research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-[3,5-bis­­(bromo­meth­yl)-2,4,6-tri­ethyl­benz­yl]isoindoline-1,3-dione and 2-{5-(bromo­meth­yl)-3-[(1,3-dioxoisoindolin-2-yl)meth­yl]-2,4,6-tri­ethyl­benz­yl}isoindoline-1,3-dione

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 13 July 2021; accepted 2 August 2021; online 10 August 2021)

The title compounds, C23H25Br2NO2 (1) and C31H29BrN2O4 (2), crystallize in the space group P21/n with two (1-A and 1-B) and one mol­ecules, respectively, in the asymmetric unit of the cell. The mol­ecular conformation of these compounds is stabilized by intra­molecular C—H⋯O hydrogen bonds and C—H⋯N or C—H⋯π inter­actions. The crystal structure of 1 features a relatively strong Br⋯O=C halogen bond, which is not observed in the case of 2. Both crystal structures are characterized by the presence of C—H⋯Br hydrogen bonds and numerous inter­molecular C—H⋯O hydrogen-bonding inter­actions.

1. Chemical context

Compounds consisting of a 1,3,5-tris­ubstituted 2,4,6-tri­alkyl­benzene scaffold have been recognized to possess the ability to act as artificial receptors for various neutral and ionic substrates, such as carbohydrates (Mazik, 2009[Mazik, M. (2009). Chem. Soc. Rev. 38, 935-956.], 2012[Mazik, M. (2012). RSC Adv. 2, 2630-2642.]), ion pairs (for example, hydro­nium/hydroxide ions; Stapf et al., 2015[Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350-6354.]) and ammonium ions (Chin et al., 2002[Chin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374-5379.]; Jonah et al., 2017[Jonah, T. M., Mathivathanan, L., Morozov, A. N., Mebel, A. M., Raptis, R. G. & Kavallieratos, K. (2017). New J. Chem. 41, 14835-14838.]; Schulze et al., 2018[Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317-4330.]). In the case of carbohydrate-binding agents (artificial carbohydrate receptors), both acyclic (Kaiser et al. 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]; Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900-4915.], 2020b[Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679-1683.]; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.]) and macrocyclic compounds (Lippe & Mazik, 2013[Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013-9020.], 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.]; Amrhein & Mazik, 2021[Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://chemistry-europe.onlinelibrary. wiley. com/doi/10.1002/ejoc.202100758.]) have been developed. Bromo­methyl- and/or phthalimidomethyl-functionalized tri­alkyl­benzenes are often used as precursors for the syntheses of such compounds . The crystal structures of two representatives of this class of compounds bearing both bromo­methyl- and phthalimidomethyl groups are described in this work.

[Scheme 1]

2. Structural commentary

Compounds 1 and 2, the structures of which are illustrated in Fig. 1[link], were found to crystallize in the monoclinic space group P21/n. In the case of compound 1, the asymmetric unit of the cell consists of two crystallographically non-equivalent mol­ecules (1-A and 1-B). Mol­ecule 1-A displays a conformation with a fully alternating arrangement of the substituents above and below the plane of the central benzene ring [ab′ab′ab′ pattern, a = above, b = below (a′/b′ = Et above/below); see Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]; Schulze et al., 2017[Schulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003-4016.]]. In mol­ecule 1-B, one of the ethyl groups is disordered over two positions with an occupancy of 0.820 (6) for the major disorder component; the two disorder positions are related by rotation of approximately 180° about the C4—C11 bond. The mol­ecules display similar conformations, as illustrated by the mol­ecular least-squares overlay shown in Fig. 2[link]. The dihedral angle between the phthalimide moiety and the benzene ring is 82.27 (14)° (mol­ecule 1-A) and 83.78 (13)° (mol­ecule 1-B). The conformation of the mol­ecules appear to be stabilized by intra­molecular C—H⋯O=C hydrogen bonds (Tables 1[link] and 2[link]), which involve ethyl H atoms [d(H⋯O) = 2.59, 2.64 Å]. Furthermore, one ethyl group of each mol­ecule participates in the formation of an intra­molecular C—H⋯N bond with H⋯N distances of 2.45 and 2.54 Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg4 is the centroid of the C15B–C20B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10A—H10B⋯O2B 0.99 2.35 3.223 (4) 147
C11A—H11A⋯N1A 0.99 2.54 3.283 (4) 132
C13A—H13B⋯Br2Bi 0.99 2.92 3.746 (3) 142
C13A—H13B⋯O1A 0.99 2.52 2.914 (4) 103
C9B—H9F⋯Br2Aii 0.98 3.00 3.921 (4) 158
C11B—H11D⋯N1B 0.99 2.45 3.207 (4) 133
C12B—H12D⋯Br1Bii 0.98 2.86 3.499 (4) 123
C13B—H13D⋯O1B 0.99 2.53 2.928 (4) 104
C22B—H22D⋯O2B 0.99 2.64 3.322 (4) 126
C23B—H23E⋯O2Aiii 0.98 2.43 3.226 (5) 138
C22A—H22B⋯O2A 0.99 2.59 3.278 (4) 126
C9B—H9DCg4iv 0.98 2.96 3.731 (5) 137
C23B—H23DCg4v 0.98 2.92 3.542 (5) 122
C12C—H12I⋯N1B 0.98 2.56 3.24 (2) 126
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1 0.99 2.49 2.896 (5) 104
C10—H10A⋯O1i 0.99 2.49 3.173 (5) 126
C19—H19B⋯O3 0.99 2.45 3.373 (5) 154
C21—H21B⋯O3 0.99 2.47 2.897 (5) 105
C25—H25⋯O4ii 0.95 2.58 3.237 (5) 127
C30—H30B⋯O4 0.99 2.50 3.346 (5) 144
C31—H31B⋯O2iii 0.98 2.59 3.298 (5) 129
C31—H31C⋯O3iv 0.98 2.53 3.334 (5) 139
C26—H26⋯Cg1ii 0.95 2.84 3.529 (5) 130
C31—H31ACg3v 0.98 2.88 3.394 (5) 113
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
Perspective view of 1 and 2 including the labelling of non-hydrogen atoms. Displacement ellipsoids are drawn at a 50% probability level.
[Figure 2]
Figure 2
Least-squares overlay of 1-A and 1-B with an r.m.s. deviation of 0.0089 Å. The hydrogen atoms are omitted for clarity.

The crystal structure of compound 2 contains one mol­ecule in the asymmetric unit of the cell. The two phthalimide groups of the mol­ecule point in opposite directions, showing inclination angles of 70.27 (16) and 79.10 (16)° with respect to the plane of the central aromatic ring. The three-dimensional arrangement of substituents along the periphery of the benzene ring follows an ab′ba′ab′ pattern, in which the bromo­methyl group, one phthalimidomethyl unit and one ethyl group are directed towards one face of the benzene ring, whereas the three remaining substituents point in the opposite direction. This conformation is stabilized by intra­molecular Ceth­yl—H⋯O=C (2.45, 2.50 Å) and Ceth­yl—H⋯π inter­actions [d(H⋯Cg) 2.80, 2.85 Å].

3. Supra­molecular features

In the crystal of compound 1, the distance of 3.220 (3) Å between Br2B and the oxygen atom O1A of an adjacent mol­ecules (symmetry code: 1 + x, y, z) is considerably shorter than the sum of the van der Waals radii of the atoms (3.37 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]); this, as well as the well-defined bond geometry [∠C—Br⋯O = 171.34 (11)°] indicates the presence of a relatively strong Br⋯O halogen bond (Table 3[link]). This C—Br⋯O=C inter­action is assisted by a C—H⋯Br bond [d(H⋯Br) = 2.92 Å, ∠C—H⋯Br = 141.6°], so that atom Br2B acts as a bifurcated binding site (see Fig. 3[link]). The atoms Br1B and Br2A are involved in the formation of Ceth­yl—H⋯Br inter­actions with distances of 2.86 and 3.00 Å, respectively (∠C—H⋯Br = 123 and 158°). The two independent mol­ecules are involved in a different way in the mol­ecular association. The phthalimide group of mol­ecule 1-B participates in the formation of C—H⋯π contacts with H⋯Cg distances of 2.62 and 2.96 Å, whereas the phthalimide moiety of the second mol­ecule is involved in the formation of an offset face-to-face inter­action [d(CgCg) = 3.75 Å, symmetry code: −x, 1 − y, 1 − z]. In addition, the crystal packing is characterized by the presence of several C—H⋯O hydrogen bonds (2.35–2.43 Å; Table 1[link]). The different types of non-covalent bonds in the crystal generate a three-dimensional supra­molecular network.

Table 3
Halogen bonds in 1

C—XY—C symmetry code C—X/Y XY C—X/YY/X
C10B—Br2B⋯O1A—C14A 1 + x, y, z 1.980 (3)/1.210 (4) 3.220 (3) 129.0 (2)/171.35 (11)
[Figure 3]
Figure 3
Packing excerpt of 1 showing C—Br⋯O=C and C—H⋯Br halogen and hydrogen bonds, respectively (dashed lines). Hydrogen atoms of subunits that are excluded from inter­molecular inter­actions are omitted for clarity.

