research communications
Crystal structures of 6-nitroquinazolin-4(3H)-one, 6-aminoquinazolin-4(3H)-one and 4-aminoquinazoline hemihydrochloride dihydrate
aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, bTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, Tashkent 100095, Uzbekistan, and cNamangan Institute of Engineering and Technology, Kosonsoy Str., 7, Namangan 160115, Uzbekistan
*Correspondence e-mail: kk_turgunov@rambler.ru
The title compounds, 6-nitroquinazolin-4(3H)-one (C8H5N3O3; I), 6-aminoquinazolin-4(3H)-one (C8H7N3O; II) and 4-aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2), (C8H8N3+·Cl−·C8H7N3·2H2O; III) were synthesized and their structures were determined by single-crystal X-ray analysis. In the crystals of I and II, the quinazoline molecules form hydrogen-bonded dimers via N—H⋯O interactions. The dimers are connected by weak intermolecular C—H⋯N and C—H⋯O hydrogen bonds, forming a layered structure in the case of I. In the crystal of II, N—H⋯N and C—H⋯O interactions link the dimers into a three-dimensional network structure. The of III consists of two quinazoline molecules, one of which is protonated, a chloride ion, and two water molecules. The chloride anion and the water molecules form hydrogen-bonded chains consisting of fused five-membered rings. The protonated and unprotonated quinazolin molecules are linked to the chloride ions and water molecules of the chain by their amino groups.
1. Chemical context
et al., 2016), antitumor (Ishikawa et al., 2009), antiviral (De Clercq & Field, 2006) and other activities (Ding et al., 1999). Quinazoline derivatives occupy a distinct position among nitrogen-containing heterocycles because of their wide spectrum of pharmaceutical and biopharmaceutical properties, amongst them anticancer (Chandregowda et al., 2009), antibacterial (Antipenko et al., 2009), anti-inflammatory (Alagarsamy et al., 2007), antituberculosis (Nandy et al., 2006), antihypertension (Hess et al., 1968) and antidiabetic (Paneersalvam et al., 2010) activities.
play an important role in the lives of plant and living organisms because of their properties, including anti-inflammatory (AzabIn line with this, we synthesized 6-nitroquinazolin-4(3H)-one (I), 6-aminoquinazolin-4(3H)-one (II) and 4-aminoquinazoline hemihydrochloride dihydrate (III), which are important intermediates in drug synthesis, and their crystal structures were determined. The hemi-protonated structures may be useful for the preparation of materials important to various branches of science, ranging from biology to nanodevice fabrication and to pharmaceuticals (Perumalla et al., 2013).
2. Structural commentary
Compound I crystallizes in the triclinic P with one molecule in the As a whole, the molecule is nearly planar. The nitro group is rotated slightly with respect to the quinazoline ring system, the C5—C6—N9—O3 and C7—C6—N9—O2 torsion angles being 6.0 (3) and 4.9 (4)°, respectively. All bond lengths and angles are normal and in good agreement with those reported previously (Liao et al., 2018; Yong et al., 2008). Fig. 1 shows the molecular structure of I in the solid state. Selected geometric parameters are listed in Table 1.
|
Compound II crystallizes in the orthorhombic Pca21 with two crystallographically independent molecules, A and B, in the (Fig. 2). All the atoms of the molecule (except the amino-group hydrogens) lie in the same plane. The nitrogen atom of the amino group is somewhere between the sp2 and sp3 hybridized states, the sum of the valence angles at the nitrogen atom being 349 and 342° in molecules A and B, respectively. All bond lengths and angles are normal. Selected geometric parameters are listed in Table 2.
|
In the case of compound III, there are protonated (A) and unprotonated (B) 4-aminoquinazoline molecules (Fig. 3) in the and they both have a planar structure. Molecule A is protonated at the N1 nitrogen atom and this leads to an elongation of the N1—C2 and N3—C4 bonds and a shortening of the C2—N3 and C4—N9 bonds with respect to the unprotonated molecule B. In both A and B, the nitrogen atom of the amino group is in an sp2 hybridized state. The sum of the valence angles around the nitrogen atoms in molecules A and B are 360 and 359°, respectively, and the carbon-to-amino group nitrogen bond lengths C4—N9 are shorter than the bond lengths observed in compound II (Table 3).
|
3. Supramolecular features
In the crystal of I, intermolecular N—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers, forming R22(8) motifs. Other head-to-head R22(10) and R22(8) motifs are formed by weak intermolecular C—H⋯O and C—H⋯N hydrogen bonds, producing layers parallel to the (12) plane (Table 4, Fig. 4). In addition, an R32(8) ring motif is formed by the interactions between three adjacent molecules. The layers are linked though π–π stacking interactions with centroid–centroid distances of 3.8264 (13) and 3.9600 (14) Å into a three-dimensional network.
The two independent molecules of compound II are related by a pseudo-center of symmetry and are linked by two N—H⋯O hydrogen bonds, forming an R22(8) motif. An N—H⋯N hydrogen bond generates a three-dimensional network (Table 5, Fig. 5).
|
The packing analysis of III shows that the protonated and unprotonated 4-aminoquinazoline molecules are linked by intermolecular N—H⋯N hydrogen bonds, forming pseudo-centrosymmetric dimers characterized by a donor–acceptor distance of 2.786 (3) Å. Other N—H⋯N hydrogen bonds form centrosymmetric R22(8) ring motifs. The chloride anion and water molecules form hydrogen-bonded chains consisting of fused five-membered rings with the participation of two chloride anions and three water molecules. A chain of rings runs through the twofold screw axis parallel to the [010] direction (Fig. 6). The protonated and unprotonated quinazoline molecules link to the chain via N—H⋯Cl and N—H⋯Ow hydrogen bonds from the lower and upper side (Table 6, Fig. 6). The chain direction corresponds to the smallest unit-cell edge and such self-assembly of molecules has also been observed in other quinazoline hydrochloride crystals (Tashkhodzhaev et al., 1995; Turgunov et al., 1998, 2003). The above mentioned N—H⋯N hydrogen bonds link the molecules into a three-dimensional network. The of III is stabilized by π–π interactions [centroid–centroid distances in the range 3.4113 (16)–3.9080 (18) Å].
|
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom et al., 2016) confirmed that three related compounds had been structurally characterized in which the benzene ring of the quinazolin-4(3H)-ones contains a nitro group [refcodes GAPPUK (Yu et al., 2012), GISXOW (Yong et al., 2008) and RUGKEK (Wu et al., 2009)].
The crystal structures of quinazolin-4(3H)-one and its first metal coordination compound have also been reported [BIHJIO (Liao et al., 2018) and NALFEN (Turgunov & Englert, 2010)].
5. Synthesis and crystallization
Compound I: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, quinazolin-4(3H)-one (22.5 g, 0.15 mol) was dissolved in 78 ml of concentrated sulfuric acid at 303 K for 1 h. Then a nitrating mixture (21 ml of nitric acid and 18 ml of concentrated sulfuric acid) was added to the flask under vigorous stirring of the mixture. The reaction mixture was stirred for another hour, maintaining a temperature not higher than 303 K, and then for another hour at room temperature. At room temperature, 45 ml of nitric acid were added dropwise to the reaction mixture over a period of 1 h. The reaction mixture was left at room temperature for 10 h. The contents of the flask were poured into a dish containing ice, the resulting precipitate was filtered off, washed with water and dried and recrystallized from ethanol to obtain 25.7 g of pure compound I as single crystals in 87.4% yield, m.p. 560–562 K.
Compound II: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, 12.6 g (56 mmol) of tin (II) chloride dihydrate (SnCl2·2H2O) were cooled in an ice bath and 16.98 ml of concentrated (36%) HCl were added, then 3 g (16 mmol) of quinazolin-4-one as a suspension in 20 ml of ethanol and 7 ml of HCl (36%) were added portionwise with stirring of the mixture. The reaction was carried out for 10-15 minutes at ∼273 K, 30 min at room temperature and 2 h in a water bath (∼363 K). The reaction mixture was left overnight at room temperature, diluted with water, and brought to a strongly alkaline medium (pH = 10–11) with 10% of sodium hydroxide, in which the expected 6-amino-3N-quinazoline-4-one was dissolved, so that the chloride was brought to a neutral medium in the presence of acid, and precipitated when converted to an alkaline medium with ammonia. The precipitate was filtered, washed with water until it reached a neutral medium, and dried at room temperature. The precipitate was recrystallized from ethanol and 6.67 g of pure compound II were obtained representing an 88.1% yield, m.p. 589–591 K.
Compound III: Crystals of compound III were obtained as a minor additional product in the reaction of 4-chloroquinazoline with ammonia.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the water molecules and those bonded to nitrogen atoms were located in electron density difference maps and were freely refined.
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989021008823/dj2030sup1.cif
contains datablocks I, II, III, GLOBAL. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021008823/dj2030Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989021008823/dj2030IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989021008823/dj2030IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021008823/dj2030Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021008823/dj2030IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021008823/dj2030IIIsup7.cml
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C8H5N3O3 | F(000) = 196 |
Mr = 191.15 | Dx = 1.581 Mg m−3 |
Triclinic, P1 | Melting point: 560(2) K |
a = 5.5587 (9) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.6673 (13) Å | Cell parameters from 950 reflections |
c = 8.7649 (12) Å | θ = 5.3–74.5° |
α = 105.654 (12)° | µ = 1.07 mm−1 |
β = 98.560 (13)° | T = 293 K |
γ = 90.784 (13)° | Prism, colourless |
V = 401.45 (11) Å3 | 0.45 × 0.30 × 0.25 mm |
Z = 2 |
Rigaku Xcalibur, Ruby diffractometer | 1598 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1124 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.3°, θmin = 5.3° |
ω scans | h = −6→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −7→10 |
Tmin = 0.742, Tmax = 1.000 | l = −10→9 |
2652 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.145 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.18 e Å−3 |
1598 reflections | Δρmin = −0.17 e Å−3 |
132 parameters | Extinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.012 (3) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6353 (3) | 0.19086 (17) | 0.52777 (19) | 0.0644 (5) | |
O2 | 0.7328 (5) | 0.9420 (2) | 0.8525 (3) | 0.0988 (8) | |
O3 | 0.8935 (3) | 0.7763 (2) | 0.6717 (2) | 0.0739 (5) | |
N1 | 0.1305 (3) | 0.3183 (2) | 0.8279 (2) | 0.0587 (5) | |
C2 | 0.1601 (4) | 0.1736 (3) | 0.7482 (3) | 0.0585 (5) | |
H2 | 0.0576 | 0.0929 | 0.7592 | 0.070* | |
N3 | 0.3277 (4) | 0.1287 (2) | 0.6497 (2) | 0.0566 (5) | |
C4 | 0.4881 (4) | 0.2343 (2) | 0.6209 (2) | 0.0517 (5) | |
C4A | 0.4645 (4) | 0.4012 (2) | 0.7094 (2) | 0.0476 (5) | |
C5 | 0.6197 (4) | 0.5228 (2) | 0.6955 (3) | 0.0519 (5) | |
H5 | 0.7399 | 0.4998 | 0.6306 | 0.062* | |
C6 | 0.5897 (4) | 0.6775 (2) | 0.7807 (3) | 0.0529 (5) | |
C7 | 0.4120 (4) | 0.7162 (2) | 0.8796 (3) | 0.0569 (5) | |
H7 | 0.3956 | 0.8224 | 0.9349 | 0.068* | |
C8 | 0.2626 (4) | 0.5968 (2) | 0.8944 (3) | 0.0567 (5) | |
H8 | 0.1446 | 0.6214 | 0.9607 | 0.068* | |
C8A | 0.2866 (4) | 0.4359 (2) | 0.8092 (2) | 0.0507 (5) | |
N9 | 0.7504 (4) | 0.8071 (2) | 0.7678 (3) | 0.0635 (5) | |
H3 | 0.334 (5) | 0.038 (3) | 0.598 (3) | 0.057 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0731 (10) | 0.0452 (8) | 0.0736 (11) | 0.0019 (7) | 0.0352 (9) | 0.0014 (7) |
O2 | 0.1272 (18) | 0.0417 (9) | 0.1230 (17) | −0.0165 (10) | 0.0525 (15) | −0.0014 (9) |
O3 | 0.0730 (11) | 0.0618 (10) | 0.0918 (13) | −0.0050 (8) | 0.0287 (10) | 0.0215 (9) |
N1 | 0.0605 (10) | 0.0490 (9) | 0.0681 (11) | −0.0004 (7) | 0.0260 (9) | 0.0102 (8) |
C2 | 0.0621 (12) | 0.0457 (11) | 0.0690 (14) | −0.0031 (9) | 0.0213 (11) | 0.0126 (9) |
N3 | 0.0674 (11) | 0.0368 (8) | 0.0646 (11) | 0.0004 (7) | 0.0226 (9) | 0.0058 (8) |
C4 | 0.0553 (11) | 0.0431 (10) | 0.0557 (11) | 0.0035 (8) | 0.0169 (9) | 0.0073 (8) |
C4A | 0.0534 (10) | 0.0398 (9) | 0.0486 (10) | 0.0030 (8) | 0.0129 (8) | 0.0082 (8) |
C5 | 0.0549 (11) | 0.0478 (11) | 0.0542 (11) | 0.0042 (8) | 0.0154 (9) | 0.0122 (8) |
C6 | 0.0571 (11) | 0.0430 (10) | 0.0579 (11) | −0.0013 (8) | 0.0111 (9) | 0.0118 (8) |
C7 | 0.0674 (13) | 0.0396 (10) | 0.0600 (12) | 0.0067 (9) | 0.0143 (10) | 0.0052 (8) |
C8 | 0.0617 (12) | 0.0464 (11) | 0.0606 (12) | 0.0070 (9) | 0.0211 (10) | 0.0061 (9) |
C8A | 0.0535 (11) | 0.0436 (10) | 0.0542 (11) | 0.0027 (8) | 0.0135 (9) | 0.0092 (8) |
N9 | 0.0694 (12) | 0.0453 (10) | 0.0744 (12) | −0.0043 (8) | 0.0133 (10) | 0.0138 (8) |
O1—C4 | 1.233 (2) | C4A—C5 | 1.395 (3) |
O2—N9 | 1.218 (2) | C4A—C8A | 1.399 (3) |
O3—N9 | 1.223 (2) | C5—C6 | 1.374 (3) |
N1—C2 | 1.287 (3) | C5—H5 | 0.9300 |
N1—C8A | 1.388 (3) | C6—C7 | 1.395 (3) |
C2—N3 | 1.354 (3) | C6—N9 | 1.464 (3) |
C2—H2 | 0.9300 | C7—C8 | 1.363 (3) |
N3—C4 | 1.366 (3) | C7—H7 | 0.9300 |
N3—H3 | 0.80 (3) | C8—C8A | 1.412 (3) |
C4—C4A | 1.463 (3) | C8—H8 | 0.9300 |
C2—N1—C8A | 115.80 (17) | C5—C6—C7 | 122.54 (19) |
N1—C2—N3 | 125.57 (19) | C5—C6—N9 | 118.89 (18) |
N1—C2—H2 | 117.2 | C7—C6—N9 | 118.57 (18) |
N3—C2—H2 | 117.2 | C8—C7—C6 | 119.31 (18) |
C2—N3—C4 | 123.57 (17) | C8—C7—H7 | 120.3 |
C2—N3—H3 | 122.0 (18) | C6—C7—H7 | 120.3 |
C4—N3—H3 | 114.3 (18) | C7—C8—C8A | 120.21 (19) |
O1—C4—N3 | 122.34 (17) | C7—C8—H8 | 119.9 |
O1—C4—C4A | 124.23 (18) | C8A—C8—H8 | 119.9 |
N3—C4—C4A | 113.43 (16) | N1—C8A—C4A | 122.73 (18) |
C5—C4A—C8A | 120.89 (18) | N1—C8A—C8 | 118.18 (18) |
C5—C4A—C4 | 120.21 (17) | C4A—C8A—C8 | 119.09 (19) |
C8A—C4A—C4 | 118.90 (18) | O2—N9—O3 | 122.9 (2) |
C6—C5—C4A | 117.95 (18) | O2—N9—C6 | 118.0 (2) |
C6—C5—H5 | 121.0 | O3—N9—C6 | 119.03 (18) |
C4A—C5—H5 | 121.0 | ||
C8A—N1—C2—N3 | −0.1 (4) | C6—C7—C8—C8A | −0.5 (4) |
N1—C2—N3—C4 | −0.7 (4) | C2—N1—C8A—C4A | 0.5 (3) |
C2—N3—C4—O1 | −178.3 (2) | C2—N1—C8A—C8 | −179.8 (2) |
C2—N3—C4—C4A | 1.0 (3) | C5—C4A—C8A—N1 | −179.2 (2) |
O1—C4—C4A—C5 | −2.2 (3) | C4—C4A—C8A—N1 | 0.0 (3) |
N3—C4—C4A—C5 | 178.5 (2) | C5—C4A—C8A—C8 | 1.1 (3) |
O1—C4—C4A—C8A | 178.6 (2) | C4—C4A—C8A—C8 | −179.8 (2) |
N3—C4—C4A—C8A | −0.7 (3) | C7—C8—C8A—N1 | 180.0 (2) |
C8A—C4A—C5—C6 | −1.0 (3) | C7—C8—C8A—C4A | −0.2 (3) |
C4—C4A—C5—C6 | 179.8 (2) | C5—C6—N9—O2 | −175.0 (2) |
C4A—C5—C6—C7 | 0.3 (3) | C7—C6—N9—O2 | 4.9 (4) |
C4A—C5—C6—N9 | −179.9 (2) | C5—C6—N9—O3 | 6.0 (3) |
C5—C6—C7—C8 | 0.5 (4) | C7—C6—N9—O3 | −174.2 (2) |
N9—C6—C7—C8 | −179.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.80 (3) | 2.02 (3) | 2.814 (2) | 178 (4) |
C8—H8···N1ii | 0.93 | 2.53 | 3.450 (3) | 172 |
C2—H2···O2iii | 0.93 | 2.57 | 3.466 (4) | 163 |
C7—H7···O2iv | 0.93 | 2.56 | 3.437 (3) | 158 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+2; (iii) x−1, y−1, z; (iv) −x+1, −y+2, −z+2. |
C8H7N3O | Dx = 1.487 Mg m−3 |
Mr = 161.17 | Melting point: 589(2) K |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54184 Å |
a = 13.4535 (5) Å | Cell parameters from 5076 reflections |
b = 4.9510 (2) Å | θ = 4.1–75.8° |
c = 21.6188 (8) Å | µ = 0.86 mm−1 |
V = 1439.99 (10) Å3 | T = 293 K |
Z = 8 | Prism, colourless |
F(000) = 672 | 0.60 × 0.45 × 0.35 mm |
Rigaku Xcalibur, Ruby diffractometer | 2976 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2489 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.070 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.1°, θmin = 4.1° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −6→6 |
Tmin = 0.720, Tmax = 1.000 | l = −26→27 |
22195 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0516P)2 + 0.144P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.036 | (Δ/σ)max = 0.001 |
wR(F2) = 0.098 | Δρmax = 0.17 e Å−3 |
S = 1.02 | Δρmin = −0.14 e Å−3 |
2976 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
242 parameters | Extinction coefficient: 0.0034 (4) |
2 restraints | Absolute structure: Flack x determined using 1053 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.2 (2) |
Hydrogen site location: mixed |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.40087 (16) | 0.0190 (4) | 0.46170 (11) | 0.0394 (5) | |
N1A | 0.6791 (2) | 0.2101 (6) | 0.39888 (13) | 0.0427 (7) | |
C2A | 0.6607 (2) | 0.0205 (7) | 0.43824 (16) | 0.0408 (8) | |
H2A | 0.7142 | −0.0786 | 0.4532 | 0.049* | |
N3A | 0.5680 (2) | −0.0455 (6) | 0.45958 (13) | 0.0373 (6) | |
C4A | 0.4828 (2) | 0.0850 (6) | 0.44094 (14) | 0.0337 (7) | |
C4AA | 0.4994 (2) | 0.3010 (6) | 0.39636 (14) | 0.0338 (7) | |
C5A | 0.4197 (2) | 0.4509 (6) | 0.37325 (14) | 0.0361 (7) | |
H5A | 0.3555 | 0.4132 | 0.3867 | 0.043* | |
C6A | 0.4353 (2) | 0.6566 (7) | 0.33025 (15) | 0.0368 (7) | |
C7A | 0.5343 (3) | 0.7079 (7) | 0.31113 (15) | 0.0394 (8) | |
H7A | 0.5464 | 0.8449 | 0.2827 | 0.047* | |
C8A | 0.6122 (3) | 0.5608 (7) | 0.33352 (16) | 0.0412 (8) | |
H8A | 0.6763 | 0.5982 | 0.3198 | 0.049* | |
C8AA | 0.5971 (3) | 0.3541 (6) | 0.37691 (15) | 0.0364 (7) | |
N9A | 0.3578 (3) | 0.8001 (6) | 0.30523 (15) | 0.0469 (8) | |
O1B | 0.53939 (17) | 0.5050 (4) | 0.53859 (12) | 0.0403 (6) | |
N1B | 0.2624 (2) | 0.3084 (6) | 0.60178 (14) | 0.0451 (7) | |
C2B | 0.2799 (2) | 0.4952 (7) | 0.56163 (16) | 0.0430 (8) | |
H2B | 0.2257 | 0.5891 | 0.5458 | 0.052* | |
N3B | 0.3720 (2) | 0.5655 (5) | 0.54065 (13) | 0.0385 (6) | |
C4B | 0.4570 (3) | 0.4384 (6) | 0.55929 (14) | 0.0332 (7) | |
C4AB | 0.4421 (2) | 0.2222 (6) | 0.60434 (15) | 0.0332 (7) | |
C5B | 0.5223 (3) | 0.0742 (6) | 0.62695 (14) | 0.0367 (7) | |
H5B | 0.5863 | 0.1136 | 0.6134 | 0.044* | |
C6B | 0.5075 (3) | −0.1315 (6) | 0.66954 (15) | 0.0371 (7) | |
C7B | 0.4094 (3) | −0.1838 (7) | 0.68957 (15) | 0.0409 (8) | |
H7B | 0.3983 | −0.3203 | 0.7183 | 0.049* | |
C8B | 0.3303 (3) | −0.0383 (7) | 0.66766 (15) | 0.0415 (8) | |
H8B | 0.2666 | −0.0768 | 0.6818 | 0.050* | |
C8AB | 0.3444 (2) | 0.1679 (6) | 0.62419 (15) | 0.0373 (7) | |
N9B | 0.5875 (3) | −0.2736 (7) | 0.69421 (15) | 0.0470 (8) | |
H3A | 0.560 (2) | −0.190 (7) | 0.4877 (16) | 0.039 (10)* | |
H3B | 0.383 (3) | 0.702 (7) | 0.5125 (17) | 0.059 (12)* | |
H9AA | 0.373 (3) | 0.957 (9) | 0.2838 (19) | 0.054 (12)* | |
H9BB | 0.638 (3) | −0.297 (10) | 0.667 (2) | 0.071 (14)* | |
H9BA | 0.571 (3) | −0.431 (9) | 0.715 (2) | 0.062 (12)* | |
H9AB | 0.307 (3) | 0.804 (8) | 0.3255 (19) | 0.050 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0381 (13) | 0.0371 (12) | 0.0429 (11) | −0.0020 (9) | 0.0049 (10) | 0.0039 (10) |
N1A | 0.0368 (15) | 0.0409 (16) | 0.0505 (18) | −0.0034 (13) | 0.0035 (13) | 0.0010 (13) |
C2A | 0.0340 (18) | 0.0394 (19) | 0.0491 (19) | 0.0022 (14) | 0.0003 (15) | 0.0011 (16) |
N3A | 0.0399 (15) | 0.0334 (14) | 0.0385 (15) | −0.0004 (11) | 0.0010 (13) | 0.0035 (13) |
C4A | 0.0358 (17) | 0.0317 (15) | 0.0337 (16) | −0.0019 (12) | 0.0017 (13) | −0.0064 (13) |
C4AA | 0.0376 (17) | 0.0307 (15) | 0.0332 (16) | −0.0035 (13) | 0.0013 (12) | −0.0058 (12) |
C5A | 0.0375 (17) | 0.0344 (16) | 0.0363 (17) | −0.0031 (13) | 0.0016 (14) | −0.0022 (14) |
C6A | 0.0446 (19) | 0.0337 (16) | 0.0322 (16) | 0.0004 (14) | 0.0007 (14) | −0.0045 (13) |
C7A | 0.053 (2) | 0.0329 (17) | 0.0320 (18) | −0.0053 (14) | 0.0051 (14) | 0.0019 (14) |
C8A | 0.043 (2) | 0.0395 (18) | 0.0409 (18) | −0.0083 (14) | 0.0084 (15) | −0.0016 (14) |
C8AA | 0.0383 (17) | 0.0338 (17) | 0.0371 (17) | −0.0015 (14) | 0.0043 (14) | −0.0029 (14) |
N9A | 0.049 (2) | 0.0437 (17) | 0.0482 (18) | 0.0016 (14) | −0.0013 (15) | 0.0106 (15) |
O1B | 0.0384 (13) | 0.0388 (12) | 0.0437 (12) | −0.0036 (10) | 0.0049 (11) | 0.0058 (10) |
N1B | 0.0365 (15) | 0.0463 (17) | 0.0525 (17) | −0.0017 (12) | 0.0019 (13) | 0.0057 (13) |
C2B | 0.0386 (19) | 0.0428 (18) | 0.0475 (19) | 0.0008 (14) | −0.0012 (15) | 0.0015 (16) |
N3B | 0.0422 (16) | 0.0333 (15) | 0.0399 (15) | −0.0017 (11) | 0.0032 (13) | 0.0033 (12) |
C4B | 0.0393 (19) | 0.0291 (16) | 0.0313 (16) | −0.0029 (12) | 0.0016 (13) | −0.0014 (13) |
C4AB | 0.0384 (18) | 0.0299 (15) | 0.0314 (16) | −0.0033 (13) | 0.0040 (13) | −0.0031 (13) |
C5B | 0.0389 (19) | 0.0350 (16) | 0.0361 (17) | −0.0041 (14) | 0.0047 (14) | −0.0041 (13) |
C6B | 0.0457 (19) | 0.0323 (16) | 0.0332 (17) | −0.0005 (14) | −0.0009 (14) | −0.0015 (14) |
C7B | 0.051 (2) | 0.0362 (18) | 0.0350 (17) | −0.0071 (15) | 0.0032 (15) | 0.0027 (14) |
C8B | 0.0396 (19) | 0.0450 (19) | 0.0399 (18) | −0.0070 (14) | 0.0101 (14) | −0.0022 (15) |
C8AB | 0.0391 (17) | 0.0335 (16) | 0.0392 (17) | −0.0032 (13) | 0.0018 (14) | −0.0020 (14) |
N9B | 0.0504 (19) | 0.0457 (18) | 0.0448 (18) | 0.0022 (14) | 0.0025 (15) | 0.0079 (14) |
O1A—C4A | 1.235 (4) | O1B—C4B | 1.239 (4) |
N1A—C2A | 1.291 (5) | N1B—C2B | 1.290 (5) |
N1A—C8AA | 1.397 (4) | N1B—C8AB | 1.391 (4) |
C2A—N3A | 1.369 (4) | C2B—N3B | 1.364 (4) |
C2A—H2A | 0.9300 | C2B—H2B | 0.9300 |
N3A—C4A | 1.376 (4) | N3B—C4B | 1.366 (4) |
N3A—H3A | 0.94 (3) | N3B—H3B | 0.92 (2) |
C4A—C4AA | 1.457 (4) | C4B—C4AB | 1.461 (5) |
C4AA—C5A | 1.397 (4) | C4AB—C5B | 1.393 (5) |
C4AA—C8AA | 1.405 (4) | C4AB—C8AB | 1.408 (4) |
C5A—C6A | 1.395 (5) | C5B—C6B | 1.387 (5) |
C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
C6A—N9A | 1.374 (4) | C6B—N9B | 1.392 (5) |
C6A—C7A | 1.417 (5) | C6B—C7B | 1.413 (5) |
C7A—C8A | 1.365 (5) | C7B—C8B | 1.370 (5) |
C7A—H7A | 0.9300 | C7B—H7B | 0.9300 |
C8A—C8AA | 1.403 (5) | C8B—C8AB | 1.400 (5) |
C8A—H8A | 0.9300 | C8B—H8B | 0.9300 |
N9A—H9AA | 0.93 (4) | N9B—H9BB | 0.90 (5) |
N9A—H9AB | 0.81 (4) | N9B—H9BA | 0.93 (5) |
C2A—N1A—C8AA | 116.3 (3) | C2B—N1B—C8AB | 116.6 (3) |
N1A—C2A—N3A | 124.8 (3) | N1B—C2B—N3B | 124.9 (3) |
N1A—C2A—H2A | 117.6 | N1B—C2B—H2B | 117.6 |
N3A—C2A—H2A | 117.6 | N3B—C2B—H2B | 117.6 |
C2A—N3A—C4A | 123.2 (3) | C2B—N3B—C4B | 123.0 (3) |
C2A—N3A—H3A | 120 (2) | C2B—N3B—H3B | 123 (2) |
C4A—N3A—H3A | 117 (2) | C4B—N3B—H3B | 114 (2) |
O1A—C4A—N3A | 120.9 (3) | O1B—C4B—N3B | 121.3 (3) |
O1A—C4A—C4AA | 124.9 (3) | O1B—C4B—C4AB | 123.9 (3) |
N3A—C4A—C4AA | 114.3 (3) | N3B—C4B—C4AB | 114.7 (3) |
C5A—C4AA—C8AA | 120.8 (3) | C5B—C4AB—C8AB | 121.0 (3) |
C5A—C4AA—C4A | 120.6 (3) | C5B—C4AB—C4B | 120.9 (3) |
C8AA—C4AA—C4A | 118.6 (3) | C8AB—C4AB—C4B | 118.1 (3) |
C6A—C5A—C4AA | 120.7 (3) | C6B—C5B—C4AB | 120.6 (3) |
C6A—C5A—H5A | 119.6 | C6B—C5B—H5B | 119.7 |
C4AA—C5A—H5A | 119.6 | C4AB—C5B—H5B | 119.7 |
N9A—C6A—C5A | 121.7 (3) | C5B—C6B—N9B | 121.0 (3) |
N9A—C6A—C7A | 120.4 (3) | C5B—C6B—C7B | 118.1 (3) |
C5A—C6A—C7A | 117.8 (3) | N9B—C6B—C7B | 120.8 (3) |
C8A—C7A—C6A | 121.5 (3) | C8B—C7B—C6B | 121.6 (3) |
C8A—C7A—H7A | 119.3 | C8B—C7B—H7B | 119.2 |
C6A—C7A—H7A | 119.3 | C6B—C7B—H7B | 119.2 |
C7A—C8A—C8AA | 121.0 (3) | C7B—C8B—C8AB | 120.7 (3) |
C7A—C8A—H8A | 119.5 | C7B—C8B—H8B | 119.7 |
C8AA—C8A—H8A | 119.5 | C8AB—C8B—H8B | 119.7 |
N1A—C8AA—C8A | 119.0 (3) | N1B—C8AB—C8B | 119.4 (3) |
N1A—C8AA—C4AA | 122.8 (3) | N1B—C8AB—C4AB | 122.6 (3) |
C8A—C8AA—C4AA | 118.2 (3) | C8B—C8AB—C4AB | 118.0 (3) |
C6A—N9A—H9AA | 117 (3) | C6B—N9B—H9BB | 113 (3) |
C6A—N9A—H9AB | 116 (3) | C6B—N9B—H9BA | 116 (3) |
H9AA—N9A—H9AB | 116 (4) | H9BB—N9B—H9BA | 113 (4) |
C8AA—N1A—C2A—N3A | −0.4 (5) | C8AB—N1B—C2B—N3B | −0.9 (5) |
N1A—C2A—N3A—C4A | 0.2 (5) | N1B—C2B—N3B—C4B | 1.6 (5) |
C2A—N3A—C4A—O1A | −179.7 (3) | C2B—N3B—C4B—O1B | 178.9 (3) |
C2A—N3A—C4A—C4AA | −0.1 (4) | C2B—N3B—C4B—C4AB | −0.8 (4) |
O1A—C4A—C4AA—C5A | −0.5 (5) | O1B—C4B—C4AB—C5B | −0.2 (5) |
N3A—C4A—C4AA—C5A | 179.9 (3) | N3B—C4B—C4AB—C5B | 179.5 (3) |
O1A—C4A—C4AA—C8AA | 179.8 (3) | O1B—C4B—C4AB—C8AB | 179.8 (3) |
N3A—C4A—C4AA—C8AA | 0.2 (4) | N3B—C4B—C4AB—C8AB | −0.5 (4) |
C8AA—C4AA—C5A—C6A | 0.1 (5) | C8AB—C4AB—C5B—C6B | 0.2 (5) |
C4A—C4AA—C5A—C6A | −179.6 (3) | C4B—C4AB—C5B—C6B | −179.8 (3) |
C4AA—C5A—C6A—N9A | 177.6 (3) | C4AB—C5B—C6B—N9B | −177.5 (3) |
C4AA—C5A—C6A—C7A | −0.1 (5) | C4AB—C5B—C6B—C7B | −0.6 (5) |
N9A—C6A—C7A—C8A | −177.4 (3) | C5B—C6B—C7B—C8B | 0.4 (5) |
C5A—C6A—C7A—C8A | 0.4 (5) | N9B—C6B—C7B—C8B | 177.3 (3) |
C6A—C7A—C8A—C8AA | −0.6 (5) | C6B—C7B—C8B—C8AB | 0.2 (5) |
C2A—N1A—C8AA—C8A | −179.3 (3) | C2B—N1B—C8AB—C8B | −179.7 (3) |
C2A—N1A—C8AA—C4AA | 0.6 (5) | C2B—N1B—C8AB—C4AB | −0.5 (5) |
C7A—C8A—C8AA—N1A | −179.6 (3) | C7B—C8B—C8AB—N1B | 178.6 (3) |
C7A—C8A—C8AA—C4AA | 0.5 (5) | C7B—C8B—C8AB—C4AB | −0.6 (5) |
C5A—C4AA—C8AA—N1A | 179.8 (3) | C5B—C4AB—C8AB—N1B | −178.8 (3) |
C4A—C4AA—C8AA—N1A | −0.5 (4) | C4B—C4AB—C8AB—N1B | 1.2 (5) |
C5A—C4AA—C8AA—C8A | −0.3 (4) | C5B—C4AB—C8AB—C8B | 0.4 (4) |
C4A—C4AA—C8AA—C8A | 179.4 (3) | C4B—C4AB—C8AB—C8B | −179.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N9A—H9AA···N9Bi | 0.93 (4) | 2.55 (4) | 3.435 (5) | 160 (4) |
N9A—H9AB···N1Aii | 0.81 (4) | 2.34 (4) | 3.144 (5) | 170 (4) |
N9B—H9BB···N1Biii | 0.91 (4) | 2.19 (4) | 3.092 (5) | 174 (4) |
N3A—H3A···O1Biv | 0.95 (3) | 1.89 (3) | 2.832 (4) | 175 (3) |
N3B—H3B···O1Av | 0.92 (4) | 1.93 (4) | 2.847 (3) | 173 (4) |
Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x−1/2, −y+1, z; (iii) x+1/2, −y, z; (iv) x, y−1, z; (v) x, y+1, z. |
C8H8N3+·Cl−·C8H7N3·2H2O | F(000) = 760 |
Mr = 362.82 | Dx = 1.367 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 14.3512 (12) Å | Cell parameters from 1071 reflections |
b = 7.5867 (6) Å | θ = 4.0–71.2° |
c = 16.2282 (9) Å | µ = 2.12 mm−1 |
β = 93.544 (7)° | T = 298 K |
V = 1763.5 (2) Å3 | Needle, colourless |
Z = 4 | 0.50 × 0.08 × 0.05 mm |
Rigaku Xcalibur, Ruby diffractometer | 3563 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2207 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.8°, θmin = 4.0° |
ω scans | h = −17→15 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −9→9 |
Tmin = 0.934, Tmax = 1.000 | l = −15→19 |
6703 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.151 | w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.003 |
3563 reflections | Δρmax = 0.23 e Å−3 |
261 parameters | Δρmin = −0.21 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.38300 (8) | 0.88404 (15) | 0.76044 (5) | 0.0719 (3) | |
O1W | 0.3293 (2) | 0.4885 (5) | 0.72013 (16) | 0.0732 (8) | |
O2W | 0.4789 (2) | 0.2659 (6) | 0.7806 (2) | 0.0896 (10) | |
N1A | 0.28852 (17) | 0.9176 (4) | 0.34296 (12) | 0.0423 (6) | |
C2A | 0.3708 (2) | 0.8430 (4) | 0.35562 (16) | 0.0440 (7) | |
H2AA | 0.4007 | 0.8052 | 0.3095 | 0.053* | |
N3A | 0.41460 (17) | 0.8174 (4) | 0.42915 (13) | 0.0408 (5) | |
C4A | 0.3713 (2) | 0.8717 (4) | 0.49712 (16) | 0.0396 (6) | |
C4AA | 0.28014 (19) | 0.9559 (4) | 0.48907 (16) | 0.0389 (6) | |
C5A | 0.2313 (2) | 1.0135 (5) | 0.55595 (17) | 0.0484 (7) | |
H5AA | 0.2578 | 1.0010 | 0.6094 | 0.058* | |
C6A | 0.1456 (2) | 1.0874 (5) | 0.5433 (2) | 0.0551 (8) | |
H6AA | 0.1133 | 1.1248 | 0.5881 | 0.066* | |
C7A | 0.1056 (2) | 1.1074 (5) | 0.4628 (2) | 0.0527 (7) | |
H7AA | 0.0468 | 1.1584 | 0.4546 | 0.063* | |
C8A | 0.1520 (2) | 1.0528 (4) | 0.39587 (17) | 0.0469 (7) | |
H8AA | 0.1253 | 1.0664 | 0.3426 | 0.056* | |
C8AA | 0.23995 (19) | 0.9765 (4) | 0.40943 (16) | 0.0385 (6) | |
N9A | 0.41535 (19) | 0.8422 (4) | 0.56770 (14) | 0.0505 (7) | |
N1B | 0.28423 (18) | 0.4265 (4) | 0.32016 (12) | 0.0435 (6) | |
C2B | 0.3657 (2) | 0.3578 (4) | 0.34201 (16) | 0.0447 (7) | |
H2BA | 0.4010 | 0.3203 | 0.2991 | 0.054* | |
N3B | 0.40470 (17) | 0.3348 (4) | 0.41844 (14) | 0.0431 (6) | |
C4B | 0.35638 (19) | 0.3916 (4) | 0.48186 (15) | 0.0382 (6) | |
C4AB | 0.26521 (19) | 0.4695 (4) | 0.46662 (15) | 0.0359 (5) | |
C5B | 0.2086 (2) | 0.5269 (4) | 0.52924 (16) | 0.0426 (6) | |
H5BA | 0.2304 | 0.5181 | 0.5843 | 0.051* | |
C6B | 0.1221 (2) | 0.5954 (4) | 0.50991 (19) | 0.0486 (7) | |
H6BA | 0.0856 | 0.6345 | 0.5516 | 0.058* | |
C7B | 0.0883 (2) | 0.6069 (4) | 0.42737 (19) | 0.0481 (7) | |
H7BA | 0.0290 | 0.6522 | 0.4146 | 0.058* | |
C8B | 0.1419 (2) | 0.5522 (4) | 0.36512 (16) | 0.0439 (7) | |
H8BA | 0.1189 | 0.5615 | 0.3104 | 0.053* | |
C8AB | 0.23112 (19) | 0.4821 (4) | 0.38354 (15) | 0.0383 (6) | |
N9B | 0.39542 (19) | 0.3709 (4) | 0.55724 (14) | 0.0493 (7) | |
H1A | 0.259 (3) | 0.929 (5) | 0.284 (2) | 0.060 (10)* | |
H9AA | 0.472 (3) | 0.789 (5) | 0.569 (2) | 0.062 (11)* | |
H9AB | 0.390 (4) | 0.880 (7) | 0.617 (3) | 0.103 (17)* | |
H9BA | 0.453 (3) | 0.308 (5) | 0.565 (2) | 0.057 (10)* | |
H9BB | 0.370 (3) | 0.406 (5) | 0.596 (2) | 0.047 (9)* | |
H1W1 | 0.345 (4) | 0.601 (4) | 0.733 (3) | 0.11 (2)* | |
H2W1 | 0.271 (2) | 0.497 (11) | 0.736 (4) | 0.19 (4)* | |
H1W2 | 0.437 (5) | 0.346 (8) | 0.759 (5) | 0.190* | |
H2W2 | 0.437 (4) | 0.183 (7) | 0.766 (4) | 0.15 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0881 (7) | 0.0841 (7) | 0.0431 (4) | −0.0031 (6) | 0.0015 (4) | −0.0039 (4) |
O1W | 0.082 (2) | 0.081 (2) | 0.0566 (13) | 0.0059 (17) | 0.0021 (13) | −0.0063 (14) |
O2W | 0.0612 (18) | 0.097 (3) | 0.109 (2) | 0.0033 (19) | −0.0051 (17) | −0.011 (2) |
N1A | 0.0404 (13) | 0.0530 (16) | 0.0329 (10) | −0.0007 (11) | −0.0021 (9) | 0.0007 (10) |
C2A | 0.0400 (15) | 0.0517 (18) | 0.0409 (12) | −0.0035 (13) | 0.0075 (11) | −0.0031 (12) |
N3A | 0.0333 (11) | 0.0498 (15) | 0.0396 (10) | 0.0055 (10) | 0.0051 (9) | 0.0006 (10) |
C4A | 0.0392 (14) | 0.0415 (15) | 0.0382 (12) | −0.0001 (12) | 0.0038 (10) | −0.0021 (11) |
C4AA | 0.0346 (14) | 0.0380 (15) | 0.0439 (13) | 0.0001 (12) | 0.0013 (10) | 0.0021 (11) |
C5A | 0.0524 (18) | 0.0528 (19) | 0.0399 (13) | 0.0034 (15) | 0.0030 (12) | 0.0010 (12) |
C6A | 0.0546 (19) | 0.055 (2) | 0.0569 (16) | 0.0085 (16) | 0.0165 (14) | −0.0047 (15) |
C7A | 0.0345 (15) | 0.0489 (18) | 0.0751 (19) | 0.0105 (14) | 0.0058 (13) | 0.0000 (16) |
C8A | 0.0469 (17) | 0.0473 (18) | 0.0453 (13) | −0.0030 (14) | −0.0075 (12) | 0.0040 (12) |
C8AA | 0.0377 (14) | 0.0373 (14) | 0.0409 (12) | −0.0032 (12) | 0.0068 (10) | 0.0018 (11) |
N9A | 0.0406 (14) | 0.072 (2) | 0.0390 (11) | 0.0133 (13) | 0.0009 (10) | −0.0045 (11) |
N1B | 0.0443 (13) | 0.0537 (16) | 0.0320 (9) | 0.0025 (12) | −0.0013 (9) | −0.0011 (10) |
C2B | 0.0423 (15) | 0.0527 (18) | 0.0397 (12) | 0.0029 (13) | 0.0060 (11) | −0.0032 (12) |
N3B | 0.0338 (12) | 0.0563 (16) | 0.0391 (10) | 0.0066 (11) | 0.0010 (9) | −0.0042 (10) |
C4B | 0.0340 (13) | 0.0436 (15) | 0.0368 (11) | −0.0008 (12) | 0.0008 (10) | −0.0041 (11) |
C4AB | 0.0337 (13) | 0.0346 (14) | 0.0392 (12) | −0.0010 (11) | 0.0011 (10) | 0.0001 (10) |
C5B | 0.0418 (15) | 0.0499 (17) | 0.0367 (12) | 0.0016 (13) | 0.0065 (10) | 0.0000 (12) |
C6B | 0.0420 (16) | 0.0505 (18) | 0.0546 (15) | 0.0029 (14) | 0.0138 (12) | −0.0033 (14) |
C7B | 0.0314 (14) | 0.0487 (18) | 0.0643 (16) | 0.0060 (13) | 0.0031 (12) | 0.0073 (15) |
C8B | 0.0398 (15) | 0.0471 (17) | 0.0441 (13) | 0.0003 (13) | −0.0042 (11) | 0.0064 (12) |
C8AB | 0.0360 (14) | 0.0402 (15) | 0.0388 (12) | −0.0019 (12) | 0.0028 (10) | −0.0012 (11) |
N9B | 0.0391 (14) | 0.072 (2) | 0.0366 (11) | 0.0112 (13) | −0.0015 (10) | −0.0058 (12) |
O1W—H1W1 | 0.91 (2) | N9A—H9AA | 0.91 (4) |
O1W—H2W1 | 0.89 (2) | N9A—H9AB | 0.94 (5) |
O2W—H1W2 | 0.91 (2) | N1B—C2B | 1.309 (4) |
O2W—H2W2 | 0.89 (2) | N1B—C8AB | 1.383 (4) |
N1A—C2A | 1.315 (4) | C2B—N3B | 1.340 (4) |
N1A—C8AA | 1.393 (4) | C2B—H2BA | 0.9300 |
N1A—H1A | 1.03 (4) | N3B—C4B | 1.347 (4) |
C2A—N3A | 1.328 (4) | C4B—N9B | 1.323 (4) |
C2A—H2AA | 0.9300 | C4B—C4AB | 1.443 (4) |
N3A—C4A | 1.363 (4) | C4AB—C5B | 1.408 (4) |
C4A—N9A | 1.293 (4) | C4AB—C8AB | 1.409 (4) |
C4A—C4AA | 1.455 (4) | C5B—C6B | 1.364 (4) |
C4AA—C8AA | 1.391 (4) | C5B—H5BA | 0.9300 |
C4AA—C5A | 1.397 (4) | C6B—C7B | 1.399 (4) |
C5A—C6A | 1.356 (5) | C6B—H6BA | 0.9300 |
C5A—H5AA | 0.9300 | C7B—C8B | 1.371 (4) |
C6A—C7A | 1.403 (5) | C7B—H7BA | 0.9300 |
C6A—H6AA | 0.9300 | C8B—C8AB | 1.402 (4) |
C7A—C8A | 1.372 (5) | C8B—H8BA | 0.9300 |
C7A—H7AA | 0.9300 | N9B—H9BA | 0.95 (4) |
C8A—C8AA | 1.394 (4) | N9B—H9BB | 0.80 (4) |
C8A—H8AA | 0.9300 | ||
H1W1—O1W—H2W1 | 95 (6) | C4A—N9A—H9AB | 120 (3) |
H1W2—O2W—H2W2 | 87 (6) | H9AA—N9A—H9AB | 120 (4) |
C2A—N1A—C8AA | 120.3 (2) | C2B—N1B—C8AB | 116.4 (2) |
C2A—N1A—H1A | 119 (2) | N1B—C2B—N3B | 128.1 (3) |
C8AA—N1A—H1A | 120 (2) | N1B—C2B—H2BA | 115.9 |
N1A—C2A—N3A | 125.0 (3) | N3B—C2B—H2BA | 115.9 |
N1A—C2A—H2AA | 117.5 | C2B—N3B—C4B | 117.4 (2) |
N3A—C2A—H2AA | 117.5 | N9B—C4B—N3B | 117.4 (3) |
C2A—N3A—C4A | 118.0 (2) | N9B—C4B—C4AB | 122.3 (3) |
N9A—C4A—N3A | 116.2 (3) | N3B—C4B—C4AB | 120.3 (2) |
N9A—C4A—C4AA | 122.9 (3) | C5B—C4AB—C8AB | 119.2 (3) |
N3A—C4A—C4AA | 120.8 (2) | C5B—C4AB—C4B | 124.1 (2) |
C8AA—C4AA—C5A | 119.2 (3) | C8AB—C4AB—C4B | 116.7 (2) |
C8AA—C4AA—C4A | 116.8 (2) | C6B—C5B—C4AB | 120.6 (2) |
C5A—C4AA—C4A | 124.0 (2) | C6B—C5B—H5BA | 119.7 |
C6A—C5A—C4AA | 120.4 (3) | C4AB—C5B—H5BA | 119.7 |
C6A—C5A—H5AA | 119.8 | C5B—C6B—C7B | 120.1 (3) |
C4AA—C5A—H5AA | 119.8 | C5B—C6B—H6BA | 120.0 |
C5A—C6A—C7A | 120.0 (3) | C7B—C6B—H6BA | 120.0 |
C5A—C6A—H6AA | 120.0 | C8B—C7B—C6B | 120.6 (3) |
C7A—C6A—H6AA | 120.0 | C8B—C7B—H7BA | 119.7 |
C8A—C7A—C6A | 120.9 (3) | C6B—C7B—H7BA | 119.7 |
C8A—C7A—H7AA | 119.5 | C7B—C8B—C8AB | 120.3 (2) |
C6A—C7A—H7AA | 119.5 | C7B—C8B—H8BA | 119.9 |
C7A—C8A—C8AA | 118.6 (3) | C8AB—C8B—H8BA | 119.9 |
C7A—C8A—H8AA | 120.7 | N1B—C8AB—C8B | 119.7 (2) |
C8AA—C8A—H8AA | 120.7 | N1B—C8AB—C4AB | 121.1 (3) |
C4AA—C8AA—N1A | 119.0 (3) | C8B—C8AB—C4AB | 119.2 (3) |
C4AA—C8AA—C8A | 120.8 (3) | C4B—N9B—H9BA | 119 (2) |
N1A—C8AA—C8A | 120.2 (2) | C4B—N9B—H9BB | 120 (3) |
C4A—N9A—H9AA | 120 (2) | H9BA—N9B—H9BB | 120 (3) |
C8AA—N1A—C2A—N3A | −0.2 (5) | C8AB—N1B—C2B—N3B | −0.2 (5) |
N1A—C2A—N3A—C4A | 0.2 (5) | N1B—C2B—N3B—C4B | −1.5 (5) |
C2A—N3A—C4A—N9A | 179.0 (3) | C2B—N3B—C4B—N9B | −179.1 (3) |
C2A—N3A—C4A—C4AA | −0.3 (4) | C2B—N3B—C4B—C4AB | 1.6 (5) |
N9A—C4A—C4AA—C8AA | −178.8 (3) | N9B—C4B—C4AB—C5B | −1.5 (5) |
N3A—C4A—C4AA—C8AA | 0.4 (4) | N3B—C4B—C4AB—C5B | 177.8 (3) |
N9A—C4A—C4AA—C5A | 0.2 (5) | N9B—C4B—C4AB—C8AB | −179.3 (3) |
N3A—C4A—C4AA—C5A | 179.4 (3) | N3B—C4B—C4AB—C8AB | 0.0 (4) |
C8AA—C4AA—C5A—C6A | 0.4 (5) | C8AB—C4AB—C5B—C6B | −0.6 (5) |
C4A—C4AA—C5A—C6A | −178.5 (3) | C4B—C4AB—C5B—C6B | −178.4 (3) |
C4AA—C5A—C6A—C7A | −0.4 (6) | C4AB—C5B—C6B—C7B | 0.9 (5) |
C5A—C6A—C7A—C8A | 0.1 (6) | C5B—C6B—C7B—C8B | −0.9 (5) |
C6A—C7A—C8A—C8AA | 0.0 (5) | C6B—C7B—C8B—C8AB | 0.6 (5) |
C5A—C4AA—C8AA—N1A | −179.5 (3) | C2B—N1B—C8AB—C8B | −178.1 (3) |
C4A—C4AA—C8AA—N1A | −0.4 (4) | C2B—N1B—C8AB—C4AB | 1.9 (4) |
C5A—C4AA—C8AA—C8A | −0.2 (5) | C7B—C8B—C8AB—N1B | 179.7 (3) |
C4A—C4AA—C8AA—C8A | 178.8 (3) | C7B—C8B—C8AB—C4AB | −0.3 (5) |
C2A—N1A—C8AA—C4AA | 0.3 (4) | C5B—C4AB—C8AB—N1B | −179.7 (3) |
C2A—N1A—C8AA—C8A | −178.9 (3) | C4B—C4AB—C8AB—N1B | −1.8 (4) |
C7A—C8A—C8AA—C4AA | 0.0 (5) | C5B—C4AB—C8AB—C8B | 0.3 (4) |
C7A—C8A—C8AA—N1A | 179.2 (3) | C4B—C4AB—C8AB—C8B | 178.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···N1Bi | 1.03 (3) | 1.76 (3) | 2.786 (3) | 173 (3) |
N9A—H9AA···N3Bii | 0.91 (4) | 2.00 (4) | 2.907 (4) | 175 (3) |
N9A—H9AB···Cl1 | 0.94 (5) | 2.34 (5) | 3.206 (2) | 153 (5) |
N9B—H9BA···N3Aii | 0.96 (4) | 2.12 (4) | 3.074 (4) | 174 (3) |
N9B—H9BB···O1W | 0.79 (4) | 2.22 (3) | 2.999 (4) | 167 (4) |
O1W—H1W1···Cl1 | 0.90 (3) | 2.25 (3) | 3.157 (4) | 178 (6) |
O1W—H2W1···Cl1iii | 0.89 (4) | 2.37 (4) | 3.183 (3) | 151 (7) |
O2W—H1W2···O1W | 0.91 (7) | 1.96 (7) | 2.857 (5) | 169 (6) |
O2W—H2W2···Cl1iv | 0.89 (5) | 2.40 (5) | 3.215 (4) | 153 (5) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, y−1, z. |
Acknowledgements
X-ray diffraction studies were performed at the Centre of Collective Usage of Equipment of the Institute of Bioorganic Chemistry of the Uzbekistan Academy of Sciences. Professor Bakhtiyar Ibragimov is acknowledged for support with the diffraction measurements.
References
Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241. Web of Science CrossRef PubMed CAS Google Scholar
Antipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V. & Chekotilo, A. (2009). Chem. Pharm. Bull. 57, 580–585. Web of Science CrossRef CAS Google Scholar
Azab, A., Nassar, A. & Azab, A. N. (2016). Molecules, 21, 1321–1340. Web of Science CrossRef Google Scholar
Chandregowda, V., Kush, A. K. & Chandrasekara Reddy, G. (2009). Eur. J. Med. Chem. 44, 3046–3055. Web of Science CrossRef PubMed CAS Google Scholar
De Clercq, E. & Field, H. J. (2006). Br. J. Pharmacol. 147, 1–11. Web of Science CrossRef PubMed CAS Google Scholar
Ding, Q., Chichak, K. & Lown, J. W. (1999). Curr. Med. Chem. 6, 1–27. Web of Science CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130–136. CrossRef CAS PubMed Web of Science Google Scholar
Ishikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., Rayl, T. J., Hwang, I. & Boger, D. L. (2009). J. Am. Chem. Soc. 131, 4904–4916. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152. Web of Science CSD CrossRef PubMed Google Scholar
Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293–294. CAS Google Scholar
Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V. & Rather, B. A. (2010). Indian J. Pharm. Sci. 72, 375–378. Web of Science CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429–432. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tashkhodzhaev, B., Molchanov, L. V., Turgunov, K. K., Makhmudov, M. K. & Aripov, Kh. N. (1995). Chem. Nat. Compd. 31, 349–352. CrossRef Google Scholar
Turgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V., Musaeva, G. V. & Aripov, Kh. N. (1998). Chem. Nat. Compd. 34, 300–303. CrossRef CAS Google Scholar
Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Y., Ji, A., Zhang, A. & Shen, Y. (2009). Acta Cryst. E65, o3075. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, o427. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, Y. (2012). Acta Cryst. E68, o304. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.