research communications
E)-1-[2,2-dichloro-1-(4-methylphenyl)ethenyl]-2-(4-methoxyphenyl)diazene
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
The 16H14Cl2N2O, comprises two similar molecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (38.2% for molecule A; 36.0% for molecule B), Cl⋯H/H⋯Cl (24.6% for molecule A; 26.7% for molecule B) and C⋯H/H⋯C (20.0% for molecule A; 20.2% for molecule B) interactions are the most important contributors to the crystal packing.
of the title compound, CKeywords: crystal structure; short C—H⋯Cl contacts; C—H⋯π interactions; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 1984582
1. Chemical context
Azo dyes have found a wide range of applications, including as ligands, sensors, optical data storage, liquid crystals, non-linear optical materials, color-changing materials, molecular switches, and dye-sensitized solar cells (Maharramov et al., 2018; Mahmudov et al., 2016; Viswanathan et al., 2019). The functional properties of azo dyes are strongly dependent on the groups attached to the –N=N– synthon. Moreover, non-covalent bond donors or acceptors attached to N-donor azo/hydrazone ligands are of interest because of their high solubility in polar solvents, functional properties, photoactivity in the solid state, coordination ability, and high thermal and oxidative stability (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mac Leod et al., 2012; Mahmoudi et al., 2017a,b, 2018a,b). The functionalization of N-donor ligands with –COOH or –SO3H groups can improve the of the corresponding metal complexes in oxidation and C—C coupling reactions (Gurbanov et al., 2018; Ma et al., 2017a,b, 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012; Shixaliyev et al., 2014). Thus, in the current work we have synthesized a new azo dye, (E)-1-[2,2-dichloro-1-(4-methylphenyl)ethenyl]-2-(4-methoxyphenyl)diazene, which displays multiple intermolecular non-covalent interactions.
2. Structural commentary
There are two comparable molecules A (with Cl1) and B (with Cl3) in the ). The dihedral angles between the two aromatic rings (C3–C8/C10–C15 and C19–C24/C26–C31) in molecules A and B are 70.1 (3) and 73.2 (2)°, respectively. In molecule A, the N2/N1/C2/C1/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.110 (2) Å, and makes dihedral angles of 1.2 (2) and 71.3 (2)°, respectively, with the C3–C8 and C10–C15 rings. In molecule B, the N4/N3/C18/C17/Cl3/Cl4 moiety is approximately planar with a maximum deviation of 0.046 (6) Å, and makes dihedral angles of 9.57 (18) and 75.94 (19)°, respectively, with the C19–C24 and C26–C31 rings.
of the title compound (Fig. 13. Supramolecular features
In the crystal, no classical hydrogen bonds are observed. The molecules are self-assembled via C—H⋯Cl short contacts, yielding supramolecular chains along the b-axis direction. Adjacent chains are linked by C—H⋯O contacts, generating a two-dimensional array parallel to the bc plane (Table 1, Fig. 2). In addition, molecules are connected by C—H⋯π interactions [Table 2, Fig. 3; C5—H5A⋯Cg2i, C23—H23A⋯Cg4ii and C25—H25C⋯Cg3ii, where Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 in molecule A, and C19–C24 and C26–C31 in molecule B, respectively]. The molecular packing is further stabilized by van der Waals interactions.
|
4. Hirshfeld surface analysis
To visualize the intermolecular interactions in the title molecule, CrystalExplorer17 (Turner et al., 2017) was used to generate Hirshfeld surfaces (McKinnon et al., 2007) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002). In the Hirshfeld surfaces mapped over dnorm for molecules A and B of the title compound (Fig. 4), the bright-red spots near atoms Cl1, Cl3, Cl4 and O1 indicate the short C—H⋯Cl and C—H⋯O contacts (Table 1). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surfaces for molecules A and B mapped over electrostatic potential (Spackman et al., 2008) are shown in Fig. 5. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).
The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts in molecules A and B are illustrated in Fig. 6. The most important interaction is H⋯H, contributing 38.2% for molecule A and 36.0% for molecule B to the overall crystal packing (Fig. 6b). The Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di = 2.70 Å and contribute 24.6% to the Hirshfeld surface for molecule A, and with de + di = 2.70 Å and contribute 26.7% to the Hirshfeld surface for molecule B (Fig. 6c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6d; 20.0% contribution for molecule A and 20.2% contribution for molecule B) have the tips at de + di = 2.80 Å for molecule A and at de + di = 2.85 Å for molecule B. The remaining contributions for both molecules A and B are from N⋯H/H⋯N, O⋯H/H⋯O, N⋯C/C⋯N, Cl⋯O/O⋯Cl, Cl⋯C/C⋯Cl, C⋯C, Cl⋯N/N⋯Cl, O⋯C/C⋯O and Cl⋯Cl contacts, which are less than 4.6% and have a negligible effect on the packing. The percentage contributions of all interactions are listed in Table 3. The fact that the same interactions make different contributions to the HS for molecules A and B can be attributed to the different molecular environments of the A and B molecules in the crystal structure.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 27 hits. Eight compounds are closely related to the title compound, viz. 4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline (GUPHIL; Özkaraca et al., 2020a), 4-{2,2-dichloro-1-[(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline (DULTAI; Özkaraca et al., 2020b), 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBOE; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev et al., 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019), 1,1-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shikhaliyev et al., 2018) and 1,1-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl)ethenyl]diazene} (LEQXOX; Shikhaliyev et al., 2018).
In GUPHIL, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the dihedral angle between the two aromatic rings is 64.12 (14)°. The is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals interactions. In HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, molecules are linked through weak X⋯Cl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In HODQAV, the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)° and the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur and in LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed.
6. Synthesis and crystallization
The title compound was synthesized according to a reported method (Mukhtarova et al., 2021; Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-1-(4-methoxyphenyl)-2-(4-methylbenzylidene)hydrazine (240 mg, 1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colorless solid (65%); m.p. 355 K. Analysis calculated for C16H14Cl2N2O: C 59.83, H 4.39, N 8.72; found: C 59.78, H 4.32, N 8.69%. 1H NMR (300 MHz, Chloroform-d) δ 7.79 (d, J = 9.0Hz, 2H, Ar), 7.26 (d, J = 8.0Hz, 2H, Ar), 7.10 (d, J = 8.0Hz, 2H, Ar), 6.95 (d, J = 9.0Hz, 2H, Ar), 3.88 (s, 3H, OCH3), 2.42 (s, 3H, CH3). 13C NMR (75 MHz, Chloroform-d) δ 162.48, 148.12, 147.82, 138.47, 129.90, 129.76, 129.41, 128.85, 125.23, 114.14, 55.58 and 21.48. ESI–MS: m/z: 322.14 [M + H]+.
7. details
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, eight outliers (2 16, 2 15, 9 13, 5 5, 1 2, 4, 4 8 and 1 7 11) were omitted in the final cycles of The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1984582
https://doi.org/10.1107/S2056989021008756/zn2009sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021008756/zn2009Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021008756/zn2009Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H14Cl2N2O | F(000) = 664 |
Mr = 321.19 | Dx = 1.344 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5366 (3) Å | Cell parameters from 3046 reflections |
b = 17.9208 (8) Å | θ = 2.6–23.3° |
c = 16.2085 (8) Å | µ = 0.41 mm−1 |
β = 99.173 (2)° | T = 296 K |
V = 1587.65 (14) Å3 | Prism, colourless |
Z = 4 | 0.24 × 0.19 × 0.10 mm |
Bruker APEXII CCD diffractometer | 3820 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.054 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 1.7° |
Tmin = 0.675, Tmax = 0.745 | h = −6→6 |
19301 measured reflections | k = −22→22 |
6444 independent reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5767P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.145 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.37 e Å−3 |
6444 reflections | Δρmin = −0.32 e Å−3 |
288 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.11 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.2542 (4) | 0.43617 (11) | 0.64439 (13) | 0.0796 (7) | |
Cl2 | −0.4487 (3) | 0.28816 (11) | 0.61549 (11) | 0.0712 (6) | |
O1 | 0.6974 (9) | 0.6350 (3) | 0.3727 (3) | 0.0697 (14) | |
N1 | −0.0135 (10) | 0.4111 (3) | 0.5003 (4) | 0.0535 (14) | |
N2 | 0.0904 (10) | 0.4034 (3) | 0.4371 (3) | 0.0489 (13) | |
C1 | −0.2741 (12) | 0.3575 (4) | 0.5831 (4) | 0.0521 (16) | |
C2 | −0.1609 (11) | 0.3501 (4) | 0.5159 (4) | 0.0488 (16) | |
C3 | 0.2407 (11) | 0.4641 (3) | 0.4235 (4) | 0.0467 (15) | |
C4 | 0.2717 (12) | 0.5288 (4) | 0.4712 (4) | 0.0562 (18) | |
H4A | 0.188500 | 0.534413 | 0.516384 | 0.067* | |
C5 | 0.4230 (14) | 0.5841 (4) | 0.4525 (4) | 0.0620 (19) | |
H5A | 0.441835 | 0.627135 | 0.484996 | 0.074* | |
C6 | 0.5504 (12) | 0.5769 (3) | 0.3849 (4) | 0.0489 (16) | |
C7 | 0.5196 (12) | 0.5138 (4) | 0.3367 (4) | 0.0530 (17) | |
H7A | 0.602750 | 0.508512 | 0.291554 | 0.064* | |
C8 | 0.3636 (12) | 0.4577 (4) | 0.3556 (4) | 0.0527 (17) | |
H8A | 0.341397 | 0.415233 | 0.322199 | 0.063* | |
C9 | 0.8362 (14) | 0.6303 (4) | 0.3075 (5) | 0.075 (2) | |
H9A | 0.958880 | 0.668681 | 0.314241 | 0.113* | |
H9B | 0.730904 | 0.636837 | 0.254871 | 0.113* | |
H9C | 0.913688 | 0.582341 | 0.308698 | 0.113* | |
C10 | −0.1948 (11) | 0.2833 (3) | 0.4611 (4) | 0.0434 (14) | |
C11 | −0.0071 (12) | 0.2325 (4) | 0.4599 (5) | 0.064 (2) | |
H11A | 0.141146 | 0.239262 | 0.495082 | 0.076* | |
C12 | −0.0390 (14) | 0.1719 (4) | 0.4065 (5) | 0.067 (2) | |
H12A | 0.087072 | 0.137412 | 0.407601 | 0.080* | |
C13 | −0.2533 (14) | 0.1614 (4) | 0.3519 (4) | 0.0596 (19) | |
C14 | −0.4408 (13) | 0.2110 (4) | 0.3547 (4) | 0.0577 (18) | |
H14A | −0.589706 | 0.203698 | 0.320052 | 0.069* | |
C15 | −0.4119 (11) | 0.2715 (3) | 0.4082 (4) | 0.0464 (15) | |
H15A | −0.540900 | 0.304650 | 0.408564 | 0.056* | |
C16 | −0.2854 (17) | 0.0945 (5) | 0.2927 (5) | 0.091 (3) | |
H16A | −0.140574 | 0.064261 | 0.302099 | 0.136* | |
H16B | −0.312419 | 0.111859 | 0.235935 | 0.136* | |
H16C | −0.423307 | 0.065509 | 0.302905 | 0.136* | |
Cl3 | 0.7604 (5) | 0.70082 (12) | −0.12906 (13) | 0.0884 (8) | |
Cl4 | 0.9416 (4) | 0.55116 (12) | −0.10328 (12) | 0.0782 (7) | |
O2 | −0.2060 (9) | 0.9018 (3) | 0.1289 (3) | 0.0741 (15) | |
N3 | 0.5200 (11) | 0.6762 (3) | 0.0147 (3) | 0.0547 (14) | |
N4 | 0.4238 (10) | 0.6706 (3) | 0.0789 (3) | 0.0548 (14) | |
C17 | 0.7780 (13) | 0.6217 (4) | −0.0682 (4) | 0.0569 (18) | |
C18 | 0.6653 (12) | 0.6147 (4) | −0.0012 (4) | 0.0514 (17) | |
C19 | 0.2694 (8) | 0.7321 (2) | 0.0907 (3) | 0.0629 (6) | |
C20 | 0.1554 (8) | 0.7291 (2) | 0.1610 (3) | 0.0629 (6) | |
H20A | 0.186090 | 0.689285 | 0.198089 | 0.076* | |
C21 | −0.0044 (8) | 0.7855 (3) | 0.1760 (2) | 0.0629 (6) | |
H21A | −0.080656 | 0.783412 | 0.223126 | 0.076* | |
C22 | −0.0502 (8) | 0.8449 (2) | 0.1207 (3) | 0.0629 (6) | |
C23 | 0.0638 (9) | 0.8479 (2) | 0.0503 (3) | 0.0629 (6) | |
H23A | 0.033133 | 0.887707 | 0.013237 | 0.076* | |
C24 | 0.2236 (8) | 0.7915 (2) | 0.0353 (2) | 0.0629 (6) | |
H24A | 0.299880 | 0.793580 | −0.011802 | 0.076* | |
C25 | −0.3465 (13) | 0.9007 (4) | 0.1949 (4) | 0.0629 (6) | |
H25A | −0.457475 | 0.942189 | 0.189000 | 0.094* | |
H25B | −0.239456 | 0.904082 | 0.247500 | 0.094* | |
H25C | −0.437714 | 0.854952 | 0.192725 | 0.094* | |
C26 | 0.6954 (9) | 0.5466 (2) | 0.0525 (3) | 0.0629 (6) | |
C27 | 0.5076 (7) | 0.4946 (2) | 0.0485 (3) | 0.0629 (6) | |
H27A | 0.361256 | 0.502241 | 0.012536 | 0.076* | |
C28 | 0.5386 (7) | 0.4311 (2) | 0.0983 (3) | 0.0629 (6) | |
H28A | 0.412980 | 0.396257 | 0.095678 | 0.076* | |
C29 | 0.7573 (8) | 0.4196 (2) | 0.1521 (3) | 0.0629 (6) | |
C30 | 0.9451 (7) | 0.4716 (3) | 0.1560 (3) | 0.0629 (6) | |
H30A | 1.091434 | 0.463884 | 0.192023 | 0.076* | |
C31 | 0.9141 (7) | 0.5351 (2) | 0.1062 (3) | 0.0629 (6) | |
H31A | 1.039714 | 0.569868 | 0.108882 | 0.076* | |
C32 | 0.7922 (16) | 0.3491 (4) | 0.2055 (5) | 0.086 (3) | |
H32A | 0.926377 | 0.320655 | 0.190966 | 0.129* | |
H32B | 0.645678 | 0.319578 | 0.195512 | 0.129* | |
H32C | 0.826528 | 0.362584 | 0.263450 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0944 (16) | 0.0730 (15) | 0.0764 (13) | −0.0152 (12) | 0.0289 (12) | −0.0239 (11) |
Cl2 | 0.0750 (13) | 0.0808 (15) | 0.0611 (11) | −0.0262 (11) | 0.0212 (10) | −0.0003 (10) |
O1 | 0.080 (4) | 0.051 (3) | 0.088 (4) | −0.016 (3) | 0.042 (3) | −0.005 (3) |
N1 | 0.056 (4) | 0.044 (3) | 0.062 (3) | −0.005 (3) | 0.013 (3) | 0.000 (3) |
N2 | 0.056 (3) | 0.040 (3) | 0.051 (3) | 0.002 (3) | 0.009 (3) | 0.001 (2) |
C1 | 0.051 (4) | 0.053 (4) | 0.052 (4) | −0.007 (3) | 0.008 (3) | −0.003 (3) |
C2 | 0.049 (4) | 0.046 (4) | 0.053 (4) | −0.003 (3) | 0.011 (3) | 0.003 (3) |
C3 | 0.058 (4) | 0.034 (3) | 0.050 (4) | −0.008 (3) | 0.016 (3) | −0.001 (3) |
C4 | 0.069 (5) | 0.050 (4) | 0.057 (4) | −0.015 (4) | 0.031 (4) | −0.012 (3) |
C5 | 0.084 (5) | 0.048 (4) | 0.060 (4) | −0.014 (4) | 0.031 (4) | −0.018 (3) |
C6 | 0.053 (4) | 0.042 (4) | 0.054 (4) | 0.004 (3) | 0.016 (3) | 0.002 (3) |
C7 | 0.060 (4) | 0.051 (4) | 0.053 (4) | 0.001 (3) | 0.024 (3) | −0.005 (3) |
C8 | 0.069 (4) | 0.039 (4) | 0.053 (4) | −0.005 (3) | 0.018 (3) | −0.004 (3) |
C9 | 0.083 (6) | 0.072 (5) | 0.080 (5) | −0.010 (4) | 0.041 (5) | 0.015 (4) |
C10 | 0.045 (3) | 0.036 (3) | 0.051 (3) | −0.004 (3) | 0.013 (3) | 0.001 (3) |
C11 | 0.042 (4) | 0.054 (5) | 0.094 (6) | 0.003 (3) | 0.007 (4) | −0.002 (4) |
C12 | 0.061 (5) | 0.045 (4) | 0.098 (6) | 0.009 (4) | 0.021 (4) | −0.001 (4) |
C13 | 0.073 (5) | 0.049 (4) | 0.062 (4) | 0.002 (4) | 0.027 (4) | −0.002 (3) |
C14 | 0.062 (5) | 0.065 (5) | 0.046 (4) | −0.004 (4) | 0.008 (3) | −0.001 (3) |
C15 | 0.043 (4) | 0.047 (4) | 0.049 (3) | 0.008 (3) | 0.007 (3) | 0.005 (3) |
C16 | 0.123 (8) | 0.062 (5) | 0.091 (6) | −0.001 (5) | 0.027 (6) | −0.021 (5) |
Cl3 | 0.125 (2) | 0.0759 (16) | 0.0683 (13) | 0.0050 (13) | 0.0272 (13) | 0.0208 (11) |
Cl4 | 0.0905 (17) | 0.0858 (16) | 0.0647 (12) | 0.0200 (12) | 0.0323 (11) | 0.0026 (11) |
O2 | 0.080 (4) | 0.061 (3) | 0.087 (4) | 0.017 (3) | 0.032 (3) | 0.010 (3) |
N3 | 0.065 (4) | 0.048 (4) | 0.054 (3) | 0.004 (3) | 0.019 (3) | 0.005 (3) |
N4 | 0.066 (4) | 0.048 (3) | 0.052 (3) | 0.000 (3) | 0.013 (3) | −0.001 (3) |
C17 | 0.063 (5) | 0.057 (4) | 0.052 (4) | 0.005 (4) | 0.011 (4) | 0.001 (3) |
C18 | 0.057 (4) | 0.047 (4) | 0.049 (4) | 0.003 (3) | 0.005 (3) | −0.008 (3) |
C19 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C20 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C21 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C22 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C23 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C24 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C25 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C26 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C27 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C28 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C29 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C30 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C31 | 0.0714 (16) | 0.0556 (14) | 0.0645 (13) | 0.0030 (11) | 0.0190 (11) | 0.0027 (10) |
C32 | 0.120 (8) | 0.064 (6) | 0.079 (6) | 0.005 (5) | 0.030 (5) | 0.004 (4) |
Cl1—C1 | 1.717 (7) | Cl3—C17 | 1.721 (7) |
Cl2—C1 | 1.708 (7) | Cl4—C17 | 1.704 (7) |
O1—C6 | 1.355 (7) | O2—C22 | 1.356 (5) |
O1—C9 | 1.406 (8) | O2—C25 | 1.419 (8) |
N1—N2 | 1.260 (7) | N3—N4 | 1.247 (7) |
N1—C2 | 1.411 (8) | N3—C18 | 1.413 (8) |
N2—C3 | 1.408 (7) | N4—C19 | 1.426 (6) |
C1—C2 | 1.347 (9) | C17—C18 | 1.342 (9) |
C2—C10 | 1.486 (8) | C18—C26 | 1.493 (7) |
C3—C8 | 1.388 (8) | C19—C20 | 1.3900 |
C3—C4 | 1.390 (8) | C19—C24 | 1.3900 |
C4—C5 | 1.363 (9) | C20—C21 | 1.3900 |
C4—H4A | 0.9300 | C20—H20A | 0.9300 |
C5—C6 | 1.401 (9) | C21—C22 | 1.3900 |
C5—H5A | 0.9300 | C21—H21A | 0.9300 |
C6—C7 | 1.369 (8) | C22—C23 | 1.3900 |
C7—C8 | 1.391 (8) | C23—C24 | 1.3900 |
C7—H7A | 0.9300 | C23—H23A | 0.9300 |
C8—H8A | 0.9300 | C24—H24A | 0.9300 |
C9—H9A | 0.9600 | C25—H25A | 0.9600 |
C9—H9B | 0.9600 | C25—H25B | 0.9600 |
C9—H9C | 0.9600 | C25—H25C | 0.9600 |
C10—C15 | 1.376 (8) | C26—C27 | 1.3900 |
C10—C11 | 1.384 (8) | C26—C31 | 1.3900 |
C11—C12 | 1.383 (9) | C27—C28 | 1.3900 |
C11—H11A | 0.9300 | C27—H27A | 0.9300 |
C12—C13 | 1.375 (10) | C28—C29 | 1.3900 |
C12—H12A | 0.9300 | C28—H28A | 0.9300 |
C13—C14 | 1.373 (9) | C29—C30 | 1.3900 |
C13—C16 | 1.527 (10) | C29—C32 | 1.526 (8) |
C14—C15 | 1.382 (8) | C30—C31 | 1.3900 |
C14—H14A | 0.9300 | C30—H30A | 0.9300 |
C15—H15A | 0.9300 | C31—H31A | 0.9300 |
C16—H16A | 0.9600 | C32—H32A | 0.9600 |
C16—H16B | 0.9600 | C32—H32B | 0.9600 |
C16—H16C | 0.9600 | C32—H32C | 0.9600 |
C6—O1—C9 | 118.5 (6) | C22—O2—C25 | 119.8 (5) |
N2—N1—C2 | 114.4 (5) | N4—N3—C18 | 114.9 (5) |
N1—N2—C3 | 113.6 (5) | N3—N4—C19 | 113.2 (5) |
C2—C1—Cl2 | 122.4 (5) | C18—C17—Cl4 | 122.7 (6) |
C2—C1—Cl1 | 123.6 (5) | C18—C17—Cl3 | 123.4 (6) |
Cl2—C1—Cl1 | 114.0 (4) | Cl4—C17—Cl3 | 113.9 (4) |
C1—C2—N1 | 115.2 (6) | C17—C18—N3 | 115.2 (6) |
C1—C2—C10 | 122.2 (6) | C17—C18—C26 | 121.7 (6) |
N1—C2—C10 | 122.6 (5) | N3—C18—C26 | 123.1 (5) |
C8—C3—C4 | 118.6 (6) | C20—C19—C24 | 120.0 |
C8—C3—N2 | 115.9 (6) | C20—C19—N4 | 116.1 (4) |
C4—C3—N2 | 125.5 (5) | C24—C19—N4 | 123.9 (4) |
C5—C4—C3 | 120.5 (6) | C19—C20—C21 | 120.0 |
C5—C4—H4A | 119.7 | C19—C20—H20A | 120.0 |
C3—C4—H4A | 119.7 | C21—C20—H20A | 120.0 |
C4—C5—C6 | 120.8 (6) | C22—C21—C20 | 120.0 |
C4—C5—H5A | 119.6 | C22—C21—H21A | 120.0 |
C6—C5—H5A | 119.6 | C20—C21—H21A | 120.0 |
O1—C6—C7 | 125.1 (6) | O2—C22—C21 | 124.5 (4) |
O1—C6—C5 | 115.6 (6) | O2—C22—C23 | 115.5 (4) |
C7—C6—C5 | 119.3 (6) | C21—C22—C23 | 120.0 |
C6—C7—C8 | 119.8 (6) | C24—C23—C22 | 120.0 |
C6—C7—H7A | 120.1 | C24—C23—H23A | 120.0 |
C8—C7—H7A | 120.1 | C22—C23—H23A | 120.0 |
C3—C8—C7 | 120.9 (6) | C23—C24—C19 | 120.0 |
C3—C8—H8A | 119.5 | C23—C24—H24A | 120.0 |
C7—C8—H8A | 119.5 | C19—C24—H24A | 120.0 |
O1—C9—H9A | 109.5 | O2—C25—H25A | 109.5 |
O1—C9—H9B | 109.5 | O2—C25—H25B | 109.5 |
H9A—C9—H9B | 109.5 | H25A—C25—H25B | 109.5 |
O1—C9—H9C | 109.5 | O2—C25—H25C | 109.5 |
H9A—C9—H9C | 109.5 | H25A—C25—H25C | 109.5 |
H9B—C9—H9C | 109.5 | H25B—C25—H25C | 109.5 |
C15—C10—C11 | 118.2 (6) | C27—C26—C31 | 120.0 |
C15—C10—C2 | 120.7 (6) | C27—C26—C18 | 120.5 (4) |
C11—C10—C2 | 121.0 (6) | C31—C26—C18 | 119.5 (4) |
C12—C11—C10 | 120.3 (7) | C28—C27—C26 | 120.0 |
C12—C11—H11A | 119.9 | C28—C27—H27A | 120.0 |
C10—C11—H11A | 119.9 | C26—C27—H27A | 120.0 |
C13—C12—C11 | 121.4 (7) | C27—C28—C29 | 120.0 |
C13—C12—H12A | 119.3 | C27—C28—H28A | 120.0 |
C11—C12—H12A | 119.3 | C29—C28—H28A | 120.0 |
C14—C13—C12 | 118.0 (7) | C30—C29—C28 | 120.0 |
C14—C13—C16 | 121.0 (7) | C30—C29—C32 | 120.2 (5) |
C12—C13—C16 | 120.9 (7) | C28—C29—C32 | 119.8 (5) |
C13—C14—C15 | 121.1 (7) | C29—C30—C31 | 120.0 |
C13—C14—H14A | 119.5 | C29—C30—H30A | 120.0 |
C15—C14—H14A | 119.5 | C31—C30—H30A | 120.0 |
C10—C15—C14 | 120.9 (6) | C30—C31—C26 | 120.0 |
C10—C15—H15A | 119.6 | C30—C31—H31A | 120.0 |
C14—C15—H15A | 119.6 | C26—C31—H31A | 120.0 |
C13—C16—H16A | 109.5 | C29—C32—H32A | 109.5 |
C13—C16—H16B | 109.5 | C29—C32—H32B | 109.5 |
H16A—C16—H16B | 109.5 | H32A—C32—H32B | 109.5 |
C13—C16—H16C | 109.5 | C29—C32—H32C | 109.5 |
H16A—C16—H16C | 109.5 | H32A—C32—H32C | 109.5 |
H16B—C16—H16C | 109.5 | H32B—C32—H32C | 109.5 |
C2—N1—N2—C3 | −178.8 (5) | C18—N3—N4—C19 | −177.2 (5) |
Cl2—C1—C2—N1 | −176.8 (5) | Cl4—C17—C18—N3 | −174.6 (5) |
Cl1—C1—C2—N1 | 2.5 (9) | Cl3—C17—C18—N3 | 2.6 (9) |
Cl2—C1—C2—C10 | 4.8 (9) | Cl4—C17—C18—C26 | 6.0 (10) |
Cl1—C1—C2—C10 | −175.9 (5) | Cl3—C17—C18—C26 | −176.8 (5) |
N2—N1—C2—C1 | −179.8 (6) | N4—N3—C18—C17 | −177.2 (6) |
N2—N1—C2—C10 | −1.4 (9) | N4—N3—C18—C26 | 2.2 (9) |
N1—N2—C3—C8 | 178.7 (6) | N3—N4—C19—C20 | 179.7 (4) |
N1—N2—C3—C4 | −2.2 (9) | N3—N4—C19—C24 | 1.8 (7) |
C8—C3—C4—C5 | −1.1 (11) | C24—C19—C20—C21 | 0.0 |
N2—C3—C4—C5 | 179.7 (7) | N4—C19—C20—C21 | −178.0 (5) |
C3—C4—C5—C6 | −0.1 (11) | C19—C20—C21—C22 | 0.0 |
C9—O1—C6—C7 | −2.0 (10) | C25—O2—C22—C21 | −4.0 (8) |
C9—O1—C6—C5 | 178.1 (6) | C25—O2—C22—C23 | 174.8 (5) |
C4—C5—C6—O1 | −179.3 (7) | C20—C21—C22—O2 | 178.8 (5) |
C4—C5—C6—C7 | 0.8 (11) | C20—C21—C22—C23 | 0.0 |
O1—C6—C7—C8 | 179.9 (6) | O2—C22—C23—C24 | −178.9 (5) |
C5—C6—C7—C8 | −0.3 (10) | C21—C22—C23—C24 | 0.0 |
C4—C3—C8—C7 | 1.6 (10) | C22—C23—C24—C19 | 0.0 |
N2—C3—C8—C7 | −179.2 (6) | C20—C19—C24—C23 | 0.0 |
C6—C7—C8—C3 | −0.9 (10) | N4—C19—C24—C23 | 177.8 (5) |
C1—C2—C10—C15 | 71.9 (8) | C17—C18—C26—C27 | −105.8 (6) |
N1—C2—C10—C15 | −106.4 (7) | N3—C18—C26—C27 | 74.8 (7) |
C1—C2—C10—C11 | −110.1 (7) | C17—C18—C26—C31 | 73.7 (7) |
N1—C2—C10—C11 | 71.6 (8) | N3—C18—C26—C31 | −105.7 (6) |
C15—C10—C11—C12 | 0.2 (10) | C31—C26—C27—C28 | 0.0 |
C2—C10—C11—C12 | −177.9 (6) | C18—C26—C27—C28 | 179.5 (5) |
C10—C11—C12—C13 | 1.9 (11) | C26—C27—C28—C29 | 0.0 |
C11—C12—C13—C14 | −3.4 (11) | C27—C28—C29—C30 | 0.0 |
C11—C12—C13—C16 | 179.4 (7) | C27—C28—C29—C32 | −178.9 (5) |
C12—C13—C14—C15 | 2.8 (10) | C28—C29—C30—C31 | 0.0 |
C16—C13—C14—C15 | 180.0 (6) | C32—C29—C30—C31 | 178.9 (5) |
C11—C10—C15—C14 | −0.7 (9) | C29—C30—C31—C26 | 0.0 |
C2—C10—C15—C14 | 177.4 (5) | C27—C26—C31—C30 | 0.0 |
C13—C14—C15—C10 | −0.8 (10) | C18—C26—C31—C30 | −179.5 (5) |
Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in molecule A) and C19–C24 and C26–C31 (in molecule B), respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···Cg2i | 0.93 | 2.84 | 3.645 (8) | 146 |
C23—H23A···Cg4ii | 0.93 | 3.00 | 3.775 (5) | 142 |
C25—H25C···Cg3iii | 0.96 | 2.93 | 3.717 (7) | 140 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y+1/2, −z; (iii) x−1, y, z. |
Contact | Distance | Symmetry operation |
Cl1···H16C | 3.13 | -1 - x, 1/2 + y, 1 - z |
Cl1···H25B | 3.06 | -x, -1/2 + y, 1 - z |
O1···H11A | 2.88 | 1 - x, 1/2 + y, 1 - z |
H14A···Cl3 | 3.09 | -x, -1/2 + y, -z |
Cl3···H32A | 3.03 | 2 - x, 1/2 + y, -z |
Cl4···H27A | 2.88 | 1 + x, y, z |
Contact | Percentage contribution | Percentage contribution |
molecule A | molecule B | |
H···H | 38.2 | 36.0 |
Cl···H/H···Cl | 24.6 | 26.7 |
C···H/H···C | 20.0 | 20.2 |
N···H/H···N | 4.5 | 4.6 |
O···H/H···O | 3.2 | 3.1 |
N···C/C···N | 3.1 | 3.2 |
Cl···O/O···Cl | 2.0 | 2.3 |
Cl···C/C···Cl | 1.8 | 1.7 |
C···C | 1.3 | 1.2 |
Cl···N/N···Cl | 1.1 | 0.9 |
O···C/C···O | 0.2 | 0.3 |
Cl···Cl | 0.1 | 0.1 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AMQ; X-ray analysis, RKA, ZA and MA; writing (review and editing of the manuscript), NQS, AMQ and RKA; funding acquisition, NQS, AMQ and RKA; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Mukhtarova, S. H. (2021). New Materials, Compounds and Applications, 5, 45–51. Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. CrossRef IUCr Journals Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.