As a result of the presence of two phthalimide units in compound 2, its crystal structure is dominated by C—H⋯O bonds [d(H⋯O) = 2.49–2.59 Å; Table 2[link]] in which all oxygen atoms participate. The fragment of the packing structure shown in Fig. 4[link] shows that atoms O1 and H10A take part in the formation of an inversion-symmetric supra­molecular ring motif with graph-set motif R22(10) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; such a ten-membered supra­molecular motif has, for example, been recognized in some crystal structures of fluorene derivatives bearing phthalimidomethyl groups, see Seidel et al., 2021[Seidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901-2914.]). In addition, the mol­ecules are linked by two C—H⋯π inter­actions [d(H⋯Cg = 2.84, 2.88 Å] with the C1–C6 and C12–C17 rings acting as acceptors.

[Figure 4]
Figure 4
Packing excerpt of 2 showing C—H⋯O hydrogen bonds (dashed lines), which participate in the formation of the supra­molecular ring motif with graph set R22(10). Hydrogen atoms of subunits that are excluded from inter­molecular hydrogen bonding are omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-benzyl­isoindoline-1,3-dione resulted in 48 hits. Regarding the description of crystal structures of tri- to hexa­substituted benzene derivatives, the number of hits could be reduced to three relevant entries. This includes two hexa­substituted benzene derivatives consisting of three isoindoline-1,3-dione groups (phthalimidomethyl groups) and either meth­oxy (IDOBIO; Rosien et al., 2013[Rosien, J.-R., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o680.]) or bromo­methyl groups (LOFBIT; Koch et al., 2014[Koch, N., Seichter, W. & Mazik, M. (2014). Acta Cryst. E70, o393-o394.]) in each of the 2-, 4- and 6-positions of the benzene ring. Furthermore, a 1,3,5-tris­ubstituted benzene derivative, namely 3,5-bis­(phthalimidometh­yl)phenyl-tert-butyl­dimethyl­silyl ether (WIKRAK; Domínguez et al., 2007[Domínguez, Z., Jancik, V., Leyva, M. A., Salas-Reyes, M., Guzmán-Márquez, V., Hernández, J., Bagatella-Flores, N. & Ramos, R. (2007). Z. Kristallogr. New Cryst. Struct. 222, 146-148.]), has been found. In the case of IDOBIO and LOFBIT, the mol­ecules adopt a conformation in which two phthalimidomethyl groups and one meth­oxy or bromo­methyl group are directed towards one face of the benzene ring. The phthalimidomethyl groups of the 1,3,5-tris­ubstituted benzene derivative adopt a trans geometry.

5. Synthesis and crystallization

A suspension of 1,3,5-tris­(bromo­meth­yl)-2,4,6-tri­ethyl­benzene (1.00 g, 2.27 mmol) and potassium phthalimide (0.84 g, 4.54 mmol) in a solvent mixture N,N-di­methyl­formamide/1,4-dioxane (15 ml, 2:1, v/v) was stirred at ambient temperature for 24 h. Afterwards, the reaction mixture was poured into 50 ml of water. The white precipitate was filtered off, washed several times with water and finally suspended in water. After extraction with chloro­form (five times) and evaporation of the organic solvent, the crude product was purified by column chromatography (SiO2; toluene/ethyl acetate). Compounds 1 and 2 were obtained as white solids.

Compound 1: Yield: 27%; m.p. 482 K (decomposition; toluene/ethyl acetate); Rf = 0.68 (SiO2; toluene/ethyl acetate 10:1 v/v); 1H NMR (500 MHz, CDCl3): 1.16 (t, 6H, J = 7.6 Hz), 1.35 (t, 3H, J = 7.6 Hz), 2.94 (q, 2H, J = 7.6 Hz), 3.03 (q, 4H, J = 7.6 Hz), 4.61 (s, 4H), 4.92 (s, 2H), 7.69–7.71 (m, 2H), 7.72–7.83 (m, 2H) ppm; 13C NMR (500 MHz, CDCl3): 15.6, 15.7, 22.8, 23.0, 29.1, 37.0, 123.3, 130.6, 131.9, 132.1, 134.1, 144.2, 145.8, 168.1 ppm; IR (ATR): 2969, 1709, 1491, 1454, 1392, 592 cm−1; LC–MS (ESI): calculated for C23H25Br2NO2Na (M + Na)+: 530.01, found: 530.21.

Compound 2: Yield: 40%; m.p. 494–495 K (toluene/ethyl acetate); Rf = 0.48 (SiO2; toluene/ethyl acetate 10:1 v/v); 1H NMR (500 MHz, CDCl3): 0.97 (t, 3H, J = 7.6 Hz), 1.14 (t, 6H, J = 7.6 Hz), 3.00 (q, 4H, J = 7.6 Hz), 3.18 (q, 2H, J = 7.6 Hz), 4.63 (s, 2H), 4.94 (s, 4H), 7.68–7.70 (m, 4H), 7.71–7.83 (m, 4H) ppm; 13C NMR (500 MHz, CDCl3): 15.7, 15.8, 23.0, 23.5, 29.7, 37.3, 123.3, 130.0, 131.7, 131.9, 134.0, 144.8, 146.5, 168.2 ppm; IR (ATR): 2962, 1700, 1498, 1463, 1392, 528 cm−1; LC–MS (ESI): calculated for C31H30BrN2O4 (M + H)+: 575.14, found: 575.06.

Single crystals suitable for X-ray diffraction were obtained by crystallization of the respective compound from toluene/ethyl acetate (1) and toluene (2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined as riding, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl groups or Uiso(H) = 1.2 Ueq(C) otherwise. For compound 1, one ethyl group (C11B–C12B/C11C–C12C) in 1-B was refined in two positions using EADP and EXYZ restraints.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula C23H25Br2NO2 C31H29BrN2O4
Mr 507.26 573.47
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 153 153
a, b, c (Å) 13.367 (2), 19.966 (3), 16.919 (4) 12.899 (2), 12.9748 (15), 16.763 (3)
β (°) 106.099 (15) 109.168 (13)
V3) 4338.5 (14) 2649.9 (7)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.76 1.59
Crystal size (mm) 0.40 × 0.23 × 0.17 0.18 × 0.18 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2
Absorption correction Integration Integration
Tmin, Tmax 0.324, 0.472 0.695, 0.844
No. of measured, independent and observed [I > 2σ(I)] reflections 48044, 8523, 5961 26391, 4941, 3442
Rint 0.067 0.115
(sin θ/λ)max−1) 0.617 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.080, 1.02 0.056, 0.129, 1.12
No. of reflections 8523 4941
No. of parameters 516 346
No. of restraints 5 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.85 0.38, −0.67
Computer programs: X-AREA and X-RED (Stoe, 2009[Stoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2009); cell refinement: X-AREA (Stoe, 2009); data reduction: X-RED (Stoe, 2009); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

2-[3,5-Bis(bromomethyl)-2,4,6-triethylbenzyl]isoindoline-1,3-dione (1) top
Crystal data top
C23H25Br2NO2F(000) = 2048
Mr = 507.26Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.367 (2) ÅCell parameters from 2236 reflections
b = 19.966 (3) Åθ = 2.6–25.7°
c = 16.919 (4) ŵ = 3.76 mm1
β = 106.099 (15)°T = 153 K
V = 4338.5 (14) Å3Piece, colorless
Z = 80.40 × 0.23 × 0.17 mm
Data collection top
STOE IPDS 2T
diffractometer
8523 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5961 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.6°
rotation method scansh = 1616
Absorption correction: integrationk = 2424
Tmin = 0.324, Tmax = 0.472l = 2020
48044 measured reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0287P)2 + 3.7348P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8523 reflectionsΔρmax = 0.78 e Å3
516 parametersΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.16416 (3)0.64628 (2)0.09609 (2)0.04094 (10)
Br2A0.55611 (3)0.52669 (2)0.36556 (3)0.05486 (13)
O1A0.1498 (2)0.36605 (13)0.49979 (14)0.0395 (6)
O2A0.1109 (2)0.57148 (12)0.37508 (16)0.0469 (7)
N1A0.1343 (2)0.46167 (13)0.41932 (16)0.0279 (6)
C1A0.2142 (2)0.51420 (15)0.16832 (19)0.0235 (7)
C2A0.3218 (2)0.50277 (15)0.19315 (19)0.0246 (7)
C3A0.3659 (2)0.46791 (15)0.26682 (19)0.0241 (7)
C4A0.3024 (2)0.44455 (15)0.31516 (18)0.0229 (7)
C5A0.1951 (2)0.45732 (15)0.29062 (18)0.0225 (7)
C6A0.1501 (2)0.49312 (15)0.21738 (18)0.0230 (7)
C7A0.1661 (3)0.54733 (15)0.0867 (2)0.0287 (7)
H7A0.0939340.5308540.0643120.034*
H7B0.2059590.5346990.0476320.034*
C8A0.3894 (3)0.52472 (18)0.1391 (2)0.0340 (8)
H8A0.4598840.5359760.1740520.041*
H8B0.3592300.5654840.1082400.041*
C9A0.3974 (3)0.4693 (2)0.0781 (2)0.0448 (10)
H9A0.4414930.4847500.0441290.067*
H9B0.3277850.4587440.0427680.067*
H9C0.4281670.4291590.1085950.067*
C10A0.4810 (3)0.45441 (16)0.2934 (2)0.0308 (8)
H10A0.5072170.4509000.2442410.037*
H10B0.4943190.4111940.3231350.037*
C11A0.3497 (3)0.40134 (16)0.39013 (19)0.0269 (7)
H11A0.3082250.4060230.4300530.032*
H11B0.4214530.4167540.4171130.032*
C12A0.3520 (3)0.32768 (17)0.3655 (2)0.0347 (8)
H12A0.3920910.3016990.4128420.052*
H12B0.3847270.3238640.3205030.052*
H12C0.2807060.3103510.3472870.052*
C13A0.1249 (3)0.42863 (16)0.33988 (19)0.0270 (7)
H13A0.0516510.4319310.3060610.032*
H13B0.1413560.3805070.3500380.032*
C14A0.1440 (3)0.42633 (18)0.4930 (2)0.0301 (8)
C15A0.1469 (3)0.47882 (19)0.5564 (2)0.0329 (8)
C16A0.1600 (3)0.4726 (2)0.6405 (2)0.0425 (9)
H16A0.1653910.4301610.6667540.051*
C17A0.1650 (3)0.5332 (2)0.6847 (2)0.0499 (11)
H17A0.1748750.5312800.7424890.060*
C18A0.1561 (3)0.5948 (2)0.6471 (3)0.0508 (10)
H18A0.1603390.6343440.6791340.061*
C19A0.1409 (3)0.5999 (2)0.5630 (2)0.0464 (10)
H19A0.1337740.6422450.5364020.056*
C20A0.1366 (3)0.54083 (18)0.5190 (2)0.0345 (8)
C21A0.1250 (3)0.53045 (18)0.4296 (2)0.0328 (8)
C22A0.0342 (2)0.50790 (17)0.1894 (2)0.0286 (7)
H22A0.0225970.5497130.1566440.034*
H22B0.0086790.5152340.2383080.034*
C23A0.0282 (3)0.45160 (19)0.1379 (2)0.0377 (9)
H23A0.1010330.4654590.1165640.057*
H23B0.0242070.4115520.1721120.057*
H23C0.0005310.4415380.0918470.057*
Br1B0.67396 (3)0.39932 (2)0.09585 (2)0.04119 (10)
Br2B1.04422 (3)0.25251 (2)0.36780 (2)0.03582 (9)
O1B0.6272 (2)0.11607 (13)0.48916 (16)0.0435 (7)
O2B0.61521 (19)0.32716 (12)0.38071 (14)0.0350 (6)
N1B0.6197 (2)0.21507 (14)0.41532 (16)0.0300 (6)
C1B0.7055 (2)0.26581 (14)0.16601 (18)0.0225 (7)
C2B0.8113 (2)0.24748 (15)0.19156 (18)0.0234 (6)
C3B0.8472 (2)0.20833 (15)0.26292 (18)0.0236 (7)
C4B0.7787 (3)0.18849 (15)0.30865 (19)0.0252 (7)
C5B0.6737 (2)0.20943 (15)0.28466 (19)0.0245 (7)
C6B0.6371 (2)0.24923 (16)0.21354 (18)0.0249 (7)
C7B0.6642 (3)0.30068 (16)0.0850 (2)0.0295 (7)
H7C0.5904760.2878540.0609990.035*
H7D0.7039430.2856790.0468320.035*
C8B0.8845 (3)0.26902 (16)0.14208 (19)0.0279 (7)
H8C0.9545190.2771150.1799790.033*
H8D0.8593660.3116790.1136650.033*
C9B0.8929 (3)0.21651 (19)0.0782 (2)0.0359 (8)
H9D0.9397460.2328990.0470790.054*
H9E0.8237760.2083150.0405260.054*
H9F0.9205010.1747020.1062410.054*
C10B0.9591 (3)0.18730 (17)0.2891 (2)0.0300 (7)
H10C0.9858160.1839270.2402460.036*
H10D0.9649490.1425770.3152890.036*
C11B0.8180 (3)0.14231 (16)0.3819 (2)0.0311 (8)0.820 (6)
H11C0.8911460.1535950.4106280.037*0.820 (6)
H11D0.7758210.1489480.4210730.037*0.820 (6)
C12B0.8113 (4)0.0699 (2)0.3550 (3)0.0406 (12)0.820 (6)
H12D0.8489450.0418250.4011980.061*0.820 (6)
H12E0.8425630.0649190.3093540.061*0.820 (6)
H12F0.7381560.0561040.3370490.061*0.820 (6)
C11C0.8180 (3)0.14231 (16)0.3819 (2)0.0311 (8)0.180 (6)
H11E0.7588970.1151630.3886900.037*0.180 (6)
H11F0.8696880.1111560.3702330.037*0.180 (6)
C12C0.8641 (17)0.1758 (10)0.4567 (12)0.0406 (12)0.180 (6)
H12G0.9322530.1934390.4557710.061*0.180 (6)
H12H0.8729960.1444310.5026120.061*0.180 (6)
H12I0.8192080.2129180.4634810.061*0.180 (6)
C13B0.5994 (3)0.18597 (17)0.3324 (2)0.0330 (8)
H13C0.5274080.1974320.3006620.040*
H13D0.6038060.1365840.3374320.040*
C14B0.6311 (3)0.17670 (19)0.4873 (2)0.0333 (8)
C15B0.6500 (3)0.22625 (19)0.5562 (2)0.0335 (8)
C16B0.6689 (3)0.2166 (2)0.6403 (2)0.0412 (9)
H16B0.6712960.1730890.6634230.049*
C17B0.6840 (3)0.2739 (2)0.6891 (2)0.0480 (10)
H17B0.6969990.2691430.7468990.058*
C18B0.6808 (3)0.3374 (2)0.6561 (2)0.0464 (10)
H18B0.6915680.3751240.6916370.056*
C19B0.6621 (3)0.3470 (2)0.5715 (2)0.0398 (9)
H19B0.6597350.3905760.5483380.048*
C20B0.6471 (2)0.29004 (18)0.5229 (2)0.0305 (8)
C21B0.6258 (3)0.28343 (18)0.4321 (2)0.0300 (7)
C22B0.5264 (2)0.27532 (17)0.1873 (2)0.0303 (7)
H22C0.5255400.3191080.1596250.036*
H22D0.5021980.2827070.2368340.036*
C23B0.4509 (3)0.2279 (2)0.1292 (3)0.0509 (10)
H23D0.3827700.2495680.1091350.076*
H23E0.4436520.1867170.1586650.076*
H23F0.4777790.2168900.0824290.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0464 (2)0.02807 (18)0.0440 (2)0.00305 (16)0.00543 (18)0.01000 (16)
Br2A0.0321 (2)0.0477 (2)0.0728 (3)0.00696 (19)0.0055 (2)0.0089 (2)
O1A0.0469 (16)0.0415 (16)0.0306 (13)0.0038 (12)0.0115 (12)0.0086 (11)
O2A0.071 (2)0.0318 (14)0.0397 (15)0.0018 (13)0.0188 (14)0.0002 (12)
N1A0.0324 (16)0.0302 (15)0.0227 (15)0.0005 (12)0.0101 (12)0.0010 (11)
C1A0.0253 (17)0.0222 (16)0.0208 (16)0.0018 (13)0.0025 (14)0.0012 (12)
C2A0.0266 (17)0.0223 (16)0.0258 (17)0.0007 (13)0.0088 (14)0.0017 (13)
C3A0.0245 (17)0.0196 (15)0.0269 (17)0.0006 (13)0.0050 (14)0.0006 (13)
C4A0.0255 (17)0.0202 (15)0.0212 (16)0.0011 (13)0.0038 (14)0.0005 (12)
C5A0.0266 (17)0.0221 (16)0.0197 (16)0.0018 (13)0.0077 (14)0.0040 (12)
C6A0.0236 (17)0.0225 (16)0.0228 (16)0.0021 (13)0.0064 (13)0.0041 (12)
C7A0.0315 (19)0.0252 (17)0.0277 (18)0.0023 (14)0.0053 (15)0.0015 (13)
C8A0.0294 (19)0.040 (2)0.036 (2)0.0003 (16)0.0132 (16)0.0146 (16)
C9A0.045 (2)0.060 (3)0.037 (2)0.012 (2)0.0224 (19)0.0108 (19)
C10A0.0281 (18)0.0292 (18)0.0348 (19)0.0012 (14)0.0085 (16)0.0042 (14)
C11A0.0277 (18)0.0311 (18)0.0218 (16)0.0030 (14)0.0064 (14)0.0042 (13)
C12A0.042 (2)0.0290 (18)0.035 (2)0.0035 (16)0.0134 (17)0.0081 (15)
C13A0.0275 (18)0.0289 (17)0.0242 (17)0.0044 (14)0.0067 (14)0.0029 (13)
C14A0.0238 (18)0.039 (2)0.0276 (18)0.0007 (15)0.0073 (15)0.0033 (15)
C15A0.0201 (17)0.052 (2)0.0268 (18)0.0008 (16)0.0077 (15)0.0071 (16)
C16A0.030 (2)0.069 (3)0.030 (2)0.0015 (19)0.0101 (17)0.0015 (18)
C17A0.034 (2)0.088 (3)0.028 (2)0.000 (2)0.0076 (18)0.021 (2)
C18A0.043 (2)0.063 (3)0.046 (2)0.001 (2)0.011 (2)0.018 (2)
C19A0.048 (2)0.051 (2)0.041 (2)0.002 (2)0.0139 (19)0.0153 (18)
C20A0.0280 (19)0.043 (2)0.033 (2)0.0020 (16)0.0103 (16)0.0088 (16)
C21A0.032 (2)0.0351 (19)0.032 (2)0.0004 (16)0.0108 (16)0.0045 (16)
C22A0.0253 (18)0.0331 (18)0.0270 (17)0.0023 (14)0.0065 (15)0.0018 (14)
C23A0.030 (2)0.047 (2)0.0321 (19)0.0074 (16)0.0024 (16)0.0016 (16)
Br1B0.0400 (2)0.03334 (19)0.0493 (2)0.00394 (16)0.01081 (18)0.01429 (17)
Br2B0.02973 (18)0.03980 (19)0.03393 (18)0.00315 (16)0.00217 (14)0.00055 (16)
O1B0.0527 (17)0.0392 (16)0.0448 (16)0.0032 (12)0.0235 (14)0.0156 (12)
O2B0.0387 (15)0.0312 (13)0.0352 (14)0.0064 (11)0.0103 (12)0.0097 (11)
N1B0.0348 (16)0.0324 (16)0.0262 (15)0.0013 (13)0.0143 (13)0.0062 (12)
C1B0.0263 (17)0.0190 (16)0.0208 (15)0.0025 (12)0.0040 (13)0.0025 (12)
C2B0.0260 (16)0.0220 (15)0.0222 (15)0.0020 (13)0.0069 (13)0.0037 (13)
C3B0.0257 (17)0.0216 (16)0.0225 (16)0.0028 (13)0.0050 (14)0.0008 (12)
C4B0.0316 (18)0.0207 (16)0.0233 (17)0.0031 (13)0.0078 (14)0.0008 (13)
C5B0.0286 (18)0.0226 (16)0.0237 (16)0.0018 (13)0.0098 (14)0.0008 (13)
C6B0.0250 (16)0.0229 (15)0.0249 (16)0.0033 (14)0.0038 (13)0.0046 (13)
C7B0.0294 (18)0.0323 (18)0.0255 (18)0.0010 (15)0.0051 (15)0.0039 (14)
C8B0.0226 (17)0.0338 (19)0.0263 (17)0.0036 (14)0.0055 (14)0.0015 (13)
C9B0.035 (2)0.047 (2)0.0301 (19)0.0016 (17)0.0163 (17)0.0055 (16)
C10B0.0308 (19)0.0307 (18)0.0270 (18)0.0026 (14)0.0053 (15)0.0007 (14)
C11B0.034 (2)0.0302 (18)0.0283 (18)0.0065 (15)0.0074 (15)0.0040 (14)
C12B0.060 (3)0.026 (2)0.036 (2)0.003 (2)0.014 (2)0.0077 (18)
C11C0.034 (2)0.0302 (18)0.0283 (18)0.0065 (15)0.0074 (15)0.0040 (14)
C12C0.060 (3)0.026 (2)0.036 (2)0.003 (2)0.014 (2)0.0077 (18)
C13B0.036 (2)0.0332 (19)0.0325 (19)0.0000 (15)0.0147 (16)0.0054 (15)
C14B0.031 (2)0.040 (2)0.034 (2)0.0050 (16)0.0170 (17)0.0130 (16)
C15B0.0236 (18)0.050 (2)0.0293 (19)0.0047 (16)0.0111 (15)0.0062 (16)
C16B0.034 (2)0.059 (3)0.033 (2)0.0056 (18)0.0145 (17)0.0122 (19)
C17B0.041 (2)0.077 (3)0.026 (2)0.011 (2)0.0108 (18)0.004 (2)
C18B0.039 (2)0.066 (3)0.034 (2)0.005 (2)0.0099 (18)0.0076 (19)
C19B0.031 (2)0.045 (2)0.045 (2)0.0006 (17)0.0140 (18)0.0004 (17)
C20B0.0223 (17)0.040 (2)0.0304 (19)0.0032 (15)0.0097 (15)0.0057 (15)
C21B0.0229 (17)0.0359 (19)0.0326 (19)0.0040 (15)0.0100 (15)0.0045 (16)
C22B0.0241 (17)0.0311 (18)0.0345 (19)0.0001 (14)0.0063 (15)0.0018 (14)
C23B0.029 (2)0.063 (3)0.057 (3)0.0114 (19)0.0056 (19)0.004 (2)
Geometric parameters (Å, º) top
Br1A—C7A1.983 (3)N1B—C21B1.392 (4)
Br2A—C10A1.975 (3)N1B—C14B1.411 (4)
O1A—C14A1.210 (4)N1B—C13B1.472 (4)
O2A—C21A1.208 (4)C1B—C2B1.407 (4)
N1A—C21A1.394 (4)C1B—C6B1.415 (4)
N1A—C14A1.406 (4)C1B—C7B1.499 (4)
N1A—C13A1.471 (4)C2B—C3B1.406 (4)
C1A—C2A1.401 (4)C2B—C8B1.516 (4)
C1A—C6A1.412 (4)C3B—C4B1.409 (4)
C1A—C7A1.505 (4)C3B—C10B1.498 (4)
C2A—C3A1.406 (4)C4B—C5B1.412 (4)
C2A—C8A1.517 (4)C4B—C11C1.517 (4)
C3A—C4A1.411 (4)C4B—C11B1.517 (4)
C3A—C10A1.503 (4)C5B—C6B1.411 (4)
C4A—C5A1.402 (4)C5B—C13B1.518 (4)
C4A—C11A1.519 (4)C6B—C22B1.514 (4)
C5A—C6A1.412 (4)C7B—H7C0.9900
C5A—C13A1.528 (4)C7B—H7D0.9900
C6A—C22A1.518 (4)C8B—C9B1.532 (4)
C7A—H7A0.9900C8B—H8C0.9900
C7A—H7B0.9900C8B—H8D0.9900
C8A—C9A1.536 (5)C9B—H9D0.9800
C8A—H8A0.9900C9B—H9E0.9800
C8A—H8B0.9900C9B—H9F0.9800
C9A—H9A0.9800C10B—H10C0.9900
C9A—H9B0.9800C10B—H10D0.9900
C9A—H9C0.9800C11B—C12B1.510 (5)
C10A—H10A0.9900C11B—H11C0.9900
C10A—H10B0.9900C11B—H11D0.9900
C11A—C12A1.531 (5)C12B—H12D0.9800
C11A—H11A0.9900C12B—H12E0.9800
C11A—H11B0.9900C12B—H12F0.9800
C12A—H12A0.9800C11C—C12C1.41 (2)
C12A—H12B0.9800C11C—H11E0.9900
C12A—H12C0.9800C11C—H11F0.9900
C13A—H13A0.9900C12C—H12G0.9800
C13A—H13B0.9900C12C—H12H0.9800
C14A—C15A1.493 (5)C12C—H12I0.9800
C15A—C20A1.380 (5)C13B—H13C0.9900
C15A—C16A1.390 (5)C13B—H13D0.9900
C16A—C17A1.414 (6)C14B—C15B1.496 (5)
C16A—H16A0.9500C15B—C16B1.388 (5)
C17A—C18A1.375 (6)C15B—C20B1.389 (5)
C17A—H17A0.9500C16B—C17B1.392 (6)
C18A—C19A1.384 (6)C16B—H16B0.9500
C18A—H18A0.9500C17B—C18B1.380 (6)
C19A—C20A1.387 (5)C17B—H17B0.9500
C19A—H19A0.9500C18B—C19B1.398 (5)
C20A—C21A1.491 (5)C18B—H18B0.9500
C22A—C23A1.521 (5)C19B—C20B1.385 (5)
C22A—H22A0.9900C19B—H19B0.9500
C22A—H22B0.9900C20B—C21B1.488 (5)
C23A—H23A0.9800C22B—C23B1.527 (5)
C23A—H23B0.9800C22B—H22C0.9900
C23A—H23C0.9800C22B—H22D0.9900
Br1B—C7B1.979 (3)C23B—H23D0.9800
Br2B—C10B1.980 (3)C23B—H23E0.9800
O1B—C14B1.212 (4)C23B—H23F0.9800
O2B—C21B1.213 (4)
C21A—N1A—C14A111.9 (3)C3B—C2B—C8B120.9 (3)
C21A—N1A—C13A124.6 (3)C1B—C2B—C8B120.3 (3)
C14A—N1A—C13A123.2 (3)C2B—C3B—C4B120.6 (3)
C2A—C1A—C6A121.0 (3)C2B—C3B—C10B119.0 (3)
C2A—C1A—C7A119.3 (3)C4B—C3B—C10B120.4 (3)
C6A—C1A—C7A119.7 (3)C3B—C4B—C5B120.3 (3)
C1A—C2A—C3A119.3 (3)C3B—C4B—C11C119.3 (3)
C1A—C2A—C8A120.3 (3)C5B—C4B—C11C120.4 (3)
C3A—C2A—C8A120.3 (3)C3B—C4B—C11B119.3 (3)
C2A—C3A—C4A120.4 (3)C5B—C4B—C11B120.4 (3)
C2A—C3A—C10A119.7 (3)C6B—C5B—C4B119.6 (3)
C4A—C3A—C10A119.9 (3)C6B—C5B—C13B120.3 (3)
C5A—C4A—C3A119.9 (3)C4B—C5B—C13B120.0 (3)
C5A—C4A—C11A120.3 (3)C5B—C6B—C1B119.4 (3)
C3A—C4A—C11A119.6 (3)C5B—C6B—C22B121.6 (3)
C4A—C5A—C6A120.2 (3)C1B—C6B—C22B119.1 (3)
C4A—C5A—C13A120.2 (3)C1B—C7B—Br1B112.3 (2)
C6A—C5A—C13A119.5 (3)C1B—C7B—H7C109.1
C1A—C6A—C5A119.1 (3)Br1B—C7B—H7C109.1
C1A—C6A—C22A119.5 (3)C1B—C7B—H7D109.1
C5A—C6A—C22A121.4 (3)Br1B—C7B—H7D109.1
C1A—C7A—Br1A112.1 (2)H7C—C7B—H7D107.9
C1A—C7A—H7A109.2C2B—C8B—C9B112.3 (3)
Br1A—C7A—H7A109.2C2B—C8B—H8C109.1
C1A—C7A—H7B109.2C9B—C8B—H8C109.1
Br1A—C7A—H7B109.2C2B—C8B—H8D109.1
H7A—C7A—H7B107.9C9B—C8B—H8D109.1
C2A—C8A—C9A111.2 (3)H8C—C8B—H8D107.9
C2A—C8A—H8A109.4C8B—C9B—H9D109.5
C9A—C8A—H8A109.4C8B—C9B—H9E109.5
C2A—C8A—H8B109.4H9D—C9B—H9E109.5
C9A—C8A—H8B109.4C8B—C9B—H9F109.5
H8A—C8A—H8B108.0H9D—C9B—H9F109.5
C8A—C9A—H9A109.5H9E—C9B—H9F109.5
C8A—C9A—H9B109.5C3B—C10B—Br2B110.8 (2)
H9A—C9A—H9B109.5C3B—C10B—H10C109.5
C8A—C9A—H9C109.5Br2B—C10B—H10C109.5
H9A—C9A—H9C109.5C3B—C10B—H10D109.5
H9B—C9A—H9C109.5Br2B—C10B—H10D109.5
C3A—C10A—Br2A110.9 (2)H10C—C10B—H10D108.1
C3A—C10A—H10A109.5C12B—C11B—C4B110.9 (3)
Br2A—C10A—H10A109.5C12B—C11B—H11C109.5
C3A—C10A—H10B109.5C4B—C11B—H11C109.5
Br2A—C10A—H10B109.5C12B—C11B—H11D109.5
H10A—C10A—H10B108.1C4B—C11B—H11D109.5
C4A—C11A—C12A110.7 (3)H11C—C11B—H11D108.0
C4A—C11A—H11A109.5C11B—C12B—H12D109.5
C12A—C11A—H11A109.5C11B—C12B—H12E109.5
C4A—C11A—H11B109.5H12D—C12B—H12E109.5
C12A—C11A—H11B109.5C11B—C12B—H12F109.5
H11A—C11A—H11B108.1H12D—C12B—H12F109.5
C11A—C12A—H12A109.5H12E—C12B—H12F109.5
C11A—C12A—H12B109.5C12C—C11C—C4B114.2 (8)
H12A—C12A—H12B109.5C12C—C11C—H11E108.7
C11A—C12A—H12C109.5C4B—C11C—H11E108.7
H12A—C12A—H12C109.5C12C—C11C—H11F108.7
H12B—C12A—H12C109.5C4B—C11C—H11F108.7
N1A—C13A—C5A114.9 (3)H11E—C11C—H11F107.6
N1A—C13A—H13A108.5C11C—C12C—H12G109.5
C5A—C13A—H13A108.5C11C—C12C—H12H109.5
N1A—C13A—H13B108.5H12G—C12C—H12H109.5
C5A—C13A—H13B108.5C11C—C12C—H12I109.5
H13A—C13A—H13B107.5H12G—C12C—H12I109.5
O1A—C14A—N1A124.9 (3)H12H—C12C—H12I109.5
O1A—C14A—C15A129.9 (3)N1B—C13B—C5B114.2 (3)
N1A—C14A—C15A105.2 (3)N1B—C13B—H13C108.7
C20A—C15A—C16A121.2 (3)C5B—C13B—H13C108.7
C20A—C15A—C14A108.7 (3)N1B—C13B—H13D108.7
C16A—C15A—C14A130.1 (4)C5B—C13B—H13D108.7
C15A—C16A—C17A116.0 (4)H13C—C13B—H13D107.6
C15A—C16A—H16A122.0O1B—C14B—N1B124.7 (3)
C17A—C16A—H16A122.0O1B—C14B—C15B129.8 (3)
C18A—C17A—C16A122.4 (4)N1B—C14B—C15B105.5 (3)
C18A—C17A—H17A118.8C16B—C15B—C20B121.3 (4)
C16A—C17A—H17A118.8C16B—C15B—C14B130.6 (3)
C17A—C18A—C19A120.7 (4)C20B—C15B—C14B108.1 (3)
C17A—C18A—H18A119.7C15B—C16B—C17B116.7 (4)
C19A—C18A—H18A119.7C15B—C16B—H16B121.7
C18A—C19A—C20A117.5 (4)C17B—C16B—H16B121.7
C18A—C19A—H19A121.2C18B—C17B—C16B122.1 (4)
C20A—C19A—H19A121.2C18B—C17B—H17B118.9
C15A—C20A—C19A122.1 (3)C16B—C17B—H17B118.9
C15A—C20A—C21A108.1 (3)C17B—C18B—C19B121.2 (4)
C19A—C20A—C21A129.8 (4)C17B—C18B—H18B119.4
O2A—C21A—N1A125.0 (3)C19B—C18B—H18B119.4
O2A—C21A—C20A129.1 (3)C20B—C19B—C18B116.7 (4)
N1A—C21A—C20A106.0 (3)C20B—C19B—H19B121.6
C6A—C22A—C23A112.6 (3)C18B—C19B—H19B121.6
C6A—C22A—H22A109.1C19B—C20B—C15B122.0 (3)
C23A—C22A—H22A109.1C19B—C20B—C21B129.8 (3)
C6A—C22A—H22B109.1C15B—C20B—C21B108.2 (3)
C23A—C22A—H22B109.1O2B—C21B—N1B124.8 (3)
H22A—C22A—H22B107.8O2B—C21B—C20B128.8 (3)
C22A—C23A—H23A109.5N1B—C21B—C20B106.3 (3)
C22A—C23A—H23B109.5C6B—C22B—C23B113.1 (3)
H23A—C23A—H23B109.5C6B—C22B—H22C108.9
C22A—C23A—H23C109.5C23B—C22B—H22C108.9
H23A—C23A—H23C109.5C6B—C22B—H22D108.9
H23B—C23A—H23C109.5C23B—C22B—H22D108.9
C21B—N1B—C14B111.7 (3)H22C—C22B—H22D107.8
C21B—N1B—C13B124.5 (3)C22B—C23B—H23D109.5
C14B—N1B—C13B123.8 (3)C22B—C23B—H23E109.5
C2B—C1B—C6B121.2 (3)H23D—C23B—H23E109.5
C2B—C1B—C7B119.1 (3)C22B—C23B—H23F109.5
C6B—C1B—C7B119.7 (3)H23D—C23B—H23F109.5
C3B—C2B—C1B118.9 (3)H23E—C23B—H23F109.5
C6A—C1A—C2A—C3A2.0 (5)C7B—C1B—C2B—C8B6.2 (4)
C7A—C1A—C2A—C3A175.9 (3)C1B—C2B—C3B—C4B0.8 (4)
C6A—C1A—C2A—C8A179.0 (3)C8B—C2B—C3B—C4B180.0 (3)
C7A—C1A—C2A—C8A1.1 (4)C1B—C2B—C3B—C10B178.5 (3)
C1A—C2A—C3A—C4A0.1 (5)C8B—C2B—C3B—C10B0.7 (4)
C8A—C2A—C3A—C4A176.9 (3)C2B—C3B—C4B—C5B1.9 (5)
C1A—C2A—C3A—C10A179.0 (3)C10B—C3B—C4B—C5B178.8 (3)
C8A—C2A—C3A—C10A2.0 (5)C2B—C3B—C4B—C11C175.8 (3)
C2A—C3A—C4A—C5A1.3 (4)C10B—C3B—C4B—C11C3.5 (4)
C10A—C3A—C4A—C5A179.8 (3)C2B—C3B—C4B—C11B175.8 (3)
C2A—C3A—C4A—C11A174.2 (3)C10B—C3B—C4B—C11B3.5 (4)
C10A—C3A—C4A—C11A4.7 (4)C3B—C4B—C5B—C6B1.3 (5)
C3A—C4A—C5A—C6A0.4 (4)C11C—C4B—C5B—C6B176.4 (3)
C11A—C4A—C5A—C6A175.1 (3)C11B—C4B—C5B—C6B176.4 (3)
C3A—C4A—C5A—C13A176.4 (3)C3B—C4B—C5B—C13B177.9 (3)
C11A—C4A—C5A—C13A0.9 (4)C11C—C4B—C5B—C13B0.2 (4)
C2A—C1A—C6A—C5A2.9 (4)C11B—C4B—C5B—C13B0.2 (4)
C7A—C1A—C6A—C5A175.0 (3)C4B—C5B—C6B—C1B1.9 (4)
C2A—C1A—C6A—C22A178.5 (3)C13B—C5B—C6B—C1B174.7 (3)
C7A—C1A—C6A—C22A3.6 (4)C4B—C5B—C6B—C22B177.4 (3)
C4A—C5A—C6A—C1A1.7 (4)C13B—C5B—C6B—C22B6.0 (4)
C13A—C5A—C6A—C1A174.3 (3)C2B—C1B—C6B—C5B4.7 (4)
C4A—C5A—C6A—C22A179.8 (3)C7B—C1B—C6B—C5B172.4 (3)
C13A—C5A—C6A—C22A4.2 (4)C2B—C1B—C6B—C22B174.7 (3)
C2A—C1A—C7A—Br1A89.3 (3)C7B—C1B—C6B—C22B8.2 (4)
C6A—C1A—C7A—Br1A92.8 (3)C2B—C1B—C7B—Br1B90.8 (3)
C1A—C2A—C8A—C9A89.4 (4)C6B—C1B—C7B—Br1B92.0 (3)
C3A—C2A—C8A—C9A87.6 (4)C3B—C2B—C8B—C9B86.8 (4)
C2A—C3A—C10A—Br2A91.8 (3)C1B—C2B—C8B—C9B92.4 (4)
C4A—C3A—C10A—Br2A89.3 (3)C2B—C3B—C10B—Br2B92.4 (3)
C5A—C4A—C11A—C12A90.8 (3)C4B—C3B—C10B—Br2B88.3 (3)
C3A—C4A—C11A—C12A84.7 (4)C3B—C4B—C11B—C12B84.5 (4)
C21A—N1A—C13A—C5A52.9 (4)C5B—C4B—C11B—C12B93.2 (4)
C14A—N1A—C13A—C5A133.3 (3)C3B—C4B—C11C—C12C87.7 (10)
C4A—C5A—C13A—N1A73.6 (4)C5B—C4B—C11C—C12C94.6 (10)
C6A—C5A—C13A—N1A110.4 (3)C21B—N1B—C13B—C5B54.5 (4)
C21A—N1A—C14A—O1A177.5 (3)C14B—N1B—C13B—C5B128.2 (3)
C13A—N1A—C14A—O1A3.0 (5)C6B—C5B—C13B—N1B113.3 (3)
C21A—N1A—C14A—C15A3.3 (4)C4B—C5B—C13B—N1B70.1 (4)
C13A—N1A—C14A—C15A177.8 (3)C21B—N1B—C14B—O1B178.8 (3)
O1A—C14A—C15A—C20A179.5 (4)C13B—N1B—C14B—O1B1.2 (5)
N1A—C14A—C15A—C20A1.3 (4)C21B—N1B—C14B—C15B2.2 (4)
O1A—C14A—C15A—C16A2.2 (6)C13B—N1B—C14B—C15B179.8 (3)
N1A—C14A—C15A—C16A176.9 (3)O1B—C14B—C15B—C16B0.6 (6)
C20A—C15A—C16A—C17A1.6 (5)N1B—C14B—C15B—C16B178.4 (3)
C14A—C15A—C16A—C17A176.5 (3)O1B—C14B—C15B—C20B180.0 (4)
C15A—C16A—C17A—C18A0.8 (6)N1B—C14B—C15B—C20B1.1 (4)
C16A—C17A—C18A—C19A0.4 (6)C20B—C15B—C16B—C17B0.3 (5)
C17A—C18A—C19A—C20A0.8 (6)C14B—C15B—C16B—C17B179.7 (3)
C16A—C15A—C20A—C19A1.3 (5)C15B—C16B—C17B—C18B0.1 (6)
C14A—C15A—C20A—C19A177.2 (3)C16B—C17B—C18B—C19B0.0 (6)
C16A—C15A—C20A—C21A179.4 (3)C17B—C18B—C19B—C20B0.0 (6)
C14A—C15A—C20A—C21A0.9 (4)C18B—C19B—C20B—C15B0.2 (5)
C18A—C19A—C20A—C15A0.0 (6)C18B—C19B—C20B—C21B180.0 (3)
C18A—C19A—C20A—C21A177.7 (4)C16B—C15B—C20B—C19B0.4 (5)
C14A—N1A—C21A—O2A176.4 (3)C14B—C15B—C20B—C19B179.9 (3)
C13A—N1A—C21A—O2A2.0 (6)C16B—C15B—C20B—C21B179.8 (3)
C14A—N1A—C21A—C20A3.9 (4)C14B—C15B—C20B—C21B0.3 (4)
C13A—N1A—C21A—C20A178.3 (3)C14B—N1B—C21B—O2B177.6 (3)
C15A—C20A—C21A—O2A177.4 (4)C13B—N1B—C21B—O2B0.0 (5)
C19A—C20A—C21A—O2A4.6 (7)C14B—N1B—C21B—C20B2.4 (4)
C15A—C20A—C21A—N1A2.9 (4)C13B—N1B—C21B—C20B179.9 (3)
C19A—C20A—C21A—N1A175.0 (4)C19B—C20B—C21B—O2B1.4 (6)
C1A—C6A—C22A—C23A91.4 (4)C15B—C20B—C21B—O2B178.4 (3)
C5A—C6A—C22A—C23A87.1 (4)C19B—C20B—C21B—N1B178.7 (3)
C6B—C1B—C2B—C3B4.1 (4)C15B—C20B—C21B—N1B1.6 (4)
C7B—C1B—C2B—C3B173.0 (3)C5B—C6B—C22B—C23B90.3 (4)
C6B—C1B—C2B—C8B176.7 (3)C1B—C6B—C22B—C23B90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10A—H10B···O2B0.992.353.223 (4)147
C11A—H11A···N1A0.992.543.283 (4)132
C13A—H13B···Br2Bi0.992.923.746 (3)142
C13A—H13B···O1A0.992.522.914 (4)103
C9B—H9F···Br2Aii0.983.003.921 (4)158
C11B—H11D···N1B0.992.453.207 (4)133
C12B—H12D···Br1Bii0.982.863.499 (4)123
C13B—H13D···O1B0.992.532.928 (4)104
C22B—H22D···O2B0.992.643.322 (4)126
C23B—H23E···O2Aiii0.982.433.226 (5)138
C22A—H22B···O2A0.992.593.278 (4)126
C9B—H9D···Cg4iv0.982.963.731 (5)137
C23B—H23D···Cg4v0.982.923.542 (5)122
C12C—H12I···N1B0.982.563.24 (2)126
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z1/2.
2-{5-(Bromomethyl)-3-[(1,3-dioxoisoindolin-2-yl)methyl]-2,4,6-triethylbenzyl}isoindoline-1,3-dione (2) top
Crystal data top
C31H29BrN2O4F(000) = 1184
Mr = 573.47Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.899 (2) ÅCell parameters from 3744 reflections
b = 12.9748 (15) Åθ = 2.0–22.5°
c = 16.763 (3) ŵ = 1.59 mm1
β = 109.168 (13)°T = 153 K
V = 2649.9 (7) Å3Piece, colorless
Z = 40.18 × 0.18 × 0.15 mm
Data collection top
STOE IPDS 2
diffractometer
4941 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3442 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.115
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.7°
rotation method scansh = 1515
Absorption correction: integrationk = 1515
Tmin = 0.695, Tmax = 0.844l = 1920
26391 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0406P)2 + 4.7828P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4941 reflectionsΔρmax = 0.38 e Å3
346 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52316 (4)0.01014 (4)0.79824 (3)0.04165 (17)
O10.0480 (2)0.1049 (2)0.44957 (19)0.0269 (7)
O20.2500 (2)0.1152 (2)0.34544 (18)0.0264 (7)
O30.2841 (3)0.5612 (2)0.47753 (19)0.0337 (7)
O40.4148 (2)0.4359 (2)0.74727 (17)0.0235 (6)
N10.1509 (2)0.0228 (2)0.4147 (2)0.0178 (7)
N20.3553 (3)0.4731 (2)0.6045 (2)0.0187 (7)
C10.4494 (3)0.1118 (3)0.6341 (3)0.0207 (8)
C20.3495 (3)0.0700 (3)0.5826 (2)0.0186 (8)
C30.2686 (3)0.1364 (3)0.5330 (2)0.0169 (8)
C40.2886 (3)0.2437 (3)0.5314 (2)0.0170 (8)
C50.3903 (3)0.2834 (3)0.5827 (2)0.0178 (8)
C60.4692 (3)0.2186 (3)0.6364 (2)0.0183 (8)
C70.5375 (3)0.0407 (3)0.6872 (3)0.0261 (10)
H7A0.6101370.0724690.6957900.031*
H7B0.5346430.0248180.6562100.031*
C80.3313 (3)0.0454 (3)0.5824 (3)0.0218 (9)
H8A0.2514820.0592410.5654890.026*
H8B0.3656840.0722660.6403520.026*
C90.3788 (4)0.1030 (3)0.5223 (3)0.0303 (10)
H9A0.3471780.0749070.4651180.046*
H9B0.3608490.1764070.5218980.046*
H9C0.4586810.0943800.5414440.046*
C100.1550 (3)0.0942 (3)0.4834 (2)0.0205 (9)
H10A0.1251360.0585870.5233380.025*
H10B0.1060100.1531760.4592440.025*
C110.0915 (3)0.0691 (3)0.4011 (3)0.0186 (8)
C120.0940 (3)0.1109 (3)0.3197 (2)0.0189 (8)
C130.0457 (3)0.2003 (3)0.2775 (3)0.0258 (10)
H130.0044360.2455480.3000680.031*
C140.0612 (4)0.2193 (3)0.2012 (3)0.0325 (11)
H140.0302820.2798430.1707190.039*
C150.1209 (4)0.1524 (3)0.1672 (3)0.0324 (11)
H150.1293310.1679640.1143310.039*
C160.1682 (3)0.0627 (3)0.2106 (3)0.0246 (9)
H160.2089220.0167740.1881120.030*
C170.1535 (3)0.0438 (3)0.2871 (2)0.0189 (8)
C180.1925 (3)0.0425 (3)0.3490 (2)0.0179 (8)
C190.2003 (3)0.3149 (3)0.4773 (3)0.0215 (9)
H19A0.1611930.2800950.4232070.026*
H19B0.2352320.3777490.4643360.026*
C200.1163 (3)0.3462 (3)0.5208 (3)0.0283 (10)
H20A0.0622880.3937050.4842010.042*
H20B0.1545620.3802910.5746600.042*
H20C0.0786970.2846010.5312480.042*
C210.4188 (3)0.3966 (3)0.5753 (3)0.0202 (9)
H21A0.4975340.4066400.6076740.024*
H21B0.4090900.4111320.5152540.024*
C220.2951 (3)0.5522 (3)0.5513 (3)0.0246 (9)
C230.2531 (3)0.6184 (3)0.6061 (3)0.0219 (9)
C240.1883 (4)0.7063 (3)0.5864 (3)0.0308 (10)
H240.1608920.7322230.5303560.037*
C250.1652 (4)0.7548 (3)0.6535 (3)0.0335 (11)
H250.1198580.8143290.6424550.040*
C260.2069 (4)0.7180 (3)0.7352 (3)0.0373 (12)
H260.1910870.7538320.7793230.045*
C270.2714 (4)0.6298 (3)0.7542 (3)0.0284 (10)
H270.2995970.6040640.8102560.034*
C280.2928 (3)0.5812 (3)0.6878 (3)0.0227 (9)
C290.3610 (3)0.4885 (3)0.6876 (2)0.0194 (8)
C300.5750 (3)0.2621 (3)0.6972 (3)0.0208 (9)
H30A0.6012440.2161410.7469130.025*
H30B0.5596010.3303760.7172480.025*
C310.6659 (3)0.2740 (3)0.6580 (3)0.0257 (9)
H31A0.6863310.2059330.6426230.039*
H31B0.7300700.3064560.6989490.039*
H31C0.6395850.3171530.6073820.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0519 (3)0.0366 (3)0.0270 (2)0.0005 (2)0.0001 (2)0.0070 (2)
O10.0267 (15)0.0224 (15)0.0341 (17)0.0046 (13)0.0132 (14)0.0026 (13)
O20.0301 (16)0.0216 (15)0.0251 (16)0.0051 (13)0.0057 (13)0.0031 (12)
O30.054 (2)0.0249 (16)0.0203 (17)0.0032 (15)0.0104 (15)0.0044 (12)
O40.0284 (15)0.0184 (14)0.0218 (15)0.0000 (12)0.0054 (13)0.0021 (12)
N10.0131 (15)0.0174 (16)0.0216 (17)0.0032 (13)0.0040 (13)0.0006 (13)
N20.0244 (17)0.0112 (15)0.0202 (17)0.0039 (13)0.0070 (14)0.0002 (13)
C10.021 (2)0.0183 (19)0.022 (2)0.0021 (16)0.0072 (17)0.0005 (16)
C20.0200 (19)0.0159 (19)0.021 (2)0.0025 (16)0.0078 (17)0.0030 (15)
C30.0160 (19)0.0176 (19)0.0160 (19)0.0026 (15)0.0038 (16)0.0032 (15)
C40.0193 (19)0.0186 (19)0.0132 (19)0.0020 (16)0.0054 (15)0.0022 (15)
C50.021 (2)0.0120 (18)0.021 (2)0.0005 (15)0.0064 (17)0.0021 (15)
C60.0181 (19)0.0155 (18)0.021 (2)0.0039 (15)0.0059 (16)0.0028 (16)
C70.026 (2)0.020 (2)0.026 (2)0.0007 (17)0.0008 (18)0.0013 (17)
C80.024 (2)0.0161 (18)0.022 (2)0.0031 (16)0.0028 (18)0.0011 (15)
C90.038 (3)0.018 (2)0.030 (2)0.0044 (19)0.005 (2)0.0017 (18)
C100.0176 (19)0.020 (2)0.021 (2)0.0004 (16)0.0023 (17)0.0056 (16)
C110.0125 (18)0.0164 (19)0.024 (2)0.0012 (15)0.0021 (17)0.0038 (16)
C120.0157 (19)0.0167 (19)0.023 (2)0.0033 (16)0.0042 (16)0.0019 (16)
C130.022 (2)0.0162 (19)0.035 (3)0.0004 (16)0.0039 (19)0.0028 (17)
C140.032 (2)0.025 (2)0.033 (3)0.0010 (19)0.000 (2)0.0104 (19)
C150.040 (3)0.031 (2)0.022 (2)0.007 (2)0.004 (2)0.0060 (19)
C160.024 (2)0.027 (2)0.019 (2)0.0048 (17)0.0015 (17)0.0058 (17)
C170.0156 (19)0.0180 (19)0.019 (2)0.0040 (15)0.0001 (16)0.0032 (15)
C180.0160 (19)0.0159 (19)0.018 (2)0.0032 (15)0.0002 (16)0.0034 (15)
C190.022 (2)0.0172 (19)0.023 (2)0.0003 (16)0.0041 (17)0.0011 (16)
C200.023 (2)0.022 (2)0.038 (3)0.0052 (18)0.007 (2)0.0009 (19)
C210.025 (2)0.0137 (18)0.021 (2)0.0018 (16)0.0063 (17)0.0041 (15)
C220.026 (2)0.0132 (19)0.033 (3)0.0029 (17)0.0073 (19)0.0015 (17)
C230.022 (2)0.0153 (19)0.027 (2)0.0029 (16)0.0066 (18)0.0007 (16)
C240.033 (2)0.019 (2)0.040 (3)0.0007 (18)0.012 (2)0.0022 (19)
C250.030 (2)0.017 (2)0.057 (3)0.0038 (18)0.020 (2)0.003 (2)
C260.038 (3)0.030 (2)0.053 (3)0.001 (2)0.027 (2)0.008 (2)
C270.033 (2)0.027 (2)0.031 (2)0.0021 (19)0.017 (2)0.0028 (19)
C280.024 (2)0.0156 (18)0.030 (2)0.0036 (16)0.0101 (18)0.0024 (17)
C290.0222 (19)0.0147 (18)0.022 (2)0.0061 (16)0.0087 (16)0.0017 (17)
C300.019 (2)0.0180 (19)0.021 (2)0.0012 (16)0.0007 (17)0.0048 (16)
C310.024 (2)0.019 (2)0.033 (2)0.0019 (17)0.0073 (19)0.0040 (17)
Geometric parameters (Å, º) top
Br1—C71.970 (4)C13—C141.381 (6)
O1—C111.221 (5)C13—H130.9500
O2—C181.213 (5)C14—C151.399 (7)
O3—C221.204 (5)C14—H140.9500
O4—C291.222 (5)C15—C161.401 (6)
N1—C111.395 (5)C15—H150.9500
N1—C181.399 (5)C16—C171.380 (6)
N1—C101.465 (5)C16—H160.9500
N2—C291.384 (5)C17—C181.497 (5)
N2—C221.413 (5)C19—C201.547 (6)
N2—C211.471 (5)C19—H19A0.9900
C1—C21.403 (5)C19—H19B0.9900
C1—C61.407 (5)C20—H20A0.9800
C1—C71.507 (5)C20—H20B0.9800
C2—C31.397 (5)C20—H20C0.9800
C2—C81.515 (5)C21—H21A0.9900
C3—C41.418 (5)C21—H21B0.9900
C3—C101.529 (5)C22—C231.483 (6)
C4—C51.409 (5)C23—C281.383 (6)
C4—C191.515 (5)C23—C241.388 (6)
C5—C61.396 (5)C24—C251.403 (7)
C5—C211.530 (5)C24—H240.9500
C6—C301.519 (5)C25—C261.382 (7)
C7—H7A0.9900C25—H250.9500
C7—H7B0.9900C26—C271.389 (6)
C8—C91.534 (6)C26—H260.9500
C8—H8A0.9900C27—C281.383 (6)
C8—H8B0.9900C27—H270.9500
C9—H9A0.9800C28—C291.491 (5)
C9—H9B0.9800C30—C311.528 (6)
C9—H9C0.9800C30—H30A0.9900
C10—H10A0.9900C30—H30B0.9900
C10—H10B0.9900C31—H31A0.9800
C11—C121.478 (6)C31—H31B0.9800
C12—C171.386 (6)C31—H31C0.9800
C12—C131.394 (5)
C11—N1—C18111.1 (3)C17—C16—C15117.4 (4)
C11—N1—C10123.1 (3)C17—C16—H16121.3
C18—N1—C10125.4 (3)C15—C16—H16121.3
C29—N2—C22111.5 (3)C16—C17—C12121.2 (4)
C29—N2—C21125.6 (3)C16—C17—C18131.3 (4)
C22—N2—C21122.0 (3)C12—C17—C18107.5 (3)
C2—C1—C6121.3 (3)O2—C18—N1125.4 (4)
C2—C1—C7119.3 (3)O2—C18—C17128.3 (4)
C6—C1—C7119.5 (3)N1—C18—C17106.3 (3)
C3—C2—C1118.9 (3)C4—C19—C20112.6 (3)
C3—C2—C8121.5 (3)C4—C19—H19A109.1
C1—C2—C8119.6 (4)C20—C19—H19A109.1
C2—C3—C4120.8 (3)C4—C19—H19B109.1
C2—C3—C10119.9 (3)C20—C19—H19B109.1
C4—C3—C10119.3 (3)H19A—C19—H19B107.8
C5—C4—C3119.1 (3)C19—C20—H20A109.5
C5—C4—C19120.6 (3)C19—C20—H20B109.5
C3—C4—C19120.3 (3)H20A—C20—H20B109.5
C6—C5—C4120.6 (3)C19—C20—H20C109.5
C6—C5—C21119.1 (3)H20A—C20—H20C109.5
C4—C5—C21120.1 (3)H20B—C20—H20C109.5
C5—C6—C1119.2 (3)N2—C21—C5116.5 (3)
C5—C6—C30120.8 (3)N2—C21—H21A108.2
C1—C6—C30120.0 (3)C5—C21—H21A108.2
C1—C7—Br1113.3 (3)N2—C21—H21B108.2
C1—C7—H7A108.9C5—C21—H21B108.2
Br1—C7—H7A108.9H21A—C21—H21B107.3
C1—C7—H7B108.9O3—C22—N2125.0 (4)
Br1—C7—H7B108.9O3—C22—C23129.5 (4)
H7A—C7—H7B107.7N2—C22—C23105.5 (4)
C2—C8—C9112.8 (3)C28—C23—C24121.3 (4)
C2—C8—H8A109.0C28—C23—C22108.7 (3)
C9—C8—H8A109.0C24—C23—C22130.0 (4)
C2—C8—H8B109.0C23—C24—C25116.6 (4)
C9—C8—H8B109.0C23—C24—H24121.7
H8A—C8—H8B107.8C25—C24—H24121.7
C8—C9—H9A109.5C26—C25—C24121.6 (4)
C8—C9—H9B109.5C26—C25—H25119.2
H9A—C9—H9B109.5C24—C25—H25119.2
C8—C9—H9C109.5C25—C26—C27121.3 (4)
H9A—C9—H9C109.5C25—C26—H26119.3
H9B—C9—H9C109.5C27—C26—H26119.3
N1—C10—C3115.7 (3)C28—C27—C26117.0 (4)
N1—C10—H10A108.3C28—C27—H27121.5
C3—C10—H10A108.3C26—C27—H27121.5
N1—C10—H10B108.3C23—C28—C27122.1 (4)
C3—C10—H10B108.3C23—C28—C29107.8 (4)
H10A—C10—H10B107.4C27—C28—C29130.1 (4)
O1—C11—N1124.3 (4)O4—C29—N2124.9 (4)
O1—C11—C12129.0 (3)O4—C29—C28128.7 (4)
N1—C11—C12106.7 (3)N2—C29—C28106.4 (3)
C17—C12—C13122.4 (4)C6—C30—C31113.3 (3)
C17—C12—C11108.4 (3)C6—C30—H30A108.9
C13—C12—C11129.2 (4)C31—C30—H30A108.9
C14—C13—C12116.2 (4)C6—C30—H30B108.9
C14—C13—H13121.9C31—C30—H30B108.9
C12—C13—H13121.9H30A—C30—H30B107.7
C13—C14—C15122.2 (4)C30—C31—H31A109.5
C13—C14—H14118.9C30—C31—H31B109.5
C15—C14—H14118.9H31A—C31—H31B109.5
C14—C15—C16120.6 (4)C30—C31—H31C109.5
C14—C15—H15119.7H31A—C31—H31C109.5
C16—C15—H15119.7H31B—C31—H31C109.5
C6—C1—C2—C30.1 (6)C13—C12—C17—C160.3 (6)
C7—C1—C2—C3179.5 (4)C11—C12—C17—C16179.1 (3)
C6—C1—C2—C8179.6 (4)C13—C12—C17—C18179.9 (3)
C7—C1—C2—C81.0 (6)C11—C12—C17—C181.1 (4)
C1—C2—C3—C43.0 (6)C11—N1—C18—O2177.6 (3)
C8—C2—C3—C4177.5 (4)C10—N1—C18—O210.3 (6)
C1—C2—C3—C10173.8 (4)C11—N1—C18—C171.3 (4)
C8—C2—C3—C105.8 (6)C10—N1—C18—C17170.8 (3)
C2—C3—C4—C52.1 (6)C16—C17—C18—O22.3 (7)
C10—C3—C4—C5174.7 (4)C12—C17—C18—O2177.4 (4)
C2—C3—C4—C19179.9 (4)C16—C17—C18—N1178.8 (4)
C10—C3—C4—C193.3 (6)C12—C17—C18—N11.5 (4)
C3—C4—C5—C61.9 (6)C5—C4—C19—C2095.5 (4)
C19—C4—C5—C6176.1 (4)C3—C4—C19—C2082.5 (4)
C3—C4—C5—C21173.4 (3)C29—N2—C21—C568.4 (5)
C19—C4—C5—C218.6 (6)C22—N2—C21—C5123.2 (4)
C4—C5—C6—C14.7 (6)C6—C5—C21—N2116.0 (4)
C21—C5—C6—C1170.6 (4)C4—C5—C21—N268.6 (5)
C4—C5—C6—C30174.8 (4)C29—N2—C22—O3174.7 (4)
C21—C5—C6—C309.8 (6)C21—N2—C22—O34.8 (6)
C2—C1—C6—C53.8 (6)C29—N2—C22—C234.4 (4)
C7—C1—C6—C5175.6 (4)C21—N2—C22—C23174.2 (3)
C2—C1—C6—C30175.8 (4)O3—C22—C23—C28176.0 (4)
C7—C1—C6—C304.8 (6)N2—C22—C23—C282.9 (4)
C2—C1—C7—Br187.0 (4)O3—C22—C23—C241.7 (7)
C6—C1—C7—Br193.6 (4)N2—C22—C23—C24179.3 (4)
C3—C2—C8—C996.5 (5)C28—C23—C24—C250.1 (6)
C1—C2—C8—C984.0 (5)C22—C23—C24—C25177.6 (4)
C11—N1—C10—C3135.1 (4)C23—C24—C25—C261.3 (6)
C18—N1—C10—C353.7 (5)C24—C25—C26—C271.6 (7)
C2—C3—C10—N166.4 (5)C25—C26—C27—C280.6 (7)
C4—C3—C10—N1116.7 (4)C24—C23—C28—C270.9 (6)
C18—N1—C11—O1178.9 (3)C22—C23—C28—C27177.1 (4)
C10—N1—C11—O18.8 (5)C24—C23—C28—C29178.6 (4)
C18—N1—C11—C120.7 (4)C22—C23—C28—C290.6 (4)
C10—N1—C11—C12171.6 (3)C26—C27—C28—C230.6 (6)
O1—C11—C12—C17179.8 (4)C26—C27—C28—C29177.8 (4)
N1—C11—C12—C170.3 (4)C22—N2—C29—O4174.3 (4)
O1—C11—C12—C131.4 (7)C21—N2—C29—O44.9 (6)
N1—C11—C12—C13179.1 (4)C22—N2—C29—C284.0 (4)
C17—C12—C13—C140.6 (6)C21—N2—C29—C28173.5 (3)
C11—C12—C13—C14179.3 (4)C23—C28—C29—O4176.3 (4)
C12—C13—C14—C150.7 (6)C27—C28—C29—O41.3 (7)
C13—C14—C15—C160.4 (7)C23—C28—C29—N22.0 (4)
C14—C15—C16—C170.0 (6)C27—C28—C29—N2179.5 (4)
C15—C16—C17—C120.1 (6)C5—C6—C30—C3187.0 (5)
C15—C16—C17—C18179.7 (4)C1—C6—C30—C3193.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.992.492.896 (5)104
C10—H10A···O1i0.992.493.173 (5)126
C19—H19B···O30.992.453.373 (5)154
C21—H21B···O30.992.472.897 (5)105
C25—H25···O4ii0.952.583.237 (5)127
C30—H30B···O40.992.503.346 (5)144
C31—H31B···O2iii0.982.593.298 (5)129
C31—H31C···O3iv0.982.533.334 (5)139
C26—H26···Cg1ii0.952.843.529 (5)130
C31—H31A···Cg3v0.982.883.394 (5)113
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
Halogen bonds in 1 top
C—X···Y—Csymmetry codeC—X/YX···YC—X/Y···Y/X
C10B—Br2B···O1A—C14A1 + x, y, z1.980 (3)/1.210 (4)3.220 (3)129.0 (2)/171.35 (11)
 

Funding information

Open-access funding by the Publication Fund of the TU Bergakademie Freiberg is gratefully acknowledged.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. https://chemistry-europe.onlinelibrary. wiley. com/doi/10.1002/ejoc.202100758.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationChin, J., Oh, J., Jon, S. Y., Park, S. H., Walsdorff, C., Stranix, B., Ghoussoub, A., Lee, S. J., Chung, H. J., Park, S.-M. & Kim, K. (2002). J. Am. Chem. Soc. 124, 5374–5379.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDomínguez, Z., Jancik, V., Leyva, M. A., Salas-Reyes, M., Guzmán-Márquez, V., Hernández, J., Bagatella-Flores, N. & Ramos, R. (2007). Z. Kristallogr. New Cryst. Struct. 222, 146–148.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJonah, T. M., Mathivathanan, L., Morozov, A. N., Mebel, A. M., Raptis, R. G. & Kavallieratos, K. (2017). New J. Chem. 41, 14835–14838.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2014). Acta Cryst. E70, o393–o394.  CSD CrossRef IUCr Journals Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMazik, M. (2009). Chem. Soc. Rev. 38, 935–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. (2012). RSC Adv. 2, 2630–2642.  Web of Science CrossRef CAS Google Scholar
First citationRosien, J.-R., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o680.  CSD CrossRef IUCr Journals Google Scholar
First citationSchulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. pp. 4317–4330.  Web of Science CSD CrossRef Google Scholar
First citationSchulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidel, P., Seichter, W., Schwarzer, A. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 2901–2914.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2015). Chem. Eur. J. 21, 6350–6354.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900–4915.  Web of Science CSD CrossRef Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679–1683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds