research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(N,N-di­methyl­form­amide-κO)iron(III) μ-chlorido-bis­­(tri­chlorido­cadmium)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, 35 Stirling Highway, Perth, 6009, W.A., Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by A. M. Chippindale, University of Reading, England (Received 30 August 2021; accepted 15 September 2021; online 21 September 2021)

The title compound, [Fe(C3H7NO)6][Cd2Cl7], crystallizes in the trigonal space group R[\overline{3}] and is assembled from discrete [Fe(DMF)6]3+ cations (DMF = N,N-di­methyl­formamide) and [Cd2Cl7]3− anions. In the cation, the iron(III) atom, located on a special position of [\overline{3}] site symmetry, is coordinated by six oxygen atoms from DMF ligands with all Fe—O distances being equal [2.0072 (16) Å]. A slight distortion of the octa­hedral environment of the metal comes from the cis O—Fe—O angles deviating from the ideal value of 90° [86.85 (7) and 93.16 (7)°] whilst all the trans angles are strictly 180°. The central Cl atom of the [Cd2Cl7]3− anion is also located on a special position of [\overline{3}] site symmetry and bridges two corner sharing, tetra­hedrally coordinated CdII atoms. The two Cd atoms and the central Cl atom are colinear. The two sets of terminal chloride ligands on either side of the dumbbell-like anion are rotated relative to each other by 30°. In the crystal, the cations and anions, stacked one above the other along the c-axis direction, are held in place principally by electrostatic inter­actions. There are also C—H⋯Cl and C—H⋯O inter­actions, but these are rather weak. Of the six crystal structures reported to date for ionic salts of [Fe(DMF)6]n+ cations (n = 2, 3), five contain FeII ions. The title compound is the second example of a stable compound containing the [Fe(DMF)6]3+ cation. The existence of both [Fe(DMF)6]2+ and [Fe(DMF)6]3+ cations shows that the DMF ligand coordination sphere can accommodate changes in the charge and spin states of the metal centre.

1. Chemical context

In our ongoing research into the new functions and applications of coordination compounds with Schiff-base ligands, we have utilized a synthetic scheme involving a zerovalent metal as the source of metal ions, together with another metal salt, in order to prepare new heterometallic complexes (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183-237. Amsterdam: Elsevier.]; Vassilyeva et al., 2018[Vassilyeva, O. Y., Kasyanova, K. V., Kokozay, V. N. & Skelton, B. W. (2018). Acta Cryst. E74, 1532-1535.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Sobolev, A. N., Bieńko, A. & Ozarowski, A. (2021). Dalton Trans. 50, 2841-2853.]). In a typical procedure, the metal powder undergoes oxidative dissolution in air to generate metal ions that then inter­act with the second metal salt and pre-formed ligand. The condensation reaction between the Schiff-base precursors occurs in situ without isolation of the imine. Di­oxy­gen from the air is reduced to form a water mol­ecule with participation of protons donated by the imine, which is capable of deprotonation.

By using the above scheme, new homo- and heterometallic CoIII, CoIII/ZnII and CoIII/CdII complexes with a Schiff-base ligand derived from 2-hy­droxy-3-meth­oxy­benzaldehyde (o-vanillin) and the simple amine methyl­amine have been prepared (Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. Gen. 560, 171-184.], 2019[Nesterova, O. V., Kasyanova, K. V., Buvaylo, E. A., Vassilyeva, O. Yu., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2019). Catalysts, 9, 209.]). Comparative studies of their catalytic behaviours in oxidation reactions of alkanes with H2O2 and m-chloro­per­oxy­benzoic acid were undertaken to elucidate the role of the second (inactive) metal centre (Cd) in the catalytic performance of the heterometallic compounds. Given the remarkable catalytic activity of the Schiff base FeIII metal complexes mimicking the Fe-containing enzymes that oxidize alkanes in nature (Nesterov et al., 2015[Nesterov, D. S., Nesterova, O. V., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2015). Catal. Sci. Technol. 5, 1801-1812.]), we decided to extend our work and replace the cobalt centre with iron in a heterometallic core supported by the above Schiff-base ligand.

To facilitate formation of the desired compound, an additional basic agent, N-phenyldi­ethano­lamine, was introduced following the previous successful participation of di­ethano­lamine in the formation of a mixed-ligand Schiff base NiII/ZnII dimer (Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Sobolev, A. N., Bieńko, A. & Ozarowski, A. (2021). Dalton Trans. 50, 2841-2853.]). In the latter compound, the deprotonated amino­alcohol mol­ecules provide additional alkoxo-bridges between the metal centres. The use of amino­alcohol deprotonation in reactions employing zero­valent metals in the synthesis of heterometallics was established by a number of us several years ago (Vassilyeva et al., 1997[Vassilyeva, O. Y., Kokozay, V. N., Zhukova, N. A. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]; Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.], 2012[Buvaylo, E. A., Nesterova, O. V., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Boča, R. & Nesterov, D. S. (2012). Cryst. Growth Des. 12, 3200-3208.]).

[Scheme 1]

In the present work, the treatment of cadmium powder and FeCl3·6H2O with a solution of the in situ-formed Schiff base in open air worked a different way than expected and led to the isolation of the title compound, the mixed-metal ionic salt [FeIII(DMF)6][Cd2Cl7], (1), the identity of which was established by X-ray crystallography and confirmed by chemical analysis.

2. Structural commentary

Compound (1), [Fe(C3H7NO)6][Cd2Cl7], crystallizes in the trigonal space group R[\overline{3}] and is assembled from discrete [Fe(DMF)6]3+ cations (DMF = N,N-di­methyl­formamide) and [Cd2Cl7]3− anions. In the cation, the iron(III) atom sits on a special position of [\overline{3}] site symmetry and is coordinated by six oxygen atoms from the DMF ligands with all the Fe—O bond lengths being equal at 2.0072 (16) Å (Fig. 1[link], Table 1[link]). The octa­hedral environment of the metal is slightly distorted as a result of the cis O1—Fe1—O1 angles deviating from the ideal value of 90° [86.85 (7) and 93.16 (7)°] while all the trans angles are strictly 180°. The central Cl atom of the [Cd2Cl7]3− anion, Cl1, is also located on a special position of [\overline{3}] site symmetry and bridges two corner-sharing, tetra­hedrally coordinated CdII atoms. The two Cd atoms and the central Cl atom are colinear (Cd1—Cl1—Cd1vi angle = 180°) and the bridging Cd1⋯Cd1vi distance is 5.0752 (3) Å (Fig. 1[link]). The two sets of terminal chloride ligands, Cl2, on either side of the dumbbell–like anion are rotated relative to each other by 30°. Around each Cd atom, the bridging Cd—Cl1 distance at 2.5377 (3) Å is 0.1 Å longer than that of the terminal Cd—Cl2 distance (2.4358 (5) Å) and the Cl2—Cd1—Cl1 and Cl2—Cd1—Cl2i angles are 107.547 (14) and 111.325 (13)°, respectively, which are very close to the ideal value of 109°. The bond lengths and angles of the DMF ligands are similar to those found in [Fe(DMF)6](ClO4)3 (Houlton et al., 2015[Houlton, A., Lamming, G. & Waddell, P. G. (2015). CSD Communication (deposit code CCDC 1422466). CCDC, Cambridge, England.]).

Table 1
Selected geometric parameters (Å, °)

Cd1—Cl2 2.4358 (5) Fe1—O1 2.0072 (16)
Cd1—Cl1 2.5377 (3)    
       
Cl2i—Cd1—Cl2 111.325 (13) O1ii—Fe1—O1 93.15 (7)
Cl2—Cd1—Cl1 107.547 (14) O1iii—Fe1—O1 86.84 (7)
Symmetry codes: (i) [-y+1, x-y+1, z]; (ii) [-x+y, -x+1, z]; (iii) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}].
[Figure 1]
Figure 1
Mol­ecular structure and labelling of [FeIII(DMF)6][Cd2Cl7] (1) with displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) −y + 1, x − y + 1, z; (ii) −x + y, −x + 1, z; (iii) y − [{1\over 3}], −x + y + [{1\over 3}], −z + [{4\over 3}]; (iv) −x + [{2\over 3}], −y + [{4\over 3}], −z + [{4\over 3}]; (v) x − y + [{2\over 3}], x + [{1\over 3}], −z + [{4\over 3}]; (vi) −x + [{2\over 3}], −y + [{4\over 3}], −z + [{1\over 3}]; (viii) y − [{1\over 3}], −x + y + [{1\over 3}], −z + [{1\over 3}]; (ix) x − y + [{2\over 3}], x + [{1\over 3}], −z + [{1\over 3}].]

3. Supra­molecular features

In the crystal, the cations and anions are stacked one above the other along the c-axis direction (Fig. 2[link]). Although classical hydrogen bonds are absent, several weak C—H⋯O and C—H⋯Cl inter­actions are detected in the structure [C1—H1⋯Cl2i, 3.772 (3) Å; C12—H123⋯Cl12vii, 3.783 (3) Å and C1—H1⋯O1i, 3.097 (3) Å]. The minimum H⋯O distance (H1⋯Oi) between DMF mol­ecules within the same cation is 2.62 (3) Å and the shortest distance between Cl atoms of the anions and adjacent H atoms of DMF methyl groups (H123⋯Cl2vii) is 2.82 Å (Table 2[link]), implying that the halide ions act as weak hydrogen-bond acceptors.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H123⋯Cl2vii 0.98 2.82 3.783 (3) 167
C1—H1⋯Cl2i 0.97 (3) 2.86 (3) 3.772 (3) 158 (2)
C1—H1⋯O1i 0.97 (3) 2.62 (3) 3.097 (3) 111 (2)
C12—H122⋯Cl2i 0.98 2.94 3.861 (3) 157
Symmetry codes: (i) [-y+1, x-y+1, z]; (vii) [-x+{\script{4\over 3}}, -y+{\script{5\over 3}}, -z+{\script{2\over 3}}].
[Figure 2]
Figure 2
Crystal packing of (1) along the c axis showing stacks of cations and anions alternating in the c-axis direction. Hydrogen atoms are not shown.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals six ionic salts containing octa­hedral [Fe(DMF)6]n+ (n = 2, 3) cations. Five of the structures contain FeII ions, which crystallize in the presence of the counter-anions [FeCl4]2− (CALMOS01; Cheaib et al., 2013[Cheaib, K., Martel, D., Clément, N., Eckes, F., Kouaho, S., Rogez, G., Dagorne, S., Kurmoo, M., Choua, S. & Welter, R. (2013). Dalton Trans. 42, 1406-1416.]), [FeCl2S4W]2−(CUSNOT; Coucouvanis et al., 1984[Coucouvanis, D., Simhon, E. D., Stremple, P., Ryan, M., Swenson, D., Baenziger, N. C., Simopoulos, A., Papaefthymiou, V., Kostikas, A. & Petrouleas, V. (1984). Inorg. Chem. 23, 741-749.]), [Mo2S6]2− (DEZMIF; Li et al., 2007[Li, Y., Zhang, Z. X., Li, K. C., Xu, J. Q., Song, W. D. & Pan, L. Y. (2007). J. Mol. Struct. 833, 8-12.]), [Fe2Cl4S2]2− (VAMFIY; Müller et al., 1989[Müller, A., Schladerbeck, N. H., Krickemeyer, E., Bögge, H., Schmitz, K., Bill, E. & Trautwein, A. X. (1989). Z. Anorg. Allg. Chem. 570, 7-36.]) and ClO4 (GAZGET; Baumgartner, 1986[Baumgartner, O. (1986). Z. Kristallogr. 174, 253-263.]). The only example to date containing the FeIII cation, [Fe(DMF)6]3+, is found as the perchlorate salt (DMFAFE01; Houlton et al., 2015[Houlton, A., Lamming, G. & Waddell, P. G. (2015). CSD Communication (deposit code CCDC 1422466). CCDC, Cambridge, England.]).

In the pair of perchlorate salts, the FeII and FeIII ions are easily distinguishable by their dissimilar Fe—O bond distances that vary in the ranges 2.08–2.11 and 1.9869 (15)–1.9985 (14) Å for [Fe(DMF)6](ClO4)2 (GAZGET) and [Fe(DMF)6](ClO4)3 (DMFAFE01), respectively. Both Fe-based octa­hedra are only slightly distorted with cis bond angles in the ranges 86.3–93.7° (GAZGET) and 88.57 (6)–91.43 (6)° (DMFAFE01), while all the trans angles are equal to the ideal value of 180°. The geometric parameters of the [Fe(DMF)6]3+ cation in the title compound, (1), are very close to those found in [Fe(DMF)6](ClO4)3 (DMFAFE01) with slight differences arising due to the different counter-anions present. The existence of both [Fe(DMF)6]2+ and [Fe(DMF)6]3+ cations shows that the DMF ligand coordination sphere can accommodate changes in the charge and spin states of the metal centre.

Considering the anion found in (1), there are six more examples of [Cd2Cl7]3− anions in the CSD [LOVLUF (Chen et al., 2014[Chen, W. T., Hu, R. H., Luo, Z. G., Chen, H. L., Zhang, X. & Liu, J. (2014). Indian J. Chem. A53, 294-298.]); MANBIP and MANCAI (Shen et al., 2017[Shen, F. F., Zhao, J. L., Chen, K., Hua, Z. Y., Chen, M. D., Zhang, Y. Q., Zhu, Q. J. & Tao, Z. (2017). CrystEngComm, 19, 2464-2474.]); NIZXUR (Zhou et al., 2014[Zhou, J. J., Yu, X., Zhao, Y. C., Xiao, X., Zhang, Y. Q., Zhu, Q. J., Xue, S. F., Zhang, Q. J., Liu, J. X. & Tao, Z. (2014). Tetrahedron, 70, 800-804.]); WEYLUJ (Sharma et al., 2012[Sharma, R. P., Singh, A., Venugopalan, P., Yanan, G., Yu, J., Angeli, C. & Ferretti, V. (2012). Eur. J. Inorg. Chem. pp. 1195-1203.]) and YAYFIQ (Cui et al., 2017[Cui, X., Zhao, W., Chen, K., Ni, X. L., Zhang, Y. Q. & Tao, Z. (2017). Chem. Eur. J. 23, 2759-2763.])] with different degrees of distorted tetra­hedral geometry around the Cd atoms and a Cd—Cl—Cd angle ranging from 103.92 (4)° in [Co(phen)3][Cd2Cl7]·3H2O (WEYLUJ) to 180° in (1). The Cd⋯Cd distance of 3.9983 (5) Å in the `bent' structure is significantly lower than that found in (1) [5.0752 (3) Å], showing conformational flexibility of the polychloride dicadmium anion to achieve shape complementarity to the counter-cation.

5. Synthesis and crystallization

2-Hy­droxy-3-meth­oxy-benzaldehyde (0.3 g, 2 mmol) was stirred magnetically with CH3NH2·HCl (0.14 g, 2 mmol) and N-phenyldi­ethano­lamine (0.36 g, 2 mmol) in methanol (20 mL) in a 50 mL conical flask at 303 K for 20 min. A fine Cd powder (0.11 g, 1 mmol) and dry FeCl3·6H2O (0.27 g, 1 mmol) were introduced to the flask, and the mixture was kept stirring at 333 K to achieve dissolution of the zerovalent metal (1 h). The resulting dark blue–green solution was then filtered and allowed to evaporate at room temperature. After a week, the solution was diluted with DMF (7 mL) since it was thickening and filtered again. Dark-green octa­hedral crystals of (1) formed over two months after successive addition of PriOH (4 mL) and diethyl ether (4 mL) in several portions. The crystals were filtered off, washed with diethyl ether and finally dried in air. Yield (based on Fe): 0.13 g (64%). Analysis calculated for C18H42FeN6O6Cd2Cl7 (967.37): C 22.35, H 4.38, N 8.69%. Found: C 22.86, H 4.30, C 8.36%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Anisotropic displacement parameters were refined for all non-hydrogen atoms. All the carbon-bound hydrogen atoms were placed in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for CH and C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C) for CH3].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C3H7NO)6][Cd2Cl7]
Mr 967.37
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 100
a, c (Å) 13.7143 (2), 16.1312 (2)
V3) 2627.51 (5)
Z 3
Radiation type Cu Kα
μ (mm−1) 18.18
Crystal size (mm) 0.06 × 0.05 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Gemini-R Ultra, Ruby CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.760, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 16143, 1051, 980
Rint 0.038
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.00
No. of reflections 1051
No. of parameters 67
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

Hexakis(N,N-dimethylformamide-κO)iron(III) µ-chlorido-bis(trichloridocadmium) top
Crystal data top
[Fe(C3H7NO)6][Cd2Cl7]Dx = 1.834 Mg m3
Mr = 967.37Cu Kα radiation, λ = 1.54178 Å
Trigonal, R3Cell parameters from 9616 reflections
a = 13.7143 (2) Åθ = 4.6–67.0°
c = 16.1312 (2) ŵ = 18.18 mm1
V = 2627.51 (5) Å3T = 100 K
Z = 3Octahedral, dark green
F(000) = 14430.06 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Gemini-R Ultra, Ruby CCD
diffractometer
1051 independent reflections
Radiation source: Enhance (Cu) X-ray Source980 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4738 pixels mm-1θmax = 67.2°, θmin = 4.6°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1616
Tmin = 0.760, Tmax = 1.0l = 1919
16143 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0422P)2 + 4.220P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1051 reflectionsΔρmax = 0.79 e Å3
67 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.33330.66670.32398 (2)0.01664 (12)
Fe10.33330.66670.66670.0139 (2)
O10.47367 (14)0.75401 (14)0.59890 (10)0.0200 (4)
N10.59569 (16)0.90250 (17)0.52091 (12)0.0187 (4)
C10.4941 (2)0.8248 (2)0.54225 (15)0.0191 (5)
H10.431 (2)0.819 (2)0.5111 (17)0.023*
C110.6967 (2)0.9151 (2)0.56042 (17)0.0257 (6)
H1130.73920.99020.58520.039*
H1110.74350.90550.51890.039*
H1120.67540.85790.60380.039*
C120.6127 (2)0.9772 (2)0.45107 (16)0.0244 (5)
H1230.65470.96450.40730.037*
H1210.65531.05570.46960.037*
H1220.53940.96140.42950.037*
Cl10.33330.66670.16670.0233 (3)
Cl20.51428 (4)0.69293 (5)0.36951 (3)0.02102 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01759 (14)0.01759 (14)0.01476 (17)0.00879 (7)0.0000.000
Fe10.0141 (3)0.0141 (3)0.0136 (4)0.00706 (14)0.0000.000
O10.0207 (8)0.0213 (8)0.0183 (8)0.0107 (7)0.0051 (6)0.0042 (7)
N10.0201 (10)0.0195 (10)0.0164 (10)0.0097 (8)0.0014 (8)0.0016 (8)
C10.0214 (12)0.0210 (12)0.0159 (11)0.0114 (10)0.0012 (9)0.0029 (10)
C110.0225 (13)0.0261 (13)0.0290 (14)0.0126 (11)0.0022 (10)0.0020 (11)
C120.0248 (13)0.0267 (13)0.0217 (13)0.0129 (11)0.0041 (10)0.0036 (10)
Cl10.0300 (5)0.0300 (5)0.0100 (6)0.0150 (2)0.0000.000
Cl20.0191 (3)0.0249 (3)0.0201 (3)0.0119 (2)0.0019 (2)0.0020 (2)
Geometric parameters (Å, º) top
Cd1—Cl2i2.4358 (5)N1—C111.455 (3)
Cd1—Cl2ii2.4358 (5)N1—C121.461 (3)
Cd1—Cl22.4358 (5)C1—H10.97 (3)
Cd1—Cl12.5377 (3)C11—H1130.9800
Fe1—O1iii2.0071 (16)C11—H1110.9800
Fe1—O1ii2.0072 (16)C11—H1120.9800
Fe1—O1i2.0072 (16)C12—H1230.9800
Fe1—O12.0072 (16)C12—H1210.9800
Fe1—O1iv2.0072 (16)C12—H1220.9800
Fe1—O1v2.0072 (16)Cl1—Cd1vi2.5376 (3)
O1—C11.258 (3)Cd1—Cd1vi5.0752 (3)
N1—C11.307 (3)
Cl2i—Cd1—Cl2ii111.323 (13)C1—O1—Fe1129.31 (16)
Cl2i—Cd1—Cl2111.325 (13)C1—N1—C11123.0 (2)
Cl2ii—Cd1—Cl2111.324 (13)C1—N1—C12120.4 (2)
Cl2i—Cd1—Cl1107.547 (14)C11—N1—C12116.51 (19)
Cl2ii—Cd1—Cl1107.549 (14)O1—C1—N1123.8 (2)
Cl2—Cd1—Cl1107.547 (14)O1—C1—H1117.8 (17)
O1iii—Fe1—O1ii86.85 (7)N1—C1—H1118.4 (17)
O1iii—Fe1—O1i180.0N1—C11—H113109.5
O1ii—Fe1—O1i93.16 (7)N1—C11—H111109.5
O1ii—Fe1—O193.15 (7)H113—C11—H111109.5
O1iii—Fe1—O186.84 (7)N1—C11—H112109.5
O1i—Fe1—O193.15 (7)H113—C11—H112109.5
O1iii—Fe1—O1iv93.16 (7)H111—C11—H112109.5
O1ii—Fe1—O1iv86.85 (7)N1—C12—H123109.5
O1i—Fe1—O1iv86.84 (7)N1—C12—H121109.5
O1—Fe1—O1iv180.0H123—C12—H121109.5
O1iii—Fe1—O1v93.16 (7)N1—C12—H122109.5
O1ii—Fe1—O1v180.00 (8)H123—C12—H122109.5
O1i—Fe1—O1v86.84 (7)H121—C12—H122109.5
O1—Fe1—O1v86.85 (7)Cd1vi—Cl1—Cd1180.0
O1iv—Fe1—O1v93.15 (7)
Fe1—O1—C1—N1156.61 (17)C12—N1—C1—O1176.2 (2)
C11—N1—C1—O10.4 (4)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) y1/3, x+y+1/3, z+4/3; (iv) x+2/3, y+4/3, z+4/3; (v) xy+2/3, x+1/3, z+4/3; (vi) x+2/3, y+4/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H123···Cl2vii0.982.823.783 (3)167
C1—H1···Cl2i0.97 (3)2.86 (3)3.772 (3)158 (2)
C1—H1···O1i0.97 (3)2.62 (3)3.097 (3)111 (2)
C12—H122···Cl2i0.982.943.861 (3)157
Symmetry codes: (i) y+1, xy+1, z; (vii) x+4/3, y+5/3, z+2/3.
 

Acknowledgements

The authors acknowledge use of the facilities and the scientific and technical assistance at the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, The University of Western Australia. This facility is funded by the University, State and Commonwealth Governments.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (contract No. BF/30-2021).

References

First citationBaumgartner, O. (1986). Z. Kristallogr. 174, 253–263.  CrossRef CAS Web of Science Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationBuvaylo, E. A., Nesterova, O. V., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Boča, R. & Nesterov, D. S. (2012). Cryst. Growth Des. 12, 3200–3208.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheaib, K., Martel, D., Clément, N., Eckes, F., Kouaho, S., Rogez, G., Dagorne, S., Kurmoo, M., Choua, S. & Welter, R. (2013). Dalton Trans. 42, 1406–1416.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, W. T., Hu, R. H., Luo, Z. G., Chen, H. L., Zhang, X. & Liu, J. (2014). Indian J. Chem. A53, 294–298.  Google Scholar
First citationCoucouvanis, D., Simhon, E. D., Stremple, P., Ryan, M., Swenson, D., Baenziger, N. C., Simopoulos, A., Papaefthymiou, V., Kostikas, A. & Petrouleas, V. (1984). Inorg. Chem. 23, 741–749.  CSD CrossRef CAS Google Scholar
First citationCui, X., Zhao, W., Chen, K., Ni, X. L., Zhang, Y. Q. & Tao, Z. (2017). Chem. Eur. J. 23, 2759–2763.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoulton, A., Lamming, G. & Waddell, P. G. (2015). CSD Communication (deposit code CCDC 1422466). CCDC, Cambridge, England.  Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationLi, Y., Zhang, Z. X., Li, K. C., Xu, J. Q., Song, W. D. & Pan, L. Y. (2007). J. Mol. Struct. 833, 8–12.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMüller, A., Schladerbeck, N. H., Krickemeyer, E., Bögge, H., Schmitz, K., Bill, E. & Trautwein, A. X. (1989). Z. Anorg. Allg. Chem. 570, 7–36.  Google Scholar
First citationNesterova, O. V., Kasyanova, K. V., Buvaylo, E. A., Vassilyeva, O. Yu., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2019). Catalysts, 9, 209.  CrossRef Google Scholar
First citationNesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. Gen. 560, 171–184.  CSD CrossRef CAS Google Scholar
First citationNesterov, D. S., Nesterova, O. V., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2015). Catal. Sci. Technol. 5, 1801–1812.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, R. P., Singh, A., Venugopalan, P., Yanan, G., Yu, J., Angeli, C. & Ferretti, V. (2012). Eur. J. Inorg. Chem. pp. 1195–1203.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, F. F., Zhao, J. L., Chen, K., Hua, Z. Y., Chen, M. D., Zhang, Y. Q., Zhu, Q. J. & Tao, Z. (2017). CrystEngComm, 19, 2464–2474.  CSD CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Kasyanova, K. V., Kokozay, V. N. & Skelton, B. W. (2018). Acta Cryst. E74, 1532–1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Sobolev, A. N., Bieńko, A. & Ozarowski, A. (2021). Dalton Trans. 50, 2841–2853.  CSD CrossRef CAS PubMed Google Scholar
First citationVassilyeva, O. Y., Kokozay, V. N., Zhukova, N. A. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Google Scholar
First citationZhou, J. J., Yu, X., Zhao, Y. C., Xiao, X., Zhang, Y. Q., Zhu, Q. J., Xue, S. F., Zhang, Q. J., Liu, J. X. & Tao, Z. (2014). Tetrahedron, 70, 800–804.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds