research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­chloro-1-(4-methyl­phen­yl)ethen­yl]-2-(4-meth­­oxy­phen­yl)diazene

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 30 July 2021; accepted 21 August 2021; online 27 August 2021)

The asymmetric unit of the title compound, C16H14Cl2N2O, comprises two similar mol­ecules, A and B, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°, respectively. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5). The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (38.2% for mol­ecule A; 36.0% for mol­ecule B), Cl⋯H/H⋯Cl (24.6% for mol­ecule A; 26.7% for mol­ecule B) and C⋯H/H⋯C (20.0% for mol­ecule A; 20.2% for mol­ecule B) inter­actions are the most important contributors to the crystal packing.

1. Chemical context

Azo dyes have found a wide range of applications, including as ligands, sensors, optical data storage, liquid crystals, non-linear optical materials, color-changing materials, mol­ecular switches, and dye-sensitized solar cells (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmudov et al., 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). The functional properties of azo dyes are strongly dependent on the groups attached to the –N=N– synthon. Moreover, non-covalent bond donors or acceptors attached to N-donor azo/hydrazone ligands are of inter­est because of their high solubility in polar solvents, functional properties, photoactivity in the solid state, coordination ability, and high thermal and oxidative stability (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Mahmoudi et al., 2017a[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763-4772.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.], 2018a[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395-4408.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.]). The functionalization of N-donor ligands with –COOH or –SO3H groups can improve the catalytic activity of the corresponding metal complexes in oxidation and C—C coupling reactions (Gurbanov et al., 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.], 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Thus, in the current work we have synthesized a new azo dye, (E)-1-[2,2-di­chloro-1-(4-methyl­phen­yl)ethen­yl]-2-(4-meth­oxy­phen­yl)diazene, which displays multiple inter­molecular non-covalent inter­actions.

2. Structural commentary

There are two comparable mol­ecules A (with Cl1) and B (with Cl3) in the asymmetric unit of the title compound (Fig. 1[link]). The dihedral angles between the two aromatic rings (C3–C8/C10–C15 and C19–C24/C26–C31) in mol­ecules A and B are 70.1 (3) and 73.2 (2)°, respectively. In mol­ecule A, the N2/N1/C2/C1/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.110 (2) Å, and makes dihedral angles of 1.2 (2) and 71.3 (2)°, respectively, with the C3–C8 and C10–C15 rings. In mol­ecule B, the N4/N3/C18/C17/Cl3/Cl4 moiety is approximately planar with a maximum deviation of 0.046 (6) Å, and makes dihedral angles of 9.57 (18) and 75.94 (19)°, respectively, with the C19–C24 and C26–C31 rings.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecules A and B in the asymmetric unit with the atom-labeling scheme and ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, no classical hydrogen bonds are observed. The mol­ecules are self-assembled via C—H⋯Cl short contacts, yielding supra­molecular chains along the b-axis direction. Adjacent chains are linked by C—H⋯O contacts, generating a two-dimensional array parallel to the bc plane (Table 1[link], Fig. 2[link]). In addition, mol­ecules are connected by C—H⋯π inter­actions [Table 2[link], Fig. 3[link]; C5—H5ACg2i, C23—H23ACg4ii and C25—H25CCg3ii, where Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 in mol­ecule A, and C19–C24 and C26–C31 in mol­ecule B, respectively]. The mol­ecular packing is further stabilized by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in mol­ecule A) and C19–C24 and C26–C31 (in mol­ecule B), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg2i 0.93 2.84 3.645 (8) 146
C23—H23ACg4ii 0.93 3.00 3.775 (5) 142
C25—H25CCg3iii 0.96 2.93 3.717 (7) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [x-1, y, z].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H16C 3.13 −1 − x, [{1\over 2}] + y, 1 − z
Cl1⋯H25B 3.06 x, −[{1\over 2}] + y, 1 − z
O1⋯H11A 2.88 1 − x, [{1\over 2}] + y, 1 − z
H14A⋯Cl3 3.09 x, −[{1\over 2}] + y, −z
Cl3⋯H32A 3.03 2 − x, [{1\over 2}] + y, −z
Cl4⋯H27A 2.88 1 + x, y, z
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis, showing the C—H⋯Cl and C—H⋯O inter­actions as dashed lines.
[Figure 3]
Figure 3
A general view of the C—H⋯π inter­actions in the title compound. [Symmetry codes: (a) −1 + x, y, z; (b) −x, [{1\over 2}] + y, 1 − z; (c) 1 − x, [{1\over 2}] + y, −z].

4. Hirshfeld surface analysis

To visualize the inter­molecular inter­actions in the title mol­ecule, CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to generate Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). In the Hirshfeld surfaces mapped over dnorm for mol­ecules A and B of the title compound (Fig. 4[link]), the bright-red spots near atoms Cl1, Cl3, Cl4 and O1 indicate the short C—H⋯Cl and C—H⋯O contacts (Table 1[link]). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surfaces for mol­ecules A and B mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) are shown in Fig. 5[link]. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).

[Figure 4]
Figure 4
(a) Front and (b) back views of the Hirshfeld surface of mol­ecule A, and (c) front and (d) back views of the Hirshfeld surface of mol­ecule B plotted over dnorm in the ranges −0.1125 to 1.3054 and −0.1000 to 1.2923 a.u., respectively, for mol­ecules A and B.
[Figure 5]
Figure 5
Views of the three-dimensional Hirshfeld surfaces of (a) mol­ecule A and (b) mol­ecule B plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C contacts in mol­ecules A and B are illustrated in Fig. 6[link]. The most important inter­action is H⋯H, contributing 38.2% for mol­ecule A and 36.0% for mol­ecule B to the overall crystal packing (Fig. 6[link]b). The Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di = 2.70 Å and contribute 24.6% to the Hirshfeld surface for mol­ecule A, and with de + di = 2.70 Å and contribute 26.7% to the Hirshfeld surface for mol­ecule B (Fig. 6[link]c). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6[link]d; 20.0% contribution for mol­ecule A and 20.2% contribution for mol­ecule B) have the tips at de + di = 2.80 Å for mol­ecule A and at de + di = 2.85 Å for mol­ecule B. The remaining contributions for both mol­ecules A and B are from N⋯H/H⋯N, O⋯H/H⋯O, N⋯C/C⋯N, Cl⋯O/O⋯Cl, Cl⋯C/C⋯Cl, C⋯C, Cl⋯N/N⋯Cl, O⋯C/C⋯O and Cl⋯Cl contacts, which are less than 4.6% and have a negligible effect on the packing. The percentage contributions of all inter­actions are listed in Table 3[link]. The fact that the same inter­actions make different contributions to the HS for mol­ecules A and B can be attributed to the different mol­ecular environments of the A and B mol­ecules in the crystal structure.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for the mol­ecules A and B of the title compound in the asymmetric unit

Contact Percentage contribution
  mol­ecule A mol­ecule B
H⋯H 38.2 36.0
Cl⋯H/H⋯Cl 24.6 26.7
C⋯H/H⋯C 20.0 20.2
N⋯H/H⋯N 4.5 4.6
O⋯H/H⋯O 3.2 3.1
N⋯C/C⋯N 3.1 3.2
Cl⋯O/O⋯Cl 2.0 2.3
Cl⋯C/C⋯Cl 1.8 1.7
C⋯C 1.3 1.2
Cl⋯N/N⋯Cl 1.1 0.9
O⋯C/C⋯O 0.2 0.3
Cl⋯Cl 0.1 0.1
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for both mol­ecules A and B showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit resulted in 27 hits. Eight compounds are closely related to the title compound, viz. 4-{2,2-di­chloro-1-[(3,5-di­methyl­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline (GUPHIL; Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.]), 4-{2,2-di­chloro-1-[(4-fluoro­phen­yl)di­azen­yl]ethen­yl}-N,N-di­methyl­aniline (DUL­TAI; Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]), 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (HONBOE; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]di­azene (HONBUK; Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]di­azene (HODQAV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZ­REG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]diazene} (LEQXOX; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In GUPHIL, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, mol­ecules are linked through weak XCl contacts (X = Br for HONBOE and Cl for HONBUK), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In HODQAV, the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)° and the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur and in LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed.

6. Synthesis and crystallization

The title compound was synthesized according to a reported method (Mukhtarova et al., 2021[Mukhtarova, S. H. (2021). New Materials, Compounds and Applications, 5, 45-51.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-1-(4-meth­oxy­phen­yl)-2-(4-methyl­benzyl­id­ene)hydrazine (240 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo by a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colorless solid (65%); m.p. 355 K. Analysis calculated for C16H14Cl2N2O: C 59.83, H 4.39, N 8.72; found: C 59.78, H 4.32, N 8.69%. 1H NMR (300 MHz, Chloro­form-d) δ 7.79 (d, J = 9.0Hz, 2H, Ar), 7.26 (d, J = 8.0Hz, 2H, Ar), 7.10 (d, J = 8.0Hz, 2H, Ar), 6.95 (d, J = 9.0Hz, 2H, Ar), 3.88 (s, 3H, OCH3), 2.42 (s, 3H, CH3). 13C NMR (75 MHz, Chloro­form-d) δ 162.48, 148.12, 147.82, 138.47, 129.90, 129.76, 129.41, 128.85, 125.23, 114.14, 55.58 and 21.48. ESI–MS: m/z: 322.14 [M + H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, eight outliers (2 [\overline{4}] 16, 2 [\overline{10}] 15, [\overline{4}] 9 13, [\overline{5}] 5 5, 1 [\overline{18}] 2, [\overline{4}] [\overline{10}] 4, 4 [\overline{10}] 8 and 1 7 11) were omitted in the final cycles of refinement. The title compound was refined as a two-component non-merohedral twin, BASF 0.1076 (5).

Table 4
Experimental details

Crystal data
Chemical formula C16H14Cl2N2O
Mr 321.19
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.5366 (3), 17.9208 (8), 16.2085 (8)
β (°) 99.173 (2)
V3) 1587.65 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.24 × 0.19 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.675, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19301, 6444, 3820
Rint 0.054
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.145, 1.01
No. of reflections 6444
No. of parameters 288
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.32
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.11 (10)
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-[2,2-Dichloro-1-(4-methylphenyl)ethenyl]-2-(4-methoxyphenyl)diazene top
Crystal data top
C16H14Cl2N2OF(000) = 664
Mr = 321.19Dx = 1.344 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.5366 (3) ÅCell parameters from 3046 reflections
b = 17.9208 (8) Åθ = 2.6–23.3°
c = 16.2085 (8) ŵ = 0.41 mm1
β = 99.173 (2)°T = 296 K
V = 1587.65 (14) Å3Prism, colourless
Z = 40.24 × 0.19 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3820 reflections with I > 2σ(I)
φ and ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 1.7°
Tmin = 0.675, Tmax = 0.745h = 66
19301 measured reflectionsk = 2222
6444 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5767P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.37 e Å3
6444 reflectionsΔρmin = 0.32 e Å3
288 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.11 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2542 (4)0.43617 (11)0.64439 (13)0.0796 (7)
Cl20.4487 (3)0.28816 (11)0.61549 (11)0.0712 (6)
O10.6974 (9)0.6350 (3)0.3727 (3)0.0697 (14)
N10.0135 (10)0.4111 (3)0.5003 (4)0.0535 (14)
N20.0904 (10)0.4034 (3)0.4371 (3)0.0489 (13)
C10.2741 (12)0.3575 (4)0.5831 (4)0.0521 (16)
C20.1609 (11)0.3501 (4)0.5159 (4)0.0488 (16)
C30.2407 (11)0.4641 (3)0.4235 (4)0.0467 (15)
C40.2717 (12)0.5288 (4)0.4712 (4)0.0562 (18)
H4A0.1885000.5344130.5163840.067*
C50.4230 (14)0.5841 (4)0.4525 (4)0.0620 (19)
H5A0.4418350.6271350.4849960.074*
C60.5504 (12)0.5769 (3)0.3849 (4)0.0489 (16)
C70.5196 (12)0.5138 (4)0.3367 (4)0.0530 (17)
H7A0.6027500.5085120.2915540.064*
C80.3636 (12)0.4577 (4)0.3556 (4)0.0527 (17)
H8A0.3413970.4152330.3221990.063*
C90.8362 (14)0.6303 (4)0.3075 (5)0.075 (2)
H9A0.9588800.6686810.3142410.113*
H9B0.7309040.6368370.2548710.113*
H9C0.9136880.5823410.3086980.113*
C100.1948 (11)0.2833 (3)0.4611 (4)0.0434 (14)
C110.0071 (12)0.2325 (4)0.4599 (5)0.064 (2)
H11A0.1411460.2392620.4950820.076*
C120.0390 (14)0.1719 (4)0.4065 (5)0.067 (2)
H12A0.0870720.1374120.4076010.080*
C130.2533 (14)0.1614 (4)0.3519 (4)0.0596 (19)
C140.4408 (13)0.2110 (4)0.3547 (4)0.0577 (18)
H14A0.5897060.2036980.3200520.069*
C150.4119 (11)0.2715 (3)0.4082 (4)0.0464 (15)
H15A0.5409000.3046500.4085640.056*
C160.2854 (17)0.0945 (5)0.2927 (5)0.091 (3)
H16A0.1405740.0642610.3020990.136*
H16B0.3124190.1118590.2359350.136*
H16C0.4233070.0655090.3029050.136*
Cl30.7604 (5)0.70082 (12)0.12906 (13)0.0884 (8)
Cl40.9416 (4)0.55116 (12)0.10328 (12)0.0782 (7)
O20.2060 (9)0.9018 (3)0.1289 (3)0.0741 (15)
N30.5200 (11)0.6762 (3)0.0147 (3)0.0547 (14)
N40.4238 (10)0.6706 (3)0.0789 (3)0.0548 (14)
C170.7780 (13)0.6217 (4)0.0682 (4)0.0569 (18)
C180.6653 (12)0.6147 (4)0.0012 (4)0.0514 (17)
C190.2694 (8)0.7321 (2)0.0907 (3)0.0629 (6)
C200.1554 (8)0.7291 (2)0.1610 (3)0.0629 (6)
H20A0.1860900.6892850.1980890.076*
C210.0044 (8)0.7855 (3)0.1760 (2)0.0629 (6)
H21A0.0806560.7834120.2231260.076*
C220.0502 (8)0.8449 (2)0.1207 (3)0.0629 (6)
C230.0638 (9)0.8479 (2)0.0503 (3)0.0629 (6)
H23A0.0331330.8877070.0132370.076*
C240.2236 (8)0.7915 (2)0.0353 (2)0.0629 (6)
H24A0.2998800.7935800.0118020.076*
C250.3465 (13)0.9007 (4)0.1949 (4)0.0629 (6)
H25A0.4574750.9421890.1890000.094*
H25B0.2394560.9040820.2475000.094*
H25C0.4377140.8549520.1927250.094*
C260.6954 (9)0.5466 (2)0.0525 (3)0.0629 (6)
C270.5076 (7)0.4946 (2)0.0485 (3)0.0629 (6)
H27A0.3612560.5022410.0125360.076*
C280.5386 (7)0.4311 (2)0.0983 (3)0.0629 (6)
H28A0.4129800.3962570.0956780.076*
C290.7573 (8)0.4196 (2)0.1521 (3)0.0629 (6)
C300.9451 (7)0.4716 (3)0.1560 (3)0.0629 (6)
H30A1.0914340.4638840.1920230.076*
C310.9141 (7)0.5351 (2)0.1062 (3)0.0629 (6)
H31A1.0397140.5698680.1088820.076*
C320.7922 (16)0.3491 (4)0.2055 (5)0.086 (3)
H32A0.9263770.3206550.1909660.129*
H32B0.6456780.3195780.1955120.129*
H32C0.8265280.3625840.2634500.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0944 (16)0.0730 (15)0.0764 (13)0.0152 (12)0.0289 (12)0.0239 (11)
Cl20.0750 (13)0.0808 (15)0.0611 (11)0.0262 (11)0.0212 (10)0.0003 (10)
O10.080 (4)0.051 (3)0.088 (4)0.016 (3)0.042 (3)0.005 (3)
N10.056 (4)0.044 (3)0.062 (3)0.005 (3)0.013 (3)0.000 (3)
N20.056 (3)0.040 (3)0.051 (3)0.002 (3)0.009 (3)0.001 (2)
C10.051 (4)0.053 (4)0.052 (4)0.007 (3)0.008 (3)0.003 (3)
C20.049 (4)0.046 (4)0.053 (4)0.003 (3)0.011 (3)0.003 (3)
C30.058 (4)0.034 (3)0.050 (4)0.008 (3)0.016 (3)0.001 (3)
C40.069 (5)0.050 (4)0.057 (4)0.015 (4)0.031 (4)0.012 (3)
C50.084 (5)0.048 (4)0.060 (4)0.014 (4)0.031 (4)0.018 (3)
C60.053 (4)0.042 (4)0.054 (4)0.004 (3)0.016 (3)0.002 (3)
C70.060 (4)0.051 (4)0.053 (4)0.001 (3)0.024 (3)0.005 (3)
C80.069 (4)0.039 (4)0.053 (4)0.005 (3)0.018 (3)0.004 (3)
C90.083 (6)0.072 (5)0.080 (5)0.010 (4)0.041 (5)0.015 (4)
C100.045 (3)0.036 (3)0.051 (3)0.004 (3)0.013 (3)0.001 (3)
C110.042 (4)0.054 (5)0.094 (6)0.003 (3)0.007 (4)0.002 (4)
C120.061 (5)0.045 (4)0.098 (6)0.009 (4)0.021 (4)0.001 (4)
C130.073 (5)0.049 (4)0.062 (4)0.002 (4)0.027 (4)0.002 (3)
C140.062 (5)0.065 (5)0.046 (4)0.004 (4)0.008 (3)0.001 (3)
C150.043 (4)0.047 (4)0.049 (3)0.008 (3)0.007 (3)0.005 (3)
C160.123 (8)0.062 (5)0.091 (6)0.001 (5)0.027 (6)0.021 (5)
Cl30.125 (2)0.0759 (16)0.0683 (13)0.0050 (13)0.0272 (13)0.0208 (11)
Cl40.0905 (17)0.0858 (16)0.0647 (12)0.0200 (12)0.0323 (11)0.0026 (11)
O20.080 (4)0.061 (3)0.087 (4)0.017 (3)0.032 (3)0.010 (3)
N30.065 (4)0.048 (4)0.054 (3)0.004 (3)0.019 (3)0.005 (3)
N40.066 (4)0.048 (3)0.052 (3)0.000 (3)0.013 (3)0.001 (3)
C170.063 (5)0.057 (4)0.052 (4)0.005 (4)0.011 (4)0.001 (3)
C180.057 (4)0.047 (4)0.049 (4)0.003 (3)0.005 (3)0.008 (3)
C190.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C200.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C210.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C220.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C230.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C240.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C250.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C260.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C270.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C280.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C290.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C300.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C310.0714 (16)0.0556 (14)0.0645 (13)0.0030 (11)0.0190 (11)0.0027 (10)
C320.120 (8)0.064 (6)0.079 (6)0.005 (5)0.030 (5)0.004 (4)
Geometric parameters (Å, º) top
Cl1—C11.717 (7)Cl3—C171.721 (7)
Cl2—C11.708 (7)Cl4—C171.704 (7)
O1—C61.355 (7)O2—C221.356 (5)
O1—C91.406 (8)O2—C251.419 (8)
N1—N21.260 (7)N3—N41.247 (7)
N1—C21.411 (8)N3—C181.413 (8)
N2—C31.408 (7)N4—C191.426 (6)
C1—C21.347 (9)C17—C181.342 (9)
C2—C101.486 (8)C18—C261.493 (7)
C3—C81.388 (8)C19—C201.3900
C3—C41.390 (8)C19—C241.3900
C4—C51.363 (9)C20—C211.3900
C4—H4A0.9300C20—H20A0.9300
C5—C61.401 (9)C21—C221.3900
C5—H5A0.9300C21—H21A0.9300
C6—C71.369 (8)C22—C231.3900
C7—C81.391 (8)C23—C241.3900
C7—H7A0.9300C23—H23A0.9300
C8—H8A0.9300C24—H24A0.9300
C9—H9A0.9600C25—H25A0.9600
C9—H9B0.9600C25—H25B0.9600
C9—H9C0.9600C25—H25C0.9600
C10—C151.376 (8)C26—C271.3900
C10—C111.384 (8)C26—C311.3900
C11—C121.383 (9)C27—C281.3900
C11—H11A0.9300C27—H27A0.9300
C12—C131.375 (10)C28—C291.3900
C12—H12A0.9300C28—H28A0.9300
C13—C141.373 (9)C29—C301.3900
C13—C161.527 (10)C29—C321.526 (8)
C14—C151.382 (8)C30—C311.3900
C14—H14A0.9300C30—H30A0.9300
C15—H15A0.9300C31—H31A0.9300
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
C6—O1—C9118.5 (6)C22—O2—C25119.8 (5)
N2—N1—C2114.4 (5)N4—N3—C18114.9 (5)
N1—N2—C3113.6 (5)N3—N4—C19113.2 (5)
C2—C1—Cl2122.4 (5)C18—C17—Cl4122.7 (6)
C2—C1—Cl1123.6 (5)C18—C17—Cl3123.4 (6)
Cl2—C1—Cl1114.0 (4)Cl4—C17—Cl3113.9 (4)
C1—C2—N1115.2 (6)C17—C18—N3115.2 (6)
C1—C2—C10122.2 (6)C17—C18—C26121.7 (6)
N1—C2—C10122.6 (5)N3—C18—C26123.1 (5)
C8—C3—C4118.6 (6)C20—C19—C24120.0
C8—C3—N2115.9 (6)C20—C19—N4116.1 (4)
C4—C3—N2125.5 (5)C24—C19—N4123.9 (4)
C5—C4—C3120.5 (6)C19—C20—C21120.0
C5—C4—H4A119.7C19—C20—H20A120.0
C3—C4—H4A119.7C21—C20—H20A120.0
C4—C5—C6120.8 (6)C22—C21—C20120.0
C4—C5—H5A119.6C22—C21—H21A120.0
C6—C5—H5A119.6C20—C21—H21A120.0
O1—C6—C7125.1 (6)O2—C22—C21124.5 (4)
O1—C6—C5115.6 (6)O2—C22—C23115.5 (4)
C7—C6—C5119.3 (6)C21—C22—C23120.0
C6—C7—C8119.8 (6)C24—C23—C22120.0
C6—C7—H7A120.1C24—C23—H23A120.0
C8—C7—H7A120.1C22—C23—H23A120.0
C3—C8—C7120.9 (6)C23—C24—C19120.0
C3—C8—H8A119.5C23—C24—H24A120.0
C7—C8—H8A119.5C19—C24—H24A120.0
O1—C9—H9A109.5O2—C25—H25A109.5
O1—C9—H9B109.5O2—C25—H25B109.5
H9A—C9—H9B109.5H25A—C25—H25B109.5
O1—C9—H9C109.5O2—C25—H25C109.5
H9A—C9—H9C109.5H25A—C25—H25C109.5
H9B—C9—H9C109.5H25B—C25—H25C109.5
C15—C10—C11118.2 (6)C27—C26—C31120.0
C15—C10—C2120.7 (6)C27—C26—C18120.5 (4)
C11—C10—C2121.0 (6)C31—C26—C18119.5 (4)
C12—C11—C10120.3 (7)C28—C27—C26120.0
C12—C11—H11A119.9C28—C27—H27A120.0
C10—C11—H11A119.9C26—C27—H27A120.0
C13—C12—C11121.4 (7)C27—C28—C29120.0
C13—C12—H12A119.3C27—C28—H28A120.0
C11—C12—H12A119.3C29—C28—H28A120.0
C14—C13—C12118.0 (7)C30—C29—C28120.0
C14—C13—C16121.0 (7)C30—C29—C32120.2 (5)
C12—C13—C16120.9 (7)C28—C29—C32119.8 (5)
C13—C14—C15121.1 (7)C29—C30—C31120.0
C13—C14—H14A119.5C29—C30—H30A120.0
C15—C14—H14A119.5C31—C30—H30A120.0
C10—C15—C14120.9 (6)C30—C31—C26120.0
C10—C15—H15A119.6C30—C31—H31A120.0
C14—C15—H15A119.6C26—C31—H31A120.0
C13—C16—H16A109.5C29—C32—H32A109.5
C13—C16—H16B109.5C29—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C13—C16—H16C109.5C29—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C2—N1—N2—C3178.8 (5)C18—N3—N4—C19177.2 (5)
Cl2—C1—C2—N1176.8 (5)Cl4—C17—C18—N3174.6 (5)
Cl1—C1—C2—N12.5 (9)Cl3—C17—C18—N32.6 (9)
Cl2—C1—C2—C104.8 (9)Cl4—C17—C18—C266.0 (10)
Cl1—C1—C2—C10175.9 (5)Cl3—C17—C18—C26176.8 (5)
N2—N1—C2—C1179.8 (6)N4—N3—C18—C17177.2 (6)
N2—N1—C2—C101.4 (9)N4—N3—C18—C262.2 (9)
N1—N2—C3—C8178.7 (6)N3—N4—C19—C20179.7 (4)
N1—N2—C3—C42.2 (9)N3—N4—C19—C241.8 (7)
C8—C3—C4—C51.1 (11)C24—C19—C20—C210.0
N2—C3—C4—C5179.7 (7)N4—C19—C20—C21178.0 (5)
C3—C4—C5—C60.1 (11)C19—C20—C21—C220.0
C9—O1—C6—C72.0 (10)C25—O2—C22—C214.0 (8)
C9—O1—C6—C5178.1 (6)C25—O2—C22—C23174.8 (5)
C4—C5—C6—O1179.3 (7)C20—C21—C22—O2178.8 (5)
C4—C5—C6—C70.8 (11)C20—C21—C22—C230.0
O1—C6—C7—C8179.9 (6)O2—C22—C23—C24178.9 (5)
C5—C6—C7—C80.3 (10)C21—C22—C23—C240.0
C4—C3—C8—C71.6 (10)C22—C23—C24—C190.0
N2—C3—C8—C7179.2 (6)C20—C19—C24—C230.0
C6—C7—C8—C30.9 (10)N4—C19—C24—C23177.8 (5)
C1—C2—C10—C1571.9 (8)C17—C18—C26—C27105.8 (6)
N1—C2—C10—C15106.4 (7)N3—C18—C26—C2774.8 (7)
C1—C2—C10—C11110.1 (7)C17—C18—C26—C3173.7 (7)
N1—C2—C10—C1171.6 (8)N3—C18—C26—C31105.7 (6)
C15—C10—C11—C120.2 (10)C31—C26—C27—C280.0
C2—C10—C11—C12177.9 (6)C18—C26—C27—C28179.5 (5)
C10—C11—C12—C131.9 (11)C26—C27—C28—C290.0
C11—C12—C13—C143.4 (11)C27—C28—C29—C300.0
C11—C12—C13—C16179.4 (7)C27—C28—C29—C32178.9 (5)
C12—C13—C14—C152.8 (10)C28—C29—C30—C310.0
C16—C13—C14—C15180.0 (6)C32—C29—C30—C31178.9 (5)
C11—C10—C15—C140.7 (9)C29—C30—C31—C260.0
C2—C10—C15—C14177.4 (5)C27—C26—C31—C300.0
C13—C14—C15—C100.8 (10)C18—C26—C31—C30179.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the benzene rings C10–C15 (in molecule A) and C19–C24 and C26–C31 (in molecule B), respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg2i0.932.843.645 (8)146
C23—H23A···Cg4ii0.933.003.775 (5)142
C25—H25C···Cg3iii0.962.933.717 (7)140
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y+1/2, z; (iii) x1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H16C3.13-1 - x, 1/2 + y, 1 - z
Cl1···H25B3.06-x, -1/2 + y, 1 - z
O1···H11A2.881 - x, 1/2 + y, 1 - z
H14A···Cl33.09-x, -1/2 + y, -z
Cl3···H32A3.032 - x, 1/2 + y, -z
Cl4···H27A2.881 + x, y, z
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for the molecules A and B of the title compound in the asymmetric unit top
ContactPercentage contributionPercentage contribution
molecule Amolecule B
H···H38.236.0
Cl···H/H···Cl24.626.7
C···H/H···C20.020.2
N···H/H···N4.54.6
O···H/H···O3.23.1
N···C/C···N3.13.2
Cl···O/O···Cl2.02.3
Cl···C/C···Cl1.81.7
C···C1.31.2
Cl···N/N···Cl1.10.9
O···C/C···O0.20.3
Cl···Cl0.10.1
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AMQ; X-ray analysis, RKA, ZA and MA; writing (review and editing of the manuscript), NQS, AMQ and RKA; funding acquisition, NQS, AMQ and RKA; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationMukhtarova, S. H. (2021). New Materials, Compounds and Applications, 5, 45–51.  Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds