research communications
E,2′E)-3,3′-[1-(8-phenylisoquinolin-1-yl)-1H-indole-2,7-diyl]diacrylate
and Hirshfeld analysis of diethyl (2aDepartment of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zxjseu@163.com
The molecule of title compound, C33H28N2O4, comprises an indole unit (A), an isoquinoline moiety (B) and a benzene ring (C). The dihedral angles between these groups are A/B = 57.47 (1), A/C = 18.48 (1) and B/C = 57.97 (1) °. The ethyl acrylate group at the 2-position is nearly co-planar with the indole unit [3.81 (2)°], while that at the 7-position is distinctly non-coplanar [52.64 (1)°]. Intramolecular π–π interactions between the indole unit and benzene ring help to establish the clip-shaped conformation of the molecule. In the crystal, the molecules are assembled into two-dimensional layers via C—H⋯O hydrogen bonds, π–π and C—H⋯π interactions. Hirshfeld surface analysis illustrates that the greatest contributions are from H⋯H (63.2%), C⋯H/H⋯C (15.4%) and O⋯H/H⋯O (14.8%) contacts. The terminal C2H5 group of one of the ethyl acrylate side chains is disordered over two positions of equal occupancy.
Keywords: crystal structure; indole; isoquinolin; weak interactions; Hirshfeld analysis.
CCDC reference: 2100362
1. Chemical context
As a type of N-containing heterocyclic compound, indoles derivatives are recognized as a privileged structural motif and are widely found in naturally occurring and synthetic molecules with significant biological activity, such as et al., 2010; Vargas et al., 2018). In particular, drugs containing indole subunits exhibit various activities, such as anti-bacterial (Liu, Lauro et al., 2017), anti-fungal (Xu et al., 2016), anti-viral (Zhang et al., 2015), anti-proliferative (Cheng et al., 2019), anti-inflammatory (Mazzotta et al., 2020), anti-tumor (Li et al., 2007), analgesic (Jin et al., 2021), and a large number of indole-based drugs have been marketed (Mir et al., 2021; Hussain et al., 2020), which has made great contributions to human health. Methods for the synthesis of functionalized indoles have therefore attracted a lot of attention over the past few decades. Among them, transition-metal-catalysed direct C—H activation of the indole framework itself has emerged as a fascinating avenue to afford functionalized indole derivatives on account of its atom economy and simplified procedure (Sandtorv, 2015; Liu, Zhao& Wu, 2017; Jagtap & Punji, 2020). On the other hand, because of the much higher reactivity of the 3-position than the 2-position and in turn than the sites in the six-membered ring (Joule et al., 2000; Fanton et al., 2010), studies on the synthesis of 2,7-disubstituted indole derivatives have scarcely been reported. Kumar and Sekar employed pyrimidine as a directing group to synthesize 2-acyl indoles and 2,7-diacyl indoles using a Pd catalyst (Kumar & Sekar, 2015). Herein, the synthesis, and Hirshfeld analysis of the title compound is reported.
agrochemicals, and drugs (Sharma2. Structural commentary
The title compound crystallizes in the triclinic P-1 with one molecule in the (Fig. 1). The dihedral angles between the mean plane of the indole unit (A, N1/C16/C21–C23), the isoquinoline moiety (B, N2/C7–C15) and the benzene ring (C, C1–C6) are 56.47 (2), 57.97 (1) and 18.48 (1)° for A/B, B/C and A/C, respectively. The benzene ring is almost parallel to the indole unit and hence intramolecular π–π interactions [Cg1⋯Cg2 = 3.3790 (4) Å, where Cg1 and Cg2 are the centroids of the N1/C16/C21–C23 and C1–C6 rings, respectively; Fig. 1] arising from these two aromatic rings were observed, which contribute to the formation of the clip-shaped confirmation. The 2-substituted ethyl acrylate moiety on the indole unit is nearly co-planar with the indole unit [dihedral angle = 3.81 (2)°], while the dihedral angle between the indole unit and the 7-substituted ethyl acrylate moiety is 52.64 (1)°. Further analysis finds that the 7-substituted ethyl acrylate moiety is nearly parallel to the isoquinoline unit [9.66 (2)°] and thus intramolecular π–π interactions [C30⋯Cg3 = 3.3958 (4) Å, Cg3 is the centroid of the C7–C12 ring; Fig. 1] and C—H⋯π interactions are observed.
3. Supramolecular features
In the crystal, the molecules are linked by C10—H10A⋯O1, C8—H8A⋯O3 and C2—H2A⋯O4 hydrogen bonds (Fig. 2, Table 1), generating two-dimensional layers propagating along the a-axis direction. Intermolecular π–π and C—H⋯π interactions [3.1990 (5)–4.1187 (6) Å] are observed within the layers (Fig. 3). The layers are further connected into a three-dimensional network by van der Waals interactions.
4. Hirshfeld Surface analysis
A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.1861 (red) to 1.7889 (blue) a.u. (Fig. 4). The red spots symbolize short contacts and negative dnorm values on the surface correspond to the C—H⋯O hydrogen bonds described above. Two-dimensional fingerprint plots for the H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts are presented in Fig. 5. At 63.2%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 15.4%, and the H⋯O/O⋯H contacts contribute 14.8% to the Hirshfeld surface, both resulting in a pair of characteristic wings.
5. Database survey
A survey for compounds containing the subunit of the title compound, 2,7-divinyl-1H-indole, was conducted in the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016). Only one example, namely dimethyl 3,3′-(1-(isoquinolin-1-ylmethyl)-1H-indole-2,7-diyl)(2E,2′E)-diacrylate (XUPXUC; Fanton et al., 2010), was found, which has a isoquinolin-1-ylmethyl group attached to the nitrogen atom.
6. Synthesis and crystallization
To a 10 mL Schlenk tube was added indole substrate 1-(1H-indol-1-yl)-8-phenylisoquinoline (0.20 mmol), Pd(OPiv)2 (OPiv− = pivalate; 6.2 mg, 10 mol%), L [L = 2,5-dimethyl-7-(trifluoromethyl)-3,4-dihydro-2H-pyrano[2,3-b]quinoline; 11.3 mg, 20 mol%], CuO (15.7 mg, 1.0 equiv.) and Cu(OTf)2 (OTf− = trifluoromethanesulfonate; 39.8 mg, 0.55 equiv.) and the tube was purged with O2 three times, followed by addition of ethyl acrylate (1.0 mmol) and anhydrous DCE (DCE = 1,2-dichloroethane;1 mL). The formed mixture was stirred at 353 K under Ar for 24 h as monitored by TLC. The solution was then cooled to room temperature, and the solvent was removed under vacuum. The crude product was purified by on silica gel to afford the pure product (55% yield). The recrystallization of the title compound in methanol afforded yellow block-shaped crystals. The synthesis is shown in Fig. 6.
7. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Atoms C32 and C33 were refined as disordered over two partially occupied positions of equal occupancy.
details are summarized in Table 2Supporting information
CCDC reference: 2100362
https://doi.org/10.1107/S2056989021007829/zn2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007829/zn2008Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007829/zn2008Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C33H28N2O4 | Z = 2 |
Mr = 516.57 | F(000) = 544 |
Triclinic, P1 | Dx = 1.255 Mg m−3 |
a = 7.6918 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.299 (2) Å | Cell parameters from 2873 reflections |
c = 14.130 (2) Å | θ = 2.4–26.8° |
α = 75.026 (2)° | µ = 0.08 mm−1 |
β = 81.728 (3)° | T = 296 K |
γ = 79.838 (2)° | Block, yellow |
V = 1367.1 (4) Å3 | 0.25 × 0.22 × 0.18 mm |
Bruker APEXII CCD diffractometer | 4787 independent reflections |
Radiation source: fine-focus sealed tube | 3595 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→9 |
Tmin = 0.980, Tmax = 0.985 | k = −15→15 |
7633 measured reflections | l = −16→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2961P] where P = (Fo2 + 2Fc2)/3 |
4787 reflections | (Δ/σ)max < 0.001 |
361 parameters | Δρmax = 0.19 e Å−3 |
12 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | −0.2667 (3) | 0.12835 (16) | 0.62659 (15) | 0.0669 (5) | |
H1A | −0.2063 | 0.0785 | 0.5933 | 0.080* | |
C2 | −0.3886 (3) | 0.2076 (2) | 0.58064 (17) | 0.0805 (6) | |
H2A | −0.4085 | 0.2117 | 0.5163 | 0.097* | |
C3 | −0.4814 (3) | 0.28071 (18) | 0.62914 (18) | 0.0781 (6) | |
H3A | −0.5642 | 0.3342 | 0.5979 | 0.094* | |
C4 | −0.4512 (3) | 0.27430 (16) | 0.72388 (17) | 0.0714 (6) | |
H4A | −0.5149 | 0.3231 | 0.7573 | 0.086* | |
C5 | −0.3266 (2) | 0.19584 (14) | 0.77003 (14) | 0.0579 (5) | |
H5A | −0.3061 | 0.1929 | 0.8340 | 0.070* | |
C6 | −0.2320 (2) | 0.12148 (13) | 0.72222 (13) | 0.0492 (4) | |
C7 | −0.1090 (2) | 0.03181 (12) | 0.77462 (12) | 0.0486 (4) | |
C8 | −0.1445 (3) | −0.06862 (14) | 0.78380 (15) | 0.0645 (5) | |
H8A | −0.2356 | −0.0776 | 0.7514 | 0.077* | |
C9 | −0.0479 (3) | −0.15732 (15) | 0.84018 (17) | 0.0737 (6) | |
H9A | −0.0704 | −0.2240 | 0.8409 | 0.088* | |
C10 | 0.0779 (3) | −0.14745 (14) | 0.89381 (15) | 0.0668 (5) | |
H10A | 0.1360 | −0.2067 | 0.9343 | 0.080* | |
C11 | 0.1205 (2) | −0.04680 (13) | 0.88805 (13) | 0.0530 (4) | |
C12 | 0.0358 (2) | 0.04292 (12) | 0.82278 (11) | 0.0439 (4) | |
C13 | 0.1124 (2) | 0.13686 (12) | 0.80938 (12) | 0.0444 (4) | |
C14 | 0.2831 (3) | 0.06566 (16) | 0.93629 (15) | 0.0661 (5) | |
H14A | 0.3522 | 0.0754 | 0.9812 | 0.079* | |
C15 | 0.2454 (3) | −0.03174 (16) | 0.94468 (14) | 0.0644 (5) | |
H15A | 0.3022 | −0.0890 | 0.9880 | 0.077* | |
C16 | 0.1046 (2) | 0.21406 (12) | 0.62857 (12) | 0.0475 (4) | |
C17 | 0.1905 (2) | 0.13020 (13) | 0.58706 (13) | 0.0529 (4) | |
C18 | 0.1870 (3) | 0.14647 (16) | 0.48587 (14) | 0.0706 (6) | |
H18A | 0.2414 | 0.0930 | 0.4556 | 0.085* | |
C19 | 0.1055 (3) | 0.23942 (17) | 0.42822 (15) | 0.0809 (7) | |
H19A | 0.1028 | 0.2456 | 0.3614 | 0.097* | |
C20 | 0.0292 (3) | 0.32200 (16) | 0.46865 (15) | 0.0734 (6) | |
H20A | −0.0221 | 0.3846 | 0.4294 | 0.088* | |
C21 | 0.0296 (2) | 0.31074 (13) | 0.57007 (13) | 0.0556 (4) | |
C22 | −0.0357 (3) | 0.37794 (13) | 0.63444 (14) | 0.0596 (5) | |
H22A | −0.0906 | 0.4472 | 0.6159 | 0.072* | |
C23 | −0.0048 (2) | 0.32418 (12) | 0.72834 (13) | 0.0513 (4) | |
C24 | −0.0523 (2) | 0.35547 (13) | 0.82037 (14) | 0.0559 (4) | |
H24A | −0.0273 | 0.3047 | 0.8777 | 0.067* | |
C25 | −0.1282 (3) | 0.44978 (15) | 0.83035 (15) | 0.0655 (5) | |
H25A | −0.1514 | 0.5028 | 0.7743 | 0.079* | |
C26 | −0.1769 (3) | 0.47315 (14) | 0.92742 (16) | 0.0620 (5) | |
C27 | −0.3135 (4) | 0.60395 (19) | 1.01189 (17) | 0.0965 (8) | |
H27A | −0.3689 | 0.5494 | 1.0600 | 0.116* | |
H27B | −0.2107 | 0.6153 | 1.0382 | 0.116* | |
C28 | −0.4373 (3) | 0.69986 (18) | 0.99332 (18) | 0.0925 (8) | |
H28A | −0.4743 | 0.7218 | 1.0536 | 0.139* | |
H28B | −0.5390 | 0.6881 | 0.9677 | 0.139* | |
H28C | −0.3813 | 0.7537 | 0.9462 | 0.139* | |
C29 | 0.2884 (2) | 0.03339 (13) | 0.64329 (13) | 0.0532 (4) | |
H29A | 0.3565 | 0.0398 | 0.6901 | 0.064* | |
C30 | 0.2869 (3) | −0.06246 (14) | 0.63238 (14) | 0.0587 (5) | |
H30A | 0.2193 | −0.0711 | 0.5863 | 0.070* | |
C31 | 0.3893 (3) | −0.15528 (14) | 0.69115 (14) | 0.0594 (5) | |
C32 | 0.4348 (4) | −0.34173 (18) | 0.7337 (2) | 0.1125 (10) | 0.50 |
H32A | 0.4220 | −0.3423 | 0.8031 | 0.135* | 0.50 |
H32B | 0.5603 | −0.3516 | 0.7109 | 0.135* | 0.50 |
C33 | 0.3476 (11) | −0.4261 (6) | 0.7177 (6) | 0.122 (3) | 0.50 |
H33A | 0.4013 | −0.4931 | 0.7538 | 0.183* | 0.50 |
H33B | 0.3616 | −0.4246 | 0.6488 | 0.183* | 0.50 |
H33C | 0.2235 | −0.4150 | 0.7402 | 0.183* | 0.50 |
C32' | 0.4348 (4) | −0.34173 (18) | 0.7337 (2) | 0.1125 (10) | 0.50 |
H32C | 0.5485 | −0.3315 | 0.7489 | 0.135* | 0.50 |
H32D | 0.3629 | −0.3649 | 0.7952 | 0.135* | 0.50 |
C33' | 0.4613 (11) | −0.4205 (6) | 0.6780 (6) | 0.123 (3) | 0.50 |
H33D | 0.5198 | −0.4853 | 0.7155 | 0.185* | 0.50 |
H33E | 0.5333 | −0.3977 | 0.6174 | 0.185* | 0.50 |
H33F | 0.3484 | −0.4312 | 0.6639 | 0.185* | 0.50 |
N1 | 0.07802 (17) | 0.22204 (9) | 0.72568 (10) | 0.0450 (3) | |
N2 | 0.22465 (19) | 0.15007 (11) | 0.86518 (11) | 0.0565 (4) | |
O1 | −0.1490 (2) | 0.41273 (11) | 1.00476 (11) | 0.0842 (5) | |
O2 | −0.2587 (2) | 0.57132 (11) | 0.92002 (10) | 0.0829 (5) | |
O3 | 0.4949 (2) | −0.15455 (12) | 0.74563 (12) | 0.0822 (4) | |
O4 | 0.3472 (2) | −0.24346 (10) | 0.67786 (11) | 0.0831 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0716 (13) | 0.0773 (13) | 0.0607 (12) | −0.0157 (10) | −0.0119 (10) | −0.0266 (10) |
C2 | 0.0833 (15) | 0.0984 (17) | 0.0651 (14) | −0.0211 (13) | −0.0271 (12) | −0.0129 (13) |
C3 | 0.0634 (13) | 0.0787 (15) | 0.0846 (16) | −0.0108 (11) | −0.0249 (12) | 0.0038 (12) |
C4 | 0.0633 (12) | 0.0652 (12) | 0.0771 (15) | 0.0021 (10) | −0.0026 (11) | −0.0120 (11) |
C5 | 0.0602 (11) | 0.0592 (11) | 0.0508 (10) | −0.0031 (9) | −0.0021 (9) | −0.0124 (8) |
C6 | 0.0483 (9) | 0.0527 (10) | 0.0500 (10) | −0.0156 (7) | −0.0014 (8) | −0.0147 (8) |
C7 | 0.0525 (10) | 0.0448 (9) | 0.0491 (10) | −0.0095 (7) | 0.0042 (8) | −0.0158 (7) |
C8 | 0.0677 (12) | 0.0551 (11) | 0.0759 (13) | −0.0193 (9) | 0.0030 (10) | −0.0234 (10) |
C9 | 0.0843 (15) | 0.0413 (10) | 0.0905 (16) | −0.0173 (10) | 0.0150 (13) | −0.0148 (10) |
C10 | 0.0763 (13) | 0.0437 (10) | 0.0669 (13) | 0.0004 (9) | 0.0090 (11) | −0.0042 (9) |
C11 | 0.0543 (10) | 0.0480 (10) | 0.0489 (10) | 0.0021 (8) | 0.0057 (8) | −0.0103 (8) |
C12 | 0.0480 (9) | 0.0402 (8) | 0.0418 (9) | −0.0028 (7) | 0.0040 (7) | −0.0136 (7) |
C13 | 0.0468 (9) | 0.0431 (9) | 0.0437 (9) | −0.0007 (7) | −0.0024 (7) | −0.0164 (7) |
C14 | 0.0640 (12) | 0.0750 (14) | 0.0611 (12) | 0.0068 (10) | −0.0208 (10) | −0.0231 (10) |
C15 | 0.0640 (12) | 0.0625 (12) | 0.0553 (11) | 0.0132 (9) | −0.0079 (9) | −0.0077 (9) |
C16 | 0.0547 (10) | 0.0426 (9) | 0.0473 (10) | −0.0154 (7) | −0.0011 (8) | −0.0113 (7) |
C17 | 0.0621 (11) | 0.0493 (10) | 0.0500 (10) | −0.0155 (8) | 0.0041 (8) | −0.0170 (8) |
C18 | 0.1023 (16) | 0.0597 (12) | 0.0512 (12) | −0.0169 (11) | 0.0054 (11) | −0.0193 (9) |
C19 | 0.130 (2) | 0.0674 (13) | 0.0451 (11) | −0.0225 (13) | −0.0057 (12) | −0.0101 (10) |
C20 | 0.1067 (17) | 0.0536 (11) | 0.0566 (12) | −0.0204 (11) | −0.0122 (11) | 0.0007 (9) |
C21 | 0.0686 (11) | 0.0449 (9) | 0.0539 (11) | −0.0169 (8) | −0.0061 (9) | −0.0073 (8) |
C22 | 0.0717 (12) | 0.0369 (9) | 0.0686 (13) | −0.0089 (8) | −0.0076 (10) | −0.0090 (9) |
C23 | 0.0579 (10) | 0.0372 (9) | 0.0603 (11) | −0.0068 (7) | −0.0038 (8) | −0.0156 (8) |
C24 | 0.0626 (11) | 0.0440 (9) | 0.0637 (11) | −0.0046 (8) | −0.0060 (9) | −0.0198 (8) |
C25 | 0.0793 (13) | 0.0527 (11) | 0.0630 (12) | 0.0064 (9) | −0.0089 (10) | −0.0213 (9) |
C26 | 0.0675 (12) | 0.0489 (11) | 0.0704 (13) | 0.0050 (9) | −0.0107 (10) | −0.0226 (10) |
C27 | 0.129 (2) | 0.0874 (16) | 0.0712 (15) | 0.0354 (15) | −0.0210 (14) | −0.0450 (13) |
C28 | 0.1016 (18) | 0.0868 (16) | 0.0880 (17) | 0.0128 (13) | 0.0026 (14) | −0.0434 (14) |
C29 | 0.0549 (10) | 0.0556 (10) | 0.0498 (10) | −0.0072 (8) | 0.0066 (8) | −0.0209 (8) |
C30 | 0.0711 (12) | 0.0542 (11) | 0.0530 (11) | −0.0030 (9) | −0.0060 (9) | −0.0211 (8) |
C31 | 0.0649 (12) | 0.0581 (11) | 0.0565 (11) | −0.0013 (9) | −0.0013 (9) | −0.0238 (9) |
C32 | 0.169 (3) | 0.0536 (14) | 0.114 (2) | 0.0120 (15) | −0.062 (2) | −0.0116 (14) |
C33 | 0.171 (6) | 0.063 (3) | 0.126 (5) | −0.012 (4) | −0.035 (5) | −0.007 (3) |
C32' | 0.169 (3) | 0.0536 (14) | 0.114 (2) | 0.0120 (15) | −0.062 (2) | −0.0116 (14) |
C33' | 0.151 (6) | 0.068 (4) | 0.152 (6) | 0.019 (4) | −0.049 (5) | −0.035 (4) |
N1 | 0.0526 (8) | 0.0371 (7) | 0.0476 (8) | −0.0073 (6) | −0.0034 (6) | −0.0147 (6) |
N2 | 0.0544 (9) | 0.0595 (9) | 0.0605 (9) | −0.0024 (7) | −0.0134 (7) | −0.0229 (8) |
O1 | 0.1208 (13) | 0.0566 (8) | 0.0690 (10) | 0.0082 (8) | −0.0098 (9) | −0.0183 (7) |
O2 | 0.1138 (12) | 0.0630 (9) | 0.0678 (9) | 0.0313 (8) | −0.0199 (8) | −0.0324 (7) |
O3 | 0.0754 (10) | 0.0800 (10) | 0.0964 (12) | −0.0037 (7) | −0.0272 (9) | −0.0254 (8) |
O4 | 0.1246 (13) | 0.0488 (8) | 0.0808 (10) | 0.0030 (8) | −0.0383 (9) | −0.0200 (7) |
C1—C2 | 1.373 (3) | C19—H19A | 0.9300 |
C1—C6 | 1.392 (2) | C20—C21 | 1.402 (3) |
C1—H1A | 0.9300 | C20—H20A | 0.9300 |
C2—C3 | 1.373 (3) | C21—C22 | 1.417 (3) |
C2—H2A | 0.9300 | C22—C23 | 1.367 (2) |
C3—C4 | 1.370 (3) | C22—H22A | 0.9300 |
C3—H3A | 0.9300 | C23—N1 | 1.402 (2) |
C4—C5 | 1.381 (3) | C23—C24 | 1.445 (2) |
C4—H4A | 0.9300 | C24—C25 | 1.320 (2) |
C5—C6 | 1.383 (2) | C24—H24A | 0.9300 |
C5—H5A | 0.9300 | C25—C26 | 1.466 (3) |
C6—C7 | 1.488 (2) | C25—H25A | 0.9300 |
C7—C8 | 1.380 (2) | C26—O1 | 1.200 (2) |
C7—C12 | 1.433 (2) | C26—O2 | 1.330 (2) |
C8—C9 | 1.398 (3) | C27—C28 | 1.440 (3) |
C8—H8A | 0.9300 | C27—O2 | 1.456 (2) |
C9—C10 | 1.355 (3) | C27—H27A | 0.9700 |
C9—H9A | 0.9300 | C27—H27B | 0.9700 |
C10—C11 | 1.413 (3) | C28—H28A | 0.9600 |
C10—H10A | 0.9300 | C28—H28B | 0.9600 |
C11—C15 | 1.406 (3) | C28—H28C | 0.9600 |
C11—C12 | 1.424 (2) | C29—C30 | 1.325 (2) |
C12—C13 | 1.431 (2) | C29—H29A | 0.9300 |
C13—N2 | 1.311 (2) | C30—C31 | 1.466 (3) |
C13—N1 | 1.430 (2) | C30—H30A | 0.9300 |
C14—C15 | 1.349 (3) | C31—O3 | 1.200 (2) |
C14—N2 | 1.357 (2) | C31—O4 | 1.335 (2) |
C14—H14A | 0.9300 | C32—O4 | 1.447 (3) |
C15—H15A | 0.9300 | C32—C33 | 1.483 (8) |
C16—N1 | 1.387 (2) | C32—H32A | 0.9700 |
C16—C17 | 1.411 (2) | C32—H32B | 0.9700 |
C16—C21 | 1.413 (2) | C33—H33A | 0.9600 |
C17—C18 | 1.393 (3) | C33—H33B | 0.9600 |
C17—C29 | 1.469 (2) | C33—H33C | 0.9600 |
C18—C19 | 1.392 (3) | C33'—H33D | 0.9600 |
C18—H18A | 0.9300 | C33'—H33E | 0.9600 |
C19—C20 | 1.370 (3) | C33'—H33F | 0.9600 |
C2—C1—C6 | 121.0 (2) | C20—C21—C16 | 119.45 (17) |
C2—C1—H1A | 119.5 | C20—C21—C22 | 133.75 (18) |
C6—C1—H1A | 119.5 | C16—C21—C22 | 106.78 (16) |
C1—C2—C3 | 120.4 (2) | C23—C22—C21 | 108.75 (15) |
C1—C2—H2A | 119.8 | C23—C22—H22A | 125.6 |
C3—C2—H2A | 119.8 | C21—C22—H22A | 125.6 |
C4—C3—C2 | 119.5 (2) | C22—C23—N1 | 108.15 (15) |
C4—C3—H3A | 120.3 | C22—C23—C24 | 130.46 (16) |
C2—C3—H3A | 120.3 | N1—C23—C24 | 121.29 (15) |
C3—C4—C5 | 120.4 (2) | C25—C24—C23 | 125.78 (18) |
C3—C4—H4A | 119.8 | C25—C24—H24A | 117.1 |
C5—C4—H4A | 119.8 | C23—C24—H24A | 117.1 |
C4—C5—C6 | 120.80 (18) | C24—C25—C26 | 121.80 (19) |
C4—C5—H5A | 119.6 | C24—C25—H25A | 119.1 |
C6—C5—H5A | 119.6 | C26—C25—H25A | 119.1 |
C5—C6—C1 | 117.88 (17) | O1—C26—O2 | 123.11 (18) |
C5—C6—C7 | 120.82 (16) | O1—C26—C25 | 125.45 (17) |
C1—C6—C7 | 121.08 (16) | O2—C26—C25 | 111.44 (17) |
C8—C7—C12 | 117.69 (16) | C28—C27—O2 | 109.01 (19) |
C8—C7—C6 | 117.81 (16) | C28—C27—H27A | 109.9 |
C12—C7—C6 | 124.32 (14) | O2—C27—H27A | 109.9 |
C7—C8—C9 | 122.14 (19) | C28—C27—H27B | 109.9 |
C7—C8—H8A | 118.9 | O2—C27—H27B | 109.9 |
C9—C8—H8A | 118.9 | H27A—C27—H27B | 108.3 |
C10—C9—C8 | 120.86 (18) | C27—C28—H28A | 109.5 |
C10—C9—H9A | 119.6 | C27—C28—H28B | 109.5 |
C8—C9—H9A | 119.6 | H28A—C28—H28B | 109.5 |
C9—C10—C11 | 119.79 (18) | C27—C28—H28C | 109.5 |
C9—C10—H10A | 120.1 | H28A—C28—H28C | 109.5 |
C11—C10—H10A | 120.1 | H28B—C28—H28C | 109.5 |
C15—C11—C10 | 122.10 (17) | C30—C29—C17 | 124.97 (17) |
C15—C11—C12 | 118.29 (16) | C30—C29—H29A | 117.5 |
C10—C11—C12 | 119.61 (18) | C17—C29—H29A | 117.5 |
C11—C12—C13 | 114.52 (15) | C29—C30—C31 | 121.64 (18) |
C11—C12—C7 | 119.21 (14) | C29—C30—H30A | 119.2 |
C13—C12—C7 | 126.23 (14) | C31—C30—H30A | 119.2 |
N2—C13—N1 | 115.16 (14) | O3—C31—O4 | 123.31 (18) |
N2—C13—C12 | 125.01 (15) | O3—C31—C30 | 125.94 (18) |
N1—C13—C12 | 119.66 (14) | O4—C31—C30 | 110.74 (17) |
C15—C14—N2 | 122.84 (18) | O4—C32—C33 | 106.4 (4) |
C15—C14—H14A | 118.6 | O4—C32—H32A | 110.4 |
N2—C14—H14A | 118.6 | C33—C32—H32A | 110.4 |
C14—C15—C11 | 120.14 (17) | O4—C32—H32B | 110.4 |
C14—C15—H15A | 119.9 | C33—C32—H32B | 110.4 |
C11—C15—H15A | 119.9 | H32A—C32—H32B | 108.6 |
N1—C16—C17 | 130.45 (15) | C32—C33—H33A | 109.5 |
N1—C16—C21 | 107.63 (14) | C32—C33—H33B | 109.5 |
C17—C16—C21 | 121.91 (16) | H33A—C33—H33B | 109.5 |
C18—C17—C16 | 115.80 (17) | C32—C33—H33C | 109.5 |
C18—C17—C29 | 120.48 (16) | H33A—C33—H33C | 109.5 |
C16—C17—C29 | 123.62 (16) | H33B—C33—H33C | 109.5 |
C19—C18—C17 | 122.75 (18) | H33D—C33'—H33E | 109.5 |
C19—C18—H18A | 118.6 | H33D—C33'—H33F | 109.5 |
C17—C18—H18A | 118.6 | H33E—C33'—H33F | 109.5 |
C20—C19—C18 | 120.90 (19) | C16—N1—C23 | 108.62 (13) |
C20—C19—H19A | 119.6 | C16—N1—C13 | 125.19 (12) |
C18—C19—H19A | 119.6 | C23—N1—C13 | 125.88 (13) |
C19—C20—C21 | 119.03 (19) | C13—N2—C14 | 117.40 (16) |
C19—C20—H20A | 120.5 | C26—O2—C27 | 116.55 (16) |
C21—C20—H20A | 120.5 | C31—O4—C32 | 116.81 (18) |
C6—C1—C2—C3 | −1.2 (3) | C19—C20—C21—C16 | −1.5 (3) |
C1—C2—C3—C4 | 0.2 (3) | C19—C20—C21—C22 | −179.9 (2) |
C2—C3—C4—C5 | 0.9 (3) | N1—C16—C21—C20 | −176.43 (16) |
C3—C4—C5—C6 | −0.9 (3) | C17—C16—C21—C20 | 4.4 (3) |
C4—C5—C6—C1 | −0.1 (3) | N1—C16—C21—C22 | 2.38 (19) |
C4—C5—C6—C7 | −174.84 (16) | C17—C16—C21—C22 | −176.77 (16) |
C2—C1—C6—C5 | 1.2 (3) | C20—C21—C22—C23 | 177.6 (2) |
C2—C1—C6—C7 | 175.87 (17) | C16—C21—C22—C23 | −1.0 (2) |
C5—C6—C7—C8 | 118.61 (19) | C21—C22—C23—N1 | −0.8 (2) |
C1—C6—C7—C8 | −56.0 (2) | C21—C22—C23—C24 | −176.96 (18) |
C5—C6—C7—C12 | −56.3 (2) | C22—C23—C24—C25 | −5.2 (3) |
C1—C6—C7—C12 | 129.10 (18) | N1—C23—C24—C25 | 179.04 (18) |
C12—C7—C8—C9 | 1.9 (3) | C23—C24—C25—C26 | 177.95 (18) |
C6—C7—C8—C9 | −173.33 (17) | C24—C25—C26—O1 | 2.5 (3) |
C7—C8—C9—C10 | 4.4 (3) | C24—C25—C26—O2 | −177.10 (18) |
C8—C9—C10—C11 | −4.1 (3) | C18—C17—C29—C30 | −43.1 (3) |
C9—C10—C11—C15 | 177.73 (18) | C16—C17—C29—C30 | 140.80 (19) |
C9—C10—C11—C12 | −2.6 (3) | C17—C29—C30—C31 | 179.64 (16) |
C15—C11—C12—C13 | 10.8 (2) | C29—C30—C31—O3 | −7.9 (3) |
C10—C11—C12—C13 | −168.87 (15) | C29—C30—C31—O4 | 170.90 (17) |
C15—C11—C12—C7 | −171.45 (15) | C17—C16—N1—C23 | 176.17 (17) |
C10—C11—C12—C7 | 8.8 (2) | C21—C16—N1—C23 | −2.89 (18) |
C8—C7—C12—C11 | −8.4 (2) | C17—C16—N1—C13 | −9.9 (3) |
C6—C7—C12—C11 | 166.54 (15) | C21—C16—N1—C13 | 171.01 (14) |
C8—C7—C12—C13 | 169.00 (16) | C22—C23—N1—C16 | 2.29 (19) |
C6—C7—C12—C13 | −16.1 (2) | C24—C23—N1—C16 | 178.89 (15) |
C11—C12—C13—N2 | −14.1 (2) | C22—C23—N1—C13 | −171.56 (15) |
C7—C12—C13—N2 | 168.39 (15) | C24—C23—N1—C13 | 5.0 (2) |
C11—C12—C13—N1 | 161.00 (13) | N2—C13—N1—C16 | 122.36 (16) |
C7—C12—C13—N1 | −16.5 (2) | C12—C13—N1—C16 | −53.2 (2) |
N2—C14—C15—C11 | −9.5 (3) | N2—C13—N1—C23 | −64.8 (2) |
C10—C11—C15—C14 | 179.47 (17) | C12—C13—N1—C23 | 119.66 (17) |
C12—C11—C15—C14 | −0.2 (3) | N1—C13—N2—C14 | −169.93 (14) |
N1—C16—C17—C18 | 177.25 (17) | C12—C13—N2—C14 | 5.4 (2) |
C21—C16—C17—C18 | −3.8 (2) | C15—C14—N2—C13 | 7.0 (3) |
N1—C16—C17—C29 | −6.5 (3) | O1—C26—O2—C27 | 0.5 (3) |
C21—C16—C17—C29 | 172.48 (16) | C25—C26—O2—C27 | −179.9 (2) |
C16—C17—C18—C19 | 0.4 (3) | C28—C27—O2—C26 | −165.3 (2) |
C29—C17—C18—C19 | −175.98 (19) | O3—C31—O4—C32 | 0.5 (3) |
C17—C18—C19—C20 | 2.4 (3) | C30—C31—O4—C32 | −178.3 (2) |
C18—C19—C20—C21 | −1.8 (3) | C33—C32—O4—C31 | 171.9 (4) |
Cg3 is the centroid of the N2/C11–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O3i | 0.93 | 2.49 | 3.3404 (5) | 152 |
C10—H10A···O1ii | 0.93 | 2.64 | 3.4252 (5) | 143 |
C2—H2A···O4iii | 0.93 | 2.65 | 3.5339 (6) | 159 |
C29—H29A···Cg3 | 0.93 | 2.86 | 3.370 (2) | 116 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y, −z+2; (iii) −x, −y, −z+1. |
Acknowledgements
Dr Yue Zhao of Nanjing Univeristy is thanked for assisting with the crystallographic studies.
References
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. , Madison, Wisconsin, USA. Google Scholar
Cheng, G. L., Wang, Z., Yang, J. Y., Bao, Y., Xu, Q. H., Zhao, L. X. & Liu, D. (2019). Bioorg. Chem. 84, 410–417. Web of Science CrossRef CAS PubMed Google Scholar
Fanton, G., Coles, N. M., Cowley, A. R., Flemming, J. P. & Brown, J. M. (2010). Heterocycles, 80, 895–901. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hussain, K., Alam, Md. J., Hussain, A. & Siddique, N. A. (2020). Int. J. Pharm. Sci. Res. 11, 5441–5460. CAS Google Scholar
Jagtap, R. A. & Punji, B. (2020). Asia. J. Org. Chem. 9, 326–342. Web of Science CrossRef CAS Google Scholar
Jin, P. F., Zhan, G. Q., Zheng, G., Liu, J. J., Peng, X., Huang, L., Gao, B., Yuan, X. H. & Yao, G. M. (2021). J. Nat. Prod. 84, 1326–1334. Web of Science CSD CrossRef CAS PubMed Google Scholar
Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. Oxford: Blackwell Publishing. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, G. & Sekar, G. (2015). RSC Adv. 5, 28292–28298. Web of Science CrossRef CAS Google Scholar
Li, R. D., Zhai, X., Zhao, Y. F., Yu, S. & Gong, P. (2007). Arch. Pharm. Chem. Life Sci. 340, 424–428. Web of Science CrossRef CAS Google Scholar
Liu, H. B., Lauro, G., O'Connor, R. D., Lohith, K., Kelly, M., Colin, P., Bifulco, G. & Bewley, C. A. (2017). J. Nat. Prod. 80, 2556–2560. Web of Science CrossRef CAS PubMed Google Scholar
Liu, T., Zhou, W. & Wu, J. (2017). Org. Lett. 19, 6638–6641. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mazzotta, S., Frattaruolo, L., Brindisi, M., Ulivieri, C., Vanni, F., Brizzi, A., Carullo, G., Cappello, A. R. & Aiello, F. (2020). Future Med. Chem. 12, 5–17. Web of Science CrossRef CAS PubMed Google Scholar
Mir, R. H., Mohi-ud-din, R., Wani, T. U., Dar, M. O., Shah, A. J., Lone, B., Pooja, C. & Masoodi, M. H. (2021). Curr. Org. Chem. 25, 724–736. Web of Science CrossRef CAS Google Scholar
Sandtorv, A. H. (2015). Adv. Synth. Catal. 357, 2403–2435. Web of Science CrossRef CAS Google Scholar
Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491–502. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia. Google Scholar
Vargas, D. A., Tinoco, A., Tyagi, V. & Fasan, R. (2018). Angew. Chem. Int. Ed. 57, 9911–9915. Web of Science CrossRef CAS Google Scholar
Xu, G. Q., Zhao, J. L., Jiang, Y. Q., Zhang, P. & Li, W. (2016). J. Chem. Res. 40, 269–272. Web of Science CrossRef CAS Google Scholar
Zhang, M. Z., Chen, Q. & Yang, G. F. (2015). Eur. J. Med. Chem. 89, 421–441. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.