21930.07110.58630.070*
C310.3893 (3)0.15528 (14)0.69115 (14)0.0594 (5)
C320.4348 (4)0.34173 (18)0.7337 (2)0.1125 (10)0.50
H32A0.42200.34230.80310.135*0.50
H32B0.56030.35160.71090.135*0.50
C330.3476 (11)0.4261 (6)0.7177 (6)0.122 (3)0.50
H33A0.40130.49310.75380.183*0.50
H33B0.36160.42460.64880.183*0.50
H33C0.22350.41500.74020.183*0.50
C32'0.4348 (4)0.34173 (18)0.7337 (2)0.1125 (10)0.50
H32C0.54850.33150.74890.135*0.50
H32D0.36290.36490.79520.135*0.50
C33'0.4613 (11)0.4205 (6)0.6780 (6)0.123 (3)0.50
H33D0.51980.48530.71550.185*0.50
H33E0.53330.39770.61740.185*0.50
H33F0.34840.43120.66390.185*0.50
N10.07802 (17)0.22204 (9)0.72568 (10)0.0450 (3)
N20.22465 (19)0.15007 (11)0.86518 (11)0.0565 (4)
O10.1490 (2)0.41273 (11)1.00476 (11)0.0842 (5)
O20.2587 (2)0.57132 (11)0.92002 (10)0.0829 (5)
O30.4949 (2)0.15455 (12)0.74563 (12)0.0822 (4)
O40.3472 (2)0.24346 (10)0.67786 (11)0.0831 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0716 (13)0.0773 (13)0.0607 (12)0.0157 (10)0.0119 (10)0.0266 (10)
C20.0833 (15)0.0984 (17)0.0651 (14)0.0211 (13)0.0271 (12)0.0129 (13)
C30.0634 (13)0.0787 (15)0.0846 (16)0.0108 (11)0.0249 (12)0.0038 (12)
C40.0633 (12)0.0652 (12)0.0771 (15)0.0021 (10)0.0026 (11)0.0120 (11)
C50.0602 (11)0.0592 (11)0.0508 (10)0.0031 (9)0.0021 (9)0.0124 (8)
C60.0483 (9)0.0527 (10)0.0500 (10)0.0156 (7)0.0014 (8)0.0147 (8)
C70.0525 (10)0.0448 (9)0.0491 (10)0.0095 (7)0.0042 (8)0.0158 (7)
C80.0677 (12)0.0551 (11)0.0759 (13)0.0193 (9)0.0030 (10)0.0234 (10)
C90.0843 (15)0.0413 (10)0.0905 (16)0.0173 (10)0.0150 (13)0.0148 (10)
C100.0763 (13)0.0437 (10)0.0669 (13)0.0004 (9)0.0090 (11)0.0042 (9)
C110.0543 (10)0.0480 (10)0.0489 (10)0.0021 (8)0.0057 (8)0.0103 (8)
C120.0480 (9)0.0402 (8)0.0418 (9)0.0028 (7)0.0040 (7)0.0136 (7)
C130.0468 (9)0.0431 (9)0.0437 (9)0.0007 (7)0.0024 (7)0.0164 (7)
C140.0640 (12)0.0750 (14)0.0611 (12)0.0068 (10)0.0208 (10)0.0231 (10)
C150.0640 (12)0.0625 (12)0.0553 (11)0.0132 (9)0.0079 (9)0.0077 (9)
C160.0547 (10)0.0426 (9)0.0473 (10)0.0154 (7)0.0011 (8)0.0113 (7)
C170.0621 (11)0.0493 (10)0.0500 (10)0.0155 (8)0.0041 (8)0.0170 (8)
C180.1023 (16)0.0597 (12)0.0512 (12)0.0169 (11)0.0054 (11)0.0193 (9)
C190.130 (2)0.0674 (13)0.0451 (11)0.0225 (13)0.0057 (12)0.0101 (10)
C200.1067 (17)0.0536 (11)0.0566 (12)0.0204 (11)0.0122 (11)0.0007 (9)
C210.0686 (11)0.0449 (9)0.0539 (11)0.0169 (8)0.0061 (9)0.0073 (8)
C220.0717 (12)0.0369 (9)0.0686 (13)0.0089 (8)0.0076 (10)0.0090 (9)
C230.0579 (10)0.0372 (9)0.0603 (11)0.0068 (7)0.0038 (8)0.0156 (8)
C240.0626 (11)0.0440 (9)0.0637 (11)0.0046 (8)0.0060 (9)0.0198 (8)
C250.0793 (13)0.0527 (11)0.0630 (12)0.0064 (9)0.0089 (10)0.0213 (9)
C260.0675 (12)0.0489 (11)0.0704 (13)0.0050 (9)0.0107 (10)0.0226 (10)
C270.129 (2)0.0874 (16)0.0712 (15)0.0354 (15)0.0210 (14)0.0450 (13)
C280.1016 (18)0.0868 (16)0.0880 (17)0.0128 (13)0.0026 (14)0.0434 (14)
C290.0549 (10)0.0556 (10)0.0498 (10)0.0072 (8)0.0066 (8)0.0209 (8)
C300.0711 (12)0.0542 (11)0.0530 (11)0.0030 (9)0.0060 (9)0.0211 (8)
C310.0649 (12)0.0581 (11)0.0565 (11)0.0013 (9)0.0013 (9)0.0238 (9)
C320.169 (3)0.0536 (14)0.114 (2)0.0120 (15)0.062 (2)0.0116 (14)
C330.171 (6)0.063 (3)0.126 (5)0.012 (4)0.035 (5)0.007 (3)
C32'0.169 (3)0.0536 (14)0.114 (2)0.0120 (15)0.062 (2)0.0116 (14)
C33'0.151 (6)0.068 (4)0.152 (6)0.019 (4)0.049 (5)0.035 (4)
N10.0526 (8)0.0371 (7)0.0476 (8)0.0073 (6)0.0034 (6)0.0147 (6)
N20.0544 (9)0.0595 (9)0.0605 (9)0.0024 (7)0.0134 (7)0.0229 (8)
O10.1208 (13)0.0566 (8)0.0690 (10)0.0082 (8)0.0098 (9)0.0183 (7)
O20.1138 (12)0.0630 (9)0.0678 (9)0.0313 (8)0.0199 (8)0.0324 (7)
O30.0754 (10)0.0800 (10)0.0964 (12)0.0037 (7)0.0272 (9)0.0254 (8)
O40.1246 (13)0.0488 (8)0.0808 (10)0.0030 (8)0.0383 (9)0.0200 (7)
Geometric parameters (Å, º) top
C1—C21.373 (3)C19—H19A0.9300
C1—C61.392 (2)C20—C211.402 (3)
C1—H1A0.9300C20—H20A0.9300
C2—C31.373 (3)C21—C221.417 (3)
C2—H2A0.9300C22—C231.367 (2)
C3—C41.370 (3)C22—H22A0.9300
C3—H3A0.9300C23—N11.402 (2)
C4—C51.381 (3)C23—C241.445 (2)
C4—H4A0.9300C24—C251.320 (2)
C5—C61.383 (2)C24—H24A0.9300
C5—H5A0.9300C25—C261.466 (3)
C6—C71.488 (2)C25—H25A0.9300
C7—C81.380 (2)C26—O11.200 (2)
C7—C121.433 (2)C26—O21.330 (2)
C8—C91.398 (3)C27—C281.440 (3)
C8—H8A0.9300C27—O21.456 (2)
C9—C101.355 (3)C27—H27A0.9700
C9—H9A0.9300C27—H27B0.9700
C10—C111.413 (3)C28—H28A0.9600
C10—H10A0.9300C28—H28B0.9600
C11—C151.406 (3)C28—H28C0.9600
C11—C121.424 (2)C29—C301.325 (2)
C12—C131.431 (2)C29—H29A0.9300
C13—N21.311 (2)C30—C311.466 (3)
C13—N11.430 (2)C30—H30A0.9300
C14—C151.349 (3)C31—O31.200 (2)
C14—N21.357 (2)C31—O41.335 (2)
C14—H14A0.9300C32—O41.447 (3)
C15—H15A0.9300C32—C331.483 (8)
C16—N11.387 (2)C32—H32A0.9700
C16—C171.411 (2)C32—H32B0.9700
C16—C211.413 (2)C33—H33A0.9600
C17—C181.393 (3)C33—H33B0.9600
C17—C291.469 (2)C33—H33C0.9600
C18—C191.392 (3)C33'—H33D0.9600
C18—H18A0.9300C33'—H33E0.9600
C19—C201.370 (3)C33'—H33F0.9600
C2—C1—C6121.0 (2)C20—C21—C16119.45 (17)
C2—C1—H1A119.5C20—C21—C22133.75 (18)
C6—C1—H1A119.5C16—C21—C22106.78 (16)
C1—C2—C3120.4 (2)C23—C22—C21108.75 (15)
C1—C2—H2A119.8C23—C22—H22A125.6
C3—C2—H2A119.8C21—C22—H22A125.6
C4—C3—C2119.5 (2)C22—C23—N1108.15 (15)
C4—C3—H3A120.3C22—C23—C24130.46 (16)
C2—C3—H3A120.3N1—C23—C24121.29 (15)
C3—C4—C5120.4 (2)C25—C24—C23125.78 (18)
C3—C4—H4A119.8C25—C24—H24A117.1
C5—C4—H4A119.8C23—C24—H24A117.1
C4—C5—C6120.80 (18)C24—C25—C26121.80 (19)
C4—C5—H5A119.6C24—C25—H25A119.1
C6—C5—H5A119.6C26—C25—H25A119.1
C5—C6—C1117.88 (17)O1—C26—O2123.11 (18)
C5—C6—C7120.82 (16)O1—C26—C25125.45 (17)
C1—C6—C7121.08 (16)O2—C26—C25111.44 (17)
C8—C7—C12117.69 (16)C28—C27—O2109.01 (19)
C8—C7—C6117.81 (16)C28—C27—H27A109.9
C12—C7—C6124.32 (14)O2—C27—H27A109.9
C7—C8—C9122.14 (19)C28—C27—H27B109.9
C7—C8—H8A118.9O2—C27—H27B109.9
C9—C8—H8A118.9H27A—C27—H27B108.3
C10—C9—C8120.86 (18)C27—C28—H28A109.5
C10—C9—H9A119.6C27—C28—H28B109.5
C8—C9—H9A119.6H28A—C28—H28B109.5
C9—C10—C11119.79 (18)C27—C28—H28C109.5
C9—C10—H10A120.1H28A—C28—H28C109.5
C11—C10—H10A120.1H28B—C28—H28C109.5
C15—C11—C10122.10 (17)C30—C29—C17124.97 (17)
C15—C11—C12118.29 (16)C30—C29—H29A117.5
C10—C11—C12119.61 (18)C17—C29—H29A117.5
C11—C12—C13114.52 (15)C29—C30—C31121.64 (18)
C11—C12—C7119.21 (14)C29—C30—H30A119.2
C13—C12—C7126.23 (14)C31—C30—H30A119.2
N2—C13—N1115.16 (14)O3—C31—O4123.31 (18)
N2—C13—C12125.01 (15)O3—C31—C30125.94 (18)
N1—C13—C12119.66 (14)O4—C31—C30110.74 (17)
C15—C14—N2122.84 (18)O4—C32—C33106.4 (4)
C15—C14—H14A118.6O4—C32—H32A110.4
N2—C14—H14A118.6C33—C32—H32A110.4
C14—C15—C11120.14 (17)O4—C32—H32B110.4
C14—C15—H15A119.9C33—C32—H32B110.4
C11—C15—H15A119.9H32A—C32—H32B108.6
N1—C16—C17130.45 (15)C32—C33—H33A109.5
N1—C16—C21107.63 (14)C32—C33—H33B109.5
C17—C16—C21121.91 (16)H33A—C33—H33B109.5
C18—C17—C16115.80 (17)C32—C33—H33C109.5
C18—C17—C29120.48 (16)H33A—C33—H33C109.5
C16—C17—C29123.62 (16)H33B—C33—H33C109.5
C19—C18—C17122.75 (18)H33D—C33'—H33E109.5
C19—C18—H18A118.6H33D—C33'—H33F109.5
C17—C18—H18A118.6H33E—C33'—H33F109.5
C20—C19—C18120.90 (19)C16—N1—C23108.62 (13)
C20—C19—H19A119.6C16—N1—C13125.19 (12)
C18—C19—H19A119.6C23—N1—C13125.88 (13)
C19—C20—C21119.03 (19)C13—N2—C14117.40 (16)
C19—C20—H20A120.5C26—O2—C27116.55 (16)
C21—C20—H20A120.5C31—O4—C32116.81 (18)
C6—C1—C2—C31.2 (3)C19—C20—C21—C161.5 (3)
C1—C2—C3—C40.2 (3)C19—C20—C21—C22179.9 (2)
C2—C3—C4—C50.9 (3)N1—C16—C21—C20176.43 (16)
C3—C4—C5—C60.9 (3)C17—C16—C21—C204.4 (3)
C4—C5—C6—C10.1 (3)N1—C16—C21—C222.38 (19)
C4—C5—C6—C7174.84 (16)C17—C16—C21—C22176.77 (16)
C2—C1—C6—C51.2 (3)C20—C21—C22—C23177.6 (2)
C2—C1—C6—C7175.87 (17)C16—C21—C22—C231.0 (2)
C5—C6—C7—C8118.61 (19)C21—C22—C23—N10.8 (2)
C1—C6—C7—C856.0 (2)C21—C22—C23—C24176.96 (18)
C5—C6—C7—C1256.3 (2)C22—C23—C24—C255.2 (3)
C1—C6—C7—C12129.10 (18)N1—C23—C24—C25179.04 (18)
C12—C7—C8—C91.9 (3)C23—C24—C25—C26177.95 (18)
C6—C7—C8—C9173.33 (17)C24—C25—C26—O12.5 (3)
C7—C8—C9—C104.4 (3)C24—C25—C26—O2177.10 (18)
C8—C9—C10—C114.1 (3)C18—C17—C29—C3043.1 (3)
C9—C10—C11—C15177.73 (18)C16—C17—C29—C30140.80 (19)
C9—C10—C11—C122.6 (3)C17—C29—C30—C31179.64 (16)
C15—C11—C12—C1310.8 (2)C29—C30—C31—O37.9 (3)
C10—C11—C12—C13168.87 (15)C29—C30—C31—O4170.90 (17)
C15—C11—C12—C7171.45 (15)C17—C16—N1—C23176.17 (17)
C10—C11—C12—C78.8 (2)C21—C16—N1—C232.89 (18)
C8—C7—C12—C118.4 (2)C17—C16—N1—C139.9 (3)
C6—C7—C12—C11166.54 (15)C21—C16—N1—C13171.01 (14)
C8—C7—C12—C13169.00 (16)C22—C23—N1—C162.29 (19)
C6—C7—C12—C1316.1 (2)C24—C23—N1—C16178.89 (15)
C11—C12—C13—N214.1 (2)C22—C23—N1—C13171.56 (15)
C7—C12—C13—N2168.39 (15)C24—C23—N1—C135.0 (2)
C11—C12—C13—N1161.00 (13)N2—C13—N1—C16122.36 (16)
C7—C12—C13—N116.5 (2)C12—C13—N1—C1653.2 (2)
N2—C14—C15—C119.5 (3)N2—C13—N1—C2364.8 (2)
C10—C11—C15—C14179.47 (17)C12—C13—N1—C23119.66 (17)
C12—C11—C15—C140.2 (3)N1—C13—N2—C14169.93 (14)
N1—C16—C17—C18177.25 (17)C12—C13—N2—C145.4 (2)
C21—C16—C17—C183.8 (2)C15—C14—N2—C137.0 (3)
N1—C16—C17—C296.5 (3)O1—C26—O2—C270.5 (3)
C21—C16—C17—C29172.48 (16)C25—C26—O2—C27179.9 (2)
C16—C17—C18—C190.4 (3)C28—C27—O2—C26165.3 (2)
C29—C17—C18—C19175.98 (19)O3—C31—O4—C320.5 (3)
C17—C18—C19—C202.4 (3)C30—C31—O4—C32178.3 (2)
C18—C19—C20—C211.8 (3)C33—C32—O4—C31171.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N2/C11–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.493.3404 (5)152
C10—H10A···O1ii0.932.643.4252 (5)143
C2—H2A···O4iii0.932.653.5339 (6)159
C29—H29A···Cg30.932.863.370 (2)116
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2; (iii) x, y, z+1.
 

Acknowledgements

Dr Yue Zhao of Nanjing Univeristy is thanked for assisting with the crystallographic studies.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc. , Madison, Wisconsin, USA.  Google Scholar
First citationCheng, G. L., Wang, Z., Yang, J. Y., Bao, Y., Xu, Q. H., Zhao, L. X. & Liu, D. (2019). Bioorg. Chem. 84, 410–417.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFanton, G., Coles, N. M., Cowley, A. R., Flemming, J. P. & Brown, J. M. (2010). Heterocycles, 80, 895–901.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, K., Alam, Md. J., Hussain, A. & Siddique, N. A. (2020). Int. J. Pharm. Sci. Res. 11, 5441–5460.  CAS Google Scholar
First citationJagtap, R. A. & Punji, B. (2020). Asia. J. Org. Chem. 9, 326–342.  Web of Science CrossRef CAS Google Scholar
First citationJin, P. F., Zhan, G. Q., Zheng, G., Liu, J. J., Peng, X., Huang, L., Gao, B., Yuan, X. H. & Yao, G. M. (2021). J. Nat. Prod. 84, 1326–1334.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJoule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. Oxford: Blackwell Publishing.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, G. & Sekar, G. (2015). RSC Adv. 5, 28292–28298.  Web of Science CrossRef CAS Google Scholar
First citationLi, R. D., Zhai, X., Zhao, Y. F., Yu, S. & Gong, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 424–428.  Web of Science CrossRef CAS Google Scholar
First citationLiu, H. B., Lauro, G., O'Connor, R. D., Lohith, K., Kelly, M., Colin, P., Bifulco, G. & Bewley, C. A. (2017). J. Nat. Prod. 80, 2556–2560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, T., Zhou, W. & Wu, J. (2017). Org. Lett. 19, 6638–6641.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMazzotta, S., Frattaruolo, L., Brindisi, M., Ulivieri, C., Vanni, F., Brizzi, A., Carullo, G., Cappello, A. R. & Aiello, F. (2020). Future Med. Chem. 12, 5–17.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMir, R. H., Mohi-ud-din, R., Wani, T. U., Dar, M. O., Shah, A. J., Lone, B., Pooja, C. & Masoodi, M. H. (2021). Curr. Org. Chem. 25, 724–736.  Web of Science CrossRef CAS Google Scholar
First citationSandtorv, A. H. (2015). Adv. Synth. Catal. 357, 2403–2435.  Web of Science CrossRef CAS Google Scholar
First citationSharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491–502.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.  Google Scholar
First citationVargas, D. A., Tinoco, A., Tyagi, V. & Fasan, R. (2018). Angew. Chem. Int. Ed. 57, 9911–9915.  Web of Science CrossRef CAS Google Scholar
First citationXu, G. Q., Zhao, J. L., Jiang, Y. Q., Zhang, P. & Li, W. (2016). J. Chem. Res. 40, 269–272.  Web of Science CrossRef CAS Google Scholar
First citationZhang, M. Z., Chen, Q. & Yang, G. F. (2015). Eur. J. Med. Chem. 89, 421–441.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds