research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 6-nitro­quinazolin-4(3H)-one, 6-amino­quinazolin-4(3H)-one and 4-amino­quinazoline hemi­hydro­chloride dihydrate

crossmark logo

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, bTurin Polytechnic University in Tashkent, Kichik Khalka Yuli Str. 17, Tashkent 100095, Uzbekistan, and cNamangan Institute of Engineering and Technology, Kosonsoy Str., 7, Namangan 160115, Uzbekistan
*Correspondence e-mail: kk_turgunov@rambler.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 15 June 2021; accepted 23 August 2021; online 3 September 2021)

The title compounds, 6-nitro­quinazolin-4(3H)-one (C8H5N3O3; I), 6-amino­quinazolin-4(3H)-one (C8H7N3O; II) and 4-amino­quinazolin-1-ium chloride–4-amino­quinazoline–water (1/1/2), (C8H8N3+·Cl·C8H7N3·2H2O; III) were synthesized and their structures were determined by single-crystal X-ray analysis. In the crystals of I and II, the quinazoline mol­ecules form hydrogen-bonded dimers via N—H⋯O inter­actions. The dimers are connected by weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, forming a layered structure in the case of I. In the crystal of II, N—H⋯N and C—H⋯O inter­actions link the dimers into a three-dimensional network structure. The asymmetric unit of III consists of two quinazoline mol­ecules, one of which is protonated, a chloride ion, and two water mol­ecules. The chloride anion and the water mol­ecules form hydrogen-bonded chains consisting of fused five-membered rings. The protonated and unprotonated quinazolin mol­ecules are linked to the chloride ions and water mol­ecules of the chain by their amino groups.

1. Chemical context

Heterocyclic compounds play an important role in the lives of plant and living organisms because of their properties, including anti-inflammatory (Azab et al., 2016[Azab, A., Nassar, A. & Azab, A. N. (2016). Molecules, 21, 1321-1340.]), anti­tumor (Ishikawa et al., 2009[Ishikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., Rayl, T. J., Hwang, I. & Boger, D. L. (2009). J. Am. Chem. Soc. 131, 4904-4916.]), anti­viral (De Clercq & Field, 2006[De Clercq, E. & Field, H. J. (2006). Br. J. Pharmacol. 147, 1-11.]) and other activities (Ding et al., 1999[Ding, Q., Chichak, K. & Lown, J. W. (1999). Curr. Med. Chem. 6, 1-27.]). Quinazoline derivatives occupy a distinct position among nitro­gen-containing heterocycles because of their wide spectrum of pharmaceutical and biopharmaceutical properties, amongst them anti­cancer (Chandregowda et al., 2009[Chandregowda, V., Kush, A. K. & Chandrasekara Reddy, G. (2009). Eur. J. Med. Chem. 44, 3046-3055.]), anti­bacterial (Anti­penko et al., 2009[Antipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V. & Chekotilo, A. (2009). Chem. Pharm. Bull. 57, 580-585.]), anti-inflammatory (Alagarsamy et al., 2007[Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235-241.]), anti­tuberculosis (Nandy et al., 2006[Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293-294.]), anti­hypertension (Hess et al., 1968[Hess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130-136.]) and anti­diabetic (Paneersalvam et al., 2010[Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V. & Rather, B. A. (2010). Indian J. Pharm. Sci. 72, 375-378.]) activities.

[Scheme 1]

In line with this, we synthesized 6-nitro­quinazolin-4(3H)-one (I), 6-amino­quinazolin-4(3H)-one (II) and 4-amino­quinazoline hemi­hydro­chloride dihydrate (III), which are important inter­mediates in drug synthesis, and their crystal structures were determined. The hemi-protonated structures may be useful for the preparation of materials important to various branches of science, ranging from biology to nanodevice fabrication and to pharmaceuticals (Perumalla et al., 2013[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429-432.]).

2. Structural commentary

Compound I crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit. As a whole, the mol­ecule is nearly planar. The nitro group is rotated slightly with respect to the quinazoline ring system, the C5—C6—N9—O3 and C7—C6—N9—O2 torsion angles being 6.0 (3) and 4.9 (4)°, respectively. All bond lengths and angles are normal and in good agreement with those reported previously (Liao et al., 2018[Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.]; Yong et al., 2008[Yong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, o427.]). Fig. 1[link] shows the mol­ecular structure of I in the solid state. Selected geometric parameters are listed in Table 1[link].

Table 1
Selected bond lengths (Å) for I[link]

N1—C2 1.287 (3) N3—C4 1.366 (3)
C2—N3 1.354 (3) C6—N9 1.464 (3)
[Figure 1]
Figure 1
The mol­ecular structure of 6-nitro­quinazolin-4(3H)-one (I), with displacement ellipsoids drawn at the 50% probability level.

Compound II crystallizes in the ortho­rhom­bic space group Pca21 with two crystallographically independent mol­ecules, A and B, in the asymmetric unit (Fig. 2[link]). All the atoms of the mol­ecule (except the amino-group hydrogens) lie in the same plane. The nitro­gen atom of the amino group is somewhere between the sp2 and sp3 hybridized states, the sum of the valence angles at the nitrogen atom being 349 and 342° in mol­ecules A and B, respectively. All bond lengths and angles are normal. Selected geometric parameters are listed in Table 2[link].

Table 2
Selected bond lengths (Å) for II[link]

N1A—C2A 1.291 (5) N1B—C2B 1.290 (5)
C2A—N3A 1.369 (4) C2B—N3B 1.364 (4)
N3A—C4A 1.376 (4) N3B—C4B 1.366 (4)
C6A—N9A 1.374 (4) C6B—N9B 1.392 (5)
[Figure 2]
Figure 2
The mol­ecular structure of 6-amino­quinazolin-4(3H)-one (II), showing the two independent mol­ecules, with displacement ellipsoids drawn at the 50% probability level.

In the case of compound III, there are protonated (A) and unprotonated (B) 4-amino­quinazoline mol­ecules (Fig. 3[link]) in the asymmetric unit and they both have a planar structure. Mol­ecule A is protonated at the N1 nitro­gen atom and this leads to an elongation of the N1—C2 and N3—C4 bonds and a shortening of the C2—N3 and C4—N9 bonds with respect to the unprotonated mol­ecule B. In both A and B, the nitro­gen atom of the amino group is in an sp2 hybridized state. The sum of the valence angles around the nitro­gen atoms in mol­ecules A and B are 360 and 359°, respectively, and the carbon-to-amino group nitro­gen bond lengths C4—N9 are shorter than the bond lengths observed in compound II (Table 3[link]).

Table 3
Selected bond lengths (Å) for III[link]

N1A—C2A 1.315 (4) N1B—C2B 1.309 (4)
C2A—N3A 1.328 (4) C2B—N3B 1.340 (4)
N3A—C4A 1.363 (4) N3B—C4B 1.347 (4)
C4A—N9A 1.293 (4) C4B—N9B 1.323 (4)
[Figure 3]
Figure 3
The asymmetric unit of compound III with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of I, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R22(8) motifs. Other head-to-head R22(10) and R22(8) motifs are formed by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, producing layers parallel to the (1[\overline{1}]2) plane (Table 4[link], Fig. 4[link]). In addition, an R32(8) ring motif is formed by the inter­actions between three adjacent mol­ecules. The layers are linked though ππ stacking inter­actions with centroid–centroid distances of 3.8264 (13) and 3.9600 (14) Å into a three-dimensional network.

Table 4
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.80 (3) 2.02 (3) 2.814 (2) 178 (4)
C8—H8⋯N1ii 0.93 2.53 3.450 (3) 172
C2—H2⋯O2iii 0.93 2.57 3.466 (4) 163
C7—H7⋯O2iv 0.93 2.56 3.437 (3) 158
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+2]; (iii) [x-1, y-1, z]; (iv) [-x+1, -y+2, -z+2].
[Figure 4]
Figure 4
Hydrogen bonding in the crystal of 6-nitro­quinazolin-4(3H)-one (I). Colour code: C grey, H green, N blue, O red.

The two independent mol­ecules of compound II are related by a pseudo-center of symmetry and are linked by two N—H⋯O hydrogen bonds, forming an R22(8) motif. An N—H⋯N hydrogen bond generates a three-dimensional network (Table 5[link], Fig. 5[link]).

Table 5
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N9A—H9AA⋯N9Bi 0.93 (4) 2.55 (4) 3.435 (5) 160 (4)
N9A—H9AB⋯N1Aii 0.81 (4) 2.34 (4) 3.144 (5) 170 (4)
N9B—H9BB⋯N1Biii 0.91 (4) 2.19 (4) 3.092 (5) 174 (4)
N3A—H3A⋯O1Biv 0.95 (3) 1.89 (3) 2.832 (4) 175 (3)
N3B—H3B⋯O1Av 0.92 (4) 1.93 (4) 2.847 (3) 173 (4)
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [x+{\script{1\over 2}}, -y, z]; (iv) [x, y-1, z]; (v) x, y+1, z.
[Figure 5]
Figure 5
Hydrogen bonding in the crystal of 6-amino­quinazolin-4(3H)-one (II). Colour code: C grey, H green, N blue, O red.

The packing analysis of III shows that the protonated and unprotonated 4-amino­quinazoline mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, forming pseudo-centrosymmetric dimers characterized by a donor–acceptor distance of 2.786 (3) Å. Other N—H⋯N hydrogen bonds form centrosymmetric R22(8) ring motifs. The chloride anion and water mol­ecules form hydrogen-bonded chains consisting of fused five-membered rings with the participation of two chloride anions and three water mol­ecules. A chain of rings runs through the twofold screw axis parallel to the [010] direction (Fig. 6[link]). The protonated and unprotonated quinazoline mol­ecules link to the chain via N—H⋯Cl and N—H⋯Ow hydrogen bonds from the lower and upper side (Table 6[link], Fig. 6[link]). The chain direction corresponds to the smallest unit-cell edge and such self-assembly of mol­ecules has also been observed in other quinazoline hydro­chloride crystals (Tashkhodzhaev et al., 1995[Tashkhodzhaev, B., Molchanov, L. V., Turgunov, K. K., Makhmudov, M. K. & Aripov, Kh. N. (1995). Chem. Nat. Compd. 31, 349-352.]; Turgunov et al., 1998[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V., Musaeva, G. V. & Aripov, Kh. N. (1998). Chem. Nat. Compd. 34, 300-303.], 2003[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379-382.]). The above mentioned N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal structure of III is stabilized by ππ inter­actions [centroid–centroid distances in the range 3.4113 (16)–3.9080 (18) Å].

Table 6
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N1Bi 1.03 (3) 1.76 (3) 2.786 (3) 173 (3)
N9A—H9AA⋯N3Bii 0.91 (4) 2.00 (4) 2.907 (4) 175 (3)
N9A—H9AB⋯Cl1 0.94 (5) 2.34 (5) 3.206 (2) 153 (5)
N9B—H9BA⋯N3Aii 0.96 (4) 2.12 (4) 3.074 (4) 174 (3)
N9B—H9BB⋯O1W 0.79 (4) 2.22 (3) 2.999 (4) 167 (4)
O1W—H1W1⋯Cl1 0.90 (3) 2.25 (3) 3.157 (4) 178 (6)
O1W—H2W1⋯Cl1iii 0.89 (4) 2.37 (4) 3.183 (3) 151 (7)
O2W—H1W2⋯O1W 0.91 (7) 1.96 (7) 2.857 (5) 169 (6)
O2W—H2W2⋯Cl1iv 0.89 (5) 2.40 (5) 3.215 (4) 153 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, y-1, z].
[Figure 6]
Figure 6
Part of the crystal structure of III showing the hydrogen-bonding scheme. Colour code: C grey, H light green, Cl bright green, N blue, O red.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that three related compounds had been structurally characterized in which the benzene ring of the quinazolin-4(3H)-ones contains a nitro group [refcodes GAPPUK (Yu et al., 2012[Yu, Y. (2012). Acta Cryst. E68, o304.]), GISXOW (Yong et al., 2008[Yong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, o427.]) and RUGKEK (Wu et al., 2009[Wu, Y., Ji, A., Zhang, A. & Shen, Y. (2009). Acta Cryst. E65, o3075.])].

The crystal structures of quinazolin-4(3H)-one and its first metal coordination compound have also been reported [BIHJIO (Liao et al., 2018[Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.]) and NALFEN (Turgunov & Englert, 2010[Turgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457.])].

5. Synthesis and crystallization

Compound I: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, quinazolin-4(3H)-one (22.5 g, 0.15 mol) was dissolved in 78 ml of concentrated sulfuric acid at 303 K for 1 h. Then a nitrating mixture (21 ml of nitric acid and 18 ml of concentrated sulfuric acid) was added to the flask under vigorous stirring of the mixture. The reaction mixture was stirred for another hour, maintaining a temperature not higher than 303 K, and then for another hour at room temperature. At room temperature, 45 ml of nitric acid were added dropwise to the reaction mixture over a period of 1 h. The reaction mixture was left at room temperature for 10 h. The contents of the flask were poured into a dish containing ice, the resulting precipitate was filtered off, washed with water and dried and recrystallized from ethanol to obtain 25.7 g of pure compound I as single crystals in 87.4% yield, m.p. 560–562 K.

Compound II: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, 12.6 g (56 mmol) of tin (II)[link] chloride dihydrate (SnCl2·2H2O) were cooled in an ice bath and 16.98 ml of concentrated (36%) HCl were added, then 3 g (16 mmol) of quinazolin-4-one as a suspension in 20 ml of ethanol and 7 ml of HCl (36%) were added portionwise with stirring of the mixture. The reaction was carried out for 10-15 minutes at ∼273 K, 30 min at room temperature and 2 h in a water bath (∼363 K). The reaction mixture was left overnight at room temperature, diluted with water, and brought to a strongly alkaline medium (pH = 10–11) with 10% of sodium hydroxide, in which the expected 6-amino-3N-quinazoline-4-one was dissolved, so that the chloride was brought to a neutral medium in the presence of acid, and precipitated when converted to an alkaline medium with ammonia. The precipitate was filtered, washed with water until it reached a neutral medium, and dried at room temperature. The precipitate was recrystallized from ethanol and 6.67 g of pure compound II were obtained representing an 88.1% yield, m.p. 589–591 K.

Compound III: Crystals of compound III were obtained as a minor additional product in the reaction of 4-chloro­quinazoline with ammonia.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. C-bound H atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the water mol­ecules and those bonded to nitro­gen atoms were located in electron density difference maps and were freely refined.

Table 7
Experimental details

  I II III
Crystal data
Chemical formula C8H5N3O3 C8H7N3O C8H8N3+·Cl·C8H7N3·2H2O
Mr 191.15 161.17 362.82
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pca21 Monoclinic, P21/n
Temperature (K) 293 293 298
a, b, c (Å) 5.5587 (9), 8.6673 (13), 8.7649 (12) 13.4535 (5), 4.9510 (2), 21.6188 (8) 14.3512 (12), 7.5867 (6), 16.2282 (9)
α, β, γ (°) 105.654 (12), 98.560 (13), 90.784 (13) 90, 90, 90 90, 93.544 (7), 90
V3) 401.45 (11) 1439.99 (10) 1763.5 (2)
Z 2 8 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.07 0.86 2.12
Crystal size (mm) 0.45 × 0.30 × 0.25 0.60 × 0.45 × 0.35 0.50 × 0.08 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.742, 1.000 0.720, 1.000 0.934, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2652, 1598, 1124 22195, 2976, 2489 6703, 3563, 2207
Rint 0.024 0.070 0.052
(sin θ/λ)max−1) 0.630 0.630 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.145, 1.02 0.036, 0.098, 1.02 0.054, 0.151, 1.01
No. of reflections 1598 2976 3563
No. of parameters 132 242 261
No. of restraints 0 2 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17 0.17, −0.15 0.23, −0.22
Absolute structure Flack x determined using 1053 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Nitroquinazolin-4(3H)-one (I) top
Crystal data top
C8H5N3O3F(000) = 196
Mr = 191.15Dx = 1.581 Mg m3
Triclinic, P1Melting point: 560(2) K
a = 5.5587 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.6673 (13) ÅCell parameters from 950 reflections
c = 8.7649 (12) Åθ = 5.3–74.5°
α = 105.654 (12)°µ = 1.07 mm1
β = 98.560 (13)°T = 293 K
γ = 90.784 (13)°Prism, colourless
V = 401.45 (11) Å30.45 × 0.30 × 0.25 mm
Z = 2
Data collection top
Rigaku Xcalibur, Ruby
diffractometer
1598 independent reflections
Radiation source: Enhance (Cu) X-ray Source1124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.2576 pixels mm-1θmax = 76.3°, θmin = 5.3°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 710
Tmin = 0.742, Tmax = 1.000l = 109
2652 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.18 e Å3
1598 reflectionsΔρmin = 0.17 e Å3
132 parametersExtinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.012 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6353 (3)0.19086 (17)0.52777 (19)0.0644 (5)
O20.7328 (5)0.9420 (2)0.8525 (3)0.0988 (8)
O30.8935 (3)0.7763 (2)0.6717 (2)0.0739 (5)
N10.1305 (3)0.3183 (2)0.8279 (2)0.0587 (5)
C20.1601 (4)0.1736 (3)0.7482 (3)0.0585 (5)
H20.05760.09290.75920.070*
N30.3277 (4)0.1287 (2)0.6497 (2)0.0566 (5)
C40.4881 (4)0.2343 (2)0.6209 (2)0.0517 (5)
C4A0.4645 (4)0.4012 (2)0.7094 (2)0.0476 (5)
C50.6197 (4)0.5228 (2)0.6955 (3)0.0519 (5)
H50.73990.49980.63060.062*
C60.5897 (4)0.6775 (2)0.7807 (3)0.0529 (5)
C70.4120 (4)0.7162 (2)0.8796 (3)0.0569 (5)
H70.39560.82240.93490.068*
C80.2626 (4)0.5968 (2)0.8944 (3)0.0567 (5)
H80.14460.62140.96070.068*
C8A0.2866 (4)0.4359 (2)0.8092 (2)0.0507 (5)
N90.7504 (4)0.8071 (2)0.7678 (3)0.0635 (5)
H30.334 (5)0.038 (3)0.598 (3)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0731 (10)0.0452 (8)0.0736 (11)0.0019 (7)0.0352 (9)0.0014 (7)
O20.1272 (18)0.0417 (9)0.1230 (17)0.0165 (10)0.0525 (15)0.0014 (9)
O30.0730 (11)0.0618 (10)0.0918 (13)0.0050 (8)0.0287 (10)0.0215 (9)
N10.0605 (10)0.0490 (9)0.0681 (11)0.0004 (7)0.0260 (9)0.0102 (8)
C20.0621 (12)0.0457 (11)0.0690 (14)0.0031 (9)0.0213 (11)0.0126 (9)
N30.0674 (11)0.0368 (8)0.0646 (11)0.0004 (7)0.0226 (9)0.0058 (8)
C40.0553 (11)0.0431 (10)0.0557 (11)0.0035 (8)0.0169 (9)0.0073 (8)
C4A0.0534 (10)0.0398 (9)0.0486 (10)0.0030 (8)0.0129 (8)0.0082 (8)
C50.0549 (11)0.0478 (11)0.0542 (11)0.0042 (8)0.0154 (9)0.0122 (8)
C60.0571 (11)0.0430 (10)0.0579 (11)0.0013 (8)0.0111 (9)0.0118 (8)
C70.0674 (13)0.0396 (10)0.0600 (12)0.0067 (9)0.0143 (10)0.0052 (8)
C80.0617 (12)0.0464 (11)0.0606 (12)0.0070 (9)0.0211 (10)0.0061 (9)
C8A0.0535 (11)0.0436 (10)0.0542 (11)0.0027 (8)0.0135 (9)0.0092 (8)
N90.0694 (12)0.0453 (10)0.0744 (12)0.0043 (8)0.0133 (10)0.0138 (8)
Geometric parameters (Å, º) top
O1—C41.233 (2)C4A—C51.395 (3)
O2—N91.218 (2)C4A—C8A1.399 (3)
O3—N91.223 (2)C5—C61.374 (3)
N1—C21.287 (3)C5—H50.9300
N1—C8A1.388 (3)C6—C71.395 (3)
C2—N31.354 (3)C6—N91.464 (3)
C2—H20.9300C7—C81.363 (3)
N3—C41.366 (3)C7—H70.9300
N3—H30.80 (3)C8—C8A1.412 (3)
C4—C4A1.463 (3)C8—H80.9300
C2—N1—C8A115.80 (17)C5—C6—C7122.54 (19)
N1—C2—N3125.57 (19)C5—C6—N9118.89 (18)
N1—C2—H2117.2C7—C6—N9118.57 (18)
N3—C2—H2117.2C8—C7—C6119.31 (18)
C2—N3—C4123.57 (17)C8—C7—H7120.3
C2—N3—H3122.0 (18)C6—C7—H7120.3
C4—N3—H3114.3 (18)C7—C8—C8A120.21 (19)
O1—C4—N3122.34 (17)C7—C8—H8119.9
O1—C4—C4A124.23 (18)C8A—C8—H8119.9
N3—C4—C4A113.43 (16)N1—C8A—C4A122.73 (18)
C5—C4A—C8A120.89 (18)N1—C8A—C8118.18 (18)
C5—C4A—C4120.21 (17)C4A—C8A—C8119.09 (19)
C8A—C4A—C4118.90 (18)O2—N9—O3122.9 (2)
C6—C5—C4A117.95 (18)O2—N9—C6118.0 (2)
C6—C5—H5121.0O3—N9—C6119.03 (18)
C4A—C5—H5121.0
C8A—N1—C2—N30.1 (4)C6—C7—C8—C8A0.5 (4)
N1—C2—N3—C40.7 (4)C2—N1—C8A—C4A0.5 (3)
C2—N3—C4—O1178.3 (2)C2—N1—C8A—C8179.8 (2)
C2—N3—C4—C4A1.0 (3)C5—C4A—C8A—N1179.2 (2)
O1—C4—C4A—C52.2 (3)C4—C4A—C8A—N10.0 (3)
N3—C4—C4A—C5178.5 (2)C5—C4A—C8A—C81.1 (3)
O1—C4—C4A—C8A178.6 (2)C4—C4A—C8A—C8179.8 (2)
N3—C4—C4A—C8A0.7 (3)C7—C8—C8A—N1180.0 (2)
C8A—C4A—C5—C61.0 (3)C7—C8—C8A—C4A0.2 (3)
C4—C4A—C5—C6179.8 (2)C5—C6—N9—O2175.0 (2)
C4A—C5—C6—C70.3 (3)C7—C6—N9—O24.9 (4)
C4A—C5—C6—N9179.9 (2)C5—C6—N9—O36.0 (3)
C5—C6—C7—C80.5 (4)C7—C6—N9—O3174.2 (2)
N9—C6—C7—C8179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.80 (3)2.02 (3)2.814 (2)178 (4)
C8—H8···N1ii0.932.533.450 (3)172
C2—H2···O2iii0.932.573.466 (4)163
C7—H7···O2iv0.932.563.437 (3)158
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2; (iii) x1, y1, z; (iv) x+1, y+2, z+2.
6-Aminoquinazolin-4(3H)-one (II) top
Crystal data top
C8H7N3ODx = 1.487 Mg m3
Mr = 161.17Melting point: 589(2) K
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
a = 13.4535 (5) ÅCell parameters from 5076 reflections
b = 4.9510 (2) Åθ = 4.1–75.8°
c = 21.6188 (8) ŵ = 0.86 mm1
V = 1439.99 (10) Å3T = 293 K
Z = 8Prism, colourless
F(000) = 6720.60 × 0.45 × 0.35 mm
Data collection top
Rigaku Xcalibur, Ruby
diffractometer
2976 independent reflections
Radiation source: Enhance (Cu) X-ray Source2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.2576 pixels mm-1θmax = 76.1°, θmin = 4.1°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 66
Tmin = 0.720, Tmax = 1.000l = 2627
22195 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0516P)2 + 0.144P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.001
wR(F2) = 0.098Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.14 e Å3
2976 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
242 parametersExtinction coefficient: 0.0034 (4)
2 restraintsAbsolute structure: Flack x determined using 1053 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.40087 (16)0.0190 (4)0.46170 (11)0.0394 (5)
N1A0.6791 (2)0.2101 (6)0.39888 (13)0.0427 (7)
C2A0.6607 (2)0.0205 (7)0.43824 (16)0.0408 (8)
H2A0.71420.07860.45320.049*
N3A0.5680 (2)0.0455 (6)0.45958 (13)0.0373 (6)
C4A0.4828 (2)0.0850 (6)0.44094 (14)0.0337 (7)
C4AA0.4994 (2)0.3010 (6)0.39636 (14)0.0338 (7)
C5A0.4197 (2)0.4509 (6)0.37325 (14)0.0361 (7)
H5A0.35550.41320.38670.043*
C6A0.4353 (2)0.6566 (7)0.33025 (15)0.0368 (7)
C7A0.5343 (3)0.7079 (7)0.31113 (15)0.0394 (8)
H7A0.54640.84490.28270.047*
C8A0.6122 (3)0.5608 (7)0.33352 (16)0.0412 (8)
H8A0.67630.59820.31980.049*
C8AA0.5971 (3)0.3541 (6)0.37691 (15)0.0364 (7)
N9A0.3578 (3)0.8001 (6)0.30523 (15)0.0469 (8)
O1B0.53939 (17)0.5050 (4)0.53859 (12)0.0403 (6)
N1B0.2624 (2)0.3084 (6)0.60178 (14)0.0451 (7)
C2B0.2799 (2)0.4952 (7)0.56163 (16)0.0430 (8)
H2B0.22570.58910.54580.052*
N3B0.3720 (2)0.5655 (5)0.54065 (13)0.0385 (6)
C4B0.4570 (3)0.4384 (6)0.55929 (14)0.0332 (7)
C4AB0.4421 (2)0.2222 (6)0.60434 (15)0.0332 (7)
C5B0.5223 (3)0.0742 (6)0.62695 (14)0.0367 (7)
H5B0.58630.11360.61340.044*
C6B0.5075 (3)0.1315 (6)0.66954 (15)0.0371 (7)
C7B0.4094 (3)0.1838 (7)0.68957 (15)0.0409 (8)
H7B0.39830.32030.71830.049*
C8B0.3303 (3)0.0383 (7)0.66766 (15)0.0415 (8)
H8B0.26660.07680.68180.050*
C8AB0.3444 (2)0.1679 (6)0.62419 (15)0.0373 (7)
N9B0.5875 (3)0.2736 (7)0.69421 (15)0.0470 (8)
H3A0.560 (2)0.190 (7)0.4877 (16)0.039 (10)*
H3B0.383 (3)0.702 (7)0.5125 (17)0.059 (12)*
H9AA0.373 (3)0.957 (9)0.2838 (19)0.054 (12)*
H9BB0.638 (3)0.297 (10)0.667 (2)0.071 (14)*
H9BA0.571 (3)0.431 (9)0.715 (2)0.062 (12)*
H9AB0.307 (3)0.804 (8)0.3255 (19)0.050 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0381 (13)0.0371 (12)0.0429 (11)0.0020 (9)0.0049 (10)0.0039 (10)
N1A0.0368 (15)0.0409 (16)0.0505 (18)0.0034 (13)0.0035 (13)0.0010 (13)
C2A0.0340 (18)0.0394 (19)0.0491 (19)0.0022 (14)0.0003 (15)0.0011 (16)
N3A0.0399 (15)0.0334 (14)0.0385 (15)0.0004 (11)0.0010 (13)0.0035 (13)
C4A0.0358 (17)0.0317 (15)0.0337 (16)0.0019 (12)0.0017 (13)0.0064 (13)
C4AA0.0376 (17)0.0307 (15)0.0332 (16)0.0035 (13)0.0013 (12)0.0058 (12)
C5A0.0375 (17)0.0344 (16)0.0363 (17)0.0031 (13)0.0016 (14)0.0022 (14)
C6A0.0446 (19)0.0337 (16)0.0322 (16)0.0004 (14)0.0007 (14)0.0045 (13)
C7A0.053 (2)0.0329 (17)0.0320 (18)0.0053 (14)0.0051 (14)0.0019 (14)
C8A0.043 (2)0.0395 (18)0.0409 (18)0.0083 (14)0.0084 (15)0.0016 (14)
C8AA0.0383 (17)0.0338 (17)0.0371 (17)0.0015 (14)0.0043 (14)0.0029 (14)
N9A0.049 (2)0.0437 (17)0.0482 (18)0.0016 (14)0.0013 (15)0.0106 (15)
O1B0.0384 (13)0.0388 (12)0.0437 (12)0.0036 (10)0.0049 (11)0.0058 (10)
N1B0.0365 (15)0.0463 (17)0.0525 (17)0.0017 (12)0.0019 (13)0.0057 (13)
C2B0.0386 (19)0.0428 (18)0.0475 (19)0.0008 (14)0.0012 (15)0.0015 (16)
N3B0.0422 (16)0.0333 (15)0.0399 (15)0.0017 (11)0.0032 (13)0.0033 (12)
C4B0.0393 (19)0.0291 (16)0.0313 (16)0.0029 (12)0.0016 (13)0.0014 (13)
C4AB0.0384 (18)0.0299 (15)0.0314 (16)0.0033 (13)0.0040 (13)0.0031 (13)
C5B0.0389 (19)0.0350 (16)0.0361 (17)0.0041 (14)0.0047 (14)0.0041 (13)
C6B0.0457 (19)0.0323 (16)0.0332 (17)0.0005 (14)0.0009 (14)0.0015 (14)
C7B0.051 (2)0.0362 (18)0.0350 (17)0.0071 (15)0.0032 (15)0.0027 (14)
C8B0.0396 (19)0.0450 (19)0.0399 (18)0.0070 (14)0.0101 (14)0.0022 (15)
C8AB0.0391 (17)0.0335 (16)0.0392 (17)0.0032 (13)0.0018 (14)0.0020 (14)
N9B0.0504 (19)0.0457 (18)0.0448 (18)0.0022 (14)0.0025 (15)0.0079 (14)
Geometric parameters (Å, º) top
O1A—C4A1.235 (4)O1B—C4B1.239 (4)
N1A—C2A1.291 (5)N1B—C2B1.290 (5)
N1A—C8AA1.397 (4)N1B—C8AB1.391 (4)
C2A—N3A1.369 (4)C2B—N3B1.364 (4)
C2A—H2A0.9300C2B—H2B0.9300
N3A—C4A1.376 (4)N3B—C4B1.366 (4)
N3A—H3A0.94 (3)N3B—H3B0.92 (2)
C4A—C4AA1.457 (4)C4B—C4AB1.461 (5)
C4AA—C5A1.397 (4)C4AB—C5B1.393 (5)
C4AA—C8AA1.405 (4)C4AB—C8AB1.408 (4)
C5A—C6A1.395 (5)C5B—C6B1.387 (5)
C5A—H5A0.9300C5B—H5B0.9300
C6A—N9A1.374 (4)C6B—N9B1.392 (5)
C6A—C7A1.417 (5)C6B—C7B1.413 (5)
C7A—C8A1.365 (5)C7B—C8B1.370 (5)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C8AA1.403 (5)C8B—C8AB1.400 (5)
C8A—H8A0.9300C8B—H8B0.9300
N9A—H9AA0.93 (4)N9B—H9BB0.90 (5)
N9A—H9AB0.81 (4)N9B—H9BA0.93 (5)
C2A—N1A—C8AA116.3 (3)C2B—N1B—C8AB116.6 (3)
N1A—C2A—N3A124.8 (3)N1B—C2B—N3B124.9 (3)
N1A—C2A—H2A117.6N1B—C2B—H2B117.6
N3A—C2A—H2A117.6N3B—C2B—H2B117.6
C2A—N3A—C4A123.2 (3)C2B—N3B—C4B123.0 (3)
C2A—N3A—H3A120 (2)C2B—N3B—H3B123 (2)
C4A—N3A—H3A117 (2)C4B—N3B—H3B114 (2)
O1A—C4A—N3A120.9 (3)O1B—C4B—N3B121.3 (3)
O1A—C4A—C4AA124.9 (3)O1B—C4B—C4AB123.9 (3)
N3A—C4A—C4AA114.3 (3)N3B—C4B—C4AB114.7 (3)
C5A—C4AA—C8AA120.8 (3)C5B—C4AB—C8AB121.0 (3)
C5A—C4AA—C4A120.6 (3)C5B—C4AB—C4B120.9 (3)
C8AA—C4AA—C4A118.6 (3)C8AB—C4AB—C4B118.1 (3)
C6A—C5A—C4AA120.7 (3)C6B—C5B—C4AB120.6 (3)
C6A—C5A—H5A119.6C6B—C5B—H5B119.7
C4AA—C5A—H5A119.6C4AB—C5B—H5B119.7
N9A—C6A—C5A121.7 (3)C5B—C6B—N9B121.0 (3)
N9A—C6A—C7A120.4 (3)C5B—C6B—C7B118.1 (3)
C5A—C6A—C7A117.8 (3)N9B—C6B—C7B120.8 (3)
C8A—C7A—C6A121.5 (3)C8B—C7B—C6B121.6 (3)
C8A—C7A—H7A119.3C8B—C7B—H7B119.2
C6A—C7A—H7A119.3C6B—C7B—H7B119.2
C7A—C8A—C8AA121.0 (3)C7B—C8B—C8AB120.7 (3)
C7A—C8A—H8A119.5C7B—C8B—H8B119.7
C8AA—C8A—H8A119.5C8AB—C8B—H8B119.7
N1A—C8AA—C8A119.0 (3)N1B—C8AB—C8B119.4 (3)
N1A—C8AA—C4AA122.8 (3)N1B—C8AB—C4AB122.6 (3)
C8A—C8AA—C4AA118.2 (3)C8B—C8AB—C4AB118.0 (3)
C6A—N9A—H9AA117 (3)C6B—N9B—H9BB113 (3)
C6A—N9A—H9AB116 (3)C6B—N9B—H9BA116 (3)
H9AA—N9A—H9AB116 (4)H9BB—N9B—H9BA113 (4)
C8AA—N1A—C2A—N3A0.4 (5)C8AB—N1B—C2B—N3B0.9 (5)
N1A—C2A—N3A—C4A0.2 (5)N1B—C2B—N3B—C4B1.6 (5)
C2A—N3A—C4A—O1A179.7 (3)C2B—N3B—C4B—O1B178.9 (3)
C2A—N3A—C4A—C4AA0.1 (4)C2B—N3B—C4B—C4AB0.8 (4)
O1A—C4A—C4AA—C5A0.5 (5)O1B—C4B—C4AB—C5B0.2 (5)
N3A—C4A—C4AA—C5A179.9 (3)N3B—C4B—C4AB—C5B179.5 (3)
O1A—C4A—C4AA—C8AA179.8 (3)O1B—C4B—C4AB—C8AB179.8 (3)
N3A—C4A—C4AA—C8AA0.2 (4)N3B—C4B—C4AB—C8AB0.5 (4)
C8AA—C4AA—C5A—C6A0.1 (5)C8AB—C4AB—C5B—C6B0.2 (5)
C4A—C4AA—C5A—C6A179.6 (3)C4B—C4AB—C5B—C6B179.8 (3)
C4AA—C5A—C6A—N9A177.6 (3)C4AB—C5B—C6B—N9B177.5 (3)
C4AA—C5A—C6A—C7A0.1 (5)C4AB—C5B—C6B—C7B0.6 (5)
N9A—C6A—C7A—C8A177.4 (3)C5B—C6B—C7B—C8B0.4 (5)
C5A—C6A—C7A—C8A0.4 (5)N9B—C6B—C7B—C8B177.3 (3)
C6A—C7A—C8A—C8AA0.6 (5)C6B—C7B—C8B—C8AB0.2 (5)
C2A—N1A—C8AA—C8A179.3 (3)C2B—N1B—C8AB—C8B179.7 (3)
C2A—N1A—C8AA—C4AA0.6 (5)C2B—N1B—C8AB—C4AB0.5 (5)
C7A—C8A—C8AA—N1A179.6 (3)C7B—C8B—C8AB—N1B178.6 (3)
C7A—C8A—C8AA—C4AA0.5 (5)C7B—C8B—C8AB—C4AB0.6 (5)
C5A—C4AA—C8AA—N1A179.8 (3)C5B—C4AB—C8AB—N1B178.8 (3)
C4A—C4AA—C8AA—N1A0.5 (4)C4B—C4AB—C8AB—N1B1.2 (5)
C5A—C4AA—C8AA—C8A0.3 (4)C5B—C4AB—C8AB—C8B0.4 (4)
C4A—C4AA—C8AA—C8A179.4 (3)C4B—C4AB—C8AB—C8B179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9A—H9AA···N9Bi0.93 (4)2.55 (4)3.435 (5)160 (4)
N9A—H9AB···N1Aii0.81 (4)2.34 (4)3.144 (5)170 (4)
N9B—H9BB···N1Biii0.91 (4)2.19 (4)3.092 (5)174 (4)
N3A—H3A···O1Biv0.95 (3)1.89 (3)2.832 (4)175 (3)
N3B—H3B···O1Av0.92 (4)1.93 (4)2.847 (3)173 (4)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y+1, z; (iii) x+1/2, y, z; (iv) x, y1, z; (v) x, y+1, z.
4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III) top
Crystal data top
C8H8N3+·Cl·C8H7N3·2H2OF(000) = 760
Mr = 362.82Dx = 1.367 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 14.3512 (12) ÅCell parameters from 1071 reflections
b = 7.5867 (6) Åθ = 4.0–71.2°
c = 16.2282 (9) ŵ = 2.12 mm1
β = 93.544 (7)°T = 298 K
V = 1763.5 (2) Å3Needle, colourless
Z = 40.50 × 0.08 × 0.05 mm
Data collection top
Rigaku Xcalibur, Ruby
diffractometer
3563 independent reflections
Radiation source: Enhance (Cu) X-ray Source2207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.2576 pixels mm-1θmax = 75.8°, θmin = 4.0°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 99
Tmin = 0.934, Tmax = 1.000l = 1519
6703 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
3563 reflectionsΔρmax = 0.23 e Å3
261 parametersΔρmin = 0.21 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38300 (8)0.88404 (15)0.76044 (5)0.0719 (3)
O1W0.3293 (2)0.4885 (5)0.72013 (16)0.0732 (8)
O2W0.4789 (2)0.2659 (6)0.7806 (2)0.0896 (10)
N1A0.28852 (17)0.9176 (4)0.34296 (12)0.0423 (6)
C2A0.3708 (2)0.8430 (4)0.35562 (16)0.0440 (7)
H2AA0.40070.80520.30950.053*
N3A0.41460 (17)0.8174 (4)0.42915 (13)0.0408 (5)
C4A0.3713 (2)0.8717 (4)0.49712 (16)0.0396 (6)
C4AA0.28014 (19)0.9559 (4)0.48907 (16)0.0389 (6)
C5A0.2313 (2)1.0135 (5)0.55595 (17)0.0484 (7)
H5AA0.25781.00100.60940.058*
C6A0.1456 (2)1.0874 (5)0.5433 (2)0.0551 (8)
H6AA0.11331.12480.58810.066*
C7A0.1056 (2)1.1074 (5)0.4628 (2)0.0527 (7)
H7AA0.04681.15840.45460.063*
C8A0.1520 (2)1.0528 (4)0.39587 (17)0.0469 (7)
H8AA0.12531.06640.34260.056*
C8AA0.23995 (19)0.9765 (4)0.40943 (16)0.0385 (6)
N9A0.41535 (19)0.8422 (4)0.56770 (14)0.0505 (7)
N1B0.28423 (18)0.4265 (4)0.32016 (12)0.0435 (6)
C2B0.3657 (2)0.3578 (4)0.34201 (16)0.0447 (7)
H2BA0.40100.32030.29910.054*
N3B0.40470 (17)0.3348 (4)0.41844 (14)0.0431 (6)
C4B0.35638 (19)0.3916 (4)0.48186 (15)0.0382 (6)
C4AB0.26521 (19)0.4695 (4)0.46662 (15)0.0359 (5)
C5B0.2086 (2)0.5269 (4)0.52924 (16)0.0426 (6)
H5BA0.23040.51810.58430.051*
C6B0.1221 (2)0.5954 (4)0.50991 (19)0.0486 (7)
H6BA0.08560.63450.55160.058*
C7B0.0883 (2)0.6069 (4)0.42737 (19)0.0481 (7)
H7BA0.02900.65220.41460.058*
C8B0.1419 (2)0.5522 (4)0.36512 (16)0.0439 (7)
H8BA0.11890.56150.31040.053*
C8AB0.23112 (19)0.4821 (4)0.38354 (15)0.0383 (6)
N9B0.39542 (19)0.3709 (4)0.55724 (14)0.0493 (7)
H1A0.259 (3)0.929 (5)0.284 (2)0.060 (10)*
H9AA0.472 (3)0.789 (5)0.569 (2)0.062 (11)*
H9AB0.390 (4)0.880 (7)0.617 (3)0.103 (17)*
H9BA0.453 (3)0.308 (5)0.565 (2)0.057 (10)*
H9BB0.370 (3)0.406 (5)0.596 (2)0.047 (9)*
H1W10.345 (4)0.601 (4)0.733 (3)0.11 (2)*
H2W10.271 (2)0.497 (11)0.736 (4)0.19 (4)*
H1W20.437 (5)0.346 (8)0.759 (5)0.190*
H2W20.437 (4)0.183 (7)0.766 (4)0.15 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0881 (7)0.0841 (7)0.0431 (4)0.0031 (6)0.0015 (4)0.0039 (4)
O1W0.082 (2)0.081 (2)0.0566 (13)0.0059 (17)0.0021 (13)0.0063 (14)
O2W0.0612 (18)0.097 (3)0.109 (2)0.0033 (19)0.0051 (17)0.011 (2)
N1A0.0404 (13)0.0530 (16)0.0329 (10)0.0007 (11)0.0021 (9)0.0007 (10)
C2A0.0400 (15)0.0517 (18)0.0409 (12)0.0035 (13)0.0075 (11)0.0031 (12)
N3A0.0333 (11)0.0498 (15)0.0396 (10)0.0055 (10)0.0051 (9)0.0006 (10)
C4A0.0392 (14)0.0415 (15)0.0382 (12)0.0001 (12)0.0038 (10)0.0021 (11)
C4AA0.0346 (14)0.0380 (15)0.0439 (13)0.0001 (12)0.0013 (10)0.0021 (11)
C5A0.0524 (18)0.0528 (19)0.0399 (13)0.0034 (15)0.0030 (12)0.0010 (12)
C6A0.0546 (19)0.055 (2)0.0569 (16)0.0085 (16)0.0165 (14)0.0047 (15)
C7A0.0345 (15)0.0489 (18)0.0751 (19)0.0105 (14)0.0058 (13)0.0000 (16)
C8A0.0469 (17)0.0473 (18)0.0453 (13)0.0030 (14)0.0075 (12)0.0040 (12)
C8AA0.0377 (14)0.0373 (14)0.0409 (12)0.0032 (12)0.0068 (10)0.0018 (11)
N9A0.0406 (14)0.072 (2)0.0390 (11)0.0133 (13)0.0009 (10)0.0045 (11)
N1B0.0443 (13)0.0537 (16)0.0320 (9)0.0025 (12)0.0013 (9)0.0011 (10)
C2B0.0423 (15)0.0527 (18)0.0397 (12)0.0029 (13)0.0060 (11)0.0032 (12)
N3B0.0338 (12)0.0563 (16)0.0391 (10)0.0066 (11)0.0010 (9)0.0042 (10)
C4B0.0340 (13)0.0436 (15)0.0368 (11)0.0008 (12)0.0008 (10)0.0041 (11)
C4AB0.0337 (13)0.0346 (14)0.0392 (12)0.0010 (11)0.0011 (10)0.0001 (10)
C5B0.0418 (15)0.0499 (17)0.0367 (12)0.0016 (13)0.0065 (10)0.0000 (12)
C6B0.0420 (16)0.0505 (18)0.0546 (15)0.0029 (14)0.0138 (12)0.0033 (14)
C7B0.0314 (14)0.0487 (18)0.0643 (16)0.0060 (13)0.0031 (12)0.0073 (15)
C8B0.0398 (15)0.0471 (17)0.0441 (13)0.0003 (13)0.0042 (11)0.0064 (12)
C8AB0.0360 (14)0.0402 (15)0.0388 (12)0.0019 (12)0.0028 (10)0.0012 (11)
N9B0.0391 (14)0.072 (2)0.0366 (11)0.0112 (13)0.0015 (10)0.0058 (12)
Geometric parameters (Å, º) top
O1W—H1W10.91 (2)N9A—H9AA0.91 (4)
O1W—H2W10.89 (2)N9A—H9AB0.94 (5)
O2W—H1W20.91 (2)N1B—C2B1.309 (4)
O2W—H2W20.89 (2)N1B—C8AB1.383 (4)
N1A—C2A1.315 (4)C2B—N3B1.340 (4)
N1A—C8AA1.393 (4)C2B—H2BA0.9300
N1A—H1A1.03 (4)N3B—C4B1.347 (4)
C2A—N3A1.328 (4)C4B—N9B1.323 (4)
C2A—H2AA0.9300C4B—C4AB1.443 (4)
N3A—C4A1.363 (4)C4AB—C5B1.408 (4)
C4A—N9A1.293 (4)C4AB—C8AB1.409 (4)
C4A—C4AA1.455 (4)C5B—C6B1.364 (4)
C4AA—C8AA1.391 (4)C5B—H5BA0.9300
C4AA—C5A1.397 (4)C6B—C7B1.399 (4)
C5A—C6A1.356 (5)C6B—H6BA0.9300
C5A—H5AA0.9300C7B—C8B1.371 (4)
C6A—C7A1.403 (5)C7B—H7BA0.9300
C6A—H6AA0.9300C8B—C8AB1.402 (4)
C7A—C8A1.372 (5)C8B—H8BA0.9300
C7A—H7AA0.9300N9B—H9BA0.95 (4)
C8A—C8AA1.394 (4)N9B—H9BB0.80 (4)
C8A—H8AA0.9300
H1W1—O1W—H2W195 (6)C4A—N9A—H9AB120 (3)
H1W2—O2W—H2W287 (6)H9AA—N9A—H9AB120 (4)
C2A—N1A—C8AA120.3 (2)C2B—N1B—C8AB116.4 (2)
C2A—N1A—H1A119 (2)N1B—C2B—N3B128.1 (3)
C8AA—N1A—H1A120 (2)N1B—C2B—H2BA115.9
N1A—C2A—N3A125.0 (3)N3B—C2B—H2BA115.9
N1A—C2A—H2AA117.5C2B—N3B—C4B117.4 (2)
N3A—C2A—H2AA117.5N9B—C4B—N3B117.4 (3)
C2A—N3A—C4A118.0 (2)N9B—C4B—C4AB122.3 (3)
N9A—C4A—N3A116.2 (3)N3B—C4B—C4AB120.3 (2)
N9A—C4A—C4AA122.9 (3)C5B—C4AB—C8AB119.2 (3)
N3A—C4A—C4AA120.8 (2)C5B—C4AB—C4B124.1 (2)
C8AA—C4AA—C5A119.2 (3)C8AB—C4AB—C4B116.7 (2)
C8AA—C4AA—C4A116.8 (2)C6B—C5B—C4AB120.6 (2)
C5A—C4AA—C4A124.0 (2)C6B—C5B—H5BA119.7
C6A—C5A—C4AA120.4 (3)C4AB—C5B—H5BA119.7
C6A—C5A—H5AA119.8C5B—C6B—C7B120.1 (3)
C4AA—C5A—H5AA119.8C5B—C6B—H6BA120.0
C5A—C6A—C7A120.0 (3)C7B—C6B—H6BA120.0
C5A—C6A—H6AA120.0C8B—C7B—C6B120.6 (3)
C7A—C6A—H6AA120.0C8B—C7B—H7BA119.7
C8A—C7A—C6A120.9 (3)C6B—C7B—H7BA119.7
C8A—C7A—H7AA119.5C7B—C8B—C8AB120.3 (2)
C6A—C7A—H7AA119.5C7B—C8B—H8BA119.9
C7A—C8A—C8AA118.6 (3)C8AB—C8B—H8BA119.9
C7A—C8A—H8AA120.7N1B—C8AB—C8B119.7 (2)
C8AA—C8A—H8AA120.7N1B—C8AB—C4AB121.1 (3)
C4AA—C8AA—N1A119.0 (3)C8B—C8AB—C4AB119.2 (3)
C4AA—C8AA—C8A120.8 (3)C4B—N9B—H9BA119 (2)
N1A—C8AA—C8A120.2 (2)C4B—N9B—H9BB120 (3)
C4A—N9A—H9AA120 (2)H9BA—N9B—H9BB120 (3)
C8AA—N1A—C2A—N3A0.2 (5)C8AB—N1B—C2B—N3B0.2 (5)
N1A—C2A—N3A—C4A0.2 (5)N1B—C2B—N3B—C4B1.5 (5)
C2A—N3A—C4A—N9A179.0 (3)C2B—N3B—C4B—N9B179.1 (3)
C2A—N3A—C4A—C4AA0.3 (4)C2B—N3B—C4B—C4AB1.6 (5)
N9A—C4A—C4AA—C8AA178.8 (3)N9B—C4B—C4AB—C5B1.5 (5)
N3A—C4A—C4AA—C8AA0.4 (4)N3B—C4B—C4AB—C5B177.8 (3)
N9A—C4A—C4AA—C5A0.2 (5)N9B—C4B—C4AB—C8AB179.3 (3)
N3A—C4A—C4AA—C5A179.4 (3)N3B—C4B—C4AB—C8AB0.0 (4)
C8AA—C4AA—C5A—C6A0.4 (5)C8AB—C4AB—C5B—C6B0.6 (5)
C4A—C4AA—C5A—C6A178.5 (3)C4B—C4AB—C5B—C6B178.4 (3)
C4AA—C5A—C6A—C7A0.4 (6)C4AB—C5B—C6B—C7B0.9 (5)
C5A—C6A—C7A—C8A0.1 (6)C5B—C6B—C7B—C8B0.9 (5)
C6A—C7A—C8A—C8AA0.0 (5)C6B—C7B—C8B—C8AB0.6 (5)
C5A—C4AA—C8AA—N1A179.5 (3)C2B—N1B—C8AB—C8B178.1 (3)
C4A—C4AA—C8AA—N1A0.4 (4)C2B—N1B—C8AB—C4AB1.9 (4)
C5A—C4AA—C8AA—C8A0.2 (5)C7B—C8B—C8AB—N1B179.7 (3)
C4A—C4AA—C8AA—C8A178.8 (3)C7B—C8B—C8AB—C4AB0.3 (5)
C2A—N1A—C8AA—C4AA0.3 (4)C5B—C4AB—C8AB—N1B179.7 (3)
C2A—N1A—C8AA—C8A178.9 (3)C4B—C4AB—C8AB—N1B1.8 (4)
C7A—C8A—C8AA—C4AA0.0 (5)C5B—C4AB—C8AB—C8B0.3 (4)
C7A—C8A—C8AA—N1A179.2 (3)C4B—C4AB—C8AB—C8B178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N1Bi1.03 (3)1.76 (3)2.786 (3)173 (3)
N9A—H9AA···N3Bii0.91 (4)2.00 (4)2.907 (4)175 (3)
N9A—H9AB···Cl10.94 (5)2.34 (5)3.206 (2)153 (5)
N9B—H9BA···N3Aii0.96 (4)2.12 (4)3.074 (4)174 (3)
N9B—H9BB···O1W0.79 (4)2.22 (3)2.999 (4)167 (4)
O1W—H1W1···Cl10.90 (3)2.25 (3)3.157 (4)178 (6)
O1W—H2W1···Cl1iii0.89 (4)2.37 (4)3.183 (3)151 (7)
O2W—H1W2···O1W0.91 (7)1.96 (7)2.857 (5)169 (6)
O2W—H2W2···Cl1iv0.89 (5)2.40 (5)3.215 (4)153 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x, y1, z.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Collective Usage of Equipment of the Institute of Bioorganic Chemistry of the Uzbekistan Academy of Sciences. Professor Bakhtiyar Ibragimov is acknowledged for support with the diffraction measurements.

References

First citationAlagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAntipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V. & Chekotilo, A. (2009). Chem. Pharm. Bull. 57, 580–585.  Web of Science CrossRef CAS Google Scholar
First citationAzab, A., Nassar, A. & Azab, A. N. (2016). Molecules, 21, 1321–1340.  Web of Science CrossRef Google Scholar
First citationChandregowda, V., Kush, A. K. & Chandrasekara Reddy, G. (2009). Eur. J. Med. Chem. 44, 3046–3055.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Clercq, E. & Field, H. J. (2006). Br. J. Pharmacol. 147, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, Q., Chichak, K. & Lown, J. W. (1999). Curr. Med. Chem. 6, 1–27.  Web of Science CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130–136.  CrossRef CAS PubMed Web of Science Google Scholar
First citationIshikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., Rayl, T. J., Hwang, I. & Boger, D. L. (2009). J. Am. Chem. Soc. 131, 4904–4916.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293–294.  CAS Google Scholar
First citationPaneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V. & Rather, B. A. (2010). Indian J. Pharm. Sci. 72, 375–378.  Web of Science CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTashkhodzhaev, B., Molchanov, L. V., Turgunov, K. K., Makhmudov, M. K. & Aripov, Kh. N. (1995). Chem. Nat. Compd. 31, 349–352.  CrossRef Google Scholar
First citationTurgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V., Musaeva, G. V. & Aripov, Kh. N. (1998). Chem. Nat. Compd. 34, 300–303.  CrossRef CAS Google Scholar
First citationTurgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y., Ji, A., Zhang, A. & Shen, Y. (2009). Acta Cryst. E65, o3075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Y. (2012). Acta Cryst. E68, o304.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